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We give an introduction to seriation techniques and apply such techniques to the
North American folklore tale known as the Star Husband Tale. In particular, a
spectral algorithm with imposed clustering is applied, with significant results that
support the algorithm’s effectiveness.

1. Introduction

In the field of archeology, many researchers investigate whether objects can be
chronologically ordered based strictly on their physical characteristics, in a process
known as seriation. Typically, one tries to arrange artifacts from numerous sites in
sequential order.

A variety of seriation techniques are in common use; historical reviews can be
found in [Lyman et al. 1998; O’Brien and Lyman 2002]. One common technique,
known as frequency seriation, is based on the relative frequency of artifact types.
Other seriation techniques, such as occurrence and phyletic seriation, are based
on similar characteristics between artifacts. The idea behind them is that one can
use the presence or absence of certain characteristics, or attributes, in particular
digs in order to order the artifacts chronologically. These seriation techniques,
introduced in [Petrie 1899], are based on a binary incidence matrix (called the
Petrie matrix) and attempt to minimize dissimilarities between digs by ordering
them appropriately. (Another class of seriation techniques, which will not concern
us, involves what’s called phylogenetic trees. See [Buneman 1971; Huson and
Bryant 2006] for information.)

Despite their popularity in archeology, seriation techniques have not been widely
used in studying the geographical spread of stories and folklore. In this paper, we
use a dissimilarity approach to seriate a well-known North American Indian folk
tale, the Star Husband Tale (see Section 2). We do this both by brute force and
by using an elegant spectral algorithm from [Atkins et al. 1999]. We show that,
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based strictly on the content dissimilarities among versions, one can track the tale’s
progression in a way that matches the geographical proximity of the tribes telling
these tales.

Organization of the paper. Section 2 describes the tale and mentions some prior
studies. A basic seriation technique is described in Section 3 and results from its
application to a small subset of the data are analyzed in Section 5. To be able to
study a larger data set, we discuss in Section 4 a spectral algorithm from [Atkins
et al. 1999]. As shown in Section 6, this algorithm is able to order and cluster
successfully a larger data set consisting of eighty-six versions of our tale.

2. The Star Husband Tale

The basic form of the Star Husband Tale [Young 1978] tells of two girls who are
sleeping out in the open during the night. While outside, they see two stars and
each girl makes a wish to be married to a star. When they awake, both have been
transported to the heavens and are married to the stars as they wished. One of the
star husbands is a young man and the other is an older man. Heedless of a warning
they’ve received, the girls at one point start digging in the heavens and make a hole
through which they can see their old homes below. Overcome with homesickness,
they eventually lower themselves down to earth using a rope.

Dundes [1965] discusses various narrative elements peculiar to eighty-six versions
of the Star Husband Tale coming from 44 tribes throughout North America. These
tribes are grouped into nine geographical zones: Eskimo, Mackenzie, North Pacific,
California, Plateau, Plains, Southeast, Southwest, and Woodlands [Carroll 1979].
Thompson chose those characteristics that occur most frequently as the principal
tale elements. These principal tale elements are then collated into archetypes and
subarchetypes [Rich 1971]. A sample of the principal tale elements followed by
their archetypes is presented in Table 1.

Table 2 gives a sample of the records (tribes) and the traits that are present (or
absent) in their versions of the tale.

In total, 86 versions of the Star Husband Tale and a total of 135 traits (archetypes
and subarchetypes) are included in the study.

3. Seriation

In this section we express the seriation problem mathematically: how to list a set of
objects so as to minimize the sum of the dissimilarities between consecutive objects.
This is the traveling salesman problem: our objects (versions of the tale) correspond
to cities, and the measure of dissimilarities corresponds to distances. However we
can make a simplifying assumption (which often holds only approximately) that
makes the problem easier than the general traveling salesman problem.



