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We examine a one-dimensional reaction diffusion model with a weak Allee growth
rate that appears in population dynamics. We combine grazing with a certain
nonlinear boundary condition that models negative density dependent dispersal
on the boundary and analyze the effects on the steady states. In particular, we
study the bifurcation curve of positive steady states as the grazing parameter is
varied. Our results are acquired through the adaptation of a quadrature method
and Mathematica computations. Specifically, we computationally ascertain the
existence of 6-shaped bifurcation curves with several positive steady states for a
certain range of the grazing parameter.

1. Introduction

Within population dynamics, the most accepted exemplar for modeling a designated
population is the logistic equation

f (u)= u(a− bu), (1-1)

which illustrates the inference that as a population burgeons, the per capita growth
rate

f̃ (u)= a− bu (1-2)

of that population declines linearly. Yet empirically several authors have witnessed
that at lower population densities, the per capita growth rate initially increases (see
[Allee 1938; Dennis 1989; Lewis and Kareiva 1993; Shi and Shivaji 2006]). This
phenomenon is known in the literature as the Allee effect [1938]. Since the logistic
growth model does not compensate for the initial increase, a model of the Allee
effect must be implemented to account for this phenomenon.
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The Allee effect can be either strong, in which the per capita growth rate is
initially negative, or weak, in which the per capita growth rate is initially positive.
The Allee effect is generally modeled in the literature via quadratic per capita
growth rate functions of the population density. In this case, the analysis is more
difficult since the per capita growth rate is not linear or even nonincreasing. As a
contrast with (1-1), a weak Allee effect has been modeled as

f (u)= u(u+ 1)(b− u), (1-3)

where b > 1.
By analyzing additional factors that can influence a population, such as grazing

or harvesting, a better understanding can be had of the dynamics of the population.
Therefore, through the inclusion of an extra term to account for these factors, specifi-
cally grazing, a more precise model can be obtained. Grazing can be considered as a
category of natural predation, for example, when an owl preys upon the surrounding
rodent population. The term cu2/(1+u2) is commonly employed to model grazing
of a population (see [Causey et al. 2010; Lee et al. 2011; Poole et al. 2012; van
Nes and Scheffer 2005]).

Density dependent dispersal, or more specifically density dependent emigration,
describes a situation in which the dispersal/emigration of individuals living within a
patch is based on the population density, in our case, on the habitat border. A positive
density dependent emigration characterizes a case where individuals have a tendency
to leave if the population density is large and a tendency to stay if the population
density is small. On the contrary, a negative density dependent emigration represents
a case where individuals have a tendency to stay if the population density is large
and a tendency to leave if the population density is small.

Initially and intuitively it was believed that the majority of animals exhibit
positive density dependent dispersal. However, recent studies of several animals,
including the bighorn sheep, roe deer, house mouse, prairie vole, European badger,
and the Glanville fritillary butterfly Melitaea cinxia, have proven otherwise (see
[Kuussaari et al. 1996; Matthysen 2005]). In the literature, several factors have
been suggested as a cause of negative density dependent dispersal, including: niche
breadth, increased predator abundance, and, in particular, conspecific attraction
(see [Kuussaari et al. 1996; Matthysen 2005]). Conspecific attraction most simply
means that there is a predisposition of individuals within a population to become
enticed to areas where there are more conspecifics.

Cantrel and Cosner proposed the following nonlinear boundary condition to
model conspecific attraction on the boundary of a patch (see [Cantrell and Cosner
2003; 2007; Goddard et al. 2010a; 2010b; 2011a; 2011b; 2012]):

d(Ou · η)α(x, u)+ [1−α(x, u)]u = 0; ∂�, (1-4)



ECOLOGICAL SYSTEMS,BOUNDARY CONDITIONS, AND BIFURCATION CURVES 401

where α : �̄× [0,∞)→ [0, 1] is C1 and nondecreasing, d > 0 is the diffusion
parameter, Ou ·η is the outward normal derivative, and �⊂Rn (n ≥ 1) is a smooth
bounded domain. The α(x, u)’s of biological importance are of the form

α(x, u)= α(u)=
u

u+ g(u)
, (1-5)

where g : [0,∞)→ [δ,∞) is a C1 function, δ > 0, and g(u)/u→ 0 as u→∞.
Here, α(u) represents the fraction of the population that stays on the boundary
when reached. Notice that if α(u)≡ 0 then (1-4) becomes the Dirichlet boundary
condition (u = 0; ∂�), and if α(u)≡ 1 then (1-4) becomes the Neumann boundary
condition (Ou · η = 0; ∂�). In terms of this paper, we consider the case when
g(u)≡ d , where d > 0 is the diffusion parameter.

