
inv lve
a journal of mathematics

Editorial Board

Kenneth S. Berenhaut, Managing Editor

Colin Adams
John V. Baxley
Arthur T. Benjamin
Martin Bohner
Nigel Boston
Amarjit S. Budhiraja
Pietro Cerone
Scott Chapman
Jem N. Corcoran
Toka Diagana
Michael Dorff
Sever S. Dragomir
Behrouz Emamizadeh
Joel Foisy
Errin W. Fulp
Joseph Gallian
Stephan R. Garcia
Anant Godbole
Ron Gould
Andrew Granville
Jerrold Griggs
Sat Gupta
Jim Haglund
Johnny Henderson
Jim Hoste
Natalia Hritonenko
Glenn H. Hurlbert
Charles R. Johnson
K. B. Kulasekera
Gerry Ladas
David Larson

Suzanne Lenhart
Chi-Kwong Li
Robert B. Lund
Gaven J. Martin
Mary Meyer
Emil Minchev
Frank Morgan
Mohammad Sal Moslehian
Zuhair Nashed
Ken Ono
Timothy E. O’Brien
Joseph O’Rourke
Yuval Peres
Y.-F. S. Pétermann
Robert J. Plemmons
Carl B. Pomerance
Bjorn Poonen
James Propp
Józeph H. Przytycki
Richard Rebarber
Robert W. Robinson
Filip Saidak
James A. Sellers
Andrew J. Sterge
Ann Trenk
Ravi Vakil
Antonia Vecchio
Ram U. Verma
John C. Wierman
Michael E. Zieve

msp

2014 vol. 7, no. 2



involve
msp.org/involve

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS
Colin Adams Williams College, USA

colin.c.adams@williams.edu
John V. Baxley Wake Forest University, NC, USA

baxley@wfu.edu
Arthur T. Benjamin Harvey Mudd College, USA

benjamin@hmc.edu
Martin Bohner Missouri U of Science and Technology, USA

bohner@mst.edu
Nigel Boston University of Wisconsin, USA

boston@math.wisc.edu
Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA

budhiraj@email.unc.edu
Pietro Cerone Victoria University, Australia

pietro.cerone@vu.edu.au
Scott Chapman Sam Houston State University, USA

scott.chapman@shsu.edu
Joshua N. Cooper University of South Carolina, USA

cooper@math.sc.edu
Jem N. Corcoran University of Colorado, USA

corcoran@colorado.edu
Toka Diagana Howard University, USA

tdiagana@howard.edu
Michael Dorff Brigham Young University, USA

mdorff@math.byu.edu
Sever S. Dragomir Victoria University, Australia

sever@matilda.vu.edu.au
Behrouz Emamizadeh The Petroleum Institute, UAE

bemamizadeh@pi.ac.ae
Joel Foisy SUNY Potsdam

foisyjs@potsdam.edu
Errin W. Fulp Wake Forest University, USA

fulp@wfu.edu
Joseph Gallian University of Minnesota Duluth, USA

jgallian@d.umn.edu
Stephan R. Garcia Pomona College, USA

stephan.garcia@pomona.edu
Anant Godbole East Tennessee State University, USA

godbole@etsu.edu
Ron Gould Emory University, USA

rg@mathcs.emory.edu
Andrew Granville Université Montréal, Canada

andrew@dms.umontreal.ca
Jerrold Griggs University of South Carolina, USA

griggs@math.sc.edu
Sat Gupta U of North Carolina, Greensboro, USA

sngupta@uncg.edu
Jim Haglund University of Pennsylvania, USA

jhaglund@math.upenn.edu
Johnny Henderson Baylor University, USA

johnny_henderson@baylor.edu
Jim Hoste Pitzer College

jhoste@pitzer.edu
Natalia Hritonenko Prairie View A&M University, USA

nahritonenko@pvamu.edu
Glenn H. Hurlbert Arizona State University,USA

hurlbert@asu.edu
Charles R. Johnson College of William and Mary, USA

crjohnso@math.wm.edu
K. B. Kulasekera Clemson University, USA

kk@ces.clemson.edu
Gerry Ladas University of Rhode Island, USA

gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono Emory University, USA
ono@mathcs.emory.edu

Timothy E. O’Brien Loyola University Chicago, USA
tobrie1@luc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Vadim Ponomarenko San Diego State University, USA
vadim@sciences.sdsu.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

James A. Sellers Penn State University, USA
sellersj@math.psu.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

Michael E. Zieve University of Michigan, USA
zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US $120/year for the electronic version, and
$165/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.berkeley.edu/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:pietro.cerone@vu.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.berkeley.edu/involve
http://msp.org/
http://msp.org/


msp
INVOLVE 7:2 (2014)

dx.doi.org/10.2140/involve.2014.7.125

An interesting proof of the nonexistence
of a continuous bijection between

Rn and R2 for n 6= 2
Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek

(Communicated by Joel Foisy)

We show that there is no continuous bijection from Rn onto R2 for n 6= 2 by an
elementary method. This proof is based on showing that for any cardinal number
β ≤ 2ℵ0 , there is a partition of Rn (n ≥ 3) into β arcwise connected dense subsets.

1. Introduction

In 1877 Cantor discovered a bijection of R onto Rn for any n ∈ N. Cantor’s map
was discontinuous, but the discovery of the Peano curve in 1890 showed that there
existed continuous (although not injective) maps of R onto Rn . Between then
and 1910, several mathematicians showed that there does not exist a bicontinuous
bijection (homeomorphism) from Rm onto Rn for the cases m = 2 and m = 3 and
n>m. Finally in 1911, Brouwer showed that there does not exist a homeomorphism
between Rm and Rn for n 6=m (for a modern treatment, see [Munkres 1984, p. 109]).
The present paper proves the nonexistence of a continuous bijection from Rn onto
R2 for n 6= 2 by an elementary method.

Rudin [1963] showed that for any countable cardinal α > 2, we cannot partition
the plane into α arcwise connected dense subsets. In this paper we show that for
any cardinal number β ≤ 2ℵ0 , there is a partition of Rn (n ≥ 3) into β arcwise
connected dense subsets; then by using this we show that there is no continuous
bijection from Rn onto R2 for n 6= 2.

Lemma 1. There is a partition of R+ into 2ℵ0 dense subsets.

Proof. Consider the additive group (R,+). The quotient group R/Q has 2ℵ0

elements which are dense subsets of R. Intersect them with R+. �

Theorem 1. There is a partition of R3 into 2ℵ0 arcwise connected dense subsets.

MSC2010: primary 54-XX; secondary 54CXX.
Keywords: arcwise connected, dense subset, homeomorphism.
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Proof. Let {Si | i ∈ I } be a partition of R+ into 2ℵ0 dense subsets. The set I is just
an index set, so we may suppose that I = (0 1). Define L i = {(t, i t, 0) | t > 0} and
M =

⋃
i∈I L i and let Ai be the union of all spheres with center at the origin and

radius from Si , that is, Ai = {x ∈ R3
| ‖x‖ ∈ Si }. Let Bi = (Ai \M)∪ L i . If S is

a sphere centered at the origin, then S \M is a sphere with a small arc removed.
Therefore Ai \M is the union of some arcwise connected punctured spheres. Open
half-line L i pastes these punctured spheres together, so Bi is arcwise connected. It
is obvious that {Bi | i ∈ I } is a partition of R3 with size 2ℵ0 . Since Si is dense in
R+, Ai and consequently Bi are dense in R3. �

Corollary 1. There is a partition of Rn into 2ℵ0 arcwise connected dense subsets
for n ≥ 3.

Proof. It is enough to set B(n)i = Bi ×Rn−3, in which Bi is as above. The collection
{B(n)i | i ∈ I } is a partition of Rn satisfying the claim. �

Note that the union of any number of the sets B(n)i is an arcwise connected dense
subset of Rn , hence:

Corollary 2. For any cardinal number β ≤ 2ℵ0 , there is a partition of Rn (n ≥ 3)
into β arcwise connected dense subsets.

Theorem 2. For any countable cardinal α > 2, we cannot partition the plane into
α arcwise connected dense subsets.

Proof. This statement is proved in [Rudin 1963]. �

Lemma 2. Let X , Y be metric spaces and T : X→ Y be a continuous map.

(a) If A is dense in X and T is surjective, then T (A) is dense in Y .

(b) If B ⊂ X is arcwise connected, then T (B) is also arcwise connected.

Theorem 3. There is no continuous bijection from R onto Rm for m 6= 1.

Proof. Suppose the contrary: Let g : R→ Rm be a continuous bijective map. We
put Bn = [−n, n], and so we have Rm

= g
(⋃
∞

n=1 Bn
)
=
⋃
∞

n=1 g(Bn). Since Rm is
not in the first category, at least one of the g(Bn), for example g(Bk), has nonempty
interior in Rm . Suppose B(x, r) ⊂ g(Bk). Since Bk is compact, f : Bk → g(Bk)

is a homeomorphism. It follows that B(x, r) is homeomorphic with an interval
in R. This is a contradiction, because if we remove 3 points from B(x, r) it remains
connected, but this is not the case for the intervals in R. �

Theorem 4. There is no continuous bijection from Rn onto R2 for n 6= 2.

Proof. Suppose the contrary:

(a) If n > 2, then according to Corollary 2 and Lemma 2 we can partition R2 into
3 arcwise connected dense subsets, and this contradicts Theorem 2.

(b) If n = 1, then this contradicts Theorem 3. �
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Analysing territorial models on graphs
Marie Bruni, Mark Broom and Jan Rychtář

(Communicated by Kenneth S. Berenhaut)

Evolutionary graph theory combines evolutionary games with population struc-
ture, induced by the graph. The games used are limited to pairwise games
occurring on the edges of the graph. Multiplayer games can be important in
biological modelling, however, and so recently a new framework for modelling
games in structured populations allowing games with arbitrary numbers of players
was introduced. In this paper we develop the model to investigate the effect of
population structure on the level of aggression, as opposed to a well-mixed
population for two specific types of graph, using a multiplayer hawk-dove game.
We find that the graph structure can have a significant effect on the level of
aggression, and that a key factor is the variability of the group sizes formed to
play the games; the more variable the group size, the lower the level of aggression,
in general.

1. Introduction

Evolutionary graph theory has been developed to more realistically model evolution
in populations [Lieberman et al. 2005; Antal and Scheuring 2006; Nowak 2006;
Broom and Rychtář 2008]. These models use standard games like the Prisoner’s
Dilemma and the hawk-dove game, and embed them within a graph structure [Oht-
suki et al. 2006; Santos and Pacheo 2006; Hadjichrysanthou et al. 2011] representing
a finite inhomogeneous population, as opposed to traditional evolutionary game
theory models which generally consider infinite well-mixed populations. Earlier
work also considered similar models which depart from the infinite well-mixed case,
in particular [Schaffer 1988] considered a hawk-dove game in a finite population,
and [Killingback and Doebeli 1996] considered a hawk-dove game on a lattice. A
limitation of the evolutionary graph theory approach is that games can only involve
two players, which interact through the graph edges. However, many real animal
interactions can involve many players, e.g., in African wild dogs [Ginsberg and
Macdonald 1990] or roadrunners [Kelley et al. 2011]. In addition useful theoretical

MSC2010: primary 91A22; secondary 05C57, 91A43, 92B05.
Keywords: structured populations, evolution, game theory, territory.
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models which we might want to utilise also describe such multiplayer interactions.
In some cases many groups can interact at significant food sources, and often food
loss to neighbours can be considerable [Jetz et al. 2004].

In [Broom and Rychtář 2012] we developed a new framework of territorial
behaviour modelling how a structured population involved the interaction of different
sized groups of individuals at different times. As well as developing the general
framework, they also introduced some specific models of interaction. One such
was the territorial raider model, where individuals each owned a territory and could
either stay in their own territory or move to a neighbouring territory at each time
point. Whenever a group of individuals met on a territory, they interacted by means
of playing a (potentially) multiplayer game. In the same paper we considered an
example of a multiplayer hawk-dove game on a star. One important conclusion was
that the level of aggressiveness was less on the star graph than on the equivalent
well-mixed graph, i.e., an unstructured population. Thus it is possible that the
population structure can have a significant effect on how the population behaves,
and it may be that in real structured populations aggression is lower than that
predicted by models which do not take the structure into account.

In this paper we follow [Broom and Rychtář 2012] and model the same interaction
using different example graphs, again comparing these structured populations
with their equivalent well-mixed population model. We show that in different
circumstances the level of aggression can be noticeably higher or lower than would
be expected in the equivalent well-mixed population, and that even graphs with
superficially similar structures can lead to either a significant increase or decrease in
the level of aggression. Indeed a particular graph structure can lead to either more
or less aggression than the well-mixed population, depending upon other parameter
values. Thus to model group interactions properly, it may be important to develop
a strong understanding of the nature of interactions and the population structure.

We consider N individuals I1, . . . , IN living in their own respective territories
P1, . . . , PN . The individuals can also move to one of the territories neighbouring
theirs. This situation is modelled by a graph (V, E) where the vertices represent the
individuals and the territories that they occupy, and an edge between two vertices
means that they are neighbours, and so one individual can raid the territory of the
other.

2. A territorial raider model on the circle

A circle is a connected graph with every vertex having degree 2. In this model,
each individual can go from its territory to one next to its own with a probability λ
and stays on its territory with a probability 1− 2λ. The circle model is shown in
Figure 1.
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λ λ

1− 2λ

Figure 1. The circle representation. In this model, each individual
starts on one of the vertices which represent their territories. From
this vertex they can either “stay at home” with a probability 1−2λ
or explore a neighbouring territory connected to it through an edge
with a probability λ to go to each neighbour (every individual has
two neighbours in this model).

