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We introduce the epidemic quasimetric on graphs and study its behavior with
respect to clustering techniques. In particular we compare its behavior to known
objects such as the graph distance, effective resistance, and modulus of curve
families.

1. Introduction

This study was initiated by the need to analyze real world data collected in the
rural town of Chanute, Kansas.1 The goal was to study and simulate potential epi-
demic outbreaks. From the survey, a contact network was constructed representing
the sampled population and their potential relationships. Mathematically, this is
just a graph where the vertices represent people and the edges represent possible
interactions. In this paper, we introduce a new geometric quantity, the epidemic
quasimetric, which we study and relate to more classical quantities, such as effective
resistance.

One of the simplest geometric object that is used to study finite graphs is the
“graph metric”. Namely, the graph metric measures the distance between two nodes
a and b by computing the minimal number of edges that must be traversed (“hops”)
to go from a to b.

Epidemics, on the other hand, can be modeled to begin at one node, then spread
to all the neighbors, and then to all the neighbors’ neighbors, etc. The possible
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damage of the epidemic spreads as a circular wave. We use this dynamic to assign
to every pair of nodes of a finite graph a number, which we call the epidemic
quasimetric. To compute the epidemic quasimetric between a and b we expand the
range of an epidemic started at a until b is affected and compute the number of
edges that became involved in the process. Then we do the same interchanging a
and b, and we add the two numbers thus obtained. This is fairly easy to compute
numerically and we describe the routine we implemented in Matlab in Section 3.

Part of the inspiration for considering the epidemic quasimetric came from
reading [Semmes 1993]2 where a similar quantity is introduced in order to study bi-
Lipschitz embeddings of metric spaces. The hope is that the epidemic quasimetric
contains geometric information that allows to view the graph under a new light. To
partially confirm this intuition, we experimented with the epidemic quasimetric and
showed how it can be used to obtain a pretty accurate cut of a classical example graph
into “natural” communities; see page 122. In this direction, aside for clustering
techniques, the epidemic quasimetric could be also be useful in sparsification
techniques.

Our second goal is to compare the notion of epidemic quasimetric to the more
classical notion of effective conductance, when the graph is viewed as an electrical
network. Effective conductance has also been used in the literature to study graphs
from the point of view of community detection and sparsification. Therefore, such a
comparison gives us hope that the epidemic quasimetric can also be used effectively
to study graphs while being relatively simple to compute numerically.

The paper begins with some preliminaries and notations about graphs; then in
Section 3 we define the epidemic quasimetric and state our goal to relate it to
effective resistance. Thereafter we review the theory of random walks on finite
graphs in Section 4, its connection to electrical networks, and the notion of effective
conductance in Section 5. Some references for these sections are [Doyle and Snell
1984; Levin et al. 2009; Grimmett 2010].

Then, in Section 6, we introduce two more concepts drawn from modern geo-
metric function theory — namely, the notions of capacity and modulus of families
of curves; see [Ahlfors 1973]. In Theorem 6.3 we show that all of these concepts
coincide with the notion of effective conductance (the method of Lagrange Mul-
tipliers turned out to be useful in this context). Moreover, in Proposition 6.4 we
exploit the definition of modulus to obtain a comparison between modulus and
epidemic quasimetric. Thus we get an estimate for the epidemic quasimetric in
terms of effective conductance.

Finally, in Section 7 we describe our numerical computations and experiments.
We begin with some preliminaries on elementary graph theory.

2Diego Maldonado pointed out that a similar concept had been introduced earlier in [Macías and
Segovia 1979].
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2. Graphs

Notation and generalities. We will restrict our study to simple, finite, connected
graphs. Let G D .V;E/ be a graph with vertex-set V and edge-set E. We say
that G is simple if there is at most one undirected edge between any two distinct
vertices, and it is finite if the vertex set has cardinality jV j DN 2 N. In this case,
the edge-set E can be thought of as a subset of

�
V
2

�
, the set of all unordered pairs

from V . Therefore the cardinality of E is M D jEj �
�
N
2

�
DN.N � 1/=2.

We say that two vertices x; y are neighbors and write x � y if fx; yg 2E. The
graph is connected if for any two vertices a; b 2 V there is a chain of vertices
x0 D a; x1; : : : ; xn D b, so that xj � xjC1 for j D 0; : : : ; n� 1. It is known that
connected graphs must satisfy jEj �N � 1 (induction).

Given a subset of vertices V 0 � V , we let E.V 0/�E be all the edges of G that
connect pairs of vertices in V 0. With this notation G.V 0/D .V 0; E.V 0// is a simple
graph which we call the subgraph induced by V 0. More generally, a subgraph of G
is a graph G0 D .V 0; E 0/ such that V 0 � V and E 0 �E.V 0/.

The number of edges that are incident at a vertex x is called the degree of x and
we write d.x/. Since every edge is incident at two distinct vertices, it contributes
to two degrees. Therefore X

x2V

d.x/D 2jEj:

This identity is sometimes referred to as the handshake lemma. It says that instead
of counting edges, one can add degrees, that is, switch to d.x/ which is a function
defined on V .

For instance, the volume of a subgraph H D .V .H/;E.H// of G can be defined
as jE.H/j, the number of edges of H ; or as half the sum of the H -degrees over
the vertices of H :

1

2

X
x2V.H/

dH .x/:

We say that 
 is a curve in G if 
 is a connected subgraph of G. This is not a
very common way of defining curves in graph theory, but it makes sense from the
point of view of the function-theory inspired concepts that we will introduce later
when we talk about modulus of curve families.

The graph G is weighted if there is a weight function W WE! Œ0;C1/ defined
on the edges. The unweighted graph is recovered by settingW0.e/D1, for all e2E.

Given a curve 
 in G, it is natural to define its graph-length to be the total
number of edges in 
 :

lengthG.
/ WD
X

e2E.
/

W0.e/: (2-1)
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The graph distance. A function of two variables d.x; y/ � 0 on a space X is
called a metric or a distance, if it is symmetric, d.x; y/D d.y; x/; nondegenerate,
d.x; y/D 0 if and only if x D y; and satisfies the triangle inequality, d.x; y/ �
d.x; z/C d.z; y/, whenever x; y; z 2X .