SERIATION ALGORITHMS FOR THE STAR HUSBAND TALE 3

Trait A: Number of women Trait B: Introductory action

A1 One B1 Trait not present
A2 Two B2 Wish for star husband
A3 Two at first, then one B3 Pursuit of porcupine
A4 More than two B4 Miscellaneous

Trait D: Method of ascent Trait H: Taboo broken in Upper World

D1 Not indicated H1 No taboo broken
D2 Stretching tree H2 Digging or disturbing ground
D3 Translation during sleep H3 Moving a large rock
D4 Carried through the air H4 Looking somewhere
D5 Carried in a basket H5 Shooting a meadow lark
D6 Carried by whirlwind H6 Making noise before an animal sings
D7 Carried by a feather

Table 1. Sample of traits and their archetypes. Some archetypes
for traits B, D, and H are further subdivided (H1, H1a. . . ).

Tale 1 Eskimo Smith Sound A1 B3a D3 H2
Tale 2 Eskimo Kodiak 1 A3 B1 D3,4 H2
Tale 3 California Patwin A1 B3a D6 H1
Tale 4 California Washo 1 A2 B1 D2 H1a
Tale 5 North Pacific Snuqualmi 1 A2 B1 D2 H1
Tale 6 North Pacific Snuqualmi 2 A2 B1 D2 H1
Tale 7 Plains Sarsi A3 B1 D3 H1a
Tale 8 Plains Blackfoot 1 A3 B1 D3,7 H1a

Table 2. Classification of a sampling of tales with respect to the
traits listed in Table 1. More than one archetype or subarchetype
can be present for a given trait in a tribe’s version of the tale.

The first step is to express the information in an incidence matrix. For the data
in Table 2, this matrix is

A =



A1 A2 A3 B1 B3a D2 D3 D4 D6 D7 H1 H1a H2
Tale 1 1 0 0 0 1 0 1 0 0 0 0 0 1
Tale 2 0 0 1 1 0 0 1 1 0 0 0 0 1
Tale 3 1 0 0 0 1 0 0 0 1 0 1 0 0
Tale 4 0 1 0 1 0 1 0 0 0 0 0 1 0
Tale 5 0 1 0 1 0 1 0 0 0 0 1 0 0
Tale 6 0 1 0 1 0 1 0 0 0 0 1 0 0
Tale 7 0 0 1 1 0 0 1 0 0 0 0 1 0
Tale 8 0 0 1 1 0 0 1 0 0 1 0 1 0


.
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Each row corresponds to a tale, and each column to a trait that the tale may or may
not possess. The measure of dissimilarity between tales is the number of places
where the corresponding rows differ.

If the rows were written in the order in which the tale evolved, it would be
natural to expect 1s to cluster together in each column: traits may be introduced or
removed as the tale is handed down, but a given trait is unlikely to jump in and out
of existence several times. We formalize this with the following concept:

Definition. A binary matrix A is called a Petrie matrix, or P-matrix, if each column
contains a sequence of 0s, followed by a sequence of 1s, followed again by a
sequence of 0s. (In each column, it is possible for any of these sequences to have
length zero.)

Thus a P-matrix is characterized by the absence of embedded 0s (that is, 0s that
have 1s above and below them in the same column). Equivalently, all 1s in a column
are consecutive.

In our application, saying that the incidence matrix is a P-matrix means that once
a trait is present in the tale it may remain in the tale throughout its progression; but
if the trait then disappears from the tale, it will not reappear in later renditions.

Definition. A matrix A is called pre-P, or pre-Petrie, if there is a row-permutation
matrix 6 such that 6A is Petrie. (From a permutation σ we obtain a permutation
matrix 6 by setting 6(i, σ (i))= 1 for each row index i , and setting other entries
equal to 0.)

The consecutive ones problem consists in rearranging the rows of an incidence
matrix so it becomes a P-matrix — corresponding, in our case, to sorting the tales
into a temporal order consistent with the changes in traits. If the matrix is pre-P
the problem is solvable (by definition!) and an appropriate permutation matrix can
be found quickly by any of several efficient algorithms. However, in applications,
it is often the case that the incidence matrix is not pre-P, just “almost” so. In that
case, the problem becomes more complex and a solution is not guaranteed to exist
[Dundes 1965]; nonetheless one can look for a permutation that brings the incidence
matrix into a form as close as possible to a P-matrix.

