Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers

Daniel E. Lyons
Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers

Daniel E. Lyons

(Communicated by Nigel Boston)

It is well known that there exist arbitrarily long sequences of consecutive happy numbers. In this paper we find the smallest numbers beginning sequences of fourteen and fifteen consecutive happy numbers.

1. Introduction

Guy [1994, Problem E34] defines a happy number in the following way: “If you iterate the process of summing the squares of the decimal digits of a number, then it is easy to see that you either reach the cycle 4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4 or arrive at 1. In the latter case you started from a happy number.” Written another way, a happy number N is one for which some iteration of the function $S(N) = \sum_{j=0}^{k} a_j^2$ returns a value of 1, where $\sum_{j=0}^{k} a_j 10^j$ is the decimal expansion of N. According to Guy, the problem was first brought to the attention of the Western mathematical world when Reginald Allenby’s daughter returned with it from school in Britain. It is thought to have originated in Russia.

The first pair of consecutive happy numbers is 31, 32. The first example of three consecutive happy numbers is 1880, 1881, 1882. The smallest N beginning a sequence of four and five consecutive happy numbers are 7839 and 44488, respectively. El-Sedy and Siksek [2000] were the first to publish a proof that there exist arbitrarily long sequences of happy numbers, although Lenstra is known to have had an unpublished proof before them. Styer [2010] found the smallest examples of sequences of j consecutive happy numbers, for j from 6 to 13.

In this paper, we will use a period (.) to denote the concatenation operator to group sets of digits together within a large number. For convenience and clarity,
we will also write large strings of 9 by their quantity in parenthesis. For example,
$615 \cdot 10^{57} + (10^{55} - 1) \cdot 10^2 + 71$ will be written as $615(155 \text{ nines}).71$.

Define the function $S(\sum_{j=0}^k a_j 10^j) = \sum_{j=0}^k a_j^2$ and

$$N_0 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).3.$$

2. Fourteen consecutive happy numbers

Theorem 1. $N_0 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).3$ is the smallest N that begins a sequence of fourteen consecutive happy numbers. Note: N_0 has 1604938617279 digits.

Because the S function simply sums the squares of the digits of a number, and because addition is commutative, the ordering of the digits has no effect on the function’s output. In other words,

Lemma 1. For every choice of positive integers A, B, and C,

$$S(A.B.C) = S(B.A.C) = S(A.C.B) = S(A) + S(B) + S(C).$$

Lemma 2. N_0 begins a sequence of fourteen consecutive happy numbers.

Proof. Before the carry:

$$N_0 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).3,$$
$$S(N_0) = 130000027999364,$$
$$N_0 + 1 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).4,$$
$$S(N_0 + 1) = 130000027999371,$$
$$N_0 + 2 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).5,$$
$$S(N_0 + 2) = 130000027999380,$$
$$N_0 + 3 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).6,$$
$$S(N_0 + 3) = 130000027999391,$$
$$N_0 + 4 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).7,$$
$$S(N_0 + 4) = 130000027999404,$$
$$N_0 + 5 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).8,$$
$$S(N_0 + 5) = 130000027999419,$$
$$N_0 + 6 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).9,$$
$$S(N_0 + 6) = 130000027999436.$
After the carry:

\[N_0 + 7 = 7888.(1604938271577 \text{ nines}).2.(345696 \text{ zeros}).0, \]
\[S(N_0 + 7) = 12999999997982, \]
\[N_0 + 8 = 7888.(1604938271577 \text{ nines}).2.(345696 \text{ zeros}).1, \]
\[S(N_0 + 8) = 12999999997983, \]
\[N_0 + 9 = 7888.(1604938271577 \text{ nines}).2.(345696 \text{ zeros}).2, \]
\[S(N_0 + 9) = 12999999997986, \]
\[N_0 + 10 = 7888.(1604938271577 \text{ nines}).2.(345696 \text{ zeros}).3, \]
\[S(N_0 + 10) = 12999999997991, \]
\[N_0 + 11 = 7888.(1604938271577 \text{ nines}).2.(345696 \text{ zeros}).4, \]
\[S(N_0 + 11) = 12999999997998, \]
\[N_0 + 12 = 7888.(1604938271577 \text{ nines}).2.(345696 \text{ zeros}).5, \]
\[S(N_0 + 12) = 12999999998007, \]
\[N_0 + 13 = 7888.(1604938271577 \text{ nines}).2.(345696 \text{ zeros}).6, \]
\[S(N_0 + 13) = 12999999998018. \]

It is not difficult to see that each of these numbers is happy. The iterations of the \(S \) function get small rather quickly, and, after at most nine steps, reach 1. □

Lemma 3. If \(N_a < N_0 \) is another example of a number beginning a sequence of fourteen consecutive happy numbers, then \(S(N_a) < 9^2 \cdot 1604938617279 = 130000027999599. \)