On a connected graph G the graph distance dG.x; y/ is defined as the shortest
graph-length of a curve connecting x to y.

dG.x; y/ WD min

 WxÝy

lengthG.
/; (2-2)

where 
 W xÝy means that 
 is a curve connecting x to y. We leave the verification
that dG is a metric to the reader.

The diameter of the graph G is

diam.G/D max
x;y2V

dG.x; y/:

The metric ball centered at a vertex x and of radius r is

B.x; n/ WD fy 2 V W dG.x; y/� rg:

3. The epidemic quasimetric

Given two nodes x and y, we define the epidemic quasimetric between them to be
the size of the part of the graph that would be affected (the potential damage) if an
epidemic started at x and reached y, or vice versa. In formulas, we consider all the
vertices in

B.x; dG.x; y//;

and form the induced subgraph of G which we call �.x; dG.x; y//. We then
compute the volume j�.x; dG.x; y//j as on page 99, by counting the number of
edges. So we define the epidemic quasimetric between x and y to be

Epidemic.x; y/ WD j�.x; dG.x; y//jC j�.y; dG.x; y//j: (3-1)

The epidemic quasimetric is not a distance in the mathematical sense. For
instance, the triangle inequality can fail as badly as possible, as the following
example shows.

Example 3.1. In Figure 1,

Epidemic.x1; x2/D 3 and Epidemic.x2; x3/D 4;

while
Epidemic.x1; x3/DN C 5:

So the triangle inequality in this case can be made to fail as badly as needed by
letting N increase.
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x1 x2 x3 x4
N

Figure 1. Failure of the triangle inequality.

As described in Section 7, the epidemic quasimetric seems to carry useful
geometric information about a graph and in our experiments it appears to behave
well with respect to simple clustering algorithms. For the rest of the paper, our
intent is to present a comprehensive survey of effective resistance and to answer
the following question.

Question 3.2. Is there a connection between the epidemic quasimetric and effective
resistance?

We begin in the next two sections by surveying Markov chains and electrical
networks. Most of this material can be found in [Levin et al. 2009; Grimmett 2010;
Doyle and Snell 1984].

4. Markov chains

A Markov chain is comprised of a finite set S (the state space) and a probability
distribution on the state space which can be represented in terms of a transition
matrix fP.i; j /g D P whose entries correspond to the probability of being at state
j at time nC1 given that you were at state i at time n. P being a transition matrix
means that we must have

P
j P.i; j /D 1 (row sums add up to 1.)

This determines a process, that is, a sequence of random variables XnD�! S ,
with the property that P.XnC1 D y j Xn D x/ D p.x; y/. Note that P.x; y/ is
independent of n.

Example 4.1. A random walk on a graph is an example of a Markov chain. Consider
a finite, simple graph G D .V;E/ with vertices V D f1; 2; : : : ; N g and edges E.
For x 2 V , dx indicates the degree or local index of x. We’ve seen that, by the
handshake lemma,

P
x2V dx D 2jEj.

Define

P.x; y/ WD

�
1=dx x � y;

0 else.
(4-1)

Note that
P
y2V P.x; y/D

P
y�x 1=dx D .1=dx/

P
y�x 1D 1.

Matrices act on column vectors. Given N states, fP.x; y/g D P is an N � N
matrix. Here N � 1 vectors correspond to functions f W S ! R on the state space.
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Then P acts on functions as follows:

g.x/D .Pf /.x/D
X
y2S

P.x; y/f .y/:

Probabilistically,

g.x/D
X
y2S

f .y/P.X1 D y jX0 D x/D EX0Dx.f .X1//;

which is the average or expected value of f evaluated on the process at time 1. On
a graph:

g.x/D
1

dx

X
y�x

f .y/:

So g is obtained from f by defining g.x/ to be the average of the values of f over
all the neighbors of node x.

Definition 4.2. Whenever x 2V and .Pf /.x/D f .x/ we say that f is a harmonic
function on the graph at x.

Example 4.3 (gambler’s ruin). Consider six nodes f0; 1; 2; 3; 4; 5g representing the
dollar amounts held by a gambler. After each bet the gambler either wins or loses a
dollar with equal probability. The gambler will walk away whenever his fortune is
0 (ruin), or 5 (predetermined goal). We represent this with a transition matrix P ,
which is a 6� 6 matrix in this case.

We would like to know the probability of reaching 5 before 0, assuming that we
start our random walk at node 3. This is an example of a hitting probability, what
in complex analysis would be called a harmonic measure problem.

Let

h.x/D P.Xn hits 5 before 0 jX0 D x/D Px.Xn hits 5 before 0/;

where Px is probability conditioned on fX0 D xg.
We want to compute h.3/. We call the points in B D f0; 5g boundary points and

those in I D f1; 2; 3; 4g interior points.

For x 2 I , we can condition on the first step; this is known as “first-step analysis”.
For brevity we write A WD fXn hits 5 before 0g:

h.x/D Px.A/

D Px.A jX1 D x�1/Px.X1 D x�1/CPx.A jX1 D xC1/Px.X1 D xC1/

D
1
2
h.x�1/C1

2
h.xC1/;
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since P.x; y/D 1
2

if y D x� 1 or xC 1, and 0 otherwise. The function h is thus
harmonic for P at each interior point. Also h has boundary values h.0/D 0 and
h.5/D 1.

Fact 4.4 (maximum principle). A harmonic function achieves its maximum value
M and minimum value m on the boundary.

Idea: suppose f attains its maximum at an interior point. By harmonicity it must
attain it at each neighboring vertex too and this will propagate out as an oil spill all
the way to the boundary.

Claim 4.5. The problem of finding a harmonic function h on I with boundary
values h.0/D 0 and h.5/D 1 has a unique solution.

Proof. Suppose that h and g are both harmonic at each interior point and that
h.0/D g.0/D 0, h.5/D g.5/D 1. Let f D h�g. Then, by linearity, we have that

f .x/D 1
2
f .x� 1/C 1

2
f .xC 1/;

with f .0/D 0 and f .5/D 0. We get that M Dmax.f /D 0 and mDmin.f /D 0
and the maximum principle implies that f � 0 or g D h. �

Remark 4.6. The gambler’s ruin example is part of a larger set of problems. Given
a subset B of nodes that we will call “boundary” and a function hB defined only on
B , it is always possible to extend this function on the remaining nodes (the interior
points) so that the extension h is harmonic on the interior points. Claim 4.5, shows
that if a solution exists it is unique. However, the existence is obtained by writing
down a solution explicitly. For this we must introduce the notion of stopping times.
Given a walker starting at some interior node x the stopping time �B is the first time
the walker visits a node in B . Since the walk is a random process, stopping times
are random variables. The solution to the boundary-value (or Dirichlet) problem is

h.x/ WD Ex.hB.X�B //;

namely, the expected value of hB evaluated at the exit point of a walk started at x.