Our purpose is to analyze the effects of grazing in combination with a weak Allee
effect and the nonlinear boundary conditions (1-4) on the steady state solutions of
a reaction diffusion model. In particular, we study the one-dimensional case when
n = 1 and �= (0, 1):

ut =
1
λ

uxx + u f̃ (u)−
cu2

1+ u2 ; (0, 1), (1-6)

with nonlinear boundary conditions, namely

−u′′ = λ
[

u f̃ (u)−
cu2

1+ u2

]
= λ f (u); (0, 1),

u(0)
[
−

1
λ

u′(0)+
1
λ

]
= 0,

u(1)
[

1
λ

u′(1)+
1
λ

]
= 0,

(1-7)

where u represents the population density, f̃ (u) represents the per capita growth
rate, λ= 1/d and d > 0 represents the diffusion coefficient, and c ≥ 0 represents
the maximum grazing rate. Notice that the boundary conditions found in (1-7) can
be separated into the following four cases:

−u′′ = λ f (u); (0, 1), u(0)= 0, u(1)= 0, (1-8)

−u′′ = λ f (u); (0, 1), u(0)= 0, u′(1)=−1, (1-9)

−u′′ = λ f (u); (0, 1), u′(0)= 1, u(1)= 0, (1-10)

−u′′ = λ f (u); (0, 1), u′(0)= 1, u′(1)=−1. (1-11)

Thus, the positive solutions of (1-8)–(1-11) are the positive solutions of (1-7).
Further, it is clear that if u(x) is a positive solution of (1-9), then v(x)= u(1− x)
also satisfies (1-10). Thus, it suffices to only consider (1-8), (1-9), and (1-11).
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Figure 1. S-shaped bifurcation curve.

Prior studies have gathered information and analyzed the positive solutions to
both strong and weak Allee problems. Additionally, the analysis of the positive
solutions to the combination of grazing and the Allee effect has also been made;
however, to the best of our understanding no analysis has been made in regards to
the Allee effect with grazing and nonlinear boundary conditions. In the case when
α(u) ≡ 0, (1-8) has a rich history. For the logistic case with Dirichlet boundary
conditions, Lee, Sasi, and Shivaji proved the existence of an S-shaped bifurcation
curve in one dimension, as well as higher dimensions for a certain range of the
grazing parameter [Lee et al. 2011]. Regarding the one-dimensional weak Allee
effect model with Dirichlet boundary conditions, Poole, Roberson, and Stephenson
showed the existence of an S-shaped bifurcation curve, resembling Figure 1, both
computationally and analytically for certain parameter ranges [Poole et al. 2012].
In particular, our focus is to further examine the structure of positive solutions
of (1-7) when the nonlinear boundary conditions (1-4) are satisfied for the range
of the parameters where Poole et al. [2012] showed the existence of an S-shaped
bifurcation curve of positive solutions. Computationally, we show the existence of
6-shaped bifurcation curves as exemplified in Figure 2.

We employ and adapt the quadrature method first developed by Laetsch [1970] to
study the structure of positive solutions of (1-7). First, some important preliminaries
will be presented in Section 2, followed by a discussion of applying and adapting
the quadrature method for the specific cases (1-8), (1-9), and (1-11). In Section 6,
we provide the complete evolution of the bifurcation curve of positive solutions
of (1-7), followed by analytical results confirming some of our observations in
Section 7.
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Figure 2. 6-shaped bifurcation curves.

2. Preliminaries

We examine the combination of the weak Allee effect and grazing in the subsequent
reaction term:

f (u)= u(u+ 1)(b− u)−
cu2

1+ u2 for b > 1, c ≥ 0

=
u(u+ 1)(b− u)(1+ u2)− cu2

1+ u2 .

Through observation it is apparent that the numerator of f (u) can be written as a
fifth-degree polynomial. Regardless of any specific values for b and c, by analyzing
the roots of f (u) the existence of three roots — a negative root, a positive root,
and a root at u = 0 — can be determined. As c is varied the remaining three roots
alternate between imaginary and real values. For the purpose of this paper, denote
σ = σ(b, c) as the smallest positive root of f (u). Also, allow σ0 = σ0(b, c) and
σ1 = σ1(b, c) to represent the remaining roots. Regardless of the value of c > 0,
for certain values of b, specifically b ∈ (1, b0) (some b0 > 0), there exists only one
positive real root of f (u) represented by σ .

Remark 1. Through calculation and the use of Mathematica, it is estimated that
b0 ≈ 2.852.

Specifically, when b ∈ (b0,∞), it has been determined that the shape of f (u)
changes when c is varied. Note when c ∈ [0, c0) (some c0 = c0(b) > 0), there exists
exactly one positive real root denoted by σ(b, c). Figure 3 depicts this case. The
shape of f (u) is modified as c becomes larger. Specifically, when c∈ [c0, c1) (some
c1 = c1(b) ∈ (c0,∞)), f (u) has 3 positive real roots, namely σ(b, c), σ0(b, c), and
σ1(b, c), as depicted in Figure 4. For c > c1, f (u) is shifted downward resulting in
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σ

f (u)

Figure 3. Graph of f (u) for b > b0 and c ∈ [0, c0).

