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Embeddedness for singly periodic Scherk surfaces
with higher dihedral symmetry
Valmir Bucaj, Sarah Cannon, Michael Dorff,

Jamal Lawson and Ryan Viertel

(Communicated by Frank Morgan)

The singly periodic Scherk surfaces with higher dihedral symmetry have 2n-ends
that come together based upon the value of '. These surfaces are embedded
provided that �

2
�
�
n
< n�1

n
' < �

2
. Previously, this inequality has been proved

by turning the problem into a Plateau problem and solving, and by using the
Jenkins–Serrin solution and Krust’s theorem. In this paper we provide a proof of
the embeddedness of these surfaces by using some results about univalent planar
harmonic mappings from geometric function theory. This approach is more direct
and explicit, and it may provide an alternate way to prove embeddedness for some
complicated minimal surfaces.

1. Introduction

A minimal surface in R3 is a surface whose mean curvature vanishes at each
point on the surface. One area of minimal surface theory that has seen a lot of
interest and results recently is the study of complete embedded minimal surfaces.
Minimal surfaces can be parametrized by the classical Weierstrass representation.
However, these surfaces are not guaranteed to be complete and embedded. In this
paper we will consider the family of singly periodic Scherk surfaces with higher
dihedral symmetry that were first described in the seminal paper [Karcher 1988].
They belong to the larger class of embedded singly periodic minimal surfaces with
Scherk ends and genus 0 in the quotient that have been completely classified in
[Pérez and Traizet 2007]. The singly periodic Scherk surfaces with higher dihedral
symmetry have 2n-ends that come together based upon the value of '. In particular,
it was shown in [Weber 2005] that these surfaces are embedded provided that

�

2
�
�

n
<

n� 1

n
' <

�

2
: (1)
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Previously, this inequality has been established by turning the problem into a Plateau
problem and solving, and by using the Jenkins–Serrin solution and Krust’s theorem.
In this paper, we will provide a proof of the embeddedness of these surfaces by
using some results about univalent planar harmonic mappings from geometric
function theory. This approach is more direct and explicit, and it may provide
an alternate way to prove embeddedness for some complicated minimal surfaces.
In the interesting paper [McDougall and Schaubroeck 2008], the authors discuss
similar harmonic mappings and the corresponding minimal surfaces. They also
work to prove an inequality similar to (1). While their approach is sound, there
are unfortunately several small mistakes and errors, and the inequality they give
is incorrect and different from the result in [Weber 2005]. In our paper, we start
with planar harmonic mappings but then approach the proof of the inequality in a
different way and derive the correct inequality given by (1).

This approach involves the following steps. First, we will construct a '-variable
family of planar harmonic functions that map the unit disk univalently onto a 2n-gon
region. Next, we will compute the value of ' for which these functions are convex.
Then, we will use a simple convolution theorem to construct a “conjugate” family
of planar harmonic functions that are also univalent. Finally, using a Weierstrass
representation we will lift this last family to minimal graphs that turn out to be
the singly periodic Scherk surfaces with higher dihedral symmetry. Because of
the harmonic functions are univalent, the embeddedness of the Scherk surfaces is
guaranteed.

2. A family of univalent planar harmonic mappings

Definition 2.1. A continuous function f .x;y/D u.x;y/C iv.x;y/ defined in a
domain G � C is a complex-valued harmonic function in G if u and v are real
harmonic functions in G.

Complex-valued harmonic functions defined on D, the unit disk, are related to
analytic functions, as the following theorem shows.

Theorem 2.2 [Clunie and Sheil-Small 1984]. If f D uCiv is harmonic in a simply
connected domain G, then f can be written as f D hC Ng, where h and g are
analytic.

We are interested in univalent (one-to-one) harmonic mappings. While it is often
difficult to establish the univalency of a planar harmonic function, we do have the
following nice result about local univalency.

Lemma 2.3 [Lewy 1936]. The harmonic function f D hC Ng is locally univalent
and sense-preserving in D if and only if jg0.z/=h0.z/j< 1 for all z 2 D.
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The function !.z/D g0.z/=h0.z/ is known as the dilatation and plays an impor-
tant role in the theory of univalent harmonic mappings.