Matrices act on row vectors. On a finite graph a random walker either runs until it
hits a given set of boundary points, as in the gambler’s ruin example, or it bounces
around forever. In the latter case, we can ask what fraction of time does it spend at
a node x?

Intuitively we want to define � to be the stable distribution if
P
x2V �.x/D 1

and �.x/ denotes the probability of finding the random walker at x in the long run.
This however already implies that the long run stabilizes.

Let �0.x/ denote the initial distribution for X0 and similarly �1.x/ the distri-
bution of X1, after one “step”. Then, conditioning on the previous location we
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get:
�1.x/D

X
y

�0.y/P.X1 D x jX0 D y/D
X
y

�0.y/P.y; x/:

If we think of �0.x/ as a row vector then we can rewrite this in matrix multipli-
cation form as �1 D �0P , �2 D �1P D �0P 2, and so on. The entries of P 2 will
be of the form

.P 2/.x; y/D
X
z

P.x; z/P.z; y/D P.X2 D y jX0 D x/:

In general, we have �n D �0P n, where P n is the n-th power of the matrix P .
If, as n goes to infinity, limn!1 �n D � , then � is a unique fixed-point for P .

That’s because for large n,

� � �nC1 D �nP � �P:

We say that � is a stable distribution for P if �P D � .
For a Markov chain on a finite state space there are very mild conditions (irre-

ducibility and aperiodicity) that guarantee the existence and uniqueness of a stable
distribution � , as well as the convergence limn!1 �0P n D � independently of
�0. In such cases, �.x/ > 0 at every x 2 S and 1=�.x/ equals the expected return
time to x (in formulas Ex.�

C
x /). Namely, � is inversely proportional to the average

amount of time it takes for the random walker to find its way back to the starting
node. The easier it is to come back, the larger � is, and the larger the proportion of
time the random walker spends at x in the long run.

Reversible chains. The chains we will use in the sequel will have one extra property:
reversibility.

Definition 4.7. The Markov chain P is reversible if there is a distribution � such
that

�.x/P.x; y/D �.y/P.y; x/ for all x; y 2 V: (4-2)

If P is reversible, then the distribution � is stable, as the following shows:X
x

�.x/P.x; y/D
X
x

�.y/P.y; x/D �.y/
X
x

P.y; x/D �.y/:

The reversibility condition is very closely related to the notion of “symmetric”
or “self-adjoint” matrices. In fact, if we let A.x; y/D �.x/P.x; y/, then (4-2) is
A.x; y/DA.y; x/. In matrix notation ADDP , where D is a diagonal matrix with
entries �.x/. So standard results in linear algebra tell us that A and thus P , are
linearizable to a diagonal matrix of real eigenvalues. Moreover, the action of P on
row vectors is the action of the adjoint (or transpose) P T on column vectors and
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P T shares the same eigenvalues as P and A. The difference lies in the eigenvectors
(or eigenfunctions), but there are simple formulas involving � to go from one set to
the other.

The fact that the rows of P sum to 1 implies that the eigenvalues of P are
between �1 and 1. To see this note that

jPf .x/j D

ˇ̌̌̌X
y

P.x; y/f .y/

ˇ̌̌̌
� .max

y
jf .y/j/

X
y

P.x; y/Dmax
y
jf .y/j:

Suppose that Pf D �f . Then, j�jjf .x/j �maxy jf .y/j for all x’s. Hence, j�j � 1.
Finally, the fact that the rows of P sum to one also imply straightforwardly that 1

is an eigenvalue of P for constant eigenvectors.

Example 4.8 (random walks on weighted graphs). LetGD.V;EIW / be a weighted
graph. The degree of a vertex is usually the number of neighbors of x, but for a
weighted graph it can also be defined as

deg x WD
X
yvx

W.x; y/:

Then a (weighted) random walk on G is defined to be the Markov chain with state
space V and transition matrix

P.x; y/D

�
W.x; y/=deg x if y v x,
0 otherwise.

In this situation the probability distribution defined at each x 2 V by

�.x/ WD
deg x
Z

; where Z D
X
z2V

deg z;

will satisfy

�.x/P.x; y/D
deg x
Z

W.x; y/

deg x
D

degy
Z

W.y; x/

degy
D �.y/P.y; x/:

In particular, P is reversible in this case.

5. Electrical networks and effective resistance

It is often useful when studying graphs and random walks on graphs to think of
them as electrical networks. Each edge e then acquires a weight W.e/ D C.e/
which in this instance plays the role of conductance. One recalls from high-school
physics that the electrical current I through a connection is related to the potential
difference V via the formulas

V DRI and I D CV;
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where RD 1=C is the resistance and C the conductance.
If instead of a simple connection one is looking at a series of connections then

simple rules allow one to say that the system behaves as if there was only one
connection but with an appropriately modified resistance. This “virtual” resistance
is what we call the effective resistance between two nodes (see next page for
definition).

Flows and currents. In order to make this more precise we need to introduce some
notation. Given two nodes a and b we consider a unit current that is allowed to
pass through a connected graph with the “source” at a 2 V and the “sink” at b 2 V .
In order to effect this passage a certain voltage difference must be applied at a and
b, and a corresponding voltage potential will arise at every node x in the graph. Let
v.x/ denote the voltage at x 2 V .

The electric current that runs through the graph is an example of a flow. Mathemat-
ically, a flow is an assignment of a number jxy (representing its intensity) to every di-
rected edge .x; y/, that has the property of being antisymmetric: j.x; y/D�j.y; x/.
Given two nodes a and b, we say j is a flow from a to b if the following property
is satisfied at every node x ¤ a; b.

Kirchoff’s node law. The flow into a vertex x is equal to the flow out of x. In other
words, the divergence divj .x/ WD

P
y�x j.x; y/ is equal to zero at every x ¤ a; b.