σ σ0 σ1

f (u)

Figure 4. Graph of f (u) for b > b0 and c ∈ [c0, c1).

exactly one positive real root σ(b, c), meaning σ0(b, c) and σ1(b, c) are imaginary
roots. This particular case is illustrated in Figure 5.

In the preceding cases the structure of the positive solutions of (1-7) varies. As
our primary interest is the structure of positive solutions for the range of parameters
where Poole et al. [2012] showed the existence of S-shaped bifurcation curves, we
focus on the case when c ∈ [0, c0).

3. Quadrature method for (1-8)

For completeness, we reestablish the results obtained through the quadrature method
actualized by Laetsch [1970] and Brown, Ibrahim, and Shivaji [Brown et al. 1981].
Additionally we recapitulate the subsequent boundary value problem analyzed by
Poole et al. [2012] for positive solutions:

−u′′(x)= λ f (u(x)); x ∈ (0, 1), u(0)= 0, u(1)= 0, (3-1)

where f : [0,∞)→ (0,∞) is a C1 function. Clearly, a positive solution of (3-1)
must resemble Figure 6.
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σ f (u)

Figure 5. Graph of f (u) for b > b0 and c > c1.

ρ

x

u(
x)

Figure 6. Graph of a typical positive solution of (3-1).

Theorem 3.1 [Brown et al. 1981; Laetsch 1970]. Suppose u(x) is a positive solution
to (3-1) with ‖u‖∞ = ρ = u(1

2), where ρ > 0. Such a solution to (3-1) exists if and
only if

G1(ρ)=
√

2
∫ ρ

0

ds
√

F(ρ)−F(s)
=
√
λ, (3-2)

where F(x)=
∫ x

0 f (s) ds.

Proof. (⇒) Recognizing that (3-1) is an autonomous differential equation, we see
that if u is a positive solution to (3-1) with u′(x0)= 0 for a particular x0 ∈ (0, 1),
then m(x)= u(x0+ x) and n(x)= u(x0− x) both satiate the initial value problem

−k ′′(x)= λ f (k(x)), k(0)= u(x0), k ′(0)= 0, (3-3)
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where x ∈ [0, l) and l =min{x0, 1− x0}. Using Picard’s existence and uniqueness
theorem, we have that u(x0 + x) ≡ u(x0 − x) for all x ∈ [0, l) and thus u(x) is
symmetric about x = 1

2 , which is notedly where u(x) achieves its maximum.
By multiplying the differential equation in (3-1) by u′(x), we have

−

[
[u′(x)]2

2

]′
=
[
λF(u(x))

]′
. (3-4)

Integration of both sides of (3-4) gives

u′(x)
√

F(ρ)− F(u(x))
=
√

2λ; x ∈ [0, 1
2). (3-5)

By integrating a second time and using the fact that u(0)= 0, we have∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx; x ∈ [0, 1
2 ]. (3-6)

Substituting x = 1
2 and utilizing u(1

2)= ρ, (3-6) can be written as

G1(ρ)=
√

2
∫ ρ

0

dt
√

F(ρ)− F(t)
=
√
λ. (3-7)

Therefore, if u(x) is a positive solution to (3-1) where ‖u‖∞ = ρ, then ρ must
fulfill G1(ρ)=

√
λ.

(⇐) Assume G1(ρ)=
√
λ for ρ > 0. Now define a function u : [0, 1

2 ] → [0,∞)
by ∫ u(x)

0

dt
√

F(ρ)− F(t)
=
√

2λx; x ∈ [0, 1
2 ]. (3-8)

We now show that u(x) satisfies (3-1). Notice that u(x) is well defined and via
the implicit function theorem also twice differentiable. Hence, differentiating (3-8)
yields

u′(x)=
√

2λ
[
F(ρ)− F(u(x))

]
.

By differentiating a second time we obtain

−u′′(x)= λ f (u(x)).

In addition, it is clear that u(0)= 0. By defining u(x) as a symmetric solution on
[0, 1], it is apparent that u(x) is a positive solution to (3-1) with ‖u‖∞ = ρ. �

It is important to discern that G1(ρ) is well defined and the improper integral is
convergent. To that end, we state an important remark.

Remark 2. The improper integral in (3-7) is both well defined and convergent for
ρ-values that fulfill:



ECOLOGICAL SYSTEMS,BOUNDARY CONDITIONS, AND BIFURCATION CURVES 407

ρ

q
u(

x)

x0x

Figure 7. Graph of a typical positive solution of (4-1).

(1) f (ρ) > 0;

(2) F(ρ) > F(s) for all s ∈ [0, ρ).

Notice that from Figure 3 if c ∈ [0, c0), then both (1) and (2) will be satisfied
for all ρ ∈ (0, σ (b, c)). We close this section by recalling an important result from
Brown et al.