2.1. Group sizes. For any population of size N ≥ 3 in the circle model, we have
the following probabilities that a given individual is in a group of size i , denoted
by P(|G| = i):

P(|G| = 1)= (1− 2λ)(1− λ)2+ 2λ(2λ)(1− λ)

= 1− 4λ+ 9λ2
− 6λ3,

P(|G| = 2)= 2(1− 2λ)(1− λ)λ+ 2λ((1− 2λ)(1− λ)+ 2λ2)

= 4λ(1− 3λ+ 3λ2),

P(|G| = 3)= 3λ2(1− 2λ),

P(|G| = k)= 0, k > 3.

Note that these probabilities do not depend on N . From here, we find that the
mean group size is

E[|G|] = 1+ 4λ− 6λ2. (1)

2.2. A multiplayer hawk-dove game. We suppose that the individuals on the circle
structure play a multiplayer hawk-dove game as in [Broom and Rychtář 2012]; i.e.,
if several individuals are on the same territory then they compete for a reward of
value V . If all individuals are doves, they split the reward equitably and if there are
hawks all the doves give up and get nothing, while the hawks fight for the reward
so that one hawk receives the reward V and all the other hawks get a cost C (see
[Broom and Rychtář 2012] for more details on the calculations). If all individuals
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play hawk with a probability α, except our focal individual, we find that the average
payoff for a dove player will be

Ed(α)= V
{
1− 2λ+ 4λ2

− 2λ3
+α(4λ2

− 2λ− 2λ3)+α2(λ2
− 2λ3)

}
and the average payoff for a hawk player will be

Eh(α)= V
{
1+α(3λ2

−2λ)+α2(λ2
−2λ3)

}
+C

{
−2αλ+3αλ2

+α2λ2
−2α2λ3}.

Then the difference of payoff between a hawk player and a dove player, will be
given by the incentive function

hC(α)= Eh(α)−Ed(α)

= V {2λ−4λ2
−αλ2

+2λ3
+2αλ3

}−C{2αλ+3αλ2
+α2λ2

−2α2λ3
}. (2)

In [Broom and Rychtář 2012] we considered examples involving V = 1 and
C = 2, and here we shall also use these values. In this case

hC(α)= 2λ− 4λ2
+ 2λ3

+α(−4λ+ 5λ2
+ 2λ3)+α2(2λ2

− 4λ3).

To find mixed evolutionarily stable strategies, i.e., with 0< α < 1, we need to set
hC(α)= 0. We then have the discriminant for α given by

1= 36λ6
− 60λ5

+ 73λ4
− 56λ3

+ 16λ2

and obtain the roots

α1 =
−5λ2

+ 4λ− 2λ3
+
√
1

2(2λ2− 4λ3)
and α2 =

−5λ2
+ 4λ− 2λ3

−
√
1

2(2λ2− 4λ3)
.

We now have to see if those values are in (0, 1) or not to find possible ESSs.

Example 1. For any population size N , if we take λ= 1
3 , we find that the roots of

hC(α)= 0 are α1 = 9.0584 and α2 = 0.4416. The first root is outside of [0, 1] and
it is easy to show that the other is stable, whilst the two pure strategies 0 and 1 are
unstable, so that 0.4416 is the unique ESS of this case.

More generally the value of α2 is shown for the full range of values of λ in
Figure 2. α2 is low for intermediate values of λ when the variability of group size
is the largest, and high for the extreme values when group size variability is lower.

2.3. The equivalent well-mixed population model. As described in [Broom and
Rychtář 2012], to find an equivalent well-mixed population, we want to identify a
p so that we have a Binomial(N − 1, p) distribution with equal mean group size to
that of the circle. Here we have the equation E[|G|] = 1+ (N − 1)p, which is to
say,

p =
λ(4− 6λ)

N − 1
. (3)
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0 0.1 0.2 0.3 0.4 0.5

0.4

0.42

0.44

0.46

0.48

0.5

λ

α
2

Figure 2. The values of the biological meaningful root α2 for the
multiplayer hawk-dove game with V = 1 and C = 2 on the circle,
representing the probability of playing hawk in the mixed ESS.
The values of α2 for all allowable λ are shown.

Following [Broom and Rychtář 2012], the same hawk-dove game as played above
leads to

Eh(α)= V
1− (1− pα)N

N pα
+C

(
−1+

1− (1− pα)N

N pα

)
and

Ed(α)= V
(
(1− pα)N

− (1− p)N

N p(1−α)

)
;

i.e., the incentive function is

hW (α)

= V
1− (1− pα)N

N pα
+C

(
−1+

1− (1− pα)N

N pα

)
− V

(
(1− pα)N

− (1− p)N

N p(1−α)

)
,

or again

hW (α)=
1

N pα(1−α)

{
(1−α)(V +C)− (V +C)(1− pα)N

+Cα(1− pα)N
−C N pα(1−α)+αV (1− p)N}. (4)

In [Broom and Rychtář 2012] it was stated that there is at most one root of (4)
in the interval [0, 1]. A proof of this statement is given in Appendix A, where it is
shown that there is a root between 0 and 1 for p 6= 0 and C > 0 if and only if

V
C
<

N p+ (1− p)N
− 1

1− (1− p)N − N p(1− p)N−1 . (5)
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Example 2. We again take λ= 1
3 , and find the ESS value αN for the well-mixed

population of size N , for various N .

a) We consider N = 3, corresponding to the smallest possible circle. We find the
same result as in the circle case: αcircle = α3 = 0.4416. This is as we would
expect as for N = 3 the circle and the well-mixed population are identical for
λ= 1

3 .

b) For N = 5, we find α5 = 0.4208< αcircle.

c) For N = 50 we find α50 = 0.4046< α5 < αcircle.

Thus for the well-mixed population the ESS hawk probability declines with the
population size. In particular, except for N = 3, the ESS hawk proportion is higher
for the circle than for the well-mixed population. This is in contrast to the star
form from [Broom and Rychtář 2012]. These results are consistent because in
the circle case, the hawk cannot be in a territory with more than two other hawks
whereas the equivalent well-mixed population allows bigger groups which disfavour
hawk players. The star in turn allowed such bigger groups to form with greater
probability.

3. A territorial raider model on a complete bipartite graph

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U
and V , with n and m elements respectively, such that every edge connects a vertex
in U to one in V . A complete bipartite graph is a special kind of bipartite graph
where every vertex of the first set is connected to every vertex of the second set. We
shall assume that each individual in U has a probability λ of going to each territory
in V and a probability 1−mλ of staying in its own territory, and similarly each
individual in V has probability µ of going to each territory in U and a probability
1− nµ of staying in its own territory. The general bipartite model is illustrated in
Figure 3.

We shall again find the distribution of group sizes, and compare these to the
equivalent well-mixed population.

3.1. Group size. Without loss of generality we assume that m≤n. For an individual
in a territory on the right side (in the smaller side, with m individuals), we find:

For any 1≤ k ≤ min(n+ 1,m+ 1)= m+ 1:

P(|G| = k)=( n
k−1

)
(1− nµ)λk−1(1− λ)n−k+1

+ nµ(1−mλ)
(m−1

k−2

)
µk−2(1−µ)m−k+1

+ nmλµ
(m−1

k−1

)
µk−1(1−µ)m−k .



ANALYSING TERRITORIAL MODELS ON GRAPHS 135

n m

Figure 3. The n-m complete bipartite graph representation. The
vertices represent territories. The edges represent the possible
moves from one territory to another. Here we assume that each
individual on the left has a probability λ to go to each of the right
territories and a probability 1−mλ to stay in its own territory, and
similarly each individual on the right has a probability µ to go to
each territory on the left and a probability 1−nµ to stay in its own
territory.

For any m+ 2≤ k ≤max(n+ 1,m+ 1)= n+ 1 we have

P(|G| = k)=
( n

k−1

)
(1− nµ)λk−1(1− λ)n−k+1.

Similarly for an individual in a territory on the left, we find:

For any 1≤ k ≤ m+ 1:

P(|G| = k)=( m
k−1

)
(1−mλ)µk−1(1−µ)m−k+1

+mλ(1− nµ)
(n−1

k−2

)
λk−2(1− λ)n−k+1

+ nmλµ
(n−1

k−1

)
λk−1(1− λ)n−k .

For any m+ 2≤ k ≤ n+ 1, we find:

P(|G| = k)=

mλ(1− nµ)
(n−1

k−2

)
λk−2(1− λ)n−k+1

+ nmλµ
(n−1

k−1

)
λk−1(1− λ)n−k .

Finally we find the average probability for an individual on this structure:
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For any 1≤ k ≤ m+ 1:

P(|G| = k)=
n

n+m

( m
k−1

)
(1−mλ)µk−1(1−µ)m−k+1

+
n

n+m

(n−1
k−2

)
mλ(1− nµ)λk−2(1− λ)n−k+1

+
n

n+m

(n−1
k−1

)
nmλµλk−1(1− λ)n−k

+
m

n+m

( n
k−1

)
(1− nµ)λk−1(1− λ)n−k+1

+
m

n+m
nµ(1−mλ)

(m−1
k−2

)
µk−2(1−µ)m−k+1

+
m

n+m
nmλµ

(m−1
k−1

)
µk−1(1−µ)m−k .

For any m+ 2≤ k ≤ n+ 1:

P(|G| = k)=

n
n+m

(
mλ(1− nµ)

(n−1
k−2

)
λk−2(1− λ)n−k+1

+ nmλµ
(n−1

k−1

)
λk−1(1− λ)n−k

)
+

m
n+m

(
(1− nµ)

( n
k−1

)
λk−1(1− λ)n−k+1

)
.

Now we can use these results (see Appendix B) to show that the mean group
size is given by

E(|G|)=

1+
2nmµ−2nm2λµ+2nmλ−2n2mλµ+n2mλ2

−nmλ2
+nµ2m2

−nmµ2

n+m
. (6)

3.2. The equivalent well-mixed population. In the equivalent well-mixed popu-
lation with N = n +m individuals, with the number of individuals in the same
patch as a focal individual following a Binomial(N − 1, p) distribution, we want
the same mean group size as before. For a well-mixed population equivalent to the
n-m structure, we will have

1+ p(n+m− 1)= E(|G|).

This leads directly from the previous calculation to

p =
2nmµ− 2nm2λµ+ 2nmλ− 2n2mλµ+ n2mλ2

− nmλ2
+ nµ2m2

− nmµ2

(n+m)(n+m− 1)
.

(7)
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Example 3. If we take n = m and λ = µ = 1/(n + 1), clearly the probability
distribution of the group size of an individual from the left is identical to that of an
individual from the right. For any 1≤ k ≤ n+ 1,

P(|G| = k)=
( n

k−1

)(
1− n

n+1

)( 1
n+1

)k−1(
1− 1

n+1

)n−k+1

+
n

(n+1)2
(n−1

k−2

)( 1
n+1

)k−2(
1− 1

n+1

)n−k+1

+
n2

(n+1)2
(n−1

k−1

)( 1
n+1

)k−1(
1− 1

n+1

)n−k

=
nn−k+1

(n+1)n+1

( n!
(k−1)! (n−k+1)!

+
n!

(k−2)! (n−k+1)!
+

n!
(k−1)! (n−k)!

)
=

( 1
n+1

)k−1(
1− 1

n+1

)n−(k−1)( n
k−1

)
.

Thus this bipartite graph with equally sized parts has a binomially distributed
group size, and this is equivalent to a well-mixed population with n+ 1 individuals
and mean group size (2n+ 1)/(n+ 1). For large n this is approximately a Poisson
distribution which is also a good approximation for the well-mixed population with
2n individuals and mean group size (2n+ 1)/(n+ 1). Thus for large n this graph
is approximately the same as its equivalent well-mixed population.

3.3. A complete bipartite graph with n = 3 and m = 2. We now consider a com-
plete bipartite graph with n = 3 and m = 2. There is a representation of this model
in Figure 4.

The group size probabilities are as follows. For an individual on the right,

P(|G| = 1)= (1− 3µ)(1− λ)3+ 3µ(2λ)(1−µ),

P(|G| = 2)= 3(1− 3µ)λ(1− λ)2+ 3µ(1− 2λ)(1−µ)+ 3µ2(2λ),

P(|G| = 3)= 3(1− 3µ)λ2(1− λ)+ 3µ2(1− 2λ),

P(|G| = 4)= (1− 3µ)λ3,

and for an individual on the left,

P(|G| = 1)= (1− 2λ)(1−µ)2+ 2λ(3µ)(1− λ)2,

P(|G| = 2)= 2(1− 2λ)µ(1−µ)+ 2λ((1− 3µ)(1− λ)2+ 6λµ(1− λ)),

P(|G| = 3)= (1− 2λ)µ2
+ 2λ(2(1− 3µ)λ(1− λ)+ 3λ2µ),

P(|G| = 4)= 2(1− 3µ)λ3.

Thus we find the mean group size as
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λ

λ

λ
λ

λ
λ

µµ

µ

µ

µ µ

1− 3µ

1− 3µ

1− 2λ

1− 2λ

1− 2λ

Figure 4. The complete bipartite graph with n = 3 and m = 2
representation. The vertices represent territories and the edges
represent the possible moves from one territory to another. Here λ
is the probability for an individual on the left to move to each of its
neighbours on the right; it stays in its own territory with probability
1− 2λ. µ is the equivalent probability for an individual on the
right.