Moreover, we also demand that divj .a/� 0 (and thus divj .b/� 0), since it’s a
flow from a to b. The quantity divj .a/ is the strength of the flow j from a to b.

To compute effective resistance we will assume that a unit flow is entering the
network at a and exiting at b, so divj .a/ D �divj .b/ D 1 and divj .x/ D 0 for
x ¤ a; b.

A flow from a to b is furthermore a current flow, if it also satisfies Ohm’s law
below. In this case we use the notation i.x; y/.

Ohm’s law. There is a potential function v defined on the nodes such that for every
oriented edge .x; y/, R.x; y/i.x; y/D v.y/�v.x/ where R.x; y/ is the resistance
of the edge .x; y/.

Whenever a flow can be expressed as the edge difference of a potential function
defined on the nodes, as is the case for current, then around any cycle

x1 � � � � � xn � xnC1 D x1;

the following holds necessarily:

nX
kD1

R.xk; xkC1/i.xk; xkC1/D 0:
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This is known as Kirchoff’s potential law and it turns out to be equivalent to the
existence of a potential.

Combining Kirchoff’s node law and Ohm’s law at x ¤ a; b, we get

0D
X
y�x

i.x; y/D
X
y�x

v.y/� v.x/

R.x; y/
D

X
y�x

C.x; y/v.y/�C.x/v.x/;

where C.x; y/D 1=R.x; y/ is the conductance of the edge .x; y/ and

C.x/ WD
X
y�x

C.x; y/ (5-1)

is the local conductance at node x. In particular, we have

v.x/D
1

C.x/

X
y�x

C.x; y/v.y/I

that is, the potential voltage function v must be harmonic with respect to the graph
weighted by local conductances.

That a current flow satisfying all of these laws and requirements exists is a
physical fact, however mathematically one has to prove its existence and uniqueness.

Proving uniqueness is easy because flows that satisfy the two Kirchoff laws
mentioned above satisfy the superposition principle: given two such flows i1 and
i2, then j D i1� i2 will also satisfy the same laws.

The existence proof is more challenging and its resolution surprising. A flow
can actually be constructed explicitly that satisfies all the requirements using the
concept of spanning trees. See [Grimmett 2010, Theorem 1.16].

Probabilistically, the resulting current i.x; y/ along an edge .x; y/ can be shown
to equal the expected number of (net) times that the random walker (on the graph
weighted by the conductances) crosses from x to y.

Effective resistance. Given two nodes a and b consider a unit current flow entering
at a and exiting the network at b. This flow exists and is unique, as explained above,
once the Neumann conditions, namely the entering and exiting flow, is fixed at a
and b. Moreover, this current determines a unique voltage potential v at each node
(up to a constant). The absolute value of the voltage drop between a and b is what
we call the effective resistance between a and b. In formulas:

Reff.a; b/ WD jv.a/� v.b/j D v.b/� v.a/: (5-2)

Effective resistance and escape probabilities. Recall the definition of local con-
ductance in (5-1). The random walk on the weighted graph is the Markov chain
with transition probabilities
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P.x; y/ WD
C.x; y/

C.x/
; whenever y � x: (5-3)

Effective resistance, or more appropriately, effective conductance,

Ceff.a; b/ WD
1

Reff.a; b/
(5-4)

is related to the probability that a random walker starting at a visits b before
returning to a. In symbols, recall the notion of stopping time. Assuming that the
random walk is at a at time 0, we write �z for the first time it visits node z and �Ca
for the first time the walker revisits a after time 1. We are interested in Pa.�z <�

C
a /,

the probability that the random walk starting at a visits z before returning to a.

Proposition 5.1. For any a; b 2 V ,

C.a/Pa.�b < �
C
a /D Ceff.a; b/:

Proof. The proof is a beautiful application of the maximum principle for harmonic
functions (Fact 4.4). Consider B D fa; bg to be the boundary and �D V n fa; bg
the interior. We want to find a harmonic function on � which takes the value 0 at
a and the value 1 at b. By the maximum principle, the solution to this problem is
unique. We now produce two such solutions.

The first is
h.x/ WD Px.�b < �

C
a /:

Harmonicity can be checked by conditioning on the first step.
The second solution is given by normalizing the voltage function v.x/ which is

required in order to have one unit of current flow in at a and out at b. So let

g.x/ WD
v.x/� v.a/

v.b/� v.a/
D Ceff.a; b/.v.x/� v.a//:

By uniqueness, hD g.
Now, by conditional probability,

Pa.�b < �
C
a /D

X
x2V

P.a; x//Px.�b < �
C
a / (first-step analysis)

D

X
x�a

C.a; x/

C.a/
Ceff.a; b/.v.x/� v.a// (by (5-3))

D
Ceff.a; b/

C.a/

X
x�a

i.a; x/ (Ohm’s law)

D
Ceff.a; b/

C.a/
divi .a/D

Ceff.a; b/

C.a/
(by Kirchoff’s node law) �
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Remark 5.2. The probability p D Pa.�b < �Ca / is also known as the escape
probability. With probability 1�p escape fails and the walker returns to a before
visiting b, at which point another identical walker starts out for another attempt.
This is akin to flipping a biased coin that has probability p of success (heads).
In particular, the number of tosses N required to achieve success is known to be
distributed with the geometric distribution:

P.N D k/D p.1�p/k�1 for k D 1; 2; 3; : : : :

A calculation using the geometric series shows that the expected number of tosses
E.N / equals 1=p. In our context N is the number of visits to a before escaping
through b (where we count t D 0 as a visit) and its expectation is known as
the Green’s function of the random walk started at a and stopped at b. More
generally, Gb.a; c/ is the expected number of visits to c for the walk started at a,
before it is stopped at b. It follows from this discussion and Proposition 5.1 that
Gb.a; a/D C.a/Reff.a; b/.

Rayleigh’s monotonicity and energy. The energy of a flow j is

Energy.j / WD
X
e2E

R.e/.j.e//2:

Notice that for each edge e 2E, the quantity j.e/ is defined up to a sign change.
Therefore, the square .j.e//2 is well defined.

