Optional unrelated-question randomized response models

Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe
Optional unrelated-question randomized response models

Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe
(Communicated by Kenneth S. Berenhaut)

We propose a generalization of Greenberg’s unrelated-question randomized response model allowing subjects the option of giving a correct response if they find the survey question nonsensitive, and to give a scrambled response if they find the question sensitive. Models are provided for both the binary response and the quantitative response situations. Mathematical properties of the proposed models are examined and validated with computer simulations.

1. Introduction

Obtaining accurate information is essential in all surveys, particularly in public health research where respondents often face sensitive and personal questions. Examples include surveys of sexual behavior, drug use, or illegal activities. Despite assurances of anonymity, subjects often give untruthful responses leading to problematic response bias.

One method of reducing this bias is the randomized response technique (RRT), originally introduced in [Warner 1965], and subsequently developed and generalized by many researchers [Greenberg et al. 1969; Gupta et al. 2002; 2010; Mehta et al. 2012; Sousa et al. 2010]. We will focus on the unrelated-question RRT method, developed in [Greenberg et al. 1969]. Compared to direct questioning methods, all RRT methods lead to more accurate estimates of sensitive behaviors, because of increased anonymity of the subject’s response. In the unrelated-question model, a predetermined proportion of subjects are randomized to answer an innocuous unrelated question with known prevalence level. The researcher is unaware of which question (actual or innocuous) any particular respondent answered, although the mean of the research question can be estimated at the aggregate level. Unrelated-question RRT has been used extensively over the past fifty years to estimate

MSC2010: 62D05.
Keywords: parameter estimation, randomized response technique, unrelated-question model, optional scrambling.
Research supported by NSF grants DBI 0926288 and DMS 0850465.
prevalence of behaviors ranging from induced abortion [Chow et al. 1979] to software piracy [Kwan et al. 2010] and livestock disease prevalence [Cross et al. 2010]. This technique avoids the ethical issues associated with the bogus pipeline technique [Jones and Sigall 1971] and is not as lengthy as the Marlowe–Crowne social desirability scale method [Crowne and Marlowe 1960]. Here the increase in anonymity offered by the technique lessens respondent anxiety during the survey, resulting in more truthful responses [Stem and Bozman 1988].

The original unrelated-question RRT model makes no differentiation as to whether an individual actually considers the topic sensitive; every subject is assumed to find the research question sensitive, so all subjects utilize the randomization device to produce a scrambled response. However, a topic or question may be sensitive for one person, but not sensitive for another. Optional RRT models, introduced in [Gupta et al. 2002], take this into account by allowing subjects who do not find the question sensitive to answer it without utilizing the randomization step. Subjects who find the research question sensitive still use the randomization device prior to providing a response. In this optional model, the researcher remains unaware as to whether or not the subject used the scrambling device or provided a truthful response.

We propose a generalization of the unrelated-question RRT, which takes this difference into account by allowing the randomization step to be optional for the subjects. We deal with both the binary response and the quantitative response situations and estimate the prevalence (\(\pi \)) of the sensitive behavior and the mean response (\(\mu \)) of the quantitative sensitive question. In addition, the model also estimates the sensitivity level (\(W \)) of the underlying question, which is the proportion of subjects who consider the question to be sensitive, and hence choose to provide a scrambled response. We provide the theoretical framework for the two models and examine their mathematical properties, which are also validated by computer simulations.

2. Proposed quantitative response model

We begin first with the quantitative response case, where the researcher is interested in estimating population mean. A randomization device provided to the respondent by the researcher determines whether the subject receives the sensitive research question or the innocuous, unrelated question.

Let \(X \) be the true sensitive variable of interest with unknown mean \(\mu_X \) and unknown variance \(\sigma_X^2 \), and \(Y \) be a nonsensitive variable with known mean \(\mu_Y \) and known variance \(\sigma_Y^2 \). Let \(p \) represent the probability of receiving the sensitive question from the randomization device.