Theorem 3.2 [Brown et al. 1981]. G1(ρ) is both differentiable and continuous on
the defined set T = {ρ > 0 | f (ρ) > 0 and F(ρ)− F(s) > 0 for all s ∈ [0, ρ)}
where

G ′1(ρ)=
√

2
∫ 1

0

H(ρ)− H(ρv)
[F(ρ)− F(ρv)]3/2

dv,

in which
H(s)= F(s)− s

2
f (s).

4. Quadrature method for (1-9)

In this section, we adapt the quadrature method to analyze the structure of positive
solutions of (1-9):

−u′′ = λ
[

u(u+1)(b−u)−
cu2

(u2+ 1)

]
; (0, 1), u(0)= 0, u′(1)=−1. (4-1)

Define

f (u)=
[

u(u+ 1)(b− u)−
cu2

(u2+ 1)

]
and F(x)=

∫ x

0
f (s) ds.

It is apparent that a positive solution of (4-1) must resemble Figure 7.
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Assume u(x) is a positive solution to (4-1) with ‖u‖∞ = ρ and u(1) = q for
q ∈ [0, ρ). By multiplying the differential equation in (4-1) by u′(x) we obtain

−

[
[u′(x)]2

2

]′
=
[
λF(u(x))

]′
. (4-2)

Integrating both sides of (4-2) yields

−(u′(x))2

2
= λF(u(x))+C. (4-3)

Recalling that u(x0)= ρ and u′(x0)= 0, (4-3) becomes

C =−λF(ρ). (4-4)

Similarly, using u(1)= q and u′(1)=−1, (4-3) is utilized to determine a second
value for C ,

C =− 1
2 − λF(q). (4-5)

Combining (4-4) and (4-5) gives

√
2λ=

1
√

F(ρ)− F(q)
. (4-6)

In utilizing the C-value from (4-4) while solving for u′(x), (4-3) becomes

u′(x)=
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [0, x0], (4-7)

u′(x)=−
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [x0, 1]. (4-8)

Rearranging (4-7) and (4-8) gives

u′(x)
√

F(ρ)− F(u(x))
=
√

2λ; x ∈ [0, x0), (4-9)

u′(x)
√

F(ρ)− F(u(x))
=−
√

2λ; x ∈ (x0, 1]. (4-10)

Integration of (4-9) from 0 to x and (4-10) from x0 to x yields∫ x

0

u′(x)
√

F(ρ)− F(u(x))
=

∫ x

0

√
2λ; x ∈ [0, x0), (4-11)∫ x

x0

u′(x)
√

F(ρ)− F(u(x))
=

∫ x

x0

−
√

2λ; x ∈ (x0, 1]. (4-12)
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Using a change of variables and recalling u(0)= 0 and u(x0)= ρ we obtain∫ u(x)

0

dw
√

F(ρ)− F(w)
=
√

2λx; x ∈ [0, x0], (4-13)∫ u(x)

ρ

dw
√

F(ρ)− F(w)
=−
√

2λ(x − x0); x ∈ [x0, 1]. (4-14)

By substituting x = x0 into (4-13) and x = 1 into (4-14) we obtain∫ ρ

0

dw
√

F(ρ)− F(w)
=
√

2λxo, (4-15)∫ q

ρ

dw
√

F(ρ)− F(w)
=−
√

2λ(1− x0). (4-16)

Subtracting (4-16) from (4-15) we have

√
2
∫ ρ

0

dw
√

F(ρ)− F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)− F(w)
=
√
λ. (4-17)

By synthesizing (4-6) with (4-17) we denote

G̃2(ρ, q)=
√

2
∫ ρ

0

dw
√

F(ρ)−F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)−F(w)
−

1
√

2
√

F(ρ)−F(q)
. (4-18)

By Remark 2, the improper integral in G̃2(ρ, q) exists and is convergent for ρ in
(0, σ (b, c)). Also, for a given ρ ∈ (0, σ (b, c)) Picard’s existence and uniqueness
theorem guarantees that the corresponding q = u(1) ∈ [0, ρ) must be unique. If for
each ρ ∈ (0, σ (b, c)) there exists a unique q(ρ) ∈ [0, ρ) where G̃2(ρ, q(ρ)) = 0,
then there exists a unique λ ∈ (0,∞) such that

√
2
∫ ρ

0

ds
√

F(ρ)− F(s)
−

1
√

2

∫ q(ρ)

0

ds
√

F(ρ)− F(s)

=
1

√
2
√

F(ρ)− F(q(ρ))
=
√
λ (4-19)

will be satisfied. Therefore it is imperative to examine the existence and uniqueness
of such a q = q(ρ). Hence, we recall and prove Lemma 1, adapted from [Goddard
et al. 2010a], which outlines necessary properties of G̃2(ρ, q).

Lemma 1 [Goddard et al. 2010a]. If ρ ∈ (0, σ (b, c)) then:

(1) G̃2(ρ, q)→−∞ as q→ ρ− for fixed ρ ∈ (0, σ (b, c)).