E[|G|] = 1+ 12
5 λ+

12
5 µ− 12µλ+ 6

5µ
2
+

12
5 λ

2. (8)

As for the circle we consider the multiplayer hawk-dove game. We find then for
a hawk-dove game, with probability α of playing hawk, the following payoffs:
For a hawk player the payoff is

Eh(α)= C
{
(− 6

5µ−
3
5µ

2
+ 6µλ− 6

5λ−
6
5λ

2)

+α2( 3
5µ

2
−

6
5µ

2λ− 18
5 µλ

2
+

6
5λ

2
+

2
5λ

3)+α3(− 2
5λ

3
+

6
5µλ

3)
}

+ V
{
1+α(− 6

5µ−
3
5µ

2
−

6
5λ+ 6λµ− 6

5λ
2)

+α2(3
5µ

2
−

6
5µ

2λ+ 6
5λ

2
−

18
5 µλ

2
+

2
5λ

3)+α3(−2
5λ

3
+

6
5µλ

3)
}
.

For a dove player the payoff is

Ed(α)= V
{
1− 6

5µ−
6
5λ+ 6λµ− 6

5µ
2λ− 18

5 µλ
2
+

6
5µλ

3

+α(− 6
5µ−

6
5λ+ 6λµ− 6

5µ
2λ− 18

5 µλ
2
+

6
5µλ

3)

+α2( 3
5µ

2
−

6
5µ

2λ+ 6
5λ

2
−

18
5 µλ

2
+

6
5µλ

3)+α3(− 2
5λ

3
+

6
5µλ

3)
}
.

Example 4. We consider the case when C = 2, V = 1, µ= 0.2 and λ= 1
3 . Here

there is an ESS on the graph with hawk probability α = 0.4086.
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Figure 5. The evolutionarily stable proportion of hawks on a
complete bipartite graph with n = 3 and m = 2 (thin line) and
a well-mixed population (thick line), where λ = 1

3 and µ varies
from 0 to 1

3 .

For the well-mixed population we obtain

p = 3
5λ+

3
5µ−

15
5 µλ+

3
10µ

2
+

3
5λ

2
=

79
375 .

We find for µ = 0.2, that in the well-mixed population there is an ESS with
hawk probability α = 0.4066< 0.4077. Thus it appears that the hawk probability is
somewhat bigger in this 3-2 model than the corresponding well-mixed population.

However, if we vary the parameter µ as in Figure 5, we see that for small µ
the level of aggression is higher in the well-mixed population, and for large µ it is
bigger on the graph.

3.4. A complete bipartite graph with n = 5 and m = 2. Let us now study another
concrete example of this n-m bipartite graph model. Taking n = 5 and m = 2, we
find that the corresponding probabilities are as follows, where we denote P(|G|= k)
by Pk :

P1 =
1
7

(
7− 20µ+ 5µ2

− 20λ+ 20λ2
− 20λ3

+ 10λ4
− 2λ5

+ 140λµ
− 30µ2λ− 300µλ2

+ 400µλ3
− 250µλ4

+ 60µλ5),
P2 =

1
7

(
20µ− 20µ2

− 140µλ+ 20λ− 80λ2
+ 120λ3

− 80λ4
+ 20λ5

+ 60µ2λ+ 600µλ2
− 1200µλ3

+ 1000µλ4
− 300µλ5),

P3 =
1
7

(
15µ2

+ 60λ2
− 180λ3

+ 180λ4
− 60λ5

− 30µ2λ− 300µλ2

+ 1200µλ3
− 1500µλ4

+ 600µλ5),
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P4 =
1
7

(
80λ3
− 160λ4

+ 80λ5
− 400µλ3

+ 1000µλ4
− 600µλ5),

P5 =
1
7

(
50λ4
− 50λ5

− 250µλ4
+ 300µλ5),

P6 =
1
7

(
12λ5
− 60µλ5).

We can calculate the payoff for a dove player as

Ed(α)= P1+
P2
2
+

P3
3
+

P4
4
+

P5
5
+

P6
6
−α

( P2
2
+ 2 P3

3
+ 3 P4

4
+ 4 P5

5
+

P6
6

)
+α2

( P3
3
+ 3 P4

4
+ 6 P5

5
+ 10 P6

6

)
−α3

( P4
4
+ 4 P5

5
+ 10 P6

6

)
+α4

( P5
5
+ 5 P6

6

)
−

P6
6
α5.

The payoff for a hawk player is similarly

Eh(α)= V −α(V +C)
( P2

2
+ P3+

3P4
2
+ 2P5+

5P6
2

)
+α2(V +C)

( P3
3
+ P4+ 2P5+

10P6
3

)
−α3(V +C)

( P4
4
+ P5+

5P6
2

)
+α4(V +C)

( P5
5
+ P6

)
+α5

(41V P6
6
−

C P6
6

)
.

Example 5. For λ= 1
3 and µ= 1

6 we obtain

P1 =
289
756 , P2 =

590
1701 , P3 =

1255
6804 , P4 =

40
567 , P5 =

25
1701 and P6 =

2
1701 .

Using the payoffs V = 1 and C = 2 we find that the ESS occurs when α= 0.3603.
For the equivalent well-mixed population, we find that for the same values of λ

and µ as above, we have

E[|G|] = P1+ 2P2+ 3P3+ 4P4+ 5P5+ 6P6 = 1.9921.

So according to [Broom and Rychtář 2012] we have 1+ 6p = 1.9921, or

p = 0.1653.

We then find α = 0.3785 as the unique ESS in this equivalent well-mixed
population. We notice that α5-2 = 0.3603< 0.3785= α7. Thus in this case hawks
prefer the equivalent well-mixed population to the corresponding 5-2 model.

However, again, if we vary the parameter µ as we did in Figure 5, we see that
for small µ the level of aggression is much higher in the well-mixed population,
and for large µ this advantage is reduced (see Figure 6). There is nevertheless a
higher level of aggression for the well-mixed population in all cases. As we see in
Figure 7, this is not the case for the alternative value of λ= 1

4 .

Thus different bipartite graphs can inhibit or encourage aggression, in compari-
sion to the baseline well-mixed populations. In the multiplayer hawk-dove game,
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Figure 6. The evolutionarily stable proportion of hawks on a
complete bipartite graph with n = 5 and m = 2 (thin line) and
a well-mixed population (thick line), where λ = 1

3 and µ varies
from 0 to 0.2.
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Figure 7. The evolutionarily stable proportion of hawks on a
complete bipartite graph with n = 5 and m = 2 (thin line) and
a well-mixed population (thick line), where λ = 1

4 and µ varies
from 0 to 0.2.

hawks do particularly badly in large groups. Thus when there is a significant risk
of a large group forming, selection will favour lower aggression. This is the case in
more asymmetric bipartite graphs like the 5-2 model when the parameter λ is large
(and the star which is an (N−1)-1 bipartite graph), where vertices on the smaller
side can play host to such large groups.
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4. Discussion

Evolutionary graph theory has made a valuable contribution to the understanding
of evolution in structured populations [Lieberman et al. 2005; Nowak 2006; Broom
and Rychtář 2008]. However it has certain limitations; in particular the interactions
between individuals, usually modelled by evolutionary games, are limited to pairwise
ones. Hence a new framework was introduced in [Broom and Rychtář 2012] for
modelling structured populations which allows interactions between an arbitrarily
large number of individuals. The main purpose of the paper was to introduce the
framework, and a secondary purpose was to give examples of different models of
interaction, one of which was the territorial raider model. However, no single model
was considered in any great detail. In this paper we applied results from [Broom
and Rychtář 2012] to several different examples of graphs for the territorial raider
model and compared the multiplayer hawk-dove game played on these graphs to
equivalent well-mixed populations.

We studied two main graphs: the circle and the n-m complete bipartite graph.
The observation of the different cases leads to interesting results. First we notice that
for the same mean group size, hawks favour the model in which it is less likely to
meet many other individuals, i.e., be a member of a large group; comparing different
populations with identical means, it seems that small variance is preferred by hawks.
In the circle case, since the maximal number of individuals in one territory is three
no matter the number of individual considered, and since the equivalent well-mixed
population will allow N individuals in one territory, hawks prefer the circle model for
any N larger than three. In the n-m bipartite model the results observed are different.
For the 3-2 bipartite graph hawks prefer the 3-2 graph to the equivalent well-mixed
population except for small values of µ but for the 5-2 graph, hawks generally prefer
the equvalent well-mixed population. In [Broom and Rychtář 2012] we considered
the star, the n-1 bipartite graph, and in particular the 4-1 model, where hawks also
prefer the equivalent well-mixed population. Here for large numbers of individuals,
hawks favour the well-mixed population. From these observations, we understand
that the structure of a model has a major influence on the strategy of the individuals.

One of the key components of our population model is the evolutionary game
used. We considered a multiplayer hawk-dove game, but there are a number of
alternatives that could have been applied. Multiplayer matrix games [Broom et al.
1997] provide a more general class of games, and it is possible to have games
which involve coalitionary behaviour, so that perhaps forming large groups can
be beneficial, in contrast to the hawk-dove game example. The results will be
game-specific, in general. For instance we demonstrated the fact that there is at
most one mixed ESS in the well-mixed population model, however for arbitrary
multiplayer games there can be many ESSs.
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Potential future work will thus include investigating different example games
and structures as mentioned above. An important future direction of this research
is the incorporation of evolutionary dynamics in the new structure, as at present
the theory has concentrated on the development of the framework and key static
properties. The type of dynamics used in evolutionary graph theory, such as the
invasion process where a random individual gives birth with probability proportional
to its fitness and then replaces one of its neighbours at random, will be applicable
to our system with suitable redefinition of the term neighbour to more properly
interpret the interactions between individuals, though there may be other potential
dynamics as well. The combination of dynamics, game and structure will provide a
flexible framework for analysing population interactions.

Appendix A: A proof that Equation (4) has at most one root, and conditions
for such a root to occur

Set v = V/C . Then

hW (α)=
C

N pα(1−α)
(
(1−α)(v+ 1)− (v+ 1)(1− pα)N

+α(1− pα)N
− N pα(1−α)+αv(1− p)N ).

Denoting 1−α by β, we then have

hW (α)=

C
N pα(1−α)

(
β(v+1)−(v+β)(1− p+ pβ)N

−N pβ(1−β)+(1−β)v(1− p)N ).
We now define

f (β)= β(v+ 1)− (v+β)(1− p+ pβ)N
− N pβ(1−β)+ (1−β)v(1− p)N .

This function is differentiable as many times as we want and its third derivative is

f ′′′(β)=

−3p2 N (N−1)(1− p+ pβ)N−2
−(v+β)N (N−1)(N−2)p3(1− p+ pβ)N−3.

It is clear that f ′′′(β)<0. Moreover, we have f (0)=−v(1−p)N
+v(1−p)N

=0,
and f (1)= (v+ 1)− (v+ 1)= 0.

Thus f ′ is concave, increasing and then decreasing, and therefore f ′ can’t have
more than two roots. From there we can say that f has at most three roots. Since
we know that f (0)= f (1)= 0, there is at most one other root in R so at most one
root in (0, 1).

Since we have
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C
N pβ(1−β)

> 0 for all β ∈ (0, 1),

(i.e., there is no root in (0, 1)), we can say that f (β) has at most one root in this
interval. From here, we can also conclude that hW (α) has at most one root in this
interval. That concludes the proof.

We now investigate what are the conditions on V and C to give a root in (0, 1).
First, let us calculate hW (α) when α = 0 and α = 1. We have, for p 6= 0

hW (0)= V
(

1−
1

N p
+
(1− p)N

N p

)
> 0

and

hW (1)= (V +C)
1− (1− p)N

N p
−C − V (1− p)N−1.

So hW is positive if p 6= 0 when α = 0 and hW has at most one root in (0, 1).
Thus we can say that either hW is nonnegative for any α if hW (1)≥ 0 or there is
one α in (0, 1) such as hW (α)= 0 (and then we have hW (1)≤ 0).

Let us now study the sign of hW (1) for p 6= 0. We have

(V +C)
1− (1− p)N

N p
−C − V (1− p)N−1

≥ 0

⇐⇒
(
1− (1− p)N

− N p(1− p)N−1)V ≥ (N p+ (1− p)N
− 1

)
C

⇐⇒
V
C
≥

N p+ (1− p)N
− 1

1− (1− p)N − N p(1− p)N−1 .

So there is a root between 0 and 1 for p 6= 0 and C > 0 if and only if

V
C
<

N p+ (1− p)N
− 1

1− (1− p)N − N p(1− p)N−1 . (9)

Appendix B: Mean group size for the complete bipartite graph

The mean group size can be expressed as the sum

E(|G|)=
n+1∑
k=1

P(|G| = k)k.

This is divided into nine distinct terms from the calculations from Section 3.1, six
for group sizes less than or equal to m+ 1 and three for larger groups. These nine
terms are simplified below, and the final expression for the mean group size from
Equation (6) is found by summing them.

m+1∑
k=1

nk
n+m

( m
k−1

)
(1−mλ)µk−1(1−µ)m−k+1
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=

m∑
k=0

n(k+1)
n+m

(m
k

)
(1−mλ)µk(1−µ)m−k

=
n(1−mλ)

n+m

(
1+

m∑
k=0

k
(

m
k

)
µk(1−µ)m−k

)

=
n(1−mλ)

n+m

(
1+

m∑
k=1

m!
(k−1)! (m−k)!