Proposition 5.3. Consider the unit current flow i from a to b and its corresponding
potential v defined on the nodes. Given an arbitrary flow k from a to b,X

e2E

R.e/i.e/k.e/D .v.b/� v.a// divk.a/:

Proof. We haveX
e2E

R.e/i.e/k.e/D
1

2

X
x�y
x;y2V

R.x; y/i.x; y/k.x; y/D
1

2

X
x�y
x;y2V

.v.y/�v.x//k.x; y/;

by Ohm’s law. Since k.x; y/D0 if x 6�y, this expression can further be transformed
into

1

2

X
y2V

v.y/
X
x2V

k.x; y/�
1

2

X
x2V

v.x/
X
y2V

k.x; y/;

which, by Kirchoff’s node law, equals

�v.a/ divk.a/� v.b/ divk.b/D .v.b/� v.a// divk.a/;

since divk.b/D�divk.a/. This concludes the proof. �
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In particular, applying Proposition 5.3 to the case when k equals the unit current
flow i itself and using (5-2), we find that

Energy.i/D .v.b/� v.a// divi .a/DReff.a; b/: (5-5)

Theorem 5.4 (Thomson’s principle). The unique unit flow from a to b that mini-
mizes energy is the unit current flow.

Proof. Let j be a unit flow from a to b and i the unit current flow from a to b.
Then k WD j � i is also a flow from a to b, but of strength zero. We have

Energy.j /D
X
e2E

R.e/.i.e/C k.e//2

D Energy.i/CEnergy.k/C 2
X
e2E

R.e/i.e/k.e/:

Using Proposition 5.3, we see that the cross-term
P
e2E R.e/i.e/k.e/ equals zero

since divk.a/D 0. Therefore, the energy of j is strictly greater than the energy of
i , unless Energy.k/D 0 in which case k � 0 and i � j . �

Corollary 5.5. Effective resistance is a (not necessarily strictly) increasing function
of the edge resistances.

Proof. Let R.e/�R0.e/ for every e 2E, and let i and i 0 be the corresponding unit
current flows from a to b. Then

Reff D
X
e2E

R.e/.i.e//2 (by (5-5))

�

X
e2E

R.e/.i 0.e//2 (by Thomson’s principle)

�

X
e2E

R0.e/.i 0.e//2 (by assumption)

DR0eff (by (5-5)): �

Example 5.6. A tree T is a connected graph with no loops. It follows that given
two vertices x and y on a tree, there is a unique geodesic (curve of minimal length).
In this case the effective resistance and the graph distance coincide:

Reff.x; y/D dG.x; y/;

because no current can flow along edges that are not part of the unique geodesic.
Moreover, in a graph G we always have

Reff.x; y/� dG.x; y/: (5-6)



EFFECTIVE RESISTANCE AND THE EPIDEMIC QUASIMETRIC 111

To see this, pick a shortest curve 
 connecting x to y and note that it will not have
any loops, since removing an edge along a loop does not affect the connectedness
of 
 . Then complete 
 to a spanning tree T for G, namely a tree on the same N
vertices of G which is also a subgraph of G. By monotonicity, Corollary 5.5, we
have Reff.x; yIG/�Reff.x; yIT /, because removing an edge fromG is equivalent
to setting its resistance to be1. On the other hand, since T is a tree, Reff.x; yIT /D

dT .x; y/D dG.x; y/.

Proposition 5.7. Effective resistance is a metric.

Proof. Symmetry follows by reversing the current flow. Nondegeneracy follows
from (5-5) and the existence of a unit current flow. Finally, the triangle inequality
is verified by noticing that inputting a unit current flow at x, extracting it at z,
then reinputting it at z and extracting at y is the same as just inputting it at x and
extracting it at y. �

Computing effective resistance with matrices.

Adjacency matrix. The adjacency matrix of a graph is a way to represent which
nodes of a graph are adjacent to each other. Given a simple graph G D .V;E/, let
A be the matrix with entries

A.i; j /D

�
1 .i; j / 2E;

0 otherwise.

(We write .i; j / 2E instead of fi; j g 2E by abuse of notation, even though .i; j /
is an ordered pair.)

If the graph is weighted with weight W.i; j /, then we set

A.i; j /D

�
W.i; j / .i; j / 2E;

0 otherwise.

Combinatorial Laplacian. Let G denote a graph with vertex set V D f1; 2; : : : ; N g
and edge set E. Then the combinatorial Laplacian L is an N �N matrix defined
by

L.i; j /D

8<:
di if i D j;
�W.i; j / if .i; j / 2E;
0 otherwise:

where di is the degree of the vertex i :

di WD
X
j

A.i; j /:

Letting D be the diagonal matrix D D Diag.di /, we see that LDD�A.
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Also recalling the transition matrix P for the random walk on G defined in (4-1),
we see that

LDD.I �P /:

The square root of the Laplacian. Given an edge e joining two nodes, arbitrarily
assign one of these two nodes to be e’s tail and the other one to be e’s head. Once
this choice is made we will write e D .x; y/ to mean that x is the tail and y the
head.

Consider the following M �N matrix, where M D jEj and N D jV j:

B.e; x/ WD

8<:
1 if x is e’s head;
�1 if x is e’s tail;
0 otherwise:

(5-7)

We claim that
LD BTWB; (5-8)

where W is the M �M diagonal matrix with entries W.e/ (the weight of edge e).
To check this, notice that

.BTWB/.x; y/D
X
e

BT .x; e/W.e/B.e; y/D
X
e

B.e; x/B.e; y/W.e/:

If x ¤ y, the only term that survives in the sum is when x and y are neighbors
and e D .x; y/, then we get �W.x; y/. If x D y, any edge from x contributes
B.e; x/2W.e/DW.e/, so we get the degree at x.

Quadratic form. A quadratic form is a function of the form Q.x/D xTAx, where
A is a symmetric matrix. Since the combinatorial Laplacian is symmetric we can
write

vTLv D
X
x;y2V

v.x/L.x; y/v.y/D vTBTWBv D kW 1=2Bvk22

D

X
e

W.e/.Bv/.e/2 D
1

2

X
.x;y/2E

W.x; y/.v.x/� v.y//2:

It follows that the quadratic form associated to the Laplacian is positive semidefinite,
and therefore its eigenvalues are nonnegative.