We will now consider a specific family of planar harmonic mappings that are
related to Scherk surfaces. Let fn.z/ D hn.z/C gn.z/ be the family of planar
harmonic mappings from D into C, where

h0n.z/D
1

.zn� ei'/.zn� e�i'/
; g0n.z/D

z2n�2

.zn� ei'/.zn� e�i'/
;

n� 2 and ' 2 Œ0; �
2
�. Thus,

fn.z/D

Z z

0

d�

.�n� ei'/.�n� e�i'/
C

Z z

0

�2n�2 d�

.�n� ei'/.�n� e�i'/
:

Note that g0n.z/=h0n.z/D z2n�2. Letting � be the primitive n-th root of unity and
using the residue theorem, we can compute that

hn.z/D
1

2n sin'

Z z

0

 
nX

jD1

�ie�i.n�1
n
/'�j

� � ei '
n �j

C

nX
jD1

iei.n�1
n
/'�j

� � e�i '
n �j

!
d�

D
1

2n sin'

nX
kD1

�
�ie�i.n�1

n
'C 2k�

n
/ log

�
z� ei.'

n
� 2k�

n
/
�

C iei.n�1
n
'C 2k�

n / log
�
z� e�i.'n�

2k�
n /��:

Similarly,

gn.z/D
1

2n sin'

nX
kD1

�
�iei.n�1

n
'C 2k�

n
/ log

�
z� ei.'

n
� 2k�

n
/
�

C ie�i.n�1
n
'C 2k�

n
/ log

�
z� e�i.'

n
� 2k�

n
/
��
:

Since fn.z/D Re.hn.z/Cgn.z//C i Im.hn.z/�gn.z//, after normalizing so that
fn.0/D 0, we get

fn.z/D
1

n sin'

nX
kD1

�
cos

�
n� 1

n
'C

2k�

n

��
ˇ1�ˇ2C

4k�

n

�

� i sin
�

n� 1

n
'C

2k�

n

�
.ˇ1Cˇ2/

�
; (2)

where
ˇ1 D arg

�
zC ei.'

n
� 2k�

n
/
�
;

ˇ2 D arg
�
zC e�i.'

n
� 2k�

n
/
�
:
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Theorem 2.4. The harmonic function fn maps D onto a 2n-gon.

Because the dilatation!n.z/ equals g0n.z/=h0n.z/Dz2n�2, we know that fn maps
arcs of @D to either concave arcs or to stationary points [Bshouty and Hengartner
1997; Bshouty et al. 2008]. Letting z D ei� 2 @D, we see that the latter situation
occurs. In particular, fn maps @D to vertices, vm (m D 1; : : : ; 2n/, of a 2n-gon
such that

arg vm D e
i.j�1/�

n and jvmj D

�
jv1j if vm is odd,
jv2j if vm is even;

where it can be computed that

v1 D
�

n sin'

�
cos

.n� 1/'

n
C cot

�

n
sin

.n� 1/'

n

�
C 0i; (3)

v2 D
�

n sin'
sin

.n� 1/'

n

�
cot

�

n
C i

�
: (4)

Example 2.5. For nD 4, we have

f4.z/D Re.h4.z/Cg4.z//C i Im.h4.z/�g4.z//;

where

Re.h4.z/Cg4.z//D
1

4 sin'

�
cos

3'

4

�
arg
�
z�ei '

4

�
� arg

�
zCei '

4

�
� arg

�
z�e�i '

4

�
C arg

�
zCe�i '

4

��
C sin

3'

4

�
arg
�
z�ei.'

4
C�

2
/
�
� arg

�
zCei.'

4
C�

2
/
�

C arg
�
z�e�i.'

4
��

2
/
�
� arg

�
zCe�i.'

4
��

2
/
���

C
2�

4 sin'

�
cos

3'

4
C sin

3'

4

�

� D �=2 � D �=3 � D �=6 � D 0

Figure 1. Images under f4 of concentric circles in D for various
values of '.
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and

Im.h4.z/�g4.z//D
1

4 sin'

�
sin

3'

4

�
�arg

�
z�ei '

4

�
C arg

�
zCei '

4

�
� arg

�
z�e�i '

4

�
C arg

�
zCe�i '

4

��
C cos

3'

4

�
arg
�
z�ei.'

4
C�

2
/
�
C arg

�
z�ei.'

3
C 2�

3
/
�

� arg
�
z�e�i.'