µk(1−µ)m−k
)

=
n(1−mλ)

n+m

(
1+mµ

m−1∑
k=0

(m−1)!
(k)! (m−1−k)!

µk(1−µ)m−k−1
)

=
n(1−mλ)

n+m
+

nmµ(1−mλ)
n+m

.

m+1∑
k=1

nk
n+m

(n−1
k−2

)
mλ(1− nµ)λk−2(1− λ)n−k+1

+

n+1∑
k=m+2

nmk
n+m

(1− nµ)
(n−1

k−2

)
λk−1(1− λ)n−k+1

=

m∑
k=0

n(k+1)
n+m

(n−1
k−1

)
mλ(1− nµ)λk−1(1− λ)n−k

+

n∑
k=m+1

nm(k+1)
n+m

(1− nµ)
(n−1

k−1

)
λk(1− λ)n−k

=
nmλ(1−nµ)

n+m

n∑
k=0

(n−1
k−1

)
(1+ k)λk−1(1− λ)n−k

=
nmλ(1−nµ)

n+m

n∑
k=1

(n−1
k−1

)
(1+ k)λk−1(1− λ)n−k

=
nmλ(1−nµ)

n+m

n−1∑
k=0

(n−1
k

)
(2+ k)λk(1− λ)n−k−1

= 2nmλ(1−nµ)
n+m

+
nmλ(1−nµ)

n+m

n−1∑
k=0

(n−1
k

)
kλk(1− λ)n−k−1

= 2nmλ(1−nµ)
n+m

+
nmλ(1−nµ)

n+m

n−1∑
k=1

(n−1)!
(k−1)! (n−k−1)!

λk(1− λ)n−k−1
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= 2nmλ(1−nµ)
n+m

+
nmλ2(n−1)(1−nµ)

n+m

n−2∑
k=0

(n−2
k

)
λk(1− λ)n−k−2

= 2nmλ(1−nµ)
n+m

+
nmλ2(n−1)(1−nµ)

n+m
.

m+1∑
k=1

nk
n+m

(n−1
k−1

)
nmµλk(1− λ)n−k

+

n+1∑
k=m+2

nmkλµ
n+m

(n−1
k−1

)
nλk−1(1− λ)n−k

=

m∑
k=0

n(k+1)
n+m

(n−1
k

)
nmµλk+1(1− λ)n−k−1

+

n∑
k=m+1

nm(k+1)λµ
n+m

(n−1
k

)
nλk(1− λ)n−k−1

=

n∑
k=0

n(k+1)
n+m

(n−1
k

)
nmµλk+1(1− λ)n−k−1

=
n2mλµ
n+m

n∑
k=0

(k+ 1)
(n−1

k

)
λk(1− λ)n−k−1

=
n2mλµ
n+m

n−1∑
k=0

(k+ 1)
(n−1

k

)
λk(1− λ)n−k−1

=
n2mλµ
n+m

(
1+

n−1∑
k=1

k
(n−1

k

)
λk(1− λ)n−k−1

)

=
n2mλµ
n+m

(
1+

n−2∑
k=0

(n−1)!
(k)! (n−2−k)

λk+1(1− λ)n−k−2
)

=
n2mλµ
n+m

(
1+ (n− 1)λ

n−2∑
k=0

(n−2
k

)
λk(1− λ)n−k−2

)
=

n2mλµ
n+m

+
n2m(n−1)λ2µ

n+m
.

m+1∑
k=1

mk
n+m

( n
k−1

)
(1− nµ)λk−1(1− λ)n−k+1

+

n+1∑
k=m+2

mk
n+m

(1− nµ)
( n

k−1

)
λk−1(1− λ)n−k+1
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=

m∑
k=0

m(k+1)
n+m

(n
k

)
(1− nµ)λk(1− λ)n−k

+

n∑
k=m+1

m(k+1)
n+m

(1− nµ)
(n

k

)
λk(1− λ)n−k

=
m(1−nµ)

n+m

n∑
k=0

(k+ 1)
(n

k

)
λk(1− λ)n−k

=
m(1−nµ)

n+m

(
1+

n∑
k=1

k
(n

k

)
λk(1− λ)n−k

)

=
m(1−nµ)

n+m
+

m(1−nµ)
n+m

nλ
n−1∑
k=0

(n−1)!
k! (n−k−1)!

λk(1− λ)n−k−1

=
m(1−nµ)

n+m
+

nmλ(1−nµ)
n+m

.

m+1∑
k=1

nmkµ
n+m

(1−mλ)
(m−1

k−2

)
µk−2(1−µ)m−k+1

=

m∑
k=0

nm(k+1)µ
n+m

(1−mλ)
(m−1

k−1

)
µk−1(1−µ)m−k

=
nm(1−mλ)µ

n+m

m∑
k=1

(k+ 1)
(m−1

k−1

)
µk−1(1−µ)m−k

=
nm(1−mλ)µ

n+m

·

(m−1∑
k=0

(m−1
k

)
µk(1−µ)m−1−k

+

(m−1
k

)
(k+ 1)µk(1−µ)m−1−k

)
=

2nm(1−mλ)µ
n+m

+
nm(m−1)(1−mλ)µ

n+m

m−1∑
k=1

(m−2)!
(k−1)! (m−1−k)!

µk(1−µ)m−1−k

=
2nm(1−mλ)µ

n+m

+
nm(m−1)(1−mλ)µ2

n+m

m−2∑
k=0

(m−2)!
(k)! (m−2−k)!

µk(1−µ)m−2−k

=
2nm(1−mλ)µ

n+m
+

nm(m−1)(1−mλ)µ2

n+m
.
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m+1∑
k=1

nm2kλµ
n+m

(m−1
k−1

)
µk−1(1−µ)m−k

=

m∑
k=0

nm2(k+1)λµ
n+m

(m−1
k

)
µk(1−µ)m−1−k

=
nm2λµ

n+m

m∑
k=0

(m−1
k

)
(k+ 1)µk(1−µ)m−1−k

=
nm2λµ

n+m

(m−∑
k=0

(m−1
k

)
µk(1−µ)m−1−k

+

m−1∑
k=1

(m−1
k

)
kµk(1−µ)m−1−k

)

=
nm2λµ

n+m
(1+µ(m− 1)

m−2∑
k=0

(m−2)!
k! (m−2−k)!

µk(1−µ)m−2−k)

=
nm2λµ

n+m
+

nm2(m−1)µ2λ

n+m
.

So we have

E(|G|)

=
n(1−mλ)

n+m
+

nmµ(1−mλ)
n+m

+ 2nmλ(1−nµ)
n+m

+
nmλ2(n−1)(1−nµ)

n+m

+
n2mλµ
n+m

+
n2m(n−1)λ2µ

n+m
+

m(1−nµ)
n+m

+
nmλ(1−nµ)

n+m

+
2nm(1−mλ)µ

n+m
+

nm(m−1)(1−mλ)µ2

n+m
+

nm2λµ

n+m
+

nm2(m−1)µ2λ

n+m

=1+2nmµ−2nm2λµ+2nmλ−2n2mλµ+n2mλ2
−nmλ2

+nµ2m2
−nmµ2

n+m
.
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Binary frames, graphs and erasures
Bernhard G. Bodmann, Bijan Camp and Dax Mahoney

(Communicated by Stephan Garcia)

This paper examines binary codes from a frame-theoretic viewpoint. Binary
Parseval frames have convenient encoding and decoding maps. We characterize
binary Parseval frames that are robust to one or two erasures. These characteriza-
tions are given in terms of the associated Gram matrix and with graph-theoretic
conditions. We illustrate these results with frames in lowest dimensions that are
robust to one or two erasures. In addition, we present necessary conditions for
correcting a larger number of erasures. As in a previous paper, we emphasize
in which ways the binary theory differs from the theory of frames for real and
complex Hilbert spaces.

1. Introduction

In the last decades, frame theory has matured into a field with relevance in pure
and applied mathematics as well as in engineering [Christensen 2003; Kovačević
and Chebira 2007a; 2007b]. The simplest examples of frames are finite frames,
finite spanning sequences in finite-dimensional real or complex Hilbert spaces. The
possibility of having linear dependencies among the frame vectors can be used for
error correction when a vector is encoded in terms of its frame coefficients, the
inner products with the frame vectors [Goyal et al. 1998]. A common type of error
considered in this context is an erasure, when part of the frame coefficients becomes
corrupted or inaccessible and one has to recover the encoded vector from partial
data [Marshall 1984; 1989]. The performance of frames for decoding erasures was
studied, and in certain cases optimal frames could be characterized in a geometric
fashion [Casazza and Kovačević 2003; Strohmer and Heath 2003; Holmes and
Paulsen 2004; Püschel and Kovačević 2005], which was further extended with
graph-theoretic or algebraic methods [Bodmann and Paulsen 2005; Xia et al. 2005;
Kalra 2006; Bodmann et al. 2009b; Bodmann and Elwood 2010].
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Apart from the presence of the inner product, one could say that these applications
in frame theory are similar to earlier work on error correcting linear codes over
finite fields [MacWilliams and Sloane 1977; Betten et al. 2006]. Motivated by the
literature in frame theory, a previous paper studied an analogue of Parseval frames
in the setting of binary vector spaces [Bodmann et al. 2009a]; see also [Hotovy et al.
2012]. In this paper, we continue this direction of research and ask whether concepts
from frame theory yield new insights for binary linear codes. We study how the
Gram matrix of a binary frame relates to its robustness, its resilience to erasures.
The space spanned by the columns of the Gram matrix is the set of all codewords,
so the main question is in which way the robustness of a frame manifests itself.
Interpreting the Gram matrix as the adjacency matrix of a graph gives a natural
reformulation of conditions for robustness in terms of the connectivity properties
of the graph. Note that this graph is different from the so-called Tanner graph of
a binary code, which is a bipartite graph associated with the parity check matrix
[Betten et al. 2006]. The space of code words is annihilated by the parity check
matrix, so one can expect complementary insights from properties of the Gram
and Tanner matrices with their associated graphs. While the structure of Tanner
graphs has been studied with sophisticated methods in coding theory [Forney 2001;
2003; 2011], the Gram matrix and its role for erasures seems to appear mostly in
the literature on frames; see, for example, [Holmes and Paulsen 2004; Bodmann
and Paulsen 2005].

The remainder of this paper is structured as follows. In Section 2, we fix notation
and define frames and Parseval frames for finite-dimensional binary vector spaces.
Section 3 gives a motivation for the use of such frames as binary codes. In Section 4,
we study robustness to erasures. Section 5 presents the results on robustness in
graph-theoretic terms and gives the smallest frames with robustness to one or two
erasures.

2. Preliminaries

We define binary frames and Parseval frames without appealing to the concept of
an inner product, as in [Bodmann et al. 2009a]. The vector space that these families
of vectors span is of the form Zn

2 = Z2⊕ · · ·⊕Z2 for some n ∈ N, with the binary
numbers Z2 as the ground field.

Definition 2.1. A frame for Zn
2 is a family of vectors F= { f1, . . . , fk} such that

span F= Zn
2.

To define a Parseval frame over Zn
2 , we use a bilinear form that resembles the

usual dot product on Rn . For other choices of bilinear forms and a more general
theory of binary frames, see [Hotovy et al. 2012].
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Definition 2.2. The dot product on Zn
2 is the bilinear map ( · , · ) : Zn

2 ×Zn
2→ Z2

given by 
a1
...

an

 ,
b1
...

bn


 := n∑

i=1

ai bi .

The dot product provides a natural map between vectors and linear functionals
on Zn

2 . With the help of this dot product, we define a Parseval frame for Zn
2 .

Definition 2.3. A Parseval frame for Zn
2 is a family of vectors F= { f1, . . . , fk} in

Zn
2 such that

x =
k∑

j=1

(x, f j ) f j for all x ∈ Zn
2.

According to this definition, a Parseval frame provides a simple, redundant
expansion for any vector x in Zn

2 . Unless otherwise noted, when we speak of a
frame or of a Parseval frame in this paper, we always mean families of vectors
in Zn

2 with the properties specified in Definitions 2.1 and 2.3, respectively. In the
next section, we present a motivating example that explains the design problem of
such frames as codes for erasures.

3. Binary frames as codes for erasures

Suppose Alice wants to send Bob a message that consists of a sequence of 0’s
and 1’s. We can represent this message as the column vector

x =


x1

x2
...

xn

 ∈ Zn
2,

where the entries x1, x2, . . . , xn are the 1st, 2nd, . . . , n-th digits of the message.
Alice is aware that the message is sent through a somewhat unreliable medium, so
she decides to encode it, that is, convert it into a new message which is generated
from a codebook known to both Alice and Bob. The encoded message should have
a reasonable chance of withstanding erasures, that is, removals of entries in the
message that might occur. If the codebook is properly chosen, Bob will be able to
recover the original message x from the fragments of the encoded message that
remain.
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The encoding is a linear map associated with a binary frame. Let the family of
vectors F= { f1, f2, . . . , fk} be a frame for the vector space Zn

2 , and let

2F =


← f1 →

← f2 →
...

← fk →

=


f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n
...

...
...

fk,1 fk,2 · · · fk,n

 ,
where the entry fi, j is the j-th entry of the i-th vector fi ∈ F. Alice encodes her
message x by left-multiplying it with the matrix2F. Consequently, Alice’s encoded
message will be a k× 1 matrix, where the i-th entry is the dot product (x, fi ):

2Fx =


f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n
...

...
...

fk,1 fk,2 · · · fk,n




x1

x2
...

xn

=

(x, f1)

(x, f2)
...