Dissimilarity. Our first approach is brute force: we test all possible permutations
and choose one that gives a result closest to a P-matrix. Because of exponential
growth, we are limited with this approach to small data sets; but at least we can
avoid having to compare the rows of A itself each time. Instead, we introduce the
similarity matrix S = AAT , whose rows and columns both correspond to tales. Its
name is due to the fact that the off-diagonal entries of S express how many 1s
two rows of A have in common — that is, how many traits two tales share. (The
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diagonal entries in S show the number of traits possessed by each tale. It is easy to
see that S is symmetric and nonnegative.)

For instance, taking again the data in Table 2, the similarity matrix is

S = AAT
=



4 2 2 0 0 0 1 1
2 5 0 1 1 1 3 3
2 0 4 0 1 1 0 0
0 1 0 4 3 3 2 2
0 1 1 3 4 4 1 1
0 1 1 3 4 4 1 1
1 3 0 2 1 1 4 4
1 3 0 2 1 1 4 5


.

Even more convenient to use is the dissimilarity matrix D, defined by setting
D(i, j) = n − S(i, j) for 1 ≤ i, j ≤ m. Here n is the number of columns of A
(possible traits) and m the number of rows (tales). For our running example, with
m = 8 and n = 13, the dissimilarity matrix is

D =



9 11 11 13 13 13 12 12
11 8 13 12 12 12 10 10
11 13 9 13 12 12 13 13
13 12 13 9 10 10 11 11
13 12 12 10 9 9 12 12
13 12 12 10 9 9 12 12
12 10 13 11 12 12 9 9
12 10 13 11 12 12 9 8


.

Note that the entry D(i, i+1) gives the number of changes (dissimilarities) from the
i-th row to the next, so the quantity that concerns us is the sum

∑m−1
i=1 D(i, i+1),

which we call the total dissimilarity of A. For our running example this number is
11+ 13+ 13+ 10+ 9+ 12+ 9= 77.

Once we apply a permutation σ to the rows of A we are looking at the quantity

L(σ ) :=
m−1∑
i=1

D(σ (i), σ (i+1)).

We call L(σ ) the total dissimilarity of A permuted by σ . We can also view it as
the sum of the (i, i+1) entries of the conjugate matrix 6D6−1, where 6 is the
permutation matrix. Indeed, under the action of σ , the incidence matrix A becomes
6A, so S becomes 6A(6A)T = 6AAT6T

= 6S6−1, since for a permutation
matrix, transposing is the same as inverting. Similarly, 6 turns D into 6D6−1.

Our goal now is to minimize the total dissimilarity over all permutations. When
a dissimilarity-minimizing permutation is applied to A, the result will be as close
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to a P-matrix as possible, and the following criterion says whether or not it is in
fact a P-matrix:

Theorem 1 [Shuchat 1984]. Let A be an m× n incidence matrix, with similarity
matrix S = AAT and dissimilarity matrix D. For any row permutation 6, the total
dissimilarity L(6) satisfies

L(6)≥ trace(D)= mn− trace(S).

Further, A is a pre-P matrix if and only if equality is attained for some 6, in which
case 6A is a Petrie matrix.

This is the translation of [Shuchat 1984, Theorem 1] to our setup, which differs
from Shuchat’s in that his matrices include a dummy row.

For our running example one dissimilarity-minimizing permutation is σ =
78213654 (this means the entries 6(1,7), 6(2,8), . . . , 6(8,4) equal 1). Upon
its application the dissimilarity matrix becomes

6D6−1
=



8 9 12 12 11 13 10 12
9 9 12 12 11 13 10 12
12 12 9 9 10 12 12 13
12 12 9 9 10 12 12 13
11 11 10 10 9 13 12 13
13 13 12 12 13 9 13 11
10 10 12 12 12 13 8 11
12 12 13 13 13 11 11 9


,

and L(6)= 72 is the minimum total dissimilarity. Since this is strictly more than
mn− tr(S)= 70, we conclude that A is not a pre-P matrix.

The permutation 78213654 encodes a possible reconstruction of the evolution of
Star Husband Tale based on dissimilarities between traits. It suggests this scenario:1

The earliest tale is 7, from the Plains Sarsi tribe. From the Plains tribes the tale went
to the Eskimo tribes, followed by California and Northern Pacific tribes. Note that
even with just a few traits included in these tales, this method tends to appropriately
group the Plains tribes together, holding true to their geographic location. One can
see the location of the tribes in Figure 1.