4
��

2
/
�
C arg

�
zCe�i.'

4
��

2
/
���

:

Letting

M D
�

4 sin'
cos

3'

4
and N D

�

4 sin'
sin

3'

4
;

we see that f4 maps @D to the vertices of an octagon as follows (see Figure 1):

f4.e
i� /D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

v1 D .M CN / if �'
4
< � < '

4
;

v2 DN C iN if '
4
< � < �

2
�
'
4
;

v3 D i.M CN / if �
2
�
'
4
< � < �

2
C
'
4
;

v4 D�N C iN if �
2
C
'
4
< � < � � '

4
;

v5 D�.M CN / if � � '
4
< � < � C '

4
;

v6 D�N � iN if � C '
4
< � < 3�

2
�
'
4
;

v7 D�i.M CN / if 3�
2
�
'
4
< � < 3�

2
C
'
4
;

v8 DN � iN if 3�
2
C
'
4
< � < �'

4
:

Theorem 2.6. For n� 2, fn is univalent for all z 2 D and ' 2 .0; �
2
�.

Proof. This follows from a result by Duren, McDougall and Schaubroeck [Duren
et al. 2005] that states if a harmonic function f is of the form (2) constructed with
a piecewise constant boundary function and with values on the m vertices of a
polygonal region � and with ! D g0.z/=h0.z/ being a Blaschke product with at
most m� 2 factors, then

f .z/ is univalent in D () all the zeros of ! lie in D. �

Remark 2.7. For nD 3; 4, one can simply employ the shearing technique of Clunie
and Sheil-Small [1984] to prove univalency with even less background. However,
for n� 5 the shearing technique cannot be applied to fn.

Theorem 2.8. The image fn.D/ is convex for every ' 2
�

n
n�1

�
�
2
�
�
n

�
; �

2

�
.

Proof. Note that fn will be convex for every ' if

Re v2 >
1
2

Re.v1C v3/ and Im v2 >
1
2

Im.v1C v3/:
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From (3), it is clear that

Re v1 D v1; Im v1 D 0;

Re v2 D v1�
� cos .n�1/'

n

n sin'
; Im v2 D

� sin .n�1/'
n

n sin'
;

Re v3 D Re.ei 2�
n v1/D cos 2�

n
v1; Im v3 D Im.ei 2�

n v1/D sin 2�

n
v1:

Setting Re v2 D
1
2

Re.v1C v3/ and solving for v1 yields

v1 D
2�

n
�

cos .n�1/'
n

sin'
�
1� cos 2�

n

� : (5)

Likewise, setting Im.v2/D
1
2

Im.v1C v3/ and again solving for v1 yields

v1 D
2�

n
�

sin .n�1/'
n

sin' sin 2�
n

: (6)

Equating (5) and (6) and solving for ' we obtain

' D
n

n� 1
arctan

sin 2�
n

1� cos 2�
n

D
n

n� 1

�
�

2
�
�

n

�
: �

There is a convolution theorem for planar harmonic mappings that takes univalent
convex maps and transforms them into new harmonic maps while preserving univa-
lency. We will apply this convolution theorem to those functions fn that map D

onto a convex domain. But first, we need some background. For analytic functions

f .z/D

1X
nD0

anzn and F.z/D

1X
nD0

Anzn;

their convolution is defined as

f .z/�F.z/D

1X
nD0

anAnzn:

Note that the right half-plane mapping, f .z/D z=.1� z/, acts as the convolution
identity; that is, if F is an analytic function, then

z

1� z
�F.z/D F.z/:

Now let’s consider the case of harmonic convolutions.
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Definition 2.9. Given harmonic univalent functions

f .z/D h.z/C Ng.z/D zC

1X
nD2

anzn
C

1X
nD1

bn Nz
n;

F.z/DH.z/CG.z/D zC

1X
nD2

Anzn
C

1X
nD1

Bn Nz
n;

define the harmonic convolution as

f .z/�F.z/D h.z/�H.z/Cg.z/�G.z/D zC

1X
nD2

anAnzn
C

1X
nD1

bnBn Nz
n:

Lemma 2.10 [Clunie and Sheil-Small 1984]. Let f DhC Ng be a harmonic univalent
mapping from D onto a convex domain and normalized so that f .0/ D 0 and
fz.0/D 1. Also, let � be a normalized univalent analytic function from D onto a
convex domain. Then for .j˛j � 1/,

f � .˛�C�/D h��C˛g ��

is a univalent harmonic map D onto a close-to-convex domain.