Remark 5.8. If v is the potential resulting from inputting a unit current flow i at
a and extracting it at b, then using Ohm’s law and (5-5) we see that the quadratic
form satisfies:

vTLvD
1

2

X
.x;y/2E

W.x; y/.v.x/�v.y//2D
X
e

R.e/i.e/2DEnergy.i/DReff.a;b/:
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The kernel of the Laplacian. We claim that the kernel of the Laplacian consists of
the constant vectors:

KerLD Ker.W 1=2B/D SpanfŒ1 � � � 1�T g:

We use the quadratic form to check this:

Lv D 0” vTLv D 0

”kW 1=2Bvk22 D 0

”

X
x;y

W.x; y/.v.x/� v.y//2 D 0

” v.x/D v.y/ for all x; y:

In particular, the smallest eigenvalue of the Laplacian is 0. Traditionally, we label
the eigenvalues from 0 to N � 1, as follows:

�0 D 0 < �1 � � � � � �N�1: (5-9)

Diagonalizing the Laplacian. Being symmetric, the combinatorial Laplacian L can
be diagonalized, that is, there are eigenvectors u0; u1; : : : ; uN�1 such that

LD

N�1X
iD1

�iuiu
T
i D UƒU

T :

Where U D Œu0 u1 � � �uN�1�, u0 D .1 � � � 1/T and ƒ is the diagonal matrix of
eigenvalues,

ƒD

26664
0 � � � � � � 0

0 �1 � � � 0
:::
:::
: : :

:::

0 0 � � � �N�1

37775 :
Recall that given a vector u, the matrix uuT is a rank one matrix with range the

line spanned by u.
Since the Laplacian has a nontrivial kernel, it is not invertible. However, we can

still define a pseudoinverse, called the Green operator:

G D
N�1X
iD1

1

�i
uiu

T
i :

Then KerG D KerL and

LG D GLD
N�1X
iD1

uiu
T
i ;

which is also equal to the projection in RN onto Span.u1; : : : ; uN�1/.
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Kirchoff’s and Ohm’s laws revisited. Let Iext denote the current injected at point a
and extracted at point b, which can be thought of as an N � 1 vector:

Œ 0 � � � 0 � jIaj 0 � � � 0 jIbj 0 � � � 0 �
T :

The current i.e/ for each edge e can be written as an M � 1 vector, since there are
M edges. Since each edge e is assigned a head and a tail, then i.e/ will either be
positive or negative depending on whether the current flows from tail to head or
vice versa. Then Kirchoff’s node law can be written in matrix form as

BT i D Iext; (5-10)

where B is the square root of the Laplacian defined in (5-7).
To see this check that at every vertex x,

Iext.x/D
X
e2E

BT .x; e/i.e/D
X
e2E

B.e; x/i.e/:

The only terms that survive in this sum correspond to edges e with either their
head or tail at x. Let’s first assume that each edge was oriented in such a way that
the current always flows from tail to head. Then B.e; x/D 1 for every edge with
current flowing in at x and B.e; x/D�1 for every edge with current flowing out
of x (and i.e/ is always positive with this choice of orientation). So the sum we
get is exactly the divergence at x. If for some reason an edge is oriented against
the current flow then both B.e; x/ and i.e/ change sign so their product does not.

Ohm’s law says that the resulting voltage v on the network satisfies

i.x; y/D
v.y/� v.x/

R.x; y/
DW.x; y/.v.y/� v.x//:

In matrix form Ohm’s law can be written as:

i DWBv; (5-11)

as the following computation shows:

.WBv/.e/D
X
z2V

W.e/B.e; z/v.z/DW.e/.v.y/� v.x//;

where e D .x; y/, since y is the head and x the tail of e.
Combining (5-10) and (5-11) with (5-8), we see that

Iext D B
TWBv D Lv:

We interpret this as an inhomogeneous problem to solve in v with Iext given.
However, as we’ve seen L is not generally invertible, unless Iext is perpendicular to
the kernel of L, that is, SpanfŒ1 � � � 1�T g. That’s exactly our case, since the current
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input at a equals the current output at b. Therefore, we can apply Green’s operator
to both sides and get the potential drop

v D GLv D GIext:

In other words, writing

�ab WD Œ 0 � � � 0 �1 0 � � � 0 1 0 � � � 0 �
T
D Iext;

we get that the effective resistance

Reff.a; b/D v.b/� v.a/D �
T
abv D �

T
abG�ab:

If a and b are neighbors, then �T
ab

is a row ofB corresponding to the edge eD .a; b/,
and thus

.BGBT /.e; e/DReff.e/:

6. Concepts imported from function and potential theory

Capacity. A function u defined on the vertices induces a gradient �u on the edges:

�u.e/ WD ju.x/�u.y/j for e D fx; yg:

The energy of �u is

E.�u/D
X
e2E

�u.e/
2: (6-1)

On a weighted graph we modify this definition as follows:

E.�u/D
X
e2E

�u.e/
2w.e/:

Given two nodes a and b in a graph G, we will minimize the energy among
all the functions u W V ! R with u.a/D 0 and u.b/D 1. We define the capacity
between a and b to be

Cap.a; b/D min
u.a/D0
u.b/D1

E.�u/:

The function u that attains the minimum is called the capacitary function for a and
b.

Assuming that each edge has unit resistance, recall that Thomson’s principle
(Theorem 5.4) and (5-5) imply that the effective resistance between a and b can
be computed by minimizing the energy of all unit flows between a and b, and that
the minimum is achieved for the unit current flow. The electric potential v that
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gives rise to the unit current flow can be used to interpret the unsigned flow as a
“gradient”. In fact, by Ohm’s law, for e D fx; yg,

ji.e/j D jv.x/� v.y/j:

The electric potential v is only defined up to an additive constant, what matters is
the drop jv.a/� v.b/j which equals Reff.a; b/.

So, dividing v by Reff.a; b/ and shifting by a constant C if necessary, we get a
function

U WD
v

Reff.a; b/
CC; (6-2)

such that U.a/D 0, U.b/D 1, and whose gradient is

�U .e/D
ji.e/j

Reff.a; b/
:

Computing the energy of �U and using (5-5) we get an upper bound for Cap.a; b/:

Cap.a; b/�
1

Reff.a; b/
D Ceff.a; b/:

This inequality is in fact an equality, even though the two sides are obtained by
minimizing the energy of very different objects: flows that don’t necessarily admit
potentials, on one hand, and gradients which are obtained from a “potential” function
defined on the vertex set, on the other hand.