(x, fk)

 .
For convenience, let us abbreviate Alice’s encoded message 2Fx as

2Fx = y =


y1

y2
...

yk

 .
A first requirement for the choice of F is that, if the encoded message arrives
unaltered, then Bob can easily extract x from it. If F is a Parseval frame, then this
is indeed the case. In terms of 2F, the reconstruction identity in Definition 2.3 is

2∗F2F = In,

where 2∗F denotes the transpose of 2F.
Imagine at least one entry in the message y gets “erased”; that is, suppose Bob

only receives the r × 1 matrix

ỹ =


y j1
y j2
...

y jr

 ,
where { j1, j2, . . . , jr } ⊂ {1, 2, . . . , k}. For example, if there had been two erasures,
then Bob would have received a (k− 2)× 1 matrix with two of the original entries
in y missing.
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The goal is to reconstruct the original message x from the received matrix ỹ.
This can be achieved by finding an n× r matrix L̃ such that

x = L̃


y j1
y j2
...

y jr

 .
A notationally more convenient way to formulate this problem is to use the full
message without erasures but require reconstruction with a matrix L that has
columns of zeros for the erased entries. To see this, let the columns of L̃ be denoted
by

L̃ =

↑ ↑ ↑

l j1 l j2 · · · l jr
↓ ↓ ↓

 ,
and let the entries y1, y2, and y4 in y be erased. Then the matrix L is

L =

↑ ↑ ↑ ↑ ↑ ↑

0 0 l j1 0 l j2 · · · l jr
↓ ↓ ↓ ↓ ↓ ↓

 ,
and there exists L of the above form such that x = Ly if and only if there exists L̃
with x = L̃ ỹ. To characterize the requirement on L having columns of zeros, we
write L = L E , where E is a diagonal 0-1-matrix with a 1 on the diagonal for any
digit which gets transmitted and a 0 for every erased digit. With this terminology,
we can reformulate the problem of correcting erasures as that of finding any L such
that x = L E2Fx for each x ∈ Zn

2 , that is, whether E2F has a left inverse.

Definition 3.1. Let F={ f1, f2, . . . , fk} be a frame for Zn
2 , and let EJ be a diagonal

k×k matrix associated with an erasure of digits indexed by J ⊂{1, 2, . . . , k}, where
(EJ ) j, j = 0 if j ∈ J and (EJ ) j, j = 1 otherwise. We say that the frame F can correct
the erasure if EJ2F has a left inverse. We also say that the erasure of digits indexed
by J is correctable.

The existence of a left inverse is equivalent to a rank condition and to the spanning
property of the family of vectors corresponding to unaffected digits.

Proposition 3.2. Let F={ f1, f2, . . . , fk} be a frame for Zn
2 and let J ⊂{1,2, . . . ,k}.

The following are equivalent:

(1) The erasure of digits indexed by J is correctable.

(2) The map EJ2F is one-to-one.

(3) The subfamily F̃= { f j : j 6∈ J } spans Zn
2; that is, it is a frame.
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(4) The matrix EJ2F has rank n.

Proof. The equivalence of (1) and (2) is a standard exercise in linear algebra. We
next prove the equivalence of (1) and (4). Let EJ2F have rank n. Since F is a
frame, k≥ n. By elementary row operations, EJ2F can be transformed into reduced
row echelon form. However, this sequence of row operations can be obtained by
multiplying with a suitable invertible matrix on the left. Thus, there is a k × k
matrix R such that

REJ2F =

(
In

0k−n,n

)
.

Henceforth, we adopt block matrix notation and let In denote the n × n identity
matrix and 0m,n the m× n zero matrix with m, n ∈ N. Next, left multiplying this
matrix by (In 0n,k−n) gives

(In 0n,k−n)REJ2F = In.

Thus, the required left inverse is L = (In 0n,k−n)R. On the other hand, if there is a
left inverse for EJ2F then this matrix must have the maximal possible rank, n.

To see the equivalence of (3) and (4), we observe that F̃ is spanning if and only
if2F̃ has rank n, and the same is true for the matrix EJ2F, where the frame vectors
belonging to erased digits have been replaced by zero vectors. �

4. Robustness to erasures

Next, we consider sets of erasures. A natural ordering is to consider erasures of at
most one coefficient, then erasures of up to two, etc. A measure for robustness of a
frame is how many erasures it can correct.

Definition 4.1. A frame F = { f1, f2, . . . , fk} for Zn
2 is robust to m erasures if

EJ2F has a left inverse for any J ⊂ {1, 2, . . . , k} of size |J | ≤ m.

Dimension counting gives a simple necessary condition for the size of a frame
robust to m erasures.

Proposition 4.2. If F = { f1, f2, . . . , fk} is a frame for Zn
2 which is robust to m

erasures, then k ≥ n+m.

Proof. If J ⊂ {1, 2, . . . , k} has size |J | = m then by assumption EJ2F has a left
inverse, and the subfamily F̃= { f j : j 6∈ J } spans Zn

2 . Thus, the cardinality of F̃ is
bounded by |F̃| = k−m ≥ n. �

Next, we wish to establish sufficient conditions which ensure robustness. If an
erasure indexed by J is not correctable, then EJ2F is not one-to-one and there
exists a nonzero x ∈ Zn

2 such that EJ2Fx = 0. For Parseval frames, there appears
to be a simple condition in terms of an eigenvalue problem for submatrices of the
Grammian. We prepare this with a lemma.
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Lemma 4.3. Let A be an n× k matrix. The matrix AA∗ has eigenvalue 1 if and
only if A∗A has eigenvalue 1.

Proof. Suppose that A∗A does have an eigenvalue equal to 1. That is, suppose that
A∗Ax = x . Then y = Ax is nonzero and AA∗y = AA∗Ax = Ax = y. Hence, AA∗

has an eigenvalue equal to 1. Switching the roles of A and A∗ gives the converse. �

Proposition 4.4. Let F = { f1, f2, . . . , fk} be a Parseval frame for Zn
2 and let

J ⊂ {1, 2, . . . , k}. If E J c2F2
∗

F E J c does not have eigenvalue one, where J c is the
complement of J in {1, 2, . . . , k}, then the erasure is correctable.

Proof. We use the fact that AA∗ has eigenvalue one if and only if A∗A does. Here,
A = E J c2F = (I − EJ )2F. Assuming there is no eigenvector of eigenvalue one
for A∗A means there exists no nonzero x such that

2∗F(I − EJ )(I − EJ )2Fx =2∗F(I − EJ )2Fx = x .

By assumption, 2∗F2F = I , so this implies that there is no x 6= 0 with

2∗F EJ2Fx = 0.

Consequently, (2∗F EJ2F)
−12∗F EJ2F = I and the required left inverse of EJ2F

is
L = (2∗F EJ2F)

−12∗F. �

At first glance, robustness against one erasure would motivate the search for
frames whose vectors contain only an even number of ones, because then the
diagonal of the Gram matrix 2F2

∗

F would be zero, avoiding the eigenvalue one
condition. However, such frames do not exist because any linear combination of
vectors with an even number of ones still has an even number of ones. Thus, a
family of such vectors cannot be spanning for all of Zn

2 .
In addition, the above eigenvalue condition is sufficient for recovery, but not

necessary. We present an example for this:

Example 4.5. Let n = 1, F = {1, 1, 1}, and J = {2, 3}. The encoded “vector”
x ∈ {0, 1} is 2Fx = (x x x)∗, and thus EJ2F has the left inverse (1 0 0). However,
E J c2F2

∗

F E J c = E J c has eigenvalue one.

This motivates the search for a more general condition which ensures robustness.
To this end, we introduce a function counting the number of 1’s in a vector, the
(Hamming) weight.

Definition 4.6. A vector x ∈ Zn
2 has weight w(x)= |{ j : x j = 1}|. We also speak

of the parity of a vector, which is even or odd, depending on whether the weight is
an even or an odd number.



158 BERNHARD G. BODMANN, BIJAN CAMP AND DAX MAHONEY

Theorem 4.7. Let F be a Parseval frame with Gram matrix G = 2F2
∗

F. The
frame F is robust to m erasures if and only if all the eigenvectors of G corresponding
to eigenvalue one have a weight of at least m+ 1.

Proof. If F is a Parseval frame, then any eigenvector of eigenvalue one of the Gram
matrix is a possible message and vice versa. This is true because if y =2Fx then
2F2

∗

F y = y and conversely if y is an eigenvector of eigenvalue one then y =2Fx
for x =2∗F y.

Assume that each such eigenvector has weight at least m+ 1. If |J | ≤ m, then
applying EJ to y can only change at most m ones to zero, so EJ y 6= 0 and thus
EJ2Fx 6= 0 unless x = 0. This proves that EJ2F is one-to-one.

Conversely, given a nonzero message y, if for each J ⊂{1, 2, . . . , k}with |J |≤m
we have E J y 6= 0, then y must have weight at least m+ 1. �

It is implicit in this characterization that the robustness of a frame against erasures
is determined by the Gram matrix. If two frames have the same Gram matrix, then
the two frames have identical robustness. Since the weight of a vector is invariant
under permutations of its entries, the same holds if the Gram matrices differ only by
a permutation of rows and columns. This means that the search for robust frames
can be restricted to representatives of equivalence classes introduced in [Bodmann
et al. 2009a].

Definition 4.8. Two frames F= { f1, f2, . . . , fk} and G= {g1, g2, . . . , gk} for Zn
2

are called switching equivalent if there is a binary n × n matrix U such that
U∗U =UU∗= I and a permutation σ on the set {1, 2, . . . , k} such that f j =Ugσ( j)

for all j ∈ {1, 2, . . . , k}.

Theorem 4.9. If two frames F and G for Zn
2 are switching equivalent, then F is

robust to m erasures if and only if G is.

Proof. If F and G are switching equivalent, then the Gram matrices of F and G

differ by a permutation of rows and columns. The same is true for the eigenvectors
corresponding to eigenvalue one. However, the weight of the eigenvectors is
invariant under permutation of coordinates. This means, according to the preceding
theorem, if F is robust to m erasures, so is G, and vice versa. �

In the context of real or complex Hilbert spaces, equal-norm frames characterize
optimality for one erasure among Parseval frames [Casazza and Kovačević 2003]. In
the binary setting, the equal-norm condition would correspond to a frame in which
the vectors all have the same parity. Linear combinations of even vectors remain
even, so there cannot be a frame consisting only of vectors having even parity, which
leaves only the possibility of Parseval frames having only odd vectors. However,
we show below that such frames have severe limitations for their robustness. We
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prepare this with a lemma which is essentially a result in [Haemers et al. 1999,
Lemma 2.2].

Lemma 4.10. Let F= { f1, f2, . . . , fk} be a Parseval frame and G the associated
Gram matrix; then the vector y with entries y j = G j, j for j ∈ {1, 2, . . . , k} is an
eigenvector of G corresponding to eigenvalue one.

Proof. Since G is idempotent, is enough to show that yi = Gi,i defines a vector in
the range of G. To see this, let (ran G)⊥ = {x ∈ Zk

2, (x, z) = 0 for all z ∈ ran G}
and recall ((ran G)⊥)⊥ = ran G because ran G ⊂ ((ran G)⊥)⊥ by definition and
dim(ran G)⊥+dim ran G = k. If x ∈ (ran G)⊥, then, by setting z = Gx and binary
arithmetic, 0= (z, x)=

∑k
i, j=1 Gi, j xi x j =

∑k
j=1 G j, j x j . Thus, (x, y)= 0 for each

such x , and y is necessarily in ran G. �

Next, we examine how many erasures a binary Parseval frame can possibly
correct. It turns out that, in some cases, the inequality necessary for correcting all
m-erasures, k ≥ n+m, can be strengthened considerably.

Theorem 4.11. If F= { f1, f2, . . . , fk} is a Parseval frame of which p vectors are
odd, then the frame cannot be robust to more than min{p−1, k− p/2−1} erasures.

Proof. We recall that the vector y defined by y j = G j, j , the diagonal of the Gram
matrix G, is an eigenvector of G corresponding to eigenvalue one, and that it has
weight p. It is clear that the frame cannot correct more than p− 1 erasures. On the
other hand, assume that the minimal weight q among the vectors in the range of G
is assumed by x , so p ≥ q. The vector z = x + y is then also in the range of G.
Define 1 = q + p− k; then the two vectors have at least 1 indices in common
for which the entries of both vectors are one. Thus, the weight of z is bounded by
q ≤ w(z)≤ q −1+ p−1= 2k− q − p. This inequality gives q ≤ k− p/2. �

This result shows that binary Parseval frames containing only odd vectors, the
binary analogue of real or complex equal-norm Parseval frames, have a severe
limitation for robustness.

Corollary 4.12. If F= { f1, f2, . . . , fk} is a Parseval frame which consists only of
odd vectors, then it cannot correct more than k/2− 1 erasures.

Moreover, maximizing the upper bound for robustness yields that a binary
Parseval frame achieves the best possible robustness when p− 1= k− p/2− 1, so
p = 2k/3.

Corollary 4.13. If F= { f1, f2, . . . , fk} is a Parseval frame for Zn
2 , then it cannot

correct more than 2k/3− 1 erasures.
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5. Binary Parseval frames, graphs and erasures

With a binary symmetric k× k matrix A, we associate a graph γ on k vertices. An
entry Ai, j = 1 means there is an edge connecting vertices i and j ; otherwise there
is no edge between them. If Ai,i = 1, then vertex i has a loop, and we say that i is
adjacent to itself; otherwise, i has no loop. The graph γ determines the matrix A,
often called its adjacency matrix. We characterize binary Parseval frames in terms
of the adjacency structure of the graph associated with the Gram matrix.