(2) [G̃2]q < 0 for every q ∈ [0, ρ) and fixed ρ ∈ (0, σ (b, c)).

(3) G̃2(ρ, 0)→∞ when ρ→ σ(b, c)−.
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(4) G̃2(ρ, 0)→−∞ when ρ→ 0+.

Proof. (1) Accomplished via the mean value theorem and the fact that F(u) is an
increasing function on (0, σ (b, c)).

(2) Let ρ ∈ (0, σ (b, c)). Thus

[G̃2(ρ, q)]q =−
1

√
2
√

F(ρ)− F(q)
−

f (q)

2
√

2[F(ρ)− F(q)]
3
2

< 0

for all q ∈ [0, ρ), since f (s) > 0 for s ∈ (0, σ (b, c)).

(3) For every ρ ∈ (0, σ (b, c)), we have

G̃2(ρ, 0)=
√

2
∫ ρ

0

ds
√

F(ρ)− F(s)
−

1
√

2
√

F(ρ)
= G1(ρ)−

1
√

2
√

F(ρ)
. (4-20)

Laetsch [1970] showed that G1(ρ) → ∞ as ρ → σ(b, c)−. This implies that
G̃2(ρ, 0)→∞ when ρ→ σ(b, c)−.

(4) Ascertained via the mean value theorem and the monotonicity of F(u) on
(0, σ (b, c)). �

According to Lemma 1, G̃2(ρ, q) must resemble Figure 8, whereas Figures 9
and 10 illustrate G̃2(ρ, 0). Noteworthy from Lemma 1, if G̃2(ρ, 0)≥ 0 then there
exists a unique q(ρ) ∈ [0, ρ) wherefore G̃2(ρ, q(ρ))= 0. We conjecture as a result
of our computations that there is a unique ρ∗ = ρ∗(b, c) > 0 wherefore if ρ ≥ ρ∗,
then G̃2(ρ, 0)≥ 0. Also if ρ < ρ∗ then G̃2(ρ, 0) < 0. So, for all ρ ∈ [ρ∗,∞) there
exists a unique q = q(ρ) ∈ [0, ρ) where G̃2(ρ, q(ρ))= 0. In this case, we have

G2(ρ, q(ρ))=
1

√
2
√

F(ρ)− F(q)
=
√
λ. (4-21)

G̃
2(
ρ
,
q)

q

q(ρ)
ρ

Figure 8. Graph of G̃2(ρ, q).
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G̃
2(
ρ
,
0)

ρ∗ ρ

σ

Figure 9. Graph of G̃2(ρ, 0) when b = 10 and c = 0.

G̃
2(
ρ
,
0)

ρ∗ ρ

σ

Figure 10. Graph of G̃2(ρ, 0) when b = 10 and c = 33.

We now state and prove the main theorem of the section.

Theorem 4.1. The function u(x) is a positive solution to (4-1) with

‖u‖∞ = ρ ∈ S(b, c) :=
[
ρ∗(b, c), σ (b, c)

)
if and only if

G2(ρ, q(ρ))=
1

√
2
√

F(ρ)− F(q)
=
√
λ

for a positive λ for which q = q(ρ) ∈ [0, ρ) is the unique solution of

G̃2(ρ, q(ρ))

=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)− F(w)
−

1
√

2
√

F(ρ)− F(q)
= 0.
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Proof. (⇒) Accomplished in the above analysis.

(⇐) Assume that there exist λ ∈ (0,∞) and ρ ∈ S(b, c) wherefore G2(ρ, q(ρ))=
√
λ in which the unique solution of G̃2(ρ, q(ρ))= 0 is q(ρ) ∈ [0, ρ). Define

u(x) : [0, 1] → R

via ∫ u(x)

0

ds
√

F(ρ)− F(s)
=
√

2λx; x ∈ [0, x0], (4-22)∫ u(x)

ρ

ds
√

F(ρ)− F(s)
=−
√

2λ(x − x0); x ∈ [x0, 1]. (4-23)

Now, we will exhibit u(x) as a positive solution to (4-1). Note that u(x) has a
turning point at x0 denoted by

x0 =
1
√

2λ

∫ ρ

0

ds
√

F(ρ)− F(s)
. (4-24)

For the given λ > 0, it is apparent that

1
√

2λ

∫ u(x)

0

ds
√

F(ρ)− F(s)
(4-25)

is both a differentiable function of u and an increasing function ranging from 0
to x0 when u takes on the values from 0 to ρ. Therefore, for each x ∈ [0, x0] there
is a unique u(x) wherefore∫ u(x)

0

ds
√

F(ρ)− F(s)
=
√

2λx . (4-26)

The implicit function theorem gives that u(x) is a twice-differentiable function with
respect to x . Differentiating (4-26) with respect to x gives

u′(x)=
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [0, x0]. (4-27)