Theorem 2.11. The function Fn is univalent on D for ' 2
�

n
n�1

�
�
2
�
�
n

�
; �

2

�
.

Proof. From Theorem 2.8, we know the fn are convex maps for n
n�1

�
�
2
�
�
n

�
<'� �

2
.

Hence for these values of ' we can apply Lemma 2.10 with � D z=.1� z/ and
˛ D�1 to create the planar harmonic maps

Fn.z/D Re .hn.z/�gn.z//C i Im .hn.z/Cgn.z//

which are univalent in D. �
Example 2.12. From Theorem 2.11, we conclude that the harmonic maps F4.z/

are univalent in D (see Figure 2).

3. Singly periodic Scherk surfaces with higher dihedral symmetry

The connection between planar harmonic mappings and minimal surfaces can be
seen in the following Weierstrass representation (see [Duren 2004], for example):

Theorem 3.1. Let f D hC Ng be an orientation-preserving harmonic univalent
mapping of D onto some domain � with dilatation ! D q2, where q is an analytic
function in D. Then

X.z/D

�
Re.h.z/Cg.z//; Im.h.z/�g.z//; 2 Im

Z z

0

p
g0.�/h0.�/ d�

�
gives an isothermal parametrization of a minimal graph whose projection in the
xy-plane is f.
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� D �=2 � D �=3

Figure 2. Images under F4 of concentric circles in D for various
values of '.

Thus, univalent planar harmonic mappings with a dilatation that is the square of
an analytic function lift to minimal graphs in R3. We have shown that both families
fn and Fn of harmonic mappings satisfy the hypotheses of Theorem 3.1 for a given
range of ' values and will thus lift to embedded minimal graphs. To identify these
surfaces, we use the following standard Weierstrass representation.

Theorem 3.2 (Weierstrass representation .G; dh/ [Weber 2005]). Every regular
minimal surface has a local isothermal parametric representation of the form

X.z/D Re
Z z

a

�
1

2

�
1

G
�G

�
;

i

2

�
1

G
CG

�
; 1
�

dh;

where G is the Gauss map, dh is the height differential, and a 2 D is a constant.

Proving the embeddedness of singly periodic Scherk surfaces with higher dihedral
symmetry is not easy. However, with the material we have developed it follows
naturally.

Theorem 3.3. Fn lifts to a family of embedded singly periodic Scherk surfaces with
higher dihedral symmetry for ' satisfying (1).

Proof. Scalings and reflections across planes containing two axes do not alter the
geometry of minimal surfaces. So we can use the coordinate functions from the
two Weierstrass representations to get

hD

Z z

0

1

G
dh; g D

Z z

0

G dh: (7)

In [Weber 2005] the Gauss map and height differential for a family of minimal
surfaces ranging from Scherk’s singly periodic surface with 2n ends when ' D �

2
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� D �=2 � D �=3

Figure 3. Singly periodic Scherk surfaces.

to the n-noid when ' D 0 is given by

G D zn�1; dhD
zn�1

.zn� ei'/.zn� e�i'/
:

Using the formulas in (7) we see

h� D

Z z

0

d�

.�n� ei'/.�n� e�i'/
; g� D�

Z z

0

�2n�2 d�

.�n� ei'/.�n� e�i'/
:

It is clear that Fn D h�Cg�. Hence, we see that Fn lifts to this family of singly
periodic Scherk’s surfaces for all ' 2

�
n

n�1

�
�
2
�
�
n

�
; �

2

�
. �

Remark 3.4. We could have used Krust’s theorem [Dierkes et al. 1992] instead of
Lemma 2.10. But this convolution theorem is not well known and is a generalization
of Krust’s Theorem applied to planar harmonic mappings.

Remark 3.5. The harmonic maps, fn, lift to a family of minimal surfaces that
continuously transform from Scherk’s first surface with 2n-ends to a minimal surface
with n-helicoidal ends. Because the harmonic maps are univalent, the resulting
minimal surfaces are graphs. However, they are graphs only over the domain D.
This does not contradict the fact that the minimal surface with n helicoidal ends is
not embedded since the surface is defined on a domain larger than D.