Theorem 5.1. If F is a binary frame and G =2F2
∗

F is its Gram matrix, then F is
a Parseval frame if and only if all of the following conditions hold for the graph γ
associated with G:

(1) Every vertex i has an even number of neighbors in the set {1, 2, . . . , k}\{i}.

(2) If two vertices of γ are not adjacent, then the two vertices have an even number
of common neighbors.

(3) If two vertices of γ are adjacent, then the two vertices have an odd number of
common neighbors.

Proof. First, suppose F is Parseval. Then G2
=2F2

∗

F2F2
∗

F=2F2
∗

F=G. From
this, we conclude that the three properties are true.

(1) Let Gi,i =1. Then
∑

j Gi, j G j,i =
∑

j Gi, j =1. Hence,
∑

j, j 6=i Gi, j =0. On the
other hand, let Gi,i = 0. Then

∑
j Gi, j G j,i = 0, and consequently

∑
j, j 6=i Gi, j = 0.

Thus, any vertex i has an even number of neighbors in the set of vertices not
including i .

(2) If two vertices j and k, j 6= k, are nonadjacent then 0 = G j,k =
∑

l G j,l Gl,k .
The nodes j and k then necessarily have an even number of common neighbors.

(3) If vertices j and k are adjacent nodes then 1 = G j,k =
∑

l G j,l Gl,k and they
have an odd number of common neighbors.

On the other hand, if these three properties hold then G2
= G can be verified

by a similar discussion of entries on the diagonal and on the off-diagonal: The
property (1) implies that Gi,i = (G2)i,i , while (2) and (3) imply G j,k = (G2) j,k .
If F is a frame, then the matrix 2F has rank n. Thus by appropriate elementary
row operations it can be transformed into the row-reduced echelon form. These row
operations amount to left multiplication with an invertible matrix R, R2F=

( In
0n−k,n

)
,

and consequently 2∗F R∗ = (In 0n,n−k). If G2
= G, then

RG2 R∗ =
(

In

0n−k,n

)
2∗F2F(In 0n,n−k)=

(
In 0n,n−k

0n−k,n 0k,k

)
= RG R∗,

and the middle equality shows that 2∗F2F = In , so F is Parseval. �
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A graph that satisfies conditions (2) and (3) of Theorem 5.1 is not a strongly regu-
lar graph since the exact number of common neighbors may fluctuate between pairs
of adjacent vertices and between pairs of nonadjacent vertices. However, since the
number of common neighbors remains even or odd between pairs of adjacent or non-
adjacent vertices, respectively, we propose the term strongly parity regular graph
to refer to graphs that satisfy (2) and (3) of Theorem 5.1.

Next, we discuss graph-theoretic criteria for robustness to erasures. With
Theorem 4.7, we have a characterization of robustness to m erasures in terms of the
weights of the eigenvectors of the Gram matrix G corresponding to eigenvalue one.
Because of the relation G2

= G, these are precisely the vectors in the range of G.
We can deduce a simple necessary and sufficient condition for the graph associated
with a Parseval frame that is robust to one or two erasures.

Theorem 5.2. Let F be a Parseval frame for Zn
2 , G its Gram matrix and γ the

associated graph. The frame F is robust to one erasure if and only if every vertex
of γ has at least two neighbors other than itself and is part of a cycle of length at
most 4.

Proof. First, we prove that robustness against one erasure implies the graph-theoretic
properties. From the Parseval property, we know that each vertex has an even number
of neighbors other than itself. If we pick a vertex i then the neighbors of it are
encoded in the i-th column of the Gram matrix G. On the other hand, this column
vector is in the range of G. If the frame corrects one erasure, then this vector
must have at least weight two. Consequently, each vertex has to have at least two
neighbors other than itself in order to correct one erasure.

Given a vertex i and two of its neighbors j and l, i 6= j 6= l 6= i , then either the
vertices j and l are adjacent and i is part of a 3-cycle, or they are not adjacent. In
this case, j and l have an even number of common neighbors, so there is another
vertex i ′ adjacent to j and l. Thus i , j , i ′ and l form a 4-cycle.

Next, we prove that the graph-theoretic properties ensure robustness against one
erasure. For this, we only need to make the weaker assumption that each vertex
has a neighbor other than itself. We note that a one-erasure not being correctable
requires that there is a vector el from the standard basis, with some l ∈ {1, 2, . . . , k},
such that Gel = el . This implies that G j,l = δ j,l for all j , so the l-th vertex is only
a neighbor to itself. This is excluded by the assumption. �

Additional conditions characterize robustness against two erasures.

Definition 5.3. We say that a vertex i discriminates between two other vertices j
and l if it is a neighbor to only one of them. We also say that the pair { j, l} has a
discriminating vertex i .
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Theorem 5.4. Let F be a Parseval frame for Zn
2 , G its Gram matrix and γ the

associated graph. The frame F is robust to two erasures if and only if the conditions
for correcting one erasure hold and if every nonadjacent pair of vertices that
are both adjacent to themselves and every adjacent pair of vertices that are both
nonadjacent to themselves have a discriminating vertex.

Proof. We first note that the graph-theoretic conditions in the preceding theorem
are implied by robustness against two erasures which is a stronger requirement than
correcting all one-erasures.

Next, we recall that Theorem 4.7 characterizes robustness in terms of the existence
of certain eigenvectors. Assuming robustness against 1 erasure, an erasure of m = 2
digits is not correctable if and only if there is a pair {l, l ′} and h = el+el ′ satisfying
Gh = h. Then, Gl,l =Gl ′,l ′ = 1 and Gl,l ′ = 0 or Gl,l =Gl ′,l ′ = 0 and Gl,l ′ = 1. The
first case corresponds to two nonadjacent vertices that are neighbors to themselves
and the second one is a pair of adjacent vertices that are not neighbors to themselves.
In both cases, the eigenvalue equation requires that G j,l = G j,l ′ for all j 6∈ {l, l ′}.
This means if a vertex j is adjacent to l then it is adjacent to l ′ and vice versa. We
conclude that the eigenvalue equation is satisfied by h if and only if there is no
vertex which discriminates between l and l ′. Hence, all erasures of m = 2 indices
are correctable if and only if all one-erasures are and if there is a discriminating
vertex for any nonadjacent pair of vertices that are both adjacent to themselves and
any adjacent pair of vertices that are both nonadjacent to themselves. �

To illustrate these results, we use them to identify binary Parseval frames in
3 and 4 dimensions that achieve robustness to one or two erasures. We briefly
mention that the canonical basis vectors form a Parseval frame that cannot correct
any erasure, because they are minimal spanning sets. This means our search starts
with 4 vectors in Z3

2 and 5 vectors in Z4
2. Removing zero vectors from a frame

does not affect the robustness as well as the Parseval property, so we can restrict
ourselves to binary Parseval frames which do not contain zero vectors. Apart
from zero vectors, identical pairs of vectors do not contribute to the reconstruction
identity in Definition 2.3, which can be interpreted as a trivial form of incorporating
redundancy in the encoding.

Definition 5.5 [Bodmann et al. 2009a]. A binary Parseval frame { f1, f2, . . . , fk}

for Zn
2 is called trivially redundant if there is j ∈ {1, 2, . . . k} with f j = 0, or if

there are two indices i 6= j with fi = f j .

We restrict our study of robustness to binary Parseval frames that are not trivially
redundant. This implies an upper bound on the number of frame vectors:

Theorem 5.6 [Bodmann et al. 2009a]. Let n ≥ 3. Let F = { fi }
k
i=1 be a family

without repeated vectors in Zn
2 and G = Zn

2 \F. If F is a Parseval Frame for Zn
2 ,

then G is also a Parseval frame.
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Corollary 5.7. If n ≥ 3 and F = { fi }
k
i=1 is not trivially redundant, then k ≤

2n
− n− 1.

Proof. If F is Parseval, then so is G. Removing the zero vector from G gives a
spanning set G \ {0}, so it has at least n vectors. The union of F and G \ {0} has a
total of 2n

− 1 vectors, so comparing sizes gives k+ n ≤ 2n
− 1. �

Switching equivalence allows a further simplification of the search. Since the
robustness is the same for all representatives of a switching equivalence class, we
can extract frames which are robust to one or two erasures from the classification
of binary Parseval frames for Z3

2 and Z4
2 that are not trivially redundant [Bodmann

et al. 2009a].
In n = 3 dimensions, the above corollary limits the number of vectors in a binary

Parseval frame that is not trivially redundant by k ≤ 23
−3−1= 4. Up to switching

equivalence, there are only two such binary Parseval frames for Z3
2: the canonical

basis with 3 vectors and a binary Parseval frame with 4 vectors [ibid.]. Robustness
to one erasure rules out the canonical basis, which leaves the case of 4 vectors.
We examine the graph belonging to this Parseval frame, for readability purposes
labeling vertices by the corresponding rows in 2F.

Example 5.8. The Parseval frame F for Z3
2 with encoding matrix

2F =


1 1 0
1 0 1
0 1 1
1 1 1


cannot correct one erasure because the graph associated with 2F2

∗

F has an isolated
vertex, as shown in Figure 1.

By the limit on the number of vectors, a Parseval frame for Z3
2 which is robust to

one erasure contains at least one repeated vector. We do not pursue this any further
because it is a case of trivial redundancy.

We proceed to n= 4. Here, the corollary limits the size of the frames we consider
to k ≤ 24

−4−1= 11 vectors. As above, any graph with an isolated vertex prevents
robustness to one erasure. This happens for the switching equivalence class of
binary Parseval frames of 5 vectors for Z4

2.

Example 5.9 [Bodmann et al. 2009a]. A Parseval frame F for Z4
2 with 5 vectors is,

up to switching equivalence, given by

2F =


1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 1
0 1 1 1

 .
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111101

011

110

Figure 1. The graph associated with the Parseval frame of 4 vectors
in Z3 given in Example 5.8. Vertices are labeled by the correspond-
ing rows of the encoding matrix. The presence of the isolated
vertex (1 1 1) implies that this frame cannot correct one erasure.

1000 0110

0101

0011

0111

Figure 2. The graph belonging to the Parseval frame of 5 vectors
in Z4 given in Example 5.9 has the isolated vertices (1 0 0 0) and
(0 1 1 1), so an erasure of the first frame coefficient or of the last
one cannot be corrected.

The graph associated with the Gram matrix has two isolated vertices as shown in
Figure 2, so the frame cannot correct one erasure.

Next, we identify a smallest binary Parseval frame for Z4
2 which is not trivially

redundant and can correct one erasure. There is only one switching equivalence
class of Parseval frames for Z4

2 containing 6 vectors [Bodmann et al. 2009a], so it
is enough to investigate one representative.

Example 5.10. Let F be the Parseval frame for Z4
2 with

2F =



1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1
1 1 1 1


.



BINARY FRAMES, GRAPHS AND ERASURES 165

1000 1100

1010

1001

0111

1111

Figure 3. The graph belonging to the Parseval frame of 6 vectors
in Z4 given in Example 5.10. Its adjacency structure satisfies the
conditions in Theorem 5.2; thus it can correct one erasure. How-
ever, F is not robust to two erasures since no vertices discriminate
between the nonadjacent vertices (0 1 1 1) and (1 0 0 0) which are
both adjacent to themselves.

The graph of 2F2
∗

F satisfies the conditions for correcting one erasure stated in
Theorem 5.2, which can be confirmed by inspecting Figure 3. However, it cannot
correct more than one because it fails the requirement of discriminating vertices
stated in Theorem 5.4.

The next larger Parseval frames form again a unique switching equivalence class
[Bodmann et al. 2009a]. They fail to be robust to two erasures as well.

Example 5.11. Let F be the binary Parseval frame for Z4
2 containing seven vectors

with

2F =



1 0 0 0
0 1 0 0
1 1 0 0
1 1 1 0
1 1 0 1
0 0 1 1
1 1 1 1


.

The associated graph shown in Figure 4 satisfies the conditions of Theorem 5.2,
but fails the conditions for correcting more than one, as described in Theorem 5.4.

Up to switching equivalence, the next example is the smallest binary Parseval
frame for Z4

2 which is not trivially redundant and can correct 2 erasures.

Example 5.12. Consider the binary Parseval frame F for Z4
2 with 8 vectors given
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1000

0100

1100

1110

1101
0011

1111

Figure 4. The graph associated with the Parseval frame of 7 vectors
in Z4

2 given in Example 5.11. It satisfies the connectivity conditions
for correcting one erasure, but fails to be robust to two erasures
because the nonadjacent vertices (1 1 0 1) and (1 1 1 0) are both
adjacent to themselves and do not have any discriminating vertex.

by the matrix

2F =



0 0 1 0
1 0 1 0
0 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1
1 0 1 1
0 1 1 1


.

The associated graph shown in Figure 5 satisfies the conditions of Theorem 5.4, so
it can correct up to two erasures.

Finally, we provide necessary conditions for correcting m-erasures, which require
increased connectivity.

Theorem 5.13. Let F be a Parseval frame for Zn
2 , G its Gram matrix and γ the

associated graph. If F is robust to m ≥ 1 erasures, then every vertex has at least
m + 1 neighbors, possibly including itself , and it is part of at least m(m − 1)/2
cycles of length at most 4.