Proof. In order for \(N_a \) to be smaller than \(N_0 \), it must not contain more digits than \(N_0 \). \(N_0 \) contains 1604938617279 digits. The largest number containing no more than 1604938617279 digits is \(10^{1604938617279} - 1 \), or 1604938617279 digits 9, which has an \(S \) value of \(9^2 \cdot 1604938617279 = 130000027999599 \). Therefore, if there were a number \(N_a < N_0 \) beginning a sequence of fourteen consecutive happy numbers, it would necessarily have \(S(N_a) < 130000027999599 \). □

We will let \(N_1 \) denote any candidate less its final digit. Thus we write \(N_a = N_1 \cdot x \), where \(x \) is the final digit. So, in our case, \(N_0 = N_1 \cdot 3 \). Let \(d \) be the first (rightmost) non-nine digit of \(N_1 \), and let \(N_2 \) be the remaining digits of \(N_1 \), to the left of \(d \). Thus we have

\[N_1 = N_2 \cdot d.(k \text{ nines}) \]

for an integer \(k \geq 0 \).

Lemma 4. \(S(N_1 + 1) \leq S(N_1) + 17. \)
Proof.

\[N_1 = N_2.d.(k \text{ nines}), \]
\[N_1 + 1 = N_2.(d + 1).(k \text{ zeros}), \]
\[S(N_1) = S(N_2) + d^2 + 9^2k, \]
\[S(N_1 + 1) = S(N_2) + (d + 1)^2, \]
\[S(N_1 + 1) - S(N_1) = (d + 1)^2 - d^2 - 81k \leq 9^2 - 8^2 = 17. \]

Lemma 5. Let \(M \) have four or more digits and let \(m, f, g, h \) be integers. Define
\[M = M_2.f.(m \text{ nines}).g.h, \]
where \(m \geq 0, 0 \leq f \leq 8, 0 \leq e, g, h \leq 9, \) and \(M_2 \) either is a positive integer or else is possibly vacuous (in which case we define \(S(M_2) = 0 \)). Then
\[S(M + e^2) = S(M_2) + S(f.(m \text{ nines}).g.h + e^2). \]

Proof. Since \(e^2 \leq 81 \), then \(g.h + e^2 \leq 180 \). Now \(g.h + e^2 = i.j \) or \(g.h + e^2 = 1.i.j \) for some digits \(i \) and \(j \). Then we have \(M + e^2 = M_2.f.(m \text{ nines}).i.j \) or \(M + e^2 = M_2.(f + 1).(m \text{ zeros}).i.j \). Now Lemma 1 completes the argument. \(\Box \)

Note that \(130000027999599 + 17 = 130000027999616. \)

Lemma 6. If each member of the set \(\{ M + e^2 \mid e = 2, 3, 4, 5, 6, 7, 8, 9 \} \) is happy, then \(M > 130000027999616. \)

Proof. Styer [2010], when dealing with fewer than fourteen consecutive happy numbers, did an exhaustive search on all values of \(M \) up to the needed bounds for his purposes. In order to reach a bound as high as \(130000027999599 \), we order the digits of \(M \). This makes the search approximately seven million times more efficient.

Write \(M = M_2.f.(m \text{ nines}).g.h \) as in Lemma 5. Assume the digits of \(M_2 \) are ordered in nondecreasing order. For each \(m \) from 0 to 12, we have a separate Maple script that checks every possible \(M \) with the digits of \(M_2 \) ordered to see if each member of \(\{ M + e^2 \mid e = 2, 3, 4, 5, 6, 7, 8, 9 \} \) is happy. A Maple program shows there are none. (For the relevant Maple worksheets, see [Lyons 2012].) \(\Box \)

Lemma 7. The final digit \(x \) of \(N_a \) satisfies \(x \geq 3. \)

Proof. We assumed the existence of \(N_a < N_0 \) that begins a sequence of 14 consecutive happy numbers and we have written \(N_a = N_1.x \) where \(x \) is a single digit. Suppose \(x = 0, 1, \) or 2. Then \(N_1.e \) is happy with \(e = 2, \ldots, 9 \). Thus \(S(N_1) + e^2 \) is happy with \(e = 2, \ldots, 9 \). By the previous lemma, we have \(S(N_1) > 13000002799916. \) But \(S(N_a) < 130000027999599 \) by Lemma 3. Moreover,
\[S(N_1) = S(N_a) - x^2 \leq S(N_a) - 4 < 130000027999595. \]
The upper and lower bounds we have for \(S(N_1) \) contradict each other, so \(x \geq 3. \) \(\Box \)
A set of Maple calculations similar to those in Lemma 6 yields the following lemma:

Lemma 8. If each member of the set \{M + e^2 | e = 0, 1, 2, 3, 4, 5, 6, 7\} is happy, then \(M > 130000027999616\).