Through a similar argument,

u′(x)=−
√

2λ
[
F(ρ)− F(u(x))

]
; x ∈ [x0, 1]. (4-28)

By utilizing (4-27) and (4-28) we obtain

[u′(x)]2

2
= λ

[
F(ρ)− F(u(x))

]
; x ∈ [0, 1]. (4-29)

Through differentiation of (4-29) we have

−u′′u′ = λ f (u)u′; x ∈ (0, 1), (4-30)
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which can be rewritten as

−u′′ = λ f (u); x ∈ (0, 1). (4-31)

Thus, we have proved that u(x) satisfies the differential equation in (4-1). Now,
we show that u(x) satisfies the boundary value conditions in (4-1); however, it is
apparent that u(0)= 0. Additionally, using G2(ρ, q(ρ))=

√
λ, we ascertain√

F(ρ)− F(q)= 1
√

2λ
. (4-32)

Substitution of x = 1 in (4-28) yields

u′(1)=−
√

2λ
√

F(ρ)− F(q). (4-33)

When (4-32) and (4-33) are synthesized we obtain

u′(1)=−1. (4-34)

Therefore, the boundary conditions in (4-1) are satisfied by u(x). �

5. Quadrature method for (1-11)

Further extension of the quadrature method is performed in this section to analyze
the structure of positive solutions of (1-11):

−u′′ = λ
[

u(u+ 1)(b− u)−
cu2

(u2+ 1)

]
; (0, 1), u′(0)= 1, u′(1)=−1. (5-1)

Define

f (u)=
[

u(u+ 1)(b− u)−
cu2

(u2+ 1)

]
and F(x)=

∫ x

0
f (s) ds.

Clearly, a positive solution of (5-1) must resemble Figure 11, where ‖u‖∞ = ρ,
ρ ∈ (0,∞), q = u(0) = u(1), and q ∈ [0, ρ). Through a similar argument as in
Section 4, we articulate the main theorem of this section.

Theorem 5.1. The function u(x) is a positive solution of (5-1) with

‖u‖∞ = ρ ∈ S(b, c)=
[
ρ∗(b, c), σ (b, c)

)
if and only if

G3(ρ, q(ρ))=
1

√
2
√

F(ρ)− F(q)
=
√
λ, (5-2)
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ρ

u(
x)

q

x

Figure 11. Graph of a typical positive solution of (5-1).

for which q = q(ρ) ∈ [0, ρ) is the unique solution of

G̃3(ρ, q(ρ))

=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−
√

2
∫ q

0

dw
√

F(ρ)− F(w)
−

1
√

2
√

F(ρ)− F(q)
= 0.

6. Computational results

Within this section we exhibit the complete evolution of the bifurcation curve of
positive solutions of (1-7) for c ∈ [0, c0(b)). The results for (1-8) are reestablished
via Mathematica computations and by recalling Theorem 3.1. For (1-9) and (1-11),
we recall Theorems 4.1 and 5.1 and utilize a standard root-finding algorithm to
find the unique ρ∗(b, c) > 0. Then for ρ ∈ [ρ∗(b, c), σ (b, c)) we employ a root-
finding algorithm to find the corresponding unique q(ρ), which is delineated in
Theorems 4.1 and 5.1. These diagrams were acquired via Mathematica for a single
b-value as c-values are varied. If b ∈ (b0,∞) then there exist

0< c∗0 < c∗1 < c∗2 < c∗3 < c∗4 < c∗5 < c∗6 < c∗7 < c0(b)

such that we have the following cases. In the subsequent figures, (1-8) is represented
in black, cases (1-9) and (1-10) in red, and (1-11) in blue.

Case 1. If c ∈ [0, c∗0) then there exist λi > 0 for i = 1, 2, 3, 4 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ [λ0,∞), then (1-7) has exactly 4 positive solutions;
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ρ

λ2 λ3 λ4 λ1 λ0 λ

Figure 12. ρ versus λ when b = 10 and c = 0 (Case 1).

• λ ∈ (λ1, λ0), then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 12 illustrates Case 1.

Case 2. If c ∈ [c0, c1) (some c1(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 6
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ [λ0,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ5) and λ ∈ (λ6, λ0), then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), λ= λ5, and λ= λ6, then (1-7) has exactly 6 positive solutions;

• λ= λ4 and λ ∈ (λ5, λ6), then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 13 illustrates Case 2.

Case 3. If c = c1 then there exist λi > 0 for i = 1, 2, . . . , 5 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;
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ρ

λ2 λ3 λ4 λ λ1 λ0

ρ

λ λ5 λ6 λ0

Figure 13. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 8.97 (Case 2).

• λ= λ3 and λ ∈ [λ0,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ5) and λ= λ0, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), λ= λ5, then (1-7) has exactly 6 positive solutions;

• λ= λ4 and λ ∈ (λ5, λ0), then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 14 illustrates Case 3.
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Figure 14. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 8.972 (Case 3).