Proof. This condition follows again from the weights of the columns of G. If a
vertex i is adjacent to itself then it needs at least m edges to other vertices. If it is
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0010

1010

0110

0001 1001

01011011

0111

Figure 5. The graph associated with the Parseval frame of 8 vectors
in Z4

2 given in Example 5.12. It can correct up to two erasures
because it satisfies the conditions of Theorem 5.4. For example,
the vertex (0 1 1 0) discriminates between the nonadjacent vertices
(1 0 1 1) and (0 1 1 1), and the vertex (0 0 1 0) discriminates
between the adjacent vertices (1 0 1 0) and (1 0 0 1).

not adjacent to itself, it requires m+ 1 edges. Thus, there are at least m(m− 1)/2
pairs of edges to other vertices. Any pair of such edges leads to either an adjacent
pair or to a nonadjacent pair of vertices. If the pair is adjacent, then it forms a
3-cycle with the vertex i . Otherwise, the nonadjacent pair has a common neighbor
other than the vertex i , forming a 4-cycle as in Theorem 5.2. �

Such necessary conditions are useful when searching for binary Parseval frames
that are maximally robust. This could, in principle, be done by enumerating all
Parseval frames and by testing their robustness against erasures exhaustively. The
properties of the examples we have examined in Z3

2 and Z4
2 would, for example,

be accessible by studying linear dependencies among the frame vectors. However,
because of the combinatorial nature of robustness, it is advantageous for the search
in higher dimensions if testing can be restricted to the subset of Parseval frames
satisfying the necessary conditions.
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On groups with a class-preserving
outer automorphism

Peter A. Brooksbank and Matthew S. Mizuhara

(Communicated by Nigel Boston)

Four infinite families of 2-groups are presented, all of whose members possess
an outer automorphism that preserves conjugacy classes. The groups in these
families are central extensions of their predecessors by a cyclic group of order 2.
For each integer r > 1, there is precisely one 2-group of nilpotency class r in
each of the four families. All other known families of 2-groups possessing a class-
preserving outer automorphism consist entirely of groups of nilpotency class 2.

1. Introduction

Let G be a group, Aut(G) the automorphism group of G, and Inn(G) the subgroup
of inner automorphisms. Then Aut(G) acts naturally on the set of conjugacy classes
of G, and we denote the kernel of this action by Autc(G). We refer to the elements
of Autc(G) as class-preserving automorphisms. Evidently Inn(G)EAutc(G), and
the elements of Outc(G)=Autc(G)/Inn(G) will be referred to as class-preserving
outer automorphisms.

Over a century ago, William Burnside [1911, Note B, p. 463] asked the question:
Are there groups G such that Outc(G) 6= 1? He himself settled the question soon
thereafter [Burnside 1913]: for each prime p ≡±3 (mod 8), there is a group G p of
order p6 and nilpotency class 2 with Outc(G p) 6= 1.

Since Burnside’s initial discovery, the problem has been revisited on many
occasions, and new families of groups G with Outc(G) 6= 1 have been found. Until
fairly recently, however, most of those families consisted of p-groups of nilpotency
class 2. The object of this paper is to prove the following result.

Theorem 1.1. There are four distinct infinite families H= {H j }
∞

j=1, where H j is a
4-generator 2-group of order 25+ j and nilpotency class j+1 such that Outc(H j ) 6=1.
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It is evident from the statement of Theorem 1.1 that the nilpotency class of the
groups H j in each family grows in an elementary way as a function of the group
orders. This is because H j+1 is built as a central extension of H j by Z/2. Indeed,
each H may be constructed algorithmically using the p-group generation algorithm
[O’Brien 1990]; this is precisely how the families were discovered and studied.
Furthermore, the groups in all four families have coclass 4, so we have shown
that they are all “mainline groups” in the coclass graph G(2, 4) (see [Eick and
Leedham-Green 2008]).

Readers interested in the history and applications of Burnside’s problem are
referred to the recent comprehensive survey of Yadav [2011]; we restrict ourselves
here to a brief summary of those results pertaining directly to Theorem 1.1.

Wall [1947] showed that, for each integer m divisible by 8, the general linear
group GL(1,Z/m) (i.e., the group of linear permutations x 7→ σ x + τ on integers
modulo m with σ, τ integral) has a class-preserving automorphism that is not
inner. This family includes the smallest group G such that Outc(G) 6= 1, namely
GL(1,Z/8) of order 32 (there, in fact, are two nonisomorphic groups of order 32
having this property). The 2-groups in Wall’s family, namely GL(1,Z/2k), have
nilpotency class 2.

Heineken [1979] constructed, for each odd prime p, an infinite family of p-
groups of nilpotency class 2, all of whose automorphisms are class-preserving. As
far as we are aware, these are the only known infinite families of groups G for
which Autc(G)= Aut(G).

Hertweck [2001] constructed a family of Frobenius groups as subgroups of affine
semilinear groups A0(F), where F is a finite field, which possess class-preserving
automorphisms that are not inner.

Malinowska [1992] exhibited, for each prime p > 5 and each r > 2, a p-group
G of nilpotency class r such that Outc(G) 6= 1 . Unlike the groups in our families,
however, it is not clear how the order of G relates to r .

We remark that the absence of simple groups in the above summary is explained
by Feit and Seitz [1989, Section C]: if G is a finite simple group then Outc(G)= 1.

Briefly, the paper is organized as follows. In Section 2 we summarize the
necessary background on p-groups. The families H in Theorem 1.1 are introduced
in Section 3; they are naturally parametrized by vectors ε ∈ {0, 1}4, but there only
four distinct families. The proof of Theorem 1.1 is given in Section 4.

2. Preliminaries

Our notation and terminology is standard. For elements x, y of a group, we write
x y
= y−1xy and [x, y] = x−1x y . For subsets X and Y of a group, we denote by

[X, Y ] the subgroup generated by all commutators [x, y], where x ∈ X and y ∈ Y .
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The lower central series of a group G is the series

G = γ1(G)> γ2(G)> · · · , (1)

where γi+1(G)= [G, γi (G)]. A group G is nilpotent if γi (G)= 1 for some i > 1,
in which case the smallest r such that γr+1(G)= 1 is called the nilpotency class
(or simply class) of G. A finite group G is a p-group if |G| = pn for some prime
p. All p-groups are nilpotent, and if G has class r , then G has coclass n− r . A
p-group minimally generated by d elements is called a d-generator group.

Each nilpotent group (more generally, each soluble group) possesses a polycyclic
generating sequence [Holt et al. 2005, Chapter 8]. This in turn gives rise to a power-
conjugate presentation (or simply pc-presentation), an extremely efficient model
for computing with soluble groups. We describe these presentations specifically for
p-groups.

Fix a p-group G. Let X = [x1, . . . , xn] ⊂ G be such that if Pi = 〈xi , . . . , xn〉

(i = 1, . . . , n), then Pi/Pi+1 has order p, and G = P1 > P2 > · · · > Pn > 1
refines the lower central series in (1). If G has nilpotency class r , we define a
weighting, w : X→{1, . . . , r}, where w(xi )= k if xi ∈ γk−1(G)\γk(G). Evidently,
w(xi ) > w(x j ) whenever i > j . Any such sequence X satisfies the conditions
needed to serve as the generating sequence of a weighted pc-presentation of G. The
relations, R, in such a presentation all have the form

x p
i =

n∏
k=i+1

xb(i,k)
k , where 06 b(i, k) < p, 16 i 6 n,

or

x xi
j = x j

n∏
k= j+1

xb(i, j,k)
k , where 06 b(i, j, k) < p, 16 i < j 6 n.

(2)

We write 〈X | R〉 to denote the p-group defined by such a presentation. We adopt
the usual convention that an omitted relation x p

i implies that x p
i = 1, and an omitted

relation x xi
j implies that xi and x j commute. We will often find it convenient to

write a conjugate relation x xi
j = x jw as a commutator relation [x j , xi ] = w.

Remark 2.1. In general, one requires that G = P1 > · · ·> Pn > 1 refines a related
series called the exponent p-central series [Holt et al. 2005, p. 355]. For the families
of p-groups we consider here, however, the two series coincide.

A critical feature of a pc-presentation for a p-group is that elements of the group
inherit a normal form xa1

1 xa2
2 · · · x

an
n , where 06 ai < p. Given g ∈ G as a word in

x1, . . . , xn , a normal form may be obtained by repeatedly applying the relations in
(2) in a process known as collection. If each element of G has a unique normal
form, the pc-presentation is said to be consistent. Clearly if G has a consistent
pc-presentation on X = [x1, . . . , xn], then |G| = pn .
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We conclude this section with a useful test for consistency. We state it just for
2-groups — since this is all we need — and refer the reader to [Holt et al. 2005,
Theorem 9.22] for the more general version.

Proposition 2.2. A weighted pc-presentation of a d-generator 2-group of class r
on [x1, . . . , xn] is consistent if the following pairs of words in the generators have
the same normal form (the products in parentheses are collected first):

(xk x j )xi and xk(x j xi ), 16 i < j < k6n and i 6d, w(xi )+w(x j )+w(xk)6 r;

(x j x j )xi and x j (x j xi ), 16 i < j 6n and i 6d, w(xi )+w(x j )< r;

(x j xi )xi and x j (xi xi ), 16 i < j 6n, w(xi )+w(x j )< r;

(xi xi )xi and xi (xi xi ), 16 i 6n, 2w(xi )< r.

3. The families Hε

In this section we introduce four infinite families of 4-generator 2-groups of fixed
coclass 4. In the next section we will show that each family consists of groups that
have a class-preserving outer automorphism, thus proving Theorem 1.1.

We will define the groups in each family by giving consistent pc-presentations.
It is convenient to denote the ordered list of pc-generators of the n-th group in each
family by Xn = {x1, x2, x3, x4, z, y1, . . . , yn}, with the group minimally generated
by {x1, x2, x3, x4}. The commutator relations for each family are identical, namely

Cn =
{
[x2, x1] = [x3, x2] = [x4, x1] = z, [x3, x1] = y1,

[x1, yi ] = [x3, yi ] = yi+1 (i = 1, . . . , n− 1)
}
. (3)

For each ε = (ε1, ε2, ε3, ε4) ∈ {0, 1}4, define

P ε
n =

{
x2

j = zε j ( j = 1, . . . , 4), z2
= 1,

y2
n = 1, y2

i = yi+1 yi+2 (i = 1, . . . , n− 2), y2
n−1 = yn.

}
. (4)

Let R ε
n = Cn ∪ P ε

n , define H ε
n = 〈Xn | R ε

n 〉, and put Hε
= {H ε

n }
∞

n=1. Note that the
pc-presentations for the n-th group in each family differ only in the power relations
of the generators xi .

Proposition 3.1. Let n be a positive integer, and ε ∈ {0, 1}4. Then H ε
n = 〈Xn | Rεn〉

has order 2n+5 and class n+ 1 (hence coclass 4).

Proof. To confirm the order of H ε
n , it suffices to check that their defining pc-

presentations are consistent, for which we use Proposition 2.2. Although there
are O(n3) computations involved in that test, the lion’s share of these may be
treated uniformly for the groups H ε

n . The following table lists all of the triples
that must be checked, together with their normal forms. Triples involving z are
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omitted (since z is central), as are triples involving two or more ys generators (since
〈ys : s = 1, . . . , n〉 is abelian).

Triple (a, b, c) Conditions Normal form of a(bc) and (ab)c

(x3, x2, x1) x1x2x3 y1

(x4, x2, x1) x1x2x4

(x4, x3, x1) x1x3x4zy1

(x4, x3, x2) x2x3x4z

(ys, x2, x1) s 6 n− 2 x1x2zys ys+1

(ys, x3, x1) s 6 n− 2 x1x3 y1 ys

(ys, x4, x1) s 6 n− 2 x1x4zys ys+1

(ys, x3, x2) s 6 n− 2 x2x3zys ys+1

(ys, x4, x2) s 6 n− 2 x2x4 ys

(ys, x4, x3) s 6 n− 2 x3x4 ys ys+1

(x j , x j , xi ) 16 i < j 6 4 xi ze j

(ys, ys, xi ) s 6 n− 2, i = 1, 3 xi ys+1

(x j , xi , xi ) 16 i < j 6 4 x j zei

(ys, xi , xi ) s 6 n− 2, i 6 4 zei ys

(xi , xi , xi ) i 6 4 xi zei

Routine calculations using the pc-relations are all that is needed to verify the normal
forms listed in the table. It remains to compute the lower central series of H ε

n :

γ1(H ε
n )= H ε

n ,

γ2(H ε
n )= 〈z, yi : 16 i 6 n〉,

γ j (H ε
n )= 〈yi : j − 16 i 6 n〉 for j = 3, . . . , n+ 1,

γn+2(H ε
n )= 1.

This shows that H ε
n has class n+ 1, as stated. �

Proposition 3.1 suggests that there are 16 families Hε , but the following result
shows that there is some duplication.

Proposition 3.2. For each positive integer n, there are four isomorphism classes
among the groups {H ε

n : ε ∈ {0, 1}4}.

Proof. Each group H = H ε
n determines a quadratic map q = qε (independent of

n) as follows. Let V denote the largest elementary abelian quotient of H , namely
V =H/A∼= (Z/2)4, where A=〈z, y1, . . . , yn〉. Let W denote the largest elementary
abelian quotient of A, namely W = A/B∼= (Z/2)2, where B=〈y2, . . . , yn〉. Define
maps q : V → W and b : V × V → W , where q(x A) = x2 B and b(x A, y A) =
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[x, y]B for all x, y ∈ H . Using additive notation in V and W , one easily checks
that

b(u, v)= q(u+ v)+ q(u)+ q(v) for all u, v ∈ V, (5)

so b is the symmetric bilinear map associated to q in the familiar sense.
If H ε

n and H δ
n are isomorphic groups, and α : H ε

n → H δ
n is any isomorphism, then

α induces isomorphisms β : V ε
→V δ and γ : W ε

→W δ such that qδ(vβ)= qε(v)γ
for all v ∈ V ε . Thus α induces a pseudo-isometry between qε and qδ.