Proposition 6.1. We always have

Cap.a; b/D Ceff.a; b/;

and the function U defined in (6-2) is the capacitary function for a and b.

Proof. The quadratic form induced by the combinatorial Laplacian of Section 5 can
be used to compute the energy of gradients, since

uTLuD
X
fx;yg2E

ju.x/�u.y/j2 D E.�u/:

In other words, if we number the nodes 1; : : : ; N , the capacity Cap.i; j / for i < j
is computed by minimizing the quadratic form restricted to the affine subspace of
codimension 2:

Aij D
˚
x D .x1; : : : ; xN / 2 RN W xi D 0; xj D 1

	
:

This can be handled with the method of Lagrange multipliers. Let gi .x/D xi for
i D 1; : : : ; N and f .x/D xTLx. Then given i < j ,

rf D �irgi C�jrgj ; (6-3)
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for some parameters �i and �j .
Notice thatrgi Dei , the standard unit vector in the i -th direction. Alsorf .x/D

2Lx. Let w D .w1; : : : ; wn/ be a solution of (6-3). Then, interpreted as a function,
w is harmonic at every node except possibly for nodes i and j . Moreover, wi D 0
and wj D 1. By the maximum principle, there is a unique harmonic function with
these boundary values. Therefore the solution to the Lagrange multipliers problem
coincides with U from (6-2), the harmonic function obtained by renormalizing the
electric potential v arising from the effective resistance problem. �

Modulus of curve families. We relax the notion of gradient and consider arbitrary
densities � WE! Œ0;C1/. The �-length of a curve 
 is then

�-length.
/D
X

e2E.
/

�.e/: (6-4)

We measure the energy of � as done before in (6-1) for gradients.
A curve family � is a collection of curves 
 in a graph G. We say that � is

admissible for the curve family � if

�-length.
/� 1 for all 
 2 �: (6-5)

We write A for the family of all admissible densities for a given curve family � .
The modulus of � is

Mod.�/D inf
�2A

E.�/: (6-6)

The advantage of modulus is that any choice of admissible density gives rise to
an upper-bound. If the family � contains a constant curve, then its modulus is
infinite. Otherwise, choosing �� 1 we see that Mod.�/ is bounded above by jEj,
the number of edges.

Given two nodes a and b, let Mod.a; b/ be the modulus of the curve-family
consisting of all curves 
 that contain both a and b. We call this curve-family
�.a; b/.

It turns out that modulus and capacity are closely related concepts.

Proposition 6.2. We always have

Mod.a; b/D Cap.a; b/:

Proof. Let U be the capacitary function for a and b defined in (6-2), whose gradient
�U has energy E.�U / equal to Cap.a; b/. We first show that �U is an admissible
�-density for �.a; b/. Let 
 be an arbitrary curve from a to b. Then, since 
 is
connected, it must contain a chain of vertices x0 D a; x1; : : : ; xm D b so that
xj � xjC1 for j D 0; : : : ; m� 1. By the triangle inequality,
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1D jU.a/�U.b/j D

ˇ̌̌̌m�1X
jD0

.U.xjC1/�U.xj //

ˇ̌̌̌
�

m�1X
jD0

jU.xjC1/�U.xj /j

D

m�1X
jD0

�U .fxj ; xjC1g/�
X

e2E.
/

�U .e/:

So �U is admissible for �.a; b/ and

Mod.a; b/� E.�U /D Cap.a; b/:

Conversely, let � be an arbitrary admissible density for �.a; b/. Without loss of
generality, we can assume there is a curve 
0 2 �.a; b/ such that �-length.
0/D 1,
because otherwise we could scale � by dividing by the shortest �-length and still
have an admissible density.

Define a function u on the vertices as the �-length of a shortest curve from a:

u.x/D min

 WaÝx

�-length.
/;

Then u.a/D 0 (the constant curve has length zero), and u.b/D 1 because of the
curve 
0 mentioned above.

Furthermore, for an arbitrary edge e D fx; yg,

u.y/� u.x/C �.e/;

because the shortest curve from a to x followed by the edge e is a curve from a to
y. Therefore, inverting the roles of x and y, we find that the gradient of u satisfies

�u.e/D ju.x/�u.y/j � �.e/:

This in turn implies that E.�u/� E.�/; in other words

Cap.a; b/� E.�/:

Since � was an arbitrary admissible density, we can minimize over � and get

Cap.a; b/�Mod.a; b/: �

Putting Propositions 6.1 and 6.2 together we obtain:

Theorem 6.3. The three concepts of effective conductance, capacity and modulus
coincide:

Ceff.a; b/D Cap.a; b/DMod.a; b/:

We can now exploit the definition of modulus as an infimum and obtain a comparison
between the epidemic quasimetric and effective conductance.

Proposition 6.4. dG.a; b/
2 Mod.a; b/� Epidemic.a; b/:
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Corollary 6.5. Epidemic.a; b/� dG.a; b/2Ceff.a; b/D
dG.a; b/

2

Reff.a; b/
:

Proof of Proposition 6.4. Recall some of the notations introduced to define the
epidemic quasimetric. We considered �.a; dG.a; b//, the subgraph of G induced
by the vertices that are in the ball B.a; dG.a; b//. Define a �-density for �.a; b/
by letting

�.e/D

(
1=dG.a; b/ if e is an edge in� WD�.a; dG.a; b//[�.b; dG.a; b//;

0 otherwise.

We claim that this �-density is admissible for �.a; b/. To see this pick an arbitrary
curve 
 that contains both a and b. By definition of graph distance (2-2), we have
lengthG.
/� dG.a; b/, and this takes care of curves that stay in �. Some curves
might actually exit �, but if they do then they must exit the ball B.a; dG.a; b//
and therefore they will again have �-length greater than one.

By (6-6) we get

Mod.a; b/�
j�j

dG.a; b/2
: �

7. Explicit and numerical computations

Some closed form expressions. We begin by calculating some of these quantities
exactly, for special cases or families of cases.

Example 7.1 (Path graphs). For each N 2N, PN is the unique graph on N vertices
that can be labeled x1; : : : ; xN so that xj � xjC1 for j D 1; : : : ; N � 1.