Case 4. If c ∈ (c1, c2) (some c2(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 6
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ6,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ5) and λ= λ6, then (1-7) has exactly 5 positive solutions;
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ρ
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Figure 15. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 8.99 (Case 4).

• λ∈ (λ3, λ4), λ∈[λ0, λ6), and λ=λ5, then (1-7) has exactly 6 positive solutions;

• λ= λ4 and λ ∈ (λ5, λ0), then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 15 illustrates Case 4.

Case 5. If c = c2 then there exist λi > 0 for i = 1, 2, . . . , 5 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;
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λ0 λ λ5

Figure 16. ρ versus λ (top) and cross-section (bottom) for b= 10
and c = 9 (Case 5).

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ5,∞), then (1-7) has exactly 4 positive solutions;

• λ ∈ (λ1, λ0] and λ= λ5, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4) and λ ∈ (λ0, λ5), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ1], then (1-7) has exactly 8 positive solutions.

Figure 16 illustrates Case 5.
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λ2 λ3 λ4 λ λ0 λ1 λ5

ρ

Figure 17. ρ versus λ when b = 10 and c = 18 (Case 6).

Case 6. If c ∈ (c2, c3] (some c3(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 5
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ5,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ5, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ1, λ5), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ1], then (1-7) has exactly 9 positive solutions.

Figure 17 illustrates Case 6.

Case 7. If c ∈ (c3, c4) (some c4 > 0) then there exist λi > 0 for i = 1, 2, . . . , 7
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ7,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ7, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ1, λ7), then (1-7) has exactly 6 positive solutions;
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Figure 18. ρ versus λ when b = 10 and c = 26 (Case 7).

ρ

λ2 λ3 λ4 λ0 λ5 λ1 λ λ6

Figure 19. ρ versus λ when b = 10 and c = 27.3 (Case 8).

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), (λ6, λ1], then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ= λ6, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 13 positive solutions.

Figure 18 illustrates Case 7. Notice that the red curve has become 6-shaped and
this shape persists through c ≤ c0(b).
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Case 8. If c = c4 then there exist λi > 0 for i = 1, 2, . . . , 6 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ6,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ6, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ1, λ6), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ1, λ= λ5, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ5, λ1), then (1-7) has exactly 13 positive solutions.

Figure 19 illustrates Case 8.

Case 9. If c ∈ (c4, c5] (some c5(b) > 0), then there exist λi > 0 for i = 1, 2, . . . , 7
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ7,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ7, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ6, λ7), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ6, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ ∈ (λ1, λ6), then (1-7) has exactly 10 positive solutions;

• λ= λ5, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ5, λ1], then (1-7) has exactly 13 positive solutions.

Figure 20 illustrates Case 9.
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λ2 λ3 λ4 λ0 λ5 λ1 λ6 λ λ7

Figure 20. ρ versus λ when b = 10 and c = 28 (Case 9).

Case 10. If c ∈ (c5, c6) (some c6(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 9
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ9,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ9, then (1-7) has exactly 5 positive solutions;

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−1

10
0

10
1

λ2 λ3 λ4 λ0 λ5λ6λ7 λ1 λ8 λ9

ρ

λ

Figure 21. ρ versus λ when b = 10 and c = 29 (Case 10).
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• λ ∈ (λ3, λ4), (λ8, λ9), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ8, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), (λ6, λ7), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ= λ6, λ ∈ (λ1, λ8), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), λ= λ7, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ7, λ1], then (1-7) has exactly 13 positive solutions.

Figure 21 illustrates Case 10. Notice that the blue curve has now also become
6-shaped and its shape persists through c ≤ c0(b).

Case 11. If c = c6 then there exist λi > 0 for i = 1, 2, . . . , 8 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ8,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ8, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ7, λ8), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ7, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

ρ

λ2λ3λ4 λ0 λ5λ6 λ1 λ7 λ8λ

Figure 22. ρ versus λ when b = 10 and c = 30 (Case 11).
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• λ= λ5, λ ∈ (λ1, λ7), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 11 positive solutions;

• λ= λ6, then (1-7) has exactly 12 positive solutions;

• λ ∈ (λ6, λ1], then (1-7) has exactly 13 positive solutions.

Figure 22 illustrates Case 11.

Case 12. If c ∈ (c6, c7) (some c7(b) > 0) then there exist λi > 0 for i = 1, 2, . . . , 9
such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ9,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ9, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ8, λ9), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ8, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ ∈ (λ1, λ8), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 11 positive solutions;

• λ= λ6, λ ∈ (λ7, λ1], then (1-7) has exactly 13 positive solutions;

ρ

λ2λ3λ4 λ0 λ5λ6λ7λ1 λ8 λ9λ

Figure 23. ρ versus λ when b = 10 and c = 30.1 (Case 12).
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• λ= λ7, then (1-7) has exactly 14 positive solutions;

• λ ∈ (λ6, λ7), then (1-7) has exactly 15 positive solutions.

Figure 23 illustrates Case 12.