Fixing a basis {vi } for V , one can represent a quadratic map q as a 4× 4 matrix
Q = [[qi j ]] with entries in W , where qi i = q(vi ), qi j = b(vi , v j ) if i < j , and
qi j = 0 of i > j . Given v ∈ V , write v =

∑
λivi with λi ∈ Z/2. Using (5) and a

finite induction, we see that q(v)=
∑

i
∑

j>i λiλ j qi j . An easy matrix calculation
then shows that q(v)= vQvtr for all v ∈ V .

Using the basis {xi A} for V , and identifying A/B on basis {zB, y1 B} with
the additive group of the ring (Z/2)[t]/(t2) on the usual basis {1, t}, the matrix
representing q = qε , where ε = (ε1, ε2, ε3, ε4), is

Q =


ε1 1 t 1
0 ε2 1 0
0 0 ε3 0
0 0 0 ε4

 ,
and the matrix representing the associated bilinear map b is B = Q+ Qtr.

Given maps qε and qδ representing groups H ε and H δ (ε, δ ∈ {0, 1}4), one can
easily test for pseudo-isometry as follows. Let Qε and Qδ be matrices representing
qε and qδ. If g ∈ GL(4, 2) represents an isomorphism H ε/Aε→ H δ/Aδ induced
by an isomorphism H ε

→ H δ , then the induced isomorphism Aε/Bε→ Aδ/Bδ is
uniquely determined by g, and its matrix h ∈ GL(2, 2) is easily computed. Extend
h entry-wise to a map M4(W ε)→M4(W δ), and denote the image of X ∈M4(W ε)

by Xh . Then qε and qδ are pseudo-isometric if and only if there exists g ∈GL(4, 2)
such that

g Bδgtr
= (Bε)h and vi (g Qδgtr)vtr

i = vi (Qε)hvtr
i ,

as vi runs over a basis for (Z/2)4.
Thus, the determination of the pseudo-isometry classes of the quadratic maps

associated to the families Hε is an elementary matrix calculation in GL(4, 2), which
is easily carried out using a computer algebra system such as MAGMA [Bosma
et al. 1997]. Those classes are represented by

Qε for ε ∈ {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)}.

Finally, it is not difficult to verify that any pseudo-isometry Qε
→ Qδ lifts to an
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isomorphism H ε
→ H δ. Thus, for each n, there are precisely four isomorphism

classes of group H ε
n , as claimed. �

4. Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 by exhibiting a class-preserving
automorphism of each group H ε

n that is not inner.

Proof of Theorem 1.1. Fix n > 1, ε ∈ {0, 1}4, and put H = H ε
n . Define θ : H→ H

on generators, sending

x 7→
{

x4z if x = x4,

x if x ∈ Xn \ {x4}.
(6)

One easily verifies (by replacing x4 with x4z in each pc-relation involving x4 and
evaluating) that θ ∈ Aut(H).

First, suppose that θ is an inner automorphism. Then there exists h ∈ H com-
muting with x1 and x3, but not with x4. Writing

h =
4∏

i=1
xai

i · z
b
·

n∏
j=1

yc j
j (ai , b, c j ∈ {0, 1}) (7)

and using the defining commutator relations of H , we see that

hx1 = x1h ·
(

za2+a4 ya3
1

n∏
j=2

yc j−1
j

)
.

Hence h ∈ CH (x1) if and only if a2 = a4 and 0= a3 = c1 = · · · = cn−1. Also,

x3h = xa1
1 xa2

2 x1+a3
3 xa4

4 za2+b ya1+c1
1

n∏
j=2

yc j
j ,

while

hx3 = xa1
1 xa2

2 x1+a3
3 xa4

4 zb yc1
1

n∏
j=2

yc j
j

n∏
j=2

yc j−1
j ,

so that h ∈ CH (x3) if and only if 0 = a1 = a2 = c1 = · · · = cn−1. It follows that
CH (x1)∩CH (x3)= 〈z, yn〉 = Z(H). Hence θ is not inner.

We next show that θ is class-preserving. To that end, we must show that, for
each h ∈ H , there exists t = t (h) ∈ H with ht

= hθ . Fix h ∈ H , and write

h =
4∏

i=1
xai

i · z
b
·

n∏
j=1

yc j
j ,

as in (7). If a4 = 0, then hθ = h and t (h)= 1 works. Thus, we may assume that
a4 = 1, and hence that hθ = hz.

Claim. If hθ = hz, then either hx2 = hz or hx1x3 = hz.
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It is clear from the pc-relations that x2 commutes with every y j . This is true
also of x1x3. For, if j < n− 1, then yx1x3

j = (y j y j+1)
x3 = y j y2

j+1 y j+2. Using the
relations (and a finite induction) one sees that y2

j+1 y j+2 = y2
n−1 yn = y2

n = 1. It is
easy to see that yx1x3

n−1 = yn−1 and that yx1x3
n = yn .

Next, observe that x2 commutes with x4, while x x1x3
4 = (x4z)x3 = x4z. Thus,

it suffices to show that, if h = xa1
1 xa2

2 xa3
3 with (a1, a2, a3) ∈ {0, 1}3, then either

hx2 = hz, or hx1x3 = h. First,

hx2 = (xa1
1 xa2

2 xa3
3 )

x2 = xa1
1 xa2

2 xa3
3 za1+a3 = hza1+a3 .

Hence, if a1 6=a3, then hx2 = hz, as required. It remains to show that x1x3 commutes
with h whenever a1 = a3. If a1 = a3 = 0, then either h = 1 or h = x2; clearly
x1x3 commutes with 1, and x x1x3

2 = x2z2
= x2. Finally, if a1 = a3 = 1, then either

h = x1x3 or h = x1x2x3; clearly x1x3 commutes with itself, and

(x1x2x3)
x1x3 = (x1(x2z)(x3 y1))

x3

= (x1 y−1
1 )(x2z)zx3(y1 y2)

= x1x2 y−1
1 x3 y1 y2

= x1x2x3 y−1
2 y−1

1 y1 y2 = x1x2x3.

This establishes our claim, and completes the proof of Theorem 1.1. �
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The sharp log-Sobolev inequality
on a compact interval

Whan Ghang, Zane Martin and Steven Waruhiu

(Communicated by Kenneth S. Berenhaut)

We provide a proof of the sharp log-Sobolev inequality on a compact interval.

1. Introduction

The Gaussian log-Sobolev inequality, due to A. J. Stam [1959, Equation 2.3] or
Paul Federbush [1969, Equation (14)], although often attributed to L. Gross [1975,
Corollary 4.2], played a crucial role in Perelman’s proof [2002] of the Poincaré
conjecture. We consider log-Sobolev inequalities for finite Lebesgue measure.
F. Maggi [Morgan 2009] observed that the sharp log-Sobolev inequality on the
interval follows from an isoperimetric conjecture of Díaz et al. [2012], which
remains open, but provided no proof. We found it in [Wang 1999], which cited
Deuschel and Stroock [1990], who gave a proof of the sharp log-Sobolev inequality
on the circle. We then traced this result back to [Émery and Yukich 1987, page 1;
Rothaus 1980, Theorem 4.3; Weissler 1980, Theorem 1]. Our Theorem 2.2 shows
that the interval case follows quickly from the circle case.

2. Log-Sobolev inequality on a compact interval

In considering the isoperimetric problem in sectors of the plane with density r p,
Díaz et al. [2012, Corollary 4.24, Conjecture 4.18] conjectured the inequality[∫ 1

0
rq dα

]1/q

≤

∫ 1

0

√
r2+ (q − 1)r

′2

π2 dα, (1)

where 1 < q ≤ 2. F. Maggi [Morgan 2009] observed that (1) implies the log-
Sobolev inequality of Theorem 2.2. Here we observe that Theorem 2.2 follows
from a proposition of Weissler.

MSC2010: primary 46; secondary 53.
Keywords: isoperimetric inequality, log-Sobolev inequality.
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Proposition 2.1 [Weissler 1980, Theorem 1]. Let f be a nonnegative C1 function
on the circle S1 of length 1. Suppose

∫
S1 f 2

= 1. Then we have the sharp inequality

4π2
∫

S1
f 2 log f ≤

∫
S1

f ′2.

Various proofs are discussed in Section 3.

Theorem 2.2. Let f be a nonnegative C1 function on the interval [0, 1]. Suppose∫ 1
0 f 2
= 1. Then we have the inequality

π2
∫ 1

0
f 2 log f ≤

∫ 1

0
f ′2. (2)

Proof. Let f be any nonnegative C1 function on [0, 1] such that
∫ 1

0 f 2
= 1. Define

a nonnegative piecewise C1 function g on S1 such that

g(x)=
{

f (2x) if 0≤ x ≤ 1
2 ,

f (2− 2x) if 1
2 < x ≤ 1.

Then
∫

S1 g2
=1. By smoothing, Proposition 2.1 applies to g. By simple computation,

we have that∫
S1

g2 log g =
∫ 1

0
f 2 log f and

∫
S1

g′2 = 4
∫ 1

0
f ′2.

The conclusion follows. �

Remark 2.3. Feng-Yu Wang [1999, Example 1.2] suggested an alternative proof
of (2), but we don’t understand his proof. He considered densities Cε exp(ε cosπx)
and functions fε = exp(−ε cosπx), with Cε chosen to make the integral of f 2

ε

equal to 1. Then fε satisfies the differential equation

f ′′ε −πε sinπx f ′ε =−π
2 fε log fε . (3)

He said that it follows that (2) holds for those functions and densities with sharp
constant π2. This might follow if it were known that functions realizing equality
exist, but Wang himself [1999, page 655] admits that “the author is not sure yet
whether there always exists [such a function].” Indeed, in the case of the circle with
unit density, there apparently is no such function. Of course, the sharp inequality
for density 1 would follow as ε approaches 0.

A similar result holds on the interval [a, b] for a function with root mean square m.

Corollary 2.4. Let f be a nonnegative C1 function on the interval [a, b]. Suppose

1
b−a

∫ b

a
f 2
= m2, m > 0.
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Then we have the inequality

π2

(b−a)2

(∫ b

a
f 2 log f − (b− a)m2 log m

)
≤

∫ b

a
f ′2. (4)

Proof. Let f be a nonnegative C1 function on the interval [a, b] such that

1
b−a

∫ b

a
f 2
= m2 > 0, m > 0.

Define a function g on the interval [0, 1] as

g(x)= 1
m

f
(
(b− a)x + a

)
.

Then g is nonnegative and C1. Moreover, we have∫ 1

0
g(x)2 dx =

∫ 1

0

1
m2 f

(
(b− a)x + a

)2 dx = 1
(b−a)m2

∫ a

0
f (y)2 dy = 1.

Therefore, we can apply Theorem 2.2 to the function g. We have

π2

b−a

∫ 1

0
g2 log g ≤ (b− a)

∫ 1

0
g′2. (5)

Note that
g′(x)= b−a

m
f
(
(b− a)x + a

)
.

By direct calculation, we have∫ 1

0
g′(x)2 dx = (b−a)2

m2

∫ 1

0
f ′
(
(b− a)x + a

)2 dx = (b−a)2

m2

∫ b

a
f ′(x)2 dx .

We also have∫ 1

0
g(x)2 log g(x) dx = 1

m2

∫ 1

0
f
(
(b− a)x + a

)2 log
f
(
(b−a)x+a

)
m

dx

=
1

(b−a)m2

∫ b

a
f (x)2 log f (x)

m
dx

=
1

(b−a)m2

∫ b

a
f 2(log f − log m)

=
1

(b−a)m2

(∫ b

a
f 2 log f − (b− a)m2 log m

)
.

Therefore, by plugging these identities into (5), we have

π2

(b−a)m2

(∫ b

a
f 2 log f − (b− a)m2 log m

)
≤

b−a
m2

∫ b

a
f ′2.
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This is equivalent to the desired inequality (4). �

Corollary 2.4 can be written in the following form.

Corollary 2.5. Let f be a nonnegative C1 function on the interval [a, b]. Suppose

1
b−a

∫ b

a
f = m > 0.

Then we have the inequality

2π2

(b−a)2

(∫ b

a
f log f −m log m

)
≤

∫ b

a

f ′2

f
.

Proof. Define a nonnegative piecewise C1 function g on the interval [a, b] as
g =
√

f . Plugging g into Corollary 2.4 yields the desired result. �

Proposition 2.6. In Theorem 2.2, π2 is the best possible constant.

Proof. For any 0< ε < 1, define

fε(x)=
√

1− ε2+
√

2ε cosπx .

Then by direct computation, we have

lim
ε→0+

∫ 1
0 f ′2ε∫ 1

0 f 2
ε log fε

= π2.

Therefore, the constant π2 cannot be replaced by a larger constant. �

Remark 2.7. The function cosπx comes from the equality case of a Wirtinger
inequality which follows from the log-Sobolev inequality [Morgan 2009].

3. Proofs of the sharp log-Sobolev inequality on the circle

We summarize three proofs of Proposition 2.1 given by Rothaus [1980, