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We propose a generalization of Greenberg’s unrelated-question randomized re-
sponse model allowing subjects the option of giving a correct response if they
find the survey question nonsensitive, and to give a scrambled response if they
find the question sensitive. Models are provided for both the binary response
and the quantitative response situations. Mathematical properties of the proposed
models are examined and validated with computer simulations.

1. Introduction

Obtaining accurate information is essential in all surveys, particularly in public
health research where respondents often face sensitive and personal questions.
Examples include surveys of sexual behavior, drug use, or illegal activities. De-
spite assurances of anonymity, subjects often give untruthful responses leading to
problematic response bias.

One method of reducing this bias is the randomized response technique (RRT),
originally introduced in [Warner 1965], and subsequently developed and generalized
by many researchers [Greenberg et al. 1969; Gupta et al. 2002; 2010; Mehta et al.
2012; Sousa et al. 2010]. We will focus on the unrelated-question RRT method,
developed in [Greenberg et al. 1969]. Compared to direct questioning methods, all
RRT methods lead to more accurate estimates of sensitive behaviors, because of
increased anonymity of the subject’s response. In the unrelated-question model,
a predetermined proportion of subjects are randomized to answer an innocuous
unrelated question with known prevalence level. The researcher is unaware of which
question (actual or innocuous) any particular respondent answered, although the
mean of the research question can be estimated at the aggregate level. Unrelated-
question RRT has been used extensively over the past fifty years to estimate
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prevalence of behaviors ranging from induced abortion [Chow et al. 1979] to
software piracy [Kwan et al. 2010] and livestock disease prevalence [Cross et al.
2010]. This technique avoids the ethical issues associated with the bogus pipeline
technique [Jones and Sigall 1971] and is not as lengthy as the Marlowe–Crowne
social desirability scale method [Crowne and Marlowe 1960]. Here the increase in
anonymity offered by the technique lessens respondent anxiety during the survey,
resulting in more truthful responses [Stem and Bozman 1988].

The original unrelated-question RRT model makes no differentiation as to whether
an individual actually considers the topic sensitive; every subject is assumed to find
the research question sensitive, so all subjects utilize the randomization device to
produce a scrambled response. However, a topic or question may be sensitive for one
person, but not sensitive for another. Optional RRT models, introduced in [Gupta
et al. 2002], take this into account by allowing subjects who do not find the question
sensitive to answer it without utilizing the randomization step. Subjects who find
the research question sensitive still use the randomization device prior to providing
a response. In this optional model, the researcher remains unaware as to whether
or not the subject used the scrambling device or provided a truthful response.

We propose a generalization of the unrelated-question RRT, which takes this
difference into account by allowing the randomization step to be optional for the sub-
jects. We deal with both the binary response and the quantitative response situations
and estimate the prevalence (π) of the sensitive behavior and the mean response
(µ) of the quantitative sensitive question. In addition, the model also estimates the
sensitivity level (W ) of the underlying question, which is the proportion of subjects
who consider the question to be sensitive, and hence choose to provide a scrambled
response. We provide the theoretical framework for the two models and examine
their mathematical properties, which are also validated by computer simulations.

2. Proposed quantitative response model

We begin first with the quantitative response case, where the researcher is interested
in estimating population mean. A randomization device provided to the respondent
by the researcher determines whether the subject receives the sensitive research
question or the innocuous, unrelated question.

Let X be the true sensitive variable of interest with unknown mean µX and
unknown variance σ 2

X , and Y be a nonsensitive variable with known mean µY

and known variance σ 2
Y . Let p represent the probability of receiving the sensitive

question from the randomization device.
The reported response Z is given by

Z =
{

X with probability p,
Y with probability 1− p.
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Let W be the sensitivity level of the question. That is, a proportion W of the
respondents considers the question sensitive and will choose to provide a scrambled
response. Others will provide a direct response with probability 1−W . Then

Z =
{

X with probability (1−W )+W p,
Y with probability W (1− p),

with

E(Z)= (1−W )E(X)+W (pE(X)+ (1− p)E(Y )),

Var(Z)= [(1−W )+W p]E(X2)+W (1− p)E(Y 2)− [E(Z)]2.

(2-1)

Here, both µX and W are unknown parameters. To solve the above equation for
two unknowns, we use a split-sample approach where the total sample size may be
split into two subsamples, each receiving a randomization device with a different
probability (pi , i = 1, 2) of receiving the sensitive question. The expected response
in the i-th (i = 1, 2) subsample then is given by

E(Zi )= (1−W )E(X)+W (pi E(X)+ (1− pi )E(Y )), where i = 1, 2. (2-2)

2.1. Estimation of population mean. Solving the system of two equations (2-2)
for the parameters of interest, we get

E(Z1)− E(X)
E(Z2)− E(X)

=
1− p1

1− p2
.