The diameter of PN is N � 1.
Being a tree, effective resistance on PN is equal to the graph distance:

Reff.xi ; xj /D dG.xi ; xj /D j � i for i < j:

On the other hand,

Epidemic.xi ; xj /Dminfj � i; i � 1gC 2.j � i/Cminfj � i; N � j g:

To study how much is lost in the inequality of 6.5 we consider the discrepancy

ı.a; b/ WD
Reff.a; b/Epidemic.a; b/

dG.a; b/2
:

In the case of the path graph PN , we have

2� ı.xi ; xj /Dmin
�
1;
i � 1

j � i

�
C 2Cmin

�
1;
N � j

j � i

�
� 4:
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Example 7.2 (star graph and complete graph). The ratio ı can grow when the
diameter of a tree is very small.

For instance, the star SN is a tree with a vertex x0 that plays the role of hub and
has N � 1 neighbors. The diameter is 2 and the graph distances are either 1 or 2.
On the other hand, the epidemic quasimetric is either N or 2.N � 1/. Therefore ı
grows linearly with N .

The complete graph KN is the graph on N vertices with the maximum number
of edges: every vertex has N � 1 neighbors. Here the diameter is 1, and the graph
distance is constant equal to 1. Effective resistance can be computed as follow: fix
two nodes x and y and let zV be the remaining nodes in V n fx; yg. By symmetry
the potential induced by a unit current flow between a and b will be constant on
zV . Hence no current will flow along the KN�2 complete graph induced by zV . We
get that zV can be thought as a single vertex connected by N � 2 edges to x and
y respectively. Using the high-school physics rules for circuits in series and in
parallel, we find that

Reff.x; y/D
2

N
:

The epidemic quasimetric in this case is constant and equal to N.N � 1/. Hence ı
is also constant and equal to .N �1/=2. Again we see that ı grows linearly with N .

One might conjecture that the discrepancy ı always grows at most linearly in
the number of vertices, but that turns out to be false. Using (5-6), the volume of
the complete graph KN and bounding dG.a; b/ � 1, we find that ı.a; b/ � N 2.
This quadratic worst behavior can be achieved by letting G be the graph obtained
from the complete graph KN by picking a vertex a and connecting it to a new
vertex b by a single edge. In this situation dG.a; b/D 1, and Reff.a; b/D 1, but
Epidemic.a; b/ D N.N � 1/=2C 2, so ı.a; b/ D O.N 2/. One could say that in
this case the epidemic quasimetric captures a feature of the graph G that effective
resistance does not see.

Computing the epidemic quasimetric. We used Matlab to study specific examples.
We are given a simple (possibly weighted) graph in the form of an adjacency matrix;
see page 111. In some cases, the matrices are too large and have to be entered in
list form. This consists of two columns of labels from 1 to N , where each row
represents an edge in the graph.

We call the adjacency matrix K and normalize it so that all the nonzero entries
are equal to 1. The matrix K is zero along the diagonal so we let B DKC I . We
then take powers Bk of B . An entry in the .i; j / spot of Bk is nonzero if and only
if at least one of the terms in the sumX

l1;:::;lk

B.i; l1/B.l1; l2/ � � �B.lk; j /
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is nonzero, that is, if and only if there is at least one chain .i; l1/; : : : ; .lk; j /
connecting i and j . Each step .ls; lsC1/ either moves to a neighbor or stays at the
given node. We again normalize the entries of Bk to be 1 when nonzero. Let Bk
be the normalized version of Bk and define B0 D I .

Next, given a node t we look at the row t in the matrix Bk and find a 1 in the
column corresponding to each node that is graph distance less or equal to k from t .
We use this row to form a diagonal matrix M and compute the matrix

Kt;k WDMKM:

The entries of Kt;k are of the form

Kt;k.i; j /DM.i; i/K.i; j /M.j; j /

D

�
1 if i; j 2 B.t; k/ and fi; j g 2E;
0 else:

(7-1)

In other words, we see that Kt;k is the adjacency matrix of the subgraph of G
induced by the vertices that are in the ball B.t; k/ centered at t of radius k. We
now compute the volume by summing all the entries of Kt;k and dividing by 2.
This is equivalent to first summing all the rows and getting the local degrees and
then summing the rows and getting the sum of all the local degrees, which by the
Handshake Lemma equals twice the number of edges.

Finally, recall that the graph distance between x and y is the first time y belongs
to the ball B.x; k/:

dG.x; y/Dminfk W Bk.x; y/D 1g:

The way we actually compute the graph distance is as follows. We flip each zero
and one in Bk , in practice we take a constant matrix O with entries O.x; y/D 1,
and let Ck.x; y/DO.x; y/�Bk.x; y/. Then we define

D WD

NX
kD0

Ck;

which leads to

D.x; y/D

dG.x;y/�1X
kD0

1D dG.x; y/:

Numerical experiments using the epidemic quasimetric in clustering algorithms.
The epidemic quasimetric carries more information for pairs of nodes that are close
relative to the diameter of the graph.

In order to write the Matlab code and check it against a concrete graph it was
really useful to have a very simple object such as the one in Figure 2.
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Figure 2. A simple graph.
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Figure 3. The original split in the Zachary karate club graph.

Once we wrote the algorithm for computing the epidemic quasimetric we tested
how it would fare in the case of the classical example graph known as the Zachary
karate club network,3 shown in Figure 3. The nodes represent club members and
the edges the friendship relations between them. After an argument between the
two leaders, node 1 and 34, the club split into two clubs; thus the coloring of the
vertices according to two distinct colors. The splitting is a real life phenomenon
and the intuition is that the web of friendships should play a role.

We used the epidemic quasimetric as a measure of “similarity” between nodes
in the agglomerative AGNES algorithm (this we performed in R). We obtained the
dendrogram in Figure 4. This is an algorithm that begins by putting each vertex in
its own class. It then “agglomerates” two classes based on the degree of similarity
between them, which is computed by taking averages of all the similarities between
elements of the two classes. The algorithm tries to agglomerate the least dissimilar
classes first.

Using the two largest clusters we obtained a cut for the example graph that
mislabels only three vertices, as can be seen in Figure 5.

3This 34-vertex, 78-edge graph refers to data collected by Wayne Zachary [1977] about members
of a university karate club.
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Figure 4. AGNES-produced dendrogram for the karate club graph.
The value of the agglomerative coefficient was found to be 0.78.

34
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Figure 5. Epidemic cut of the karate club graph.
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