We used Mathematica version 8 to generate all permutations that minimize the
total dissimilarity; with just 8 tribes and 13 traits this took approximately 248
seconds of CPU time. (Mathematica 8 has a built-in function that finds one shortest
tour in the traveling salesman problem; this could be applied to the dissimilarity
matrix to find a minimizing permutation.)

1By construction, the reverse permutation, 45631287, is also minimizing, so the reverse order
would be equally possible: Tale 7 the most recent, etc. Many other minimizing permutations exist.
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1 Smith Sound

2 Kodiak

3 Patwin
4 Washo

5&6 Snuqualmi

7 Blackfoot
8 Sarsi

Figure 1. Locations of tribes from Table 2.

The consecutive ones problem. We return to the formulation given on page 4,
where we mentioned that a P-matrix is one having no embedded 0s. Equivalently,
for a P-matrix the distance between the first and last 1s in each column is 1 less than
the number of 1s in that column (the distance is k− 1 when there are k consecutive
1s). Equivalently, for a P-matrix the sum of these distances over all columns is
simply the total number of 1s minus the number of columns. And obviously, for
any binary matrix the sum must be at least as great as this difference.

Since the total number of 1s in A is the sum of diagonal elements of S = AAT ,
we have proved the following:

Theorem 2 [Shuchat 1984]. Let A be an m × n incidence matrix, and for each
column j , let r j (A) be the difference between the row index of the last 1 in column j
and that of the first 1 in the same column. Given a row-permutation matrix6, define
the 1-content

R(6)=
n∑

j=1

r j (6A),

where of course r j (6A) is the corresponding difference for the permuted matrix
6A. Then

R(6)≥ tr(S)− n.

The matrix A is a pre-P matrix if and only if equality is attained for some 6, in
which case 6A is a Petrie matrix.

For the permutation matrix A of page 3, we have R(identity)=
∑n

j=1 r j (A)= 35.
The minimum 1-content R(6) using the 8 tribes and 13 tales from Table 2 turns
out to be 26, again showing that the incidence matrix A is not a pre-P matrix. An
example of a permutation that can be used to obtain this minimum 1-content is
54876132.
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These give the chronological order of evolution of Star Husband Tale based on
the number of embedded 0s within tales. For example, the minimum dissimilarity
permutation 54876132 orders the progression of the tale starting with Tale 5, which
came from the North Pacific Snuqualmi 1 tribe. Based on this analysis, of this small
data set, the tale may have bounced between North Pacific tribes and Plains tribes
before moving to the Eskimo and California tribes. Mathematica version 8 generated
all permutations that minimize the number of embedded 0s for the matrix A in 61
seconds of CPU time. This is four times faster than with the dissimilarity method
(page 6); but a similar computation for the full problem — 86 tribes with 135 traits —
is impossible using the brute-force approach. In the next section, we discuss an
algorithm that is computationally more practical for larger data sets. A comparison
of all three algorithms is presented in Section 5.

4. A spectral algorithm for seriation

Atkins et al. [1999] gave an algorithm, based on eigenvalues and eigenvectors, for
finding a permutation matrix 6 such that 6A is a P-matrix. It assumes that the
original matrix A is a pre-P matrix, but it degrades gracefully in the absence of that
condition (that is, its results are not greatly affected if the matrix is almost a pre-P
matrix.)

We start with some definitions.

Definition. A matrix S ∈ Rm×m is reducible if there exists a permutation matrix 6
such that

6S6−1
=

(
B C
0 D

)
,

where B ∈ Rr×r , D ∈ R(m−r)×(m−r), and 0< r < m. If no such permutation exists,
S is called irreducible.

Definition. Given an m ×m symmetric matrix S and a diagonal matrix D such
that D(i, i) =

∑m
j=1 S(i, j) for 1 ≤ i ≤ m, the Laplacian of S is L = D − S. It

is easy to see that e = (1, . . . , 1) is an eigenvector of L , with eigenvalue 0. The
minimum eigenvalue of L with an eigenvector orthogonal to e is called the Fiedler
value, and a corresponding eigenvector is a Fiedler vector.

Definition. A square matrix S is called a Robinson matrix [1951], or R-matrix, if

S(i, j)≤ S(i, k) for j < k < i and S(i, j)≥ S(i, k) for i < j < k.