Solving for E(X), we get

E(X)=
E(Z1)− λE(Z2)

1− λ
, where λ=

1− p1

1− p2
.

This suggests estimating µX by

µ̂X =
Z1− λZ2

1− λ
, (2-3)

where Z i is the sample mean of reported responses in the i-th subsample. The
variance of this estimator is given by

Var(µ̂X )=
Var(Z1)+ λ

2 Var(Z2)

(1− λ)2
, (2-4)

where

Var(Z1)=
[(1−W )+W p1]E(X2)+W (1− p1)E(Y 2)− [E(Z1)]

2

n1
,

Var(Z2)=
[(1−W )+W p2]E(X2)+W (1− p2)E(Y 2)− [E(Z2)]

2

n2
.



486 SAT GUPTA, ANNA TUCK, TRACY SPEARS GILL AND MARY CROWE

It is easy to see that E(µ̂X ) = µX , so the estimator µ̂X is unbiased. Also, µ̂X is
a linear combination of independent sample means; hence it has an asymptotic
normal distribution. More formally, we have the following asymptotic result:

Theorem 1. The estimator µ̂X is distributed as AN (µX , V ), where

V =
Var(Z1)+ λ

2 Var(Z2)

(1− λ)2

with

Var(Z i )=
[(1−W )+W pi ]E(X2)+W (1− pi )E(Y 2)− [E(Z2)]

2

ni
, i = 1, 2

and
E(Zi )= (1−W )E(X)+W (pi E(X)+ (1− pi )E(Y )).

2.2. Optimal allocation of sample size. For the optimal sample split (n1, n2), we
look at the first derivative of Var(µ̂X ) from (2-3), given by

∂Var(µ̂X )

∂n1
=

1
(1− λ)2

{
−σ 2

1

n2
1
+ λ2 σ 2

2

(n− n1)2

}
.

Setting this equal to zero, we get

0=
1

(1− λ)2

(
−σ 2

1

n2
1
+ λ2

(
σ2

n− n1

)2 )
,

σ 2
1

n2
1
= λ2 σ 2

2

(n− n1)2
,

n− n1

n1
=

√
λ2σ

2
2

σ 2
1
=

∣∣∣∣λσ2

σ1

∣∣∣∣.
Therefore,

n2

n1
= λ

σ2

σ1
(2-5)

gives the optimal ratio of subjects split in the two subsamples. This will result in
the minimum variance of the estimator µ̂X since the second derivative of Var (µ̂X )

is positive. Equation (2-5) assumes rough preliminary estimates of σ1 and σ2 are
available. These may be obtained through a pilot study.

2.3. Estimation of sensitivity level. In addition to estimating the mean (µ̂X ), the
proportion of subjects who scramble their response (W ) is also estimated. We can
easily solve (2-2) for W , which will lead to the possible estimator

Ŵ =
Z1− Z2

(p2− p1)(µY − µ̂X )
. (2-6)
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This representation of Ŵ as a ratio of two random variables presents difficulties
in deriving its properties. We can, however, rewrite Ŵ in terms of Z1 and Z2 to get

Ŵ =
Z1− Z2

µY (p2− p1)+ (1− p2)Z1− (1− p1)Z2
. (2-7)

Using the first-order bivariate Taylor approximation, with A = E(Z1) and B =
E(Z2), we get

Ŵ ≈ Ŵ (A, B)+
∂Ŵ (Z1, Z2)

∂Z1

∣∣∣∣
A,B
(Z1− A)+

∂Ŵ (Z1, Z2)

∂Z2

∣∣∣∣
A,B
(Z2− B)

=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B

+
(p2− p1)(µY − B)(Z1− A)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2

+
(p2− p1)(A−µY )(Z2− B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2
=: Ŵ1.

Taking the expected value, we get (Z1−µγ )→ (3−µγ ):

E(Ŵ1)=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B

+
(p2− p1)(µY − B)(E(Z1)− A)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2

+
(p2− p1)(Z1−µY )(E(Z2)− B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]2

=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B
=W.

Thus Ŵ1, the first-order approximation of Ŵ , is an unbiased estimator of W with
variance given by

Var(Ŵ1)=

(
(p2− p1)(µY − B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
1

n1

+

(
(p2− p1)(µY − B)(A−µY )

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
2

n2
, (2-8)

where

σ 2
i = [1−W +W pi ]E(X2)+W (1− pi )E(Y 2)− [E(Zi )]

2, i = 1, 2.
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Also, Ŵ1 is asymptotically normal since it is a linear combination of independent
sample means Z1 and Z2. This property is later confirmed by simulation. This
result is summarized in the following theorem.

Theorem 2. Ŵ1 ∼ AN (W, Vw), where

Var(Ŵ1)=

(
(p2− p1)(µY − B)

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
1

n1

+

(
(p2− p1)(A−µY )

[µY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
2

n2
,

σ 2
i = [1−W +W pi ]E(X2)+W (1− pi )E(Y 2)− [E(Zi )]

2, i = 1, 2.

3. Proposed binary response model

The estimator proposed in the preceding section is used when an estimate of the
population mean is needed. In many cases the main research interest is in the
prevalence of a particular sensitive behavior or characteristic. In this case the
research question demands a binary response, such as “yes” or “no”. We modify
the preceding estimator to be used in these cases.

3.1. Proposed model. Let X be a sensitive binary variable of interest with unknown
mean πX , and Y be a nonsensitive binary variable with known mean πY . Let p
represent probability of receiving the sensitive question from the randomization
device. Here the probability of a “yes” response (PY ) is given by

PY = (1−W )πX +W [pπX + (1− p)πY ].

Again, the sample is split into two subsamples to solve for both πX and W . The
probability of a “yes” response in the i-th (i = 1, 2) subsample is given by

PYi = (1−W )πX +W [piπX + (1− pi )πY ], i = 1, 2.

Solving this system of two equations for πX gives

πX =
PY1 − λPY2

1− λ
, where λ=

1− p1

1− p2
. (3-1)

3.2. Estimation of population proportion. Using (3-1), we obtain the estimate for
the population proportion (πX ) of the sensitive characteristic as

π̂X =
P̂Y1 − λP̂Y2

1− λ
, (3-2)

with variance given by

Var(π̂X )=
Var(P̂Y1)+ λ

2 Var(P̂Y2)

(1− λ)2
, (3-3)
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where

Var(P̂Y1)=
PY1(1− PY1)

n1
and Var(P̂Y2)=

PY2(1− PY2)

n2
.

Again, it can easily be seen that E(π̂X ) = πX , so the estimator π̂X is unbiased.
Also π̂X is a linear combination of independent sample means, and hence has an
asymptotic normal distribution.

3.3. Optimal allocation of sample size. Just as in the quantitative response case,
the optimal sample split is given by

n2

n1
= λ

√
PY2(1− PY2)

PY1(1− PY1)
. (3-4)

3.4. Estimation of sensitivity level. From (3-1), an estimator for the sensitivity
level (W ) in the binary case can be represented as

Ŵπ =
P̂Y1 − P̂Y2

(p2− p1)(πY − π̂X )
=

P̂Y1 − P̂Y2

πY (p2− p1)+ (1− p2)P̂Y1 − (1− p1)P̂Y2

. (3-5)

Applying the first-order Taylor approximation expansion for a bivariate function,
and assuming A = PY1 , B = PY2 , this can be approximated by

Ŵπ ≈
A− B

πY (p2− p1)+ (1− p2)A− (1− p1)B

+
(p2− p1)(πY − B)(P̂Y1 − A)

[πY (p2− p1)+ (1− p2)A− (1− p1)B]2

+
(p2− p1)(A−πY )(P̂Y2 − B)

[πY (p2− p1)+ (1− p2)A− (1− p1)B]2
=: Ŵπ1 .

It can be verified that

E(Ŵπ1)=
A− B

µY (p2− p1)+ (1− p2)A− (1− p1)B
=Wπ .

Thus, Ŵπ1 is an unbiased estimator of W with variance given by

Var(Ŵπ1)=

(
(p2− p1)(πY − B)

[πY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
1

n1

+

(
(p2− p1)(A−µY )

[πY (p2− p1)+ (1− p2)A− (1− p1)B]

)2 σ 2
2

n2
, (3-6)

where

σ 2
1 =

PY1(1− PY1)

n1
and σ 2

2 =
PY2(1− PY2)

n2
.
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W n1 µ̂X Var(µ̂X ) V̂ar(µ̂X ) Ŵ1 Var(Ŵ1) V̂ar(Ŵ1)

0.0 698 1.9988 0.0058 0.0058 −0.0001 0.0065 0.0067
0.1 674 2.0012 0.0066 0.0065 0.0982 0.0069 0.0069
0.2 680 2.0013 0.0068 0.0068 0.1982 0.0073 0.0073
0.3 690 2.0008 0.0072 0.0072 0.2984 0.0077 0.0077
0.4 699 2.0004 0.0075 0.0075 0.3989 0.0080 0.0080
0.5 710 2.0005 0.0079 0.0079 0.4991 0.0082 0.0082
0.6 722 2.0006 0.0081 0.0082 0.5996 0.0083 0.0084
0.7 737 1.9998 0.0084 0.0084 0.7004 0.0085 0.0085
0.8 753 1.9996 0.0086 0.0088 0.8005 0.0087 0.0087
0.9 774 1.9999 0.0089 0.0090 0.9002 0.0090 0.0090
1.0 800 1.9991 0.0091 0.0092 1.0001 0.0095 0.0097

Table 1. Estimates of µX and W with optimized subsamples. X
and Y have Poisson distributions with µX = 2.0, µY = 4.0. Total
sample size is 1000, p1 = 0.8, p2 =−0.2.

Also, Ŵπ1 clearly has an asymptotic normal distribution being a linear combina-
tion of independent sample means.

4. Simulation study

The preceding theoretical formulas are tested empirically through computer sim-
ulations. Poisson distribution is assumed for both X and Y . The subsample split
(n1, n2) is obtained by the optimal split method described above. Table 1 and
Table 2 present simulation results obtained with SAS.

The simulation results provide strong support for the theoretical results that µ̂X

and π̂X are unbiased. The theoretical and simulated variances of µ̂X and π̂X can
also be seen to be very close. The simulations also support that Ŵ1 and Ŵπ1 are
good estimators of W for the quantitative case and the binary case, respectively.

We also note that Ŵ1 and Ŵπ1 may occasionally give estimates that are outside
of the normal range [0, 1]. This happens when the true value of W is close to zero
or 1. As in [Warner 1965], this is because our estimators are unconstrained. In such
cases we recommend using an estimate of zero if Ŵ1 < 0, and 1 if Ŵ1 > 1.

The Kolmogorov–Smirnov normality test is used in SAS to check the sampling
distributions of µ̂X , π̂X , Ŵ1, and Ŵπ1 against the normal distribution. The p-values
for µ̂X , π̂X , Ŵ1, and Ŵπ1 are all greater than 0.15, indicating that their distributions
are not significantly different from the normal distribution.



OPTIONAL UNRELATED-QUESTION RANDOMIZED RESPONSE MODELS 491

W n1 π̂X Var(π̂X ) V̂ar(π̂X ) Ŵπ1 Var(Ŵπ1) V̂ar(Ŵπ1)

0.0 800 0.1508 0.0003 0.0003 −0.0037 0.0045 0.0047
0.1 786 0.1500 0.0004 0.0004 0.1005 0.0050 0.0050
0.2 777 0.1500 0.0004 0.0004 0.2007 0.0053 0.0052
0.3 772 0.1499 0.0005 0.0005 0.3008 0.0054 0.0055
0.4 770 0.1498 0.0005 0.0005 0.4009 0.0054 0.0055
0.5 770 0.1501 0.0005 0.0005 0.5008 0.0053 0.0055
0.6 772 0.1502 0.0005 0.0005 0.6005 0.0052 0.0052
0.7 776 0.1502 0.0006 0.0006 0.7007 0.0049 0.0050
0.8 782 0.1501 0.0006 0.0006 0.8006 0.0046 0.0046
0.9 790 0.1500 0.0006 0.0006 0.9008 0.0042 0.0042
1.0 800 0.1500 0.0006 0.0006 0.9996 0.0038 0.0038

Table 2. Estimates of πX and W with optimized subsamples. The
true values are πX = 0.15, πY = 0.85. Total sample size is 1000,
p1 = 0.8, p2 =−0.2.

5. Concluding remarks

The optional unrelated-question RRT proposed above provides models for simul-
taneously estimating both the mean and sensitivity level of a sensitive behavior. This
is distinct from previous unrelated-question RRT models, which estimate only the
mean. Estimators are derived for both the quantitative and binary response cases. In
both cases, estimators of the mean (µ̂X , π̂X ) and first-order Taylor approximations of
the sensitivity level (Ŵ1, Ŵπ1) are shown to be asymptotically normal and unbiased.

Of note in Table 1, the variances of both µ̂X and Ŵ1 increase as W increases
(when more subjects choose to provide scrambled responses). In Table 2 the
variance of π̂X increases slightly as W increases. When optionality is incorporated
into this model, when even a small proportion of subjects do not find the question
sensitive (and thus answer directly) the variance of the estimator is smaller than in a
comparable model where all subjects must provide a scrambled response (W = 1.0).
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