The reported response \(Z \) is given by

\[
Z = \begin{cases}
X & \text{with probability } p, \\
Y & \text{with probability } 1 - p.
\end{cases}
\]
Let W be the sensitivity level of the question. That is, a proportion W of the respondents considers the question sensitive and will choose to provide a scrambled response. Others will provide a direct response with probability $1 - W$. Then

$$Z = \begin{cases}
X & \text{with probability} \ (1 - W) + Wp, \\
Y & \text{with probability} \ W(1 - p),
\end{cases}$$

with

$$E(Z) = (1 - W)E(X) + W(pE(X) + (1 - p)E(Y)), \quad (2-1)$$

Here, both μ_X and W are unknown parameters. To solve the above equation for two unknowns, we use a split-sample approach where the total sample size may be split into two subsamples, each receiving a randomization device with a different probability $(p_i, i = 1, 2)$ of receiving the sensitive question. The expected response in the i-th ($i = 1, 2$) subsample then is given by

$$E(Z_i) = (1 - W)E(X) + W(p_iE(X) + (1 - p_i)E(Y)), \quad \text{where} \ i = 1, 2. \quad (2-2)$$

2.1. Estimation of population mean. Solving the system of two equations (2-2) for the parameters of interest, we get

$$\frac{E(Z_1) - E(X)}{E(Z_2) - E(X)} = \frac{1 - p_1}{1 - p_2},$$

Solving for $E(X)$, we get

$$E(X) = \frac{E(Z_1) - \lambda E(Z_2)}{1 - \lambda}, \quad \text{where} \ \lambda = \frac{1 - p_1}{1 - p_2}.$$

This suggests estimating μ_X by

$$\hat{\mu}_X = \frac{\bar{Z}_1 - \lambda \bar{Z}_2}{1 - \lambda}, \quad (2-3)$$

where \bar{Z}_i is the sample mean of reported responses in the i-th subsample. The variance of this estimator is given by

$$\text{Var}(\hat{\mu}_X) = \frac{\text{Var}(\bar{Z}_1) + \lambda^2 \text{Var}(\bar{Z}_2)}{(1 - \lambda)^2}, \quad (2-4)$$

where

$$\text{Var}(\bar{Z}_1) = \frac{[(1 - W) + Wp_1]E(X^2) + W(1 - p_1)E(Y^2) - [E(Z_1)]^2}{n_1},$$

$$\text{Var}(\bar{Z}_2) = \frac{[(1 - W) + Wp_2]E(X^2) + W(1 - p_2)E(Y^2) - [E(Z_2)]^2}{n_2}.$$
It is easy to see that \(E(\hat{\mu}_X) = \mu_X \), so the estimator \(\hat{\mu}_X \) is unbiased. Also, \(\hat{\mu}_X \) is a linear combination of independent sample means; hence it has an asymptotic normal distribution. More formally, we have the following asymptotic result:

Theorem 1. The estimator \(\hat{\mu}_X \) is distributed as \(\text{AN}(\mu_X, V) \), where

\[
V = \frac{\text{Var}(\bar{Z}_1) + \lambda^2 \text{Var}(\bar{Z}_2)}{(1 - \lambda)^2}
\]

with

\[
\text{Var}(\bar{Z}_i) = \frac{((1 - W) + W p_i)E(X^2) + W(1 - p_i)E(Y^2) - [E(Z_2)]^2}{n_i}, \quad i = 1, 2
\]

and

\[
E(Z_i) = (1 - W)E(X) + W(p_i E(X) + (1 - p_i)E(Y)).
\]

2.2. Optimal allocation of sample size.

For the optimal sample split \((n_1, n_2)\), we look at the first derivative of \(\text{Var}(\hat{\mu}_X) \) from (2-3), given by

\[
\frac{\partial \text{Var}(\hat{\mu}_X)}{\partial n_1} = \frac{1}{(1 - \lambda)^2} \left\{ -\sigma_1^2 \frac{1}{n_1^2} + \lambda^2 \frac{\sigma_2^2}{(n-n_1)^2} \right\}.
\]

Setting this equal to zero, we get

\[
0 = \frac{1}{(1 - \lambda)^2} \left(-\sigma_1^2 \frac{1}{n_1^2} + \lambda^2 \left(\frac{\sigma_2^2}{n-n_1} \right)^2 \right).
\]

\[
\frac{\sigma_1^2}{n_1^2} = \lambda^2 \frac{\sigma_2^2}{(n-n_1)^2},
\]

\[
n - n_1 = \sqrt{\lambda^2 \frac{\sigma_2^2}{\sigma_1^2}} = \lambda \frac{\sigma_2}{\sigma_1}.
\]

Therefore,

\[
\frac{n_2}{n_1} = \lambda \frac{\sigma_2}{\sigma_1} \tag{2-5}
\]

gives the optimal ratio of subjects split in the two subsamples. This will result in the minimum variance of the estimator \(\hat{\mu}_X \) since the second derivative of \(\text{Var}(\hat{\mu}_X) \) is positive. Equation (2-5) assumes rough preliminary estimates of \(\sigma_1 \) and \(\sigma_2 \) are available. These may be obtained through a pilot study.

2.3. Estimation of sensitivity level.

In addition to estimating the mean \((\hat{\mu}_X) \), the proportion of subjects who scramble their response \((W) \) is also estimated. We can easily solve (2-2) for \(W \), which will lead to the possible estimator

\[
\hat{W} = \frac{\bar{Z}_1 - \bar{Z}_2}{(p_2 - p_1)(\mu_Y - \hat{\mu}_X)}. \tag{2-6}
\]
This representation of \hat{W} as a ratio of two random variables presents difficulties in deriving its properties. We can, however, rewrite \hat{W} in terms of Z_1 and Z_2 to get

$$
\hat{W} = \frac{Z_1 - Z_2}{\mu_Y(p_2 - p_1) + (1 - p_2)Z_1 - (1 - p_1)Z_2}.
$$

(2-7)

Using the first-order bivariate Taylor approximation, with $A = E(Z_1)$ and $B = E(Z_2)$, we get

$$
\hat{W} \approx \hat{W}(A, B) + \frac{\partial \hat{W}(\bar{Z}_1, \bar{Z}_2)}{\partial \bar{Z}_1} \bigg|_{A,B} (\bar{Z}_1 - A) + \frac{\partial \hat{W}(\bar{Z}_1, \bar{Z}_2)}{\partial \bar{Z}_2} \bigg|_{A,B} (\bar{Z}_2 - B)
$$

$$
= \frac{A - B}{\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B}
$$

$$
+ \frac{(p_2 - p_1)(\mu_Y - B)(\bar{Z}_1 - A)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2}
$$

$$
+ \frac{(p_2 - p_1)(A - \mu_Y)(\bar{Z}_2 - B)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2} =: \hat{W}_1.
$$

Taking the expected value, we get $(Z_1 - \mu_Y) \to (\Lambda - \mu_Y)$:

$$
E(\hat{W}_1) = \frac{A - B}{\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B}
$$

$$
+ \frac{(p_2 - p_1)(\mu_Y - B)(E(\bar{Z}_1) - A)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2}
$$

$$
+ \frac{(p_2 - p_1)(\bar{Z}_1 - \mu_Y)(E(\bar{Z}_2) - B)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2}
$$

$$
= \frac{A - B}{\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B} = W.
$$

Thus \hat{W}_1, the first-order approximation of \hat{W}, is an unbiased estimator of W with variance given by

$$
\text{Var}(\hat{W}_1) = \left(\frac{(p_2 - p_1)(\mu_Y - B)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]} \right)^2 \frac{\sigma_1^2}{n_1}
$$

$$
+ \left(\frac{(p_2 - p_1)(\mu_Y - B)(A - \mu_Y)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]} \right)^2 \frac{\sigma_2^2}{n_2},
$$

(2-8)

where

$$
\sigma_i^2 = [1 - W + Wp_i]E(X^2) + W(1 - p_i)E(Y^2) - [E(Z_i)]^2, \quad i = 1, 2.
$$
Also, \hat{W}_1 is asymptotically normal since it is a linear combination of independent sample means \bar{Z}_1 and \bar{Z}_2. This property is later confirmed by simulation. This result is summarized in the following theorem.

Theorem 2. $\hat{W}_1 \sim AN(W, V_w)$, where

$$\begin{align*}
\text{Var}(\hat{W}_1) &= \left(\frac{(p_2 - p_1)(\mu_Y - B)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]} \right)^2 \frac{\sigma_1^2}{n_1} \\
&\quad + \left(\frac{(p_2 - p_1)(A - \mu_Y)}{[\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]} \right)^2 \frac{\sigma_2^2}{n_2},
\end{align*}$$

$$\sigma_i^2 = [1 - W + Wp_i]E(X^2) + W(1 - p_i)E(Y^2) - [E(Z_i)]^2, \quad i = 1, 2.$$

3. Proposed binary response model

The estimator proposed in the preceding section is used when an estimate of the population mean is needed. In many cases the main research interest is in the prevalence of a particular sensitive behavior or characteristic. In this case the research question demands a binary response, such as “yes” or “no”. We modify the preceding estimator to be used in these cases.

3.1. Proposed model. Let X be a sensitive binary variable of interest with unknown mean π_X, and Y be a nonsensitive binary variable with known mean π_Y. Let p represent probability of receiving the sensitive question from the randomization device. Here the probability of a “yes” response (P_Y) is given by

$$P_Y = (1 - W)\pi_X + W[p\pi_X + (1 - p)\pi_Y].$$

Again, the sample is split into two subsamples to solve for both π_X and W. The probability of a “yes” response in the i-th ($i = 1, 2$) subsample is given by

$$P_{Y_i} = (1 - W)\pi_X + W[p_i\pi_X + (1 - p_i)\pi_Y], \quad i = 1, 2.$$

Solving this system of two equations for π_X gives

$$\pi_X = \frac{P_{Y_1} - \lambda P_{Y_2}}{1 - \lambda}, \quad \text{where } \lambda = \frac{1 - p_1}{1 - p_2}. \quad (3-1)$$

3.2. Estimation of population proportion. Using (3-1), we obtain the estimate for the population proportion (π_X) of the sensitive characteristic as

$$\hat{\pi}_X = \frac{\hat{P}_{Y_1} - \lambda \hat{P}_{Y_2}}{1 - \lambda}, \quad (3-2)$$

with variance given by

$$\text{Var}(\hat{\pi}_X) = \frac{\text{Var}(\hat{P}_{Y_1}) + \lambda^2 \text{Var}(\hat{P}_{Y_2})}{(1 - \lambda)^2}. \quad (3-3)$$
Applying the first-order Taylor approximation expansion for a bivariate function,
\[\hat{\pi} \]
Again, it can easily be seen that \(E(\hat{\pi}_X) = \pi_X \), so the estimator \(\hat{\pi}_X \) is unbiased. Also \(\hat{\pi}_X \) is a linear combination of independent sample means, and hence has an asymptotic normal distribution.

3.3. Optimal allocation of sample size.
Just as in the quantitative response case, the optimal sample split is given by
\[
\frac{n_2}{n_1} = \lambda \sqrt{\frac{P_{Y_2}(1 - P_{Y_2})}{P_{Y_1}(1 - P_{Y_1})}}.
\] (3-4)

3.4. Estimation of sensitivity level.
From (3-1), an estimator for the sensitivity level \((W)\) in the binary case can be represented as
\[
\hat{W}_\pi = \frac{\hat{P}_{Y_1} - \hat{P}_{Y_2}}{(p_2 - p_1)(\pi_Y - \hat{\pi}_X)} - \frac{\hat{P}_{Y_1} - \hat{P}_{Y_2}}{\pi_Y(p_2 - p_1) + (1 - p_2)\hat{P}_{Y_1} - (1 - p_1)\hat{P}_{Y_2}}. \] (3-5)

Applying the first-order Taylor approximation expansion for a bivariate function, and assuming \(A = P_{Y_1}, B = P_{Y_2} \), this can be approximated by
\[
\hat{W}_\pi \approx \frac{A - B}{\pi_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B} \\
+ \frac{(p_2 - p_1)(\pi_Y - B)(\hat{P}_{Y_1} - A)}{[\pi_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2} \\
+ \frac{(p_2 - p_1)(A - \pi_Y)(\hat{P}_{Y_2} - B)}{[\pi_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2} =: \hat{W}_{\pi_1}.
\]

It can be verified that
\[
E(\hat{W}_{\pi_1}) = \frac{A - B}{\mu_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B} = W_\pi.
\]

Thus, \(\hat{W}_{\pi_1} \) is an unbiased estimator of \(W \) with variance given by
\[
\text{Var}(\hat{W}_{\pi_1}) = \left(\frac{(p_2 - p_1)(\pi_Y - B)}{[\pi_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2} \right)^2 \frac{\sigma_1^2}{n_1} \\
+ \left(\frac{(p_2 - p_1)(A - \mu_Y)}{[\pi_Y(p_2 - p_1) + (1 - p_2)A - (1 - p_1)B]^2} \right)^2 \frac{\sigma_2^2}{n_2}, \] (3-6)

where
\[
\sigma_1^2 = \frac{P_{Y_1}(1 - P_{Y_1})}{n_1} \quad \text{and} \quad \sigma_2^2 = \frac{P_{Y_2}(1 - P_{Y_2})}{n_2}.
\]
Also, \hat{W}_{π_1} clearly has an asymptotic normal distribution being a linear combination of independent sample means.

4. Simulation study

The preceding theoretical formulas are tested empirically through computer simulations. Poisson distribution is assumed for both X and Y. The subsample split (n_1, n_2) is obtained by the optimal split method described above. Table 1 and Table 2 present simulation results obtained with SAS.

The simulation results provide strong support for the theoretical results that $\hat{\mu}_X$ and $\hat{\pi}_X$ are unbiased. The theoretical and simulated variances of $\hat{\mu}_X$ and $\hat{\pi}_X$ can also be seen to be very close. The simulations also support that \hat{W}_1 and \hat{W}_{π_1} are good estimators of W for the quantitative case and the binary case, respectively.

We also note that \hat{W}_1 and \hat{W}_{π_1} may occasionally give estimates that are outside of the normal range $[0, 1]$. This happens when the true value of W is close to zero or 1. As in [Warner 1965], this is because our estimators are unconstrained. In such cases we recommend using an estimate of zero if $\hat{W}_1 < 0$, and 1 if $\hat{W}_1 > 1$.

The Kolmogorov–Smirnov normality test is used in SAS to check the sampling distributions of $\hat{\mu}_X$, $\hat{\pi}_X$, \hat{W}_1, and \hat{W}_{π_1} against the normal distribution. The p-values for $\hat{\mu}_X$, $\hat{\pi}_X$, \hat{W}_1, and \hat{W}_{π_1} are all greater than 0.15, indicating that their distributions are not significantly different from the normal distribution.

Table 1. Estimates of μ_X and W with optimized subsamples. X and Y have Poisson distributions with $\mu_X = 2.0$, $\mu_Y = 4.0$. Total sample size is 1000, $p_1 = 0.8$, $p_2 = -0.2$.

<table>
<thead>
<tr>
<th>W</th>
<th>n_1</th>
<th>$\hat{\mu}_X$</th>
<th>Var($\hat{\mu}_X$)</th>
<th>$\tilde{\text{Var}}(\hat{\mu}_X)$</th>
<th>\hat{W}_1</th>
<th>Var(\hat{W}_1)</th>
<th>$\tilde{\text{Var}}(\hat{W}_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>698</td>
<td>1.9988</td>
<td>0.0058</td>
<td>0.0058</td>
<td>-0.0001</td>
<td>0.0065</td>
<td>0.0067</td>
</tr>
<tr>
<td>0.1</td>
<td>674</td>
<td>2.0012</td>
<td>0.0066</td>
<td>0.0065</td>
<td>0.0982</td>
<td>0.0069</td>
<td>0.0069</td>
</tr>
<tr>
<td>0.2</td>
<td>680</td>
<td>2.0013</td>
<td>0.0068</td>
<td>0.0068</td>
<td>0.1982</td>
<td>0.0073</td>
<td>0.0073</td>
</tr>
<tr>
<td>0.3</td>
<td>690</td>
<td>2.0008</td>
<td>0.0072</td>
<td>0.0072</td>
<td>0.2984</td>
<td>0.0077</td>
<td>0.0077</td>
</tr>
<tr>
<td>0.4</td>
<td>699</td>
<td>2.0004</td>
<td>0.0075</td>
<td>0.0075</td>
<td>0.3989</td>
<td>0.0080</td>
<td>0.0080</td>
</tr>
<tr>
<td>0.5</td>
<td>710</td>
<td>2.0005</td>
<td>0.0079</td>
<td>0.0079</td>
<td>0.4991</td>
<td>0.0082</td>
<td>0.0082</td>
</tr>
<tr>
<td>0.6</td>
<td>722</td>
<td>2.0006</td>
<td>0.0081</td>
<td>0.0082</td>
<td>0.5996</td>
<td>0.0083</td>
<td>0.0084</td>
</tr>
<tr>
<td>0.7</td>
<td>737</td>
<td>1.9998</td>
<td>0.0084</td>
<td>0.0084</td>
<td>0.7004</td>
<td>0.0085</td>
<td>0.0085</td>
</tr>
<tr>
<td>0.8</td>
<td>753</td>
<td>1.9996</td>
<td>0.0086</td>
<td>0.0088</td>
<td>0.8005</td>
<td>0.0087</td>
<td>0.0087</td>
</tr>
<tr>
<td>0.9</td>
<td>774</td>
<td>1.9999</td>
<td>0.0089</td>
<td>0.0090</td>
<td>0.9002</td>
<td>0.0090</td>
<td>0.0090</td>
</tr>
<tr>
<td>1.0</td>
<td>800</td>
<td>1.9991</td>
<td>0.0091</td>
<td>0.0092</td>
<td>1.0001</td>
<td>0.0095</td>
<td>0.0097</td>
</tr>
</tbody>
</table>
OPTIONAL UNRELATED-QUESTION RANDOMIZED RESPONSE MODELS

Table 2. Estimates of π_X and W with optimized subsamples. The true values are $\pi_X = 0.15$, $\pi_Y = 0.85$. Total sample size is 1000, $p_1 = 0.8$, $p_2 = -0.2$.

5. Concluding remarks

The optional unrelated-question RRT proposed above provides models for simultaneously estimating both the mean and sensitivity level of a sensitive behavior. This is distinct from previous unrelated-question RRT models, which estimate only the mean. Estimators are derived for both the quantitative and binary response cases. In both cases, estimators of the mean ($\hat{\mu}_X$, $\hat{\pi}_X$) and first-order Taylor approximations of the sensitivity level (\hat{W}_1, \hat{W}_{π_1}) are shown to be asymptotically normal and unbiased.

Of note in Table 1, the variances of both $\hat{\mu}_X$ and \hat{W}_1 increase as W increases (when more subjects choose to provide scrambled responses). In Table 2 the variance of $\hat{\pi}_X$ increases slightly as W increases. When optionality is incorporated into this model, when even a small proportion of subjects do not find the question sensitive (and thus answer directly) the variance of the estimator is smaller than in a comparable model where all subjects must provide a scrambled response ($W = 1.0$).

References

Received: 2012-10-01 Revised: 2012-11-05 Accepted: 2012-11-08

sngupta@uncg.edu Department of Mathematics and Statistics, University of North Carolina at Greensboro, 317 College Avenue, Greensboro, NC 27412, United States

avmikh@uw.edu Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195, United States

tgspears@uncg.edu School of Nursing, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402, United States

mathematical sciences publishers
Embeddedness for singly periodic Scherk surfaces with higher dihedral symmetry
Valmir Bucaj, Sarah Cannon, Michael Dorff, Jamal Lawson and Ryan VierTEL

An elementary inequality about the Mahler measure
Konstantin Stulov and Rongwei Yang

Ecological systems, nonlinear boundary conditions, and Σ-shaped bifurcation curves
Kathryn Ashley, Victoria Sincavage and Jerome Goddard II

The probability of randomly generating finite abelian groups
Tyler Carrico

Free and very free morphisms into a Fermat hypersurface
Tabes Bridges, Rankeya Datta, Joseph Eddy, Michael Newman and John Yu

Irreducible divisor simplicial complexes
Nicholas R. Baeth and John J. Hobson

Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers
Daniel E. Lyons

An orbit Cartan type decomposition of the inertia space of SO(2m) acting on ℝ^{2m}
Christopher Seaton and John Wells

Optional unrelated-question randomized response models
Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe

On the difference between an integer and the sum of its proper divisors
NicHole Davis, Dominic Klyve and Nicole Kraght

A Pexider difference associated to a Pexider quartic functional equation in topological vector spaces
Saeid Ostadbashi, Abbas Najati, Mahsa Solaimaninia and Themistocles M. Rassias