If there is a permutation matrix 6 such that 6S6−1 is an R-matrix, S is called a
pre-R matrix.

Theorem 3 [Atkins et al. 1999]. Any R-matrix has a monotone Fiedler vector.
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Theorem 4 [Atkins et al. 1999]. Let S be a pre-R matrix with a simple Fiedler
value and a Fiedler vector with no repeated values. Let 61 and 62, respectively be
the permutations induced by sorting the values in the Fiedler vector in increasing
and decreasing order. Then 61S6−1

1 and 62S6−1
2 are R-matrices and no other

permutations of S produce R-matrices.

For the similarity matrix S of our running example (page 5), is irreducible with
simple Fiedler value approximately equal to 3.517 and Fiedler vector

(−1.674, 0.722,−3.800, 1.238, 0.757, 0.757, 1, 1).

Since the Fiedler vector is not monotonic, by Theorem 3, S is not an R-matrix.
Under the assumption that S is a pre-R matrix, one can find the permutation that
puts the Fiedler vector in increasing order; however Theorem 4 cannot be applied
due to the occurrence of repeated entries in the Fiedler vector. The following two
theorems prove helpful if the similarity matrix is reducible or has a Fiedler vector
with repeated values.

Lemma 5 [Atkins et al. 1999]. Let Sk be the irreducible blocks of a pre-R matrix
A and let 6k be permutations that make these blocks become R-matrices. Then any
permutation obtained by concatenating the 6k will make A become an R-matrix.

Theorem 6 [Atkins et al. 1999]. Let S be a pre-R matrix with a simple Fiedler
value and Fiedler vector x. Suppose that there is some repeated value β in x and
define I, J and K to be the indices for which

• xi < β for all i ∈ I ,

• xi = β for all i ∈ J ,

• xi > β for all i ∈ K .

Then 6S is an R-matrix if and only if 6 or its reversal can be expressed as
(6i , 6 j , 6k), where 6 j is an R-matrix ordering for the submatrix S(J, J ) of S
induced by J and 6i and 6k are the restrictions of some R-matrix ordering for S to
I and K respectively.

Applying Theorem 6 to our running example, the spectral algorithm provides the
permutation ordering 48765213 for the tales, under the assumption that S is a pre-P
matrix. This algorithm is much less time-consuming than the seriation techniques
in Section 3; it took 0.062 seconds of CPU time in Mathematica 8, and properly
grouped Plains and North Pacific tribes together.

5. Seriation results: the Woodlands region

In order to show the reader the strength of seriation while still staying within current
computing capacity, we chose to limit the Star Husband tribes to the Woodlands
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Ojibawa1

Ojibawa2
Ojibawa3

Ojibawa4

Ojibawa5

MicMac 1

MicMac 2

MicMac 3

Passamaquoddy

Figure 2. A map of the Woodland area tribe locations.

area, comprised of the Ojibwa, Micmac, and Passamaquoddy tribes, which contains
9 versions of the Star Husband Tale with 30 traits. A geographical map of the
Woodlands area can be found in Figure 2.

In creating the incidence matrix for the folklore story, we used nine versions of
the tale, numbered as follows:

1. Ojibwa 1 4. Ojibwa 4 7. Micmac 2
2. Ojibwa 2 5. Ojibwa 5 8. Micmac 3
3. Ojibwa 3 6. Micmac 1 9. Passamaquoddy

Note that if a trait within the nine tribes’ tales was the same, the trait was eliminated
from the incidence matrix all together. From the results, the minimum total dissimi-
larity L from all permutations is 192, while the maximum is 223. The minimum
1-content R is 86, while the maximum is 169. The range of total dissimilarities
versus 1-contents can be visualized in Figure 3. Ideally, the best permutation would
be the one with both the minimum L and minimum R. The permutations that satisfy
this criterion are

687549312, 798651432, 798651423, 423561798, 312459687, 312459678.

In the majority of these permutations, the Ojibwa (tribes 1, 2, 3, and 4) and
Mic Mac tribes (6, 7, and 8) are grouped together respectively based on their tales’
characteristics. Also note that Ojibwa 4 and 5 as well as the Passamaquody tales
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L cost

80

100

120

140

160

R cost

Figure 3. Cost functions length L(6) versus 1-content R(6) for
all permutation matrices 6.

are most often the transitional tales in the seriation. This is most likely due to the
geographic central proximately of these tribes to the neighboring tribes. These are
significant results as the evolution of the Star Husband Tale based strictly on the
presence or absence of traits in the tales matches the geographic locality of these
tribes as well.

As mentioned in the previous section, we introduce the spectral algorithm to find
the evolution of the Star Husband Tale as an alternative to the seriation techniques
that require the generation of all permutations of tribes. Note that both of the
seriation techniques presented in Section 3 would need to make computations with
9! permutations as applied to the Woodlands tribe while the spectral algorithm
looks strictly at the eigenvalues and eigenvectors of the similarity matrix.

Using the spectral algorithm technique to order the tales from the Woodlands
area takes significantly less time then the traditional seriation techniques. This
algorithm produces an ordering of

8, 7, 6, 9, 3, 5, 1, 4, 2,

grouping the Ojibwa tales together and Mic Mac with Passamaquody tales which
corresponds to the geographically locations of these tribes as well. In addition,
the ordering puts tale 3, Ojibwa 3, closest to the Passamaquody tale. Although
geographically Ojibwa 4 is closer to the Passamaquody tribe, Ojibwa 3 comes in a
close second.

6. Seriation results: eighty-six tribes

This spectral algorithm also does a reasonable job in ordering the entire eighty-six
versions of Star Husband Tale as well, something the other seriation techniques can
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Figure 4. The geographic location and cluster based on spectral
algorithm with imposed clustering. Order in which the tales repre-
sented by each symbol occurs in the seriation: �= 1, ◦= 2, ♠= 3,
� = 4, F= 5, N= 6, • = 7, �= 8, �= 9, ∇ = 10, 4= 11.

not achieve computationally. The ordering produced with the eighty-six version
data set reveals that the Star Husband Tale originated somewhere in the Plains
region, possibly with the Cree tribe, and stayed in and around the Northwest border
of the United States and Canada before spreading south and east to the California
and Woodlands regions respectively. This ordering falls in line with Thompson’s
analysis [Dundes 1965], which claims that the tale did in fact originate in the Plains
region.

Although the seriation techniques deal specifically with ordering and do not
have a natural imposed clustering, grouping, if one did wish to cluster the seriated
data note that tales within clusters should be similar. We impose a clustering by
calculating the Hamming distance between adjacent tales in the spectral algorithm
results. When the Hamming distance varies significantly a new cluster is created.

Figure 4 shows all eighty-six tale locations based on the spectral algorithm and
imposed clustering. With both a seriation, ordering, and clustering, grouping, of the
data one can analyze the progression of the Star Husband Tale between clusters. The
significance of the results presented in Figure 4 is that the algorithm which produces
a clustering based on characteristics of the tales also matches up geographically
with the locations of the tribes.

The spectral algorithm with imposed clustering produces a first cluster of 31 tales.
This cluster may be the most interesting to analyze. One can see two significant
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subclusters from this first cluster, one on the western coast and one along the
northeastern border of the United States and Canada, and a large region in central
Canada containing only one tribe, also contained in this cluster. It is highly possible
that tribes from both subclusters shared common hunting grounds located in the
plains region of Canada and thus producing similar versions of the tale.

We have presented here just a few algorithms for ordering the Star Husband Tale.
With this particular data set the spectral algorithm was very successful; however all
of the algorithms described assume that the data matrix is a pre-P matrix. Without
this attribute, results could degrade quickly. One might consider applying clustering
techniques to a similar data set. For this particular data set both agglomerative
clustering and k-means clustering were explored but the results were much less
attractive than those produced by the spectral algorithm with imposed clustering.

References

[Atkins et al. 1999] J. E. Atkins, E. G. Boman, and B. Hendrickson, “A spectral algorithm for
seriation and the consecutive ones problem”, SIAM J. Comput. 28:1 (1999), 297–310. MR 99j:68049
Zbl 0930.05064

[Buneman 1971] P. Buneman, “The recovery of trees from measures of dissimilarity”, pp. 387–395 in
Mathematics in the archaeological and historical sciences, edited by F. R. Hodson et al., Edinburgh
University Press, Edinburgh, 1971.

[Carroll 1979] M. P. Carroll, “A new look at Freud on myth: reanalyzing the star-husband tale”, Ethos
7:3 (1979), 189–205.

[Dundes 1965] A. Dundes (editor), Introduction to Stith Thompson’s “The star husband tale”, pp.
414–415, Prentice-Hall, Englewood Cliffs, NJ, 1965.

[Huson and Bryant 2006] D. H. Huson and D. Bryant, “Application of phylogenetic networks in
evolutionary studies”, Mol. Biol. Evol. 23:2 (2006), 254–267.

[Lyman et al. 1998] R. L. Lyman, S. Wolverton, and M. J. O’Brien, “Seriation, superposition, and
interdigitation: a history of Americanist graphic depictions of culture change”, Amer. Antiquity 63:2
(1998), 239–261.

[O’Brien and Lyman 2002] M. J. O’Brien and R. L. Lyman, Seriation, stratigraphy, and index fossils:
the backbone of archaeological dating, Kluwer Academic, New York, 2002.

[Petrie 1899] W. M. F. Petrie, “Sequences in prehistoric remains”, J. Anthropol. Inst. 29:3–4 (1899),
295–301.

[Rich 1971] G. W. Rich, “Rethinking the ‘star-husbands”’, J. Amer. Folklore 84:334 (1971), 436–441.

[Robinson 1951] W. S. Robinson, “A method for chronologically ordering archaeological deposits”,
Amer. Antiquity 16:4 (1951), 293–301.

[Shuchat 1984] A. Shuchat, “Matrix and network models in archaeology”, Math. Mag. 57:1 (1984),
3–14. MR 86a:00017 Zbl 0532.90097

[Young 1978] F. W. Young, “Folktales and social structure: a comparison of three analyses of the
star-husband tale”, J. Amer. Folklore 91:360 (1978), 691–699.

Received: 2010-02-26 Revised: 2011-10-27 Accepted: 2011-12-03

http://dx.doi.org/10.1137/S0097539795285771
http://dx.doi.org/10.1137/S0097539795285771
http://msp.org/idx/mr/99j:68049
http://msp.org/idx/zbl/0930.05064
http://homepages.inf.ed.ac.uk/opb/homepagefiles/phylogeny-scans/manuscripts.pdf
http://dx.doi.org/10.1525/eth.1979.7.3.02a00010
http://dx.doi.org/10.1093/molbev/msj030
http://dx.doi.org/10.1093/molbev/msj030
http://dx.doi.org/10.2307/2694696
http://dx.doi.org/10.2307/2694696
http://dx.doi.org/10.1007/b110115
http://dx.doi.org/10.1007/b110115
http://www.jstor.org/stable/2843012
http://dx.doi.org/10.2307/539637
http://dx.doi.org/10.2307/276978
http://dx.doi.org/10.2307/2690289
http://msp.org/idx/mr/86a:00017
http://msp.org/idx/zbl/0532.90097
http://dx.doi.org/10.2307/538921
http://dx.doi.org/10.2307/538921


14 CRISTA ARANGALA, J. TODD LEE AND CHERYL BORDEN

ccoles@elon.edu Department of Mathematics and Statistics, Elon University,
Elon, NC 27244, United States

tlee@elon.edu Department of Mathematics and Statistics, Elon University,
Elon, NC 27244, United States

cborden2@elon.edu Elon University, Elon, NC 27244, United States

mathematical sciences publishers msp

mailto:ccoles@elon.edu
mailto:tlee@elon.edu
mailto:cborden2@elon.edu
http://msp.org


involve
msp.org/involve

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS
Colin Adams Williams College, USA