Case 13. If c = c7 then there exist λi > 0 for i = 1, 2, . . . , 8 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ8,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ8, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ7, λ8), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ7, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ ∈ (λ1, λ7), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), then (1-7) has exactly 11 positive solutions;

• λ= λ6, then (1-7) has exactly 13 positive solutions;

• λ= λ1, then (1-7) has exactly 14 positive solutions;

• λ ∈ (λ6, λ1), then (1-7) has exactly 15 positive solutions.

Figure 24 illustrates Case 13.

ρ

λ2λ3 λ4 λ0 λ5 λ6λ1 λ7 λ λ8

Figure 24. ρ versus λ when b = 10 and c = 30.3 (Case 13).
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Figure 25. ρ versus λ when b = 10 and c = 32 (Case 14).

Case 14. If c ∈ (c7, c0(b)) then there exist λi > 0 for i = 1, 2, . . . , 9 such that if

• λ ∈ [0, λ2), then (1-7) has no positive solution;

• λ= λ2, then (1-7) has a unique positive solution;

• λ ∈ (λ2, λ3), then (1-7) has exactly 2 positive solutions;

• λ= λ3 and λ ∈ (λ9,∞), then (1-7) has exactly 4 positive solutions;

• λ= λ9, then (1-7) has exactly 5 positive solutions;

• λ ∈ (λ3, λ4), (λ8, λ9), then (1-7) has exactly 6 positive solutions;

• λ= λ4, then (1-7) has exactly 7 positive solutions;

• λ ∈ (λ4, λ0], λ= λ8, then (1-7) has exactly 8 positive solutions;

• λ ∈ (λ0, λ5), then (1-7) has exactly 9 positive solutions;

• λ= λ5, λ ∈ (λ7, λ8), then (1-7) has exactly 10 positive solutions;

• λ ∈ (λ5, λ6), λ= λ7, then (1-7) has exactly 11 positive solutions;

• λ ∈ (λ1, λ7), then (1-7) has exactly 12 positive solutions;

• λ= λ6, then (1-7) has exactly 13 positive solutions;

• λ ∈ (λ6, λ1], then (1-7) has exactly 15 positive solutions;

Figure 25 illustrates Case 14.

7. Analytical results

In order to bolster our computational results as well as elaborate on the behavior of
the bifurcation curves, we procure some analytical results. First, we recall some
results from [Laetsch 1970] detailing the behavior of G1(ρ) when ρ→ σ(b, c)−



428 KATHRYN ASHLEY, VICTORIA SINCAVAGE AND JEROME GODDARD II

and when ρ→ 0+ in the following lemmas, where σ(b, c) represents the smallest
positive root of f (u).

Lemma 2 [Laetsch 1970]. limρ→σ(b,c)− G1(ρ)=∞.

Lemma 3 [Laetsch 1970]. limρ→0+ G1(ρ)= π/(2
√

b).

Our main goal for this section is to establish the following analytical results
for (1-9) and (1-11). Recall that λ= [G2(ρ, q)]2 and λ= [G3(ρ, q)]2 from Theo-
rems 4.1 and 5.1, respectively. Thus, we can obtain some global behavior of the ρ
versus λ bifurcation curve via study of G2(ρ, q) and G3(ρ, q).

Theorem 7.1.

(1)
(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)
≤ G2(ρ, q)≤

√
2
∫ ρ

0

dw
√

F(ρ)− F(w)
;

(2) G3(ρ, q)≤
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
.

Proof. To prove (1), recall

G2(ρ, q)=
1

√
2
√

F(ρ)− F(q)

=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−

1
√

2

∫ q

0

dw
√

F(ρ)− F(w)
. (7-1)

We ascertain an upper bound by substituting q = 0 into (7-1) yielding

G2(ρ, q)≤
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
.

Also, recalling q ∈ [0, ρ) and allowing q→ ρ− in (7-1) we obtain

G2(ρ, q)≥
(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)

as the lower bound. Hence,(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)
≤ G2(ρ, q)≤

√
2
∫ ρ

0

dw
√

F(ρ)− F(w)
.

Now to prove (2). Recall

G3(ρ, q)=
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)
−
√

2
∫ q

0

dw
√

F(ρ)− F(w)
. (7-2)

Similarly, by substituting q = 0 into (7-2) we obtain

G3(ρ, q)≤
√

2
∫ ρ

0

dw
√

F(ρ)− F(w)

as the upper bound. �
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Theorem 7.2. lim
ρ→σ(b,c)−

G2(ρ, q)=∞.

Proof. By Theorem 7.1, we have

G2(ρ, q)≥
(
√

2− 1
√

2

)∫ ρ

0

dw
√

F(ρ)− F(w)
. (7-3)

From Lemma 2, it is clear that the right side of (7-3) approaches infinity as

ρ→ σ(b, c)−.

Therefore, it is apparent that

lim
ρ→σ(b,c)−

G2(ρ, q)=∞. �
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