Area for further investigation. Apply the approach used in this paper to prove the
embeddedness for less symmetric Scherk-like surfaces and for the twist deformation
of Scherk’s singly periodic surfaces (see [Weber 2005, pp. 39–40]).
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An elementary inequality about the Mahler measure
Konstantin Stulov and Rongwei Yang

(Communicated by Andrew Granville)

Let p(z) be a degree n polynomial with zeros z j , j = 1, 2, . . . , n. The total
distance from the zeros of p to the unit circle is defined as td(p)=

∑n
j=1

∣∣|z j |−1
∣∣.

We show that up to scalar multiples, td(p) sits between M(p)−1 and m(p). This
leads to an equivalent statement of Lehmer’s problem in terms of td(p). The
proof is elementary.

1. Introduction

Let p(z)=
∑n

j=0 a j z j be a polynomial with complex coefficients of degree n. The
Mahler measure M(p) [Everest and Ward 1999] is defined as

M(p)= exp
(∫ 2π

0
log

∣∣p(eiθ )
∣∣ dθ

2π

)
.

We denote log M(p) by m(p). Jensen’s formula implies that

M(p)= |an|
∏
|z j |>1

|z j |,

where throughout this paper the z j , j = 1, 2, . . . , n, are the zeros of p(z), counting
multiplicity. We also assume that |an| = 1. It is then clear that M(p)≥ 1, and

0≤ m(p)= log
(
(M(p)− 1)+ 1

)
≤ M(p)− 1,

and when M(p) is close to 1, m(p) is close to M(p)− 1. Lehmer’s problem is to
verify that for integer-coefficient monic polynomials, m(p) is either 0 (for products
of cyclotomic polynomials and possibly a factor of zk) or is bounded away from 0
by a fixed positive constant. This is a deep and unsolved problem.

For a polynomial p of degree n, the associated polynomial p∗(z) is defined
as zn p(1/z). We say p is reciprocal if p = cp∗ for some complex number c of
modulus 1. One sees that the zeros of a reciprocal p off the unit circle appear in
conjugate reciprocal pairs. Interestingly, Lehmer’s problem was unsolved only for
reciprocal polynomials. A key ingredient of this paper is the total distance from the

MSC2010: 11CXX.
Keywords: Mahler measure, total distance.
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zeros of p to the unit circle T defined to be

td(p)=
n∑

j=1

∣∣|z j | − 1
∣∣.

Theorem. For every complex polynomial p(z)=
n∑

j=0
a j z j , with |an| = |a0| = 1, we

have
m(p)≤ td(p)≤ 2(M(p)− 1).

If p is reciprocal, then 2m(p)≤ td(p). Further, the equalities hold only if td(p)= 0.

Therefore, Lehmer’s problem can be stated equivalently as follows: There is an
ε > 0 such that if p has integer coefficients with |an| = |a0| = 1 and td(p) 6= 0,
then td(p)≥ ε.

2. Proof

Lemma 1. If t j , j = 1, 2, . . . , k are numbers in the interval [0, 1], then

k∑
j=1

(1− t j )≤
1∏k

j=1 t j
− 1,

where equality holds only if t j = 1 for each j .

Proof. The inequality is trivial if one of the t j is 0. Now, we assume t j > 0 for
each j . We prove by induction. It is easy to see that the lemma is true for k = 1.
Assume the lemma is true for k. For s and t in (0, 1], one checks that

1
ts
−

(1
t
+ 1− s

)
=
(1−s)(1−ts)

ts
≥ 0, (2-1)

and hence
1
ts
− 1≥ 1

t
− s.

Therefore
k∑

j=1

(1− t j )+ (1− tk+1)≤
1∏k
j t j
− 1+ (1− tk+1)

=
1∏k
j t j
− tk+1 ≤

1∏k+1
j t j

− 1. �

If {λ j : j = 1, 2, . . . } is a subset of the open unit disk D, the associated Blaschke
product is defined as

B(z)=
∞∏
j=1

z− λ j

1− λ j z
, z ∈ D.
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Clearly, the product is convergent for each z if and only if
∑
∞

j=0(1− |λ j |) <∞

[Garnett 2007]. In this case B(z) is a bounded analytic function on D. It follows
immediately from Lemma 1 that

∞∑
j=1

(1− |λ j |)≤
1
|B(0)|

− 1.

Proof of the Theorem. For a polynomial p(z), since
n∏

j=1
|z j | =

|a0|

|an|
, we have

M(p)
|a0|

− 1=
1∏

|z j |≤1 |z j |
− 1≥

∑
|z j |≤1

(1− |z j |) (2-2)

by Lemma 1. On the other hand, inductively using that (a− 1)+ (b− 1) < ab− 1
for a, b > 1, we have∑

|z j |>1

(|z j | − 1)≤
∏
|z j |>1

|z j | − 1= M(p)
|an|

− 1.

Here the equality is allowed only because there may not be a z j with |z j | > 1.
Combining with (2-2), we have td(p) ≤ M(p)(1/|an| + 1/|a0|)− 2. In the case
|a0| = |an| = 1, we have

td(p)≤ 2(M(p)− 1), (2-3)

with equality occurring only if td(p)= 0. The dominance of m(p) by td(p) is an
easy consequence of the inequality log(1+ t)≤ t . To be precise,

m(p)=
∑
|zk |>1

log |zk | ≤
∑
|zk |>1

(|zk | − 1)≤ td(p).

We establish a stronger inequality for reciprocal polynomials with |a0| = |an| = 1.
Let z1, z2, . . . , zk be the zeros of such a p that are outside of the unit circle, where
2k ≤ n. Then m(p)= log |z1| + log |z2| + · · · + log |zk | and

td(p)=
k∑

j=1

(|z j | − 1)+
(

1− 1
|z j |

)
.

Let f (t)= t− (1/t)−2 log t , t ≥ 1. One easily checks that f is strictly increasing
and f (1)= 0. It follows that |z j |−1/|z j |> 2 log |z j | for each 1≤ j ≤ k, and hence
2m(p) ≤ td(p), with equality precisely when k = 0, which occurs if and only if
td(p)= 0 since |a0| = |an| = 1. �

Example. Consider Lehmer’s polynomial

G(z)= z10
+ z9
− z7
− z6
− z5
− z4
− z3
+ z+ 1.
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It is well-known that eight of its zeros lie in the unit circle and the other two are
real and form a reciprocal pair. Since M(G)≈ 1.1763, we have

td(G)≈ (1.1763− 1)+ (1− 1/1.1763)≈ 0.3262,

2m(G)≈ 2× 0.1624= 0.3248,

2(M(p)− 1)≈ 0.3526.

Our Theorem has some interesting implications. We need two more definitions
to state them. Define

1(p)=max
{∣∣|α| − 1

∣∣ : p(α)= 0
}
,

δ(p)=min
{∣∣|α| − 1

∣∣ : p(α)= 0
}
.

Then it is clear that
δ(p)≤ td(p)

n
≤1(p). (2-4)

When p is reciprocal and α is a zero of p, 1/α is also a zero. Since t−1≥ 1−1/t
for t ≥ 1, we have

1(p)=max{|α| − 1 : p(α)= 0} =max{|α| : p(α)= 0}− 1.

Likewise
δ(p)= 1−max{|α| : |α| ≤ 1, p(α)= 0}.

For simplicity, we let
λ(p)=max{|α| : p(α)= 0}

and let
λ′(p)=max{|α| : |α| ≤ 1, p(α)= 0}.

In [Smyth 2008], λ(p) is called the house of the zeros of p. Geometrically, λ(p) is
the modulus of the zero that is the farthest from the unit circle, while λ′(p) is the
modulus of the zero that is the nearest to the unit circle. The next proposition then
follows easily from (2-4).

Proposition. For a reciprocal complex polynomial p of degree n ≥ 2,

λ(p)≥ 1+ td(p)
n

and λ′(p)≥ 1− td(p)
n

.

Regarding λ(p), there is an unsolved conjecture by Schinzel and Zassenhaus
that states that there is an absolute constant C so that if p is a monic irreducible
polynomial of degree n with integer coefficients, then λ(p) ≥ 1 + C/n. This
inequality will follow easily from a positive answer to Lehmer’s problem. Indeed,
one has λ(p)≥ 1+m(p)/n [Smyth 2008]. But in view of Theorem, Proposition
provides a better inequality for reciprocal polynomials.
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