colin.c.adams@williams.edu
John V. Baxley Wake Forest University, NC, USA

baxley@wfu.edu
Arthur T. Benjamin Harvey Mudd College, USA

benjamin@hmc.edu
Martin Bohner Missouri U of Science and Technology, USA

bohner@mst.edu
Nigel Boston University of Wisconsin, USA

boston@math.wisc.edu
Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA

budhiraj@email.unc.edu
Pietro Cerone Victoria University, Australia

pietro.cerone@vu.edu.au
Scott Chapman Sam Houston State University, USA

scott.chapman@shsu.edu
Joshua N. Cooper University of South Carolina, USA

cooper@math.sc.edu
Jem N. Corcoran University of Colorado, USA

corcoran@colorado.edu
Toka Diagana Howard University, USA

tdiagana@howard.edu
Michael Dorff Brigham Young University, USA

mdorff@math.byu.edu
Sever S. Dragomir Victoria University, Australia

sever@matilda.vu.edu.au
Behrouz Emamizadeh The Petroleum Institute, UAE

bemamizadeh@pi.ac.ae
Joel Foisy SUNY Potsdam

foisyjs@potsdam.edu
Errin W. Fulp Wake Forest University, USA

fulp@wfu.edu
Joseph Gallian University of Minnesota Duluth, USA

jgallian@d.umn.edu
Stephan R. Garcia Pomona College, USA

stephan.garcia@pomona.edu
Anant Godbole East Tennessee State University, USA

godbole@etsu.edu
Ron Gould Emory University, USA

rg@mathcs.emory.edu
Andrew Granville Université Montréal, Canada

andrew@dms.umontreal.ca
Jerrold Griggs University of South Carolina, USA

griggs@math.sc.edu
Sat Gupta U of North Carolina, Greensboro, USA

sngupta@uncg.edu
Jim Haglund University of Pennsylvania, USA

jhaglund@math.upenn.edu
Johnny Henderson Baylor University, USA

johnny_henderson@baylor.edu
Jim Hoste Pitzer College

jhoste@pitzer.edu
Natalia Hritonenko Prairie View A&M University, USA

nahritonenko@pvamu.edu
Glenn H. Hurlbert Arizona State University,USA

hurlbert@asu.edu
Charles R. Johnson College of William and Mary, USA

crjohnso@math.wm.edu
K. B. Kulasekera Clemson University, USA

kk@ces.clemson.edu
Gerry Ladas University of Rhode Island, USA

gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono Emory University, USA
ono@mathcs.emory.edu

Timothy E. O’Brien Loyola University Chicago, USA
tobrie1@luc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Vadim Ponomarenko San Diego State University, USA
vadim@sciences.sdsu.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

James A. Sellers Penn State University, USA
sellersj@math.psu.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

Michael E. Zieve University of Michigan, USA
zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US $120/year for the electronic version, and
$165/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.berkeley.edu/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:pietro.cerone@vu.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.berkeley.edu/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2014 vol. 7 no. 1

1Seriation algorithms for determining the evolution of The Star Husband Tale
CRISTA ARANGALA, J. TODD LEE AND CHERYL BORDEN

15A simple agent-based model of malaria transmission investigating intervention methods
and acquired immunity

KAREN A. YOKLEY, J. TODD LEE, AMANDA K. BROWN, MARY C. MINOR AND
GREGORY C. MADER

41Slide-and-swap permutation groups
ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER

57Comparing a series to an integral
LEON SIEGEL

67Some investigations on a class of nonlinear integrodifferential equations on the half-line
MARIATERESA BASILE, WOULA THEMISTOCLAKIS AND ANTONIA VECCHIO

77Homogenization of a nonsymmetric embedding-dimension-three numerical semigroup
SEHAM ABDELNABY TAHA AND PEDRO A. GARCÍA-SÁNCHEZ

97Effective resistance on graphs and the epidemic quasimetric
JOSH ERICSON, PIETRO POGGI-CORRADINI AND HAINAN ZHANG

involve
2014

vol.7,
no.1

http://dx.doi.org/10.2140/involve.2014.7.15
http://dx.doi.org/10.2140/involve.2014.7.15
http://dx.doi.org/10.2140/involve.2014.7.41
http://dx.doi.org/10.2140/involve.2014.7.57
http://dx.doi.org/10.2140/involve.2014.7.67
http://dx.doi.org/10.2140/involve.2014.7.77
http://dx.doi.org/10.2140/involve.2014.7.97

	1. Introduction
	2. The Star Husband Tale
	3. Seriation
	4. A spectral algorithm for seriation
	5. Seriation results: the Woodlands region
	6. Seriation results: eighty-six tribes
	References
	
	