Proof. We know that \(x \geq 3\) by Lemma 8. Suppose \(x \geq 4\). Now the numbers \(N_1 + u = N_1.x + u\) are happy for \(u = 0, 1, \ldots, 14\). If \(x \geq 4\) these numbers include \((N_1 + 1).e\) with \(e = 0, 1, \ldots, 7\). Therefore \(S(N_1 + 1) > 13000002777616\). However, by Lemmas 3 and 4,
\[
S(N_1 + 1) < 13000002799599 + 17 = 13000002799616,
\]
giving a contradiction. Therefore \(x = 3\). □

Lemma 9. The final digit \(x\) of \(N_a\) is \(x = 3\).

Proof. Maple calculations similar to Lemma 5 give this single example with digits in nondecreasing order. While any other permutation of the leading 11 digits (the \(M_2\) portion of \(M_3\)) will also result in every member of \(\{M + e^2 | e = 0, 1, 2, 3, 4, 5, 6\}\) being a happy number, these permutations will give us an \(M\) value which exceeds our bound. □

Lemma 10. The value \(M_3 = 129999999997982\) is the only \(M < 130000027999616\) such that every member of \(\{M + e^2 | e = 0, 1, 2, 3, 4, 5, 6\}\) is a happy number.

Proof. Maple calculations similar to Lemma 5 give this single example with digits in nondecreasing order. While any other permutation of the leading 11 digits (the \(M_2\) portion of \(M_3\)) will also result in every member of \(\{M + e^2 | e = 0, 1, 2, 3, 4, 5, 6\}\) being a happy number, these permutations will give us an \(M\) value which exceeds our bound. □

Lemma 11. The value of \(S(N_1)\) must satisfy
\[
129999999997982 - 17 < S(N_1) < 130000027999599.
\]

Lemma 12. The only \(M\) with \(129999999997982 - 17 < M < 130000027999599\) such that every member of \(\{M + e^2 | e = 3, 4, 5, 6, 7, 8, 9\}\) is a happy number is \(M = 130000027999355\).

A Maple search over all the numbers within the bounds listed above returned this single result. Call this value \(M_1\).

We now have the following relationships:
\[
S(N_1) = S(N_2) + d^2 + 81k = 1300000027999355 = M_1,
\]
\[
S(N_0 + 7) = S(N_2) + (d + 1)^2 = 129999999997982 = M_3,
\]
\[
M_1 - M_3 = 81k - 2d - 1 = 28001373.
\]

We look for integers \(k\) and \(d\) that satisfy this last relationship and find the sole solution \(k = 345696\) and \(d = 1\).

Now all that is left is to find the smallest \(N_2\) that will satisfy these three equations. With \(d = 1\), it reduces to \(S(N_2) = 129999999997978\). Using the methods elaborated by Styer [2010], we easily find that the minimal \(N_2\) with \(S(N_2) = 129999999997978\)
is $N_2 = 7888.(1604938271577 \text{ nines}).$ Putting all this together we see that the smallest N beginning a sequence of fourteen consecutive happy numbers is indeed $N_0 = 7888.(1604938271577 \text{ nines}).1.(345696 \text{ nines}).3.$

3. Fifteen consecutive happy numbers

Using the same methods as outlined above, we have confirmed Styer’s previous conjecture that the smallest number beginning a sequence of fifteen consecutive happy numbers is $N = 77.(2222222222222220 \text{ nines}).3.(97388).3.$

References

Received: 2012-08-30 Revised: 2012-10-21 Accepted: 2012-10-30
danlyons811@gmail.com Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
Embeddedness for singly periodic Scherk surfaces with higher dihedral symmetry 383
Valmir Bucaj, Sarah Cannon, Michael Dorff, Jamal Lawson and Ryan Viertel

An elementary inequality about the Mahler measure 393
Konstantin Stulov and Rongwei Yang

Ecological systems, nonlinear boundary conditions, and Σ-shaped bifurcation curves 399
Kathryn Ashley, Victoria Sincavage and Jerome Goddard II

The probability of randomly generating finite abelian groups 431
Tyler Carrico

Free and very free morphisms into a Fermat hypersurface 437
Tabes Bridges, Rankeya Datta, Joseph Eddy, Michael Newman and John Yu

Irreducible divisor simplicial complexes 447
Nicholas R. Baeth and John J. Hobson

Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers 461
Daniel E. Lyons

An orbit Cartan type decomposition of the inertia space of SO(2m) acting on \(\mathbb{R}^{2m} \) 467
Christopher Seaton and John Wells

Optional unrelated-question randomized response models 483
Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe

On the difference between an integer and the sum of its proper divisors 493
Nichole Davis, Dominic Klyve and Nicole Kraght

A Pexider difference associated to a Pexider quartic functional equation in topological vector spaces 505
Saeid Ostadbashi, Abbas Najati, Mahsa Solaimaninia and Themistocles M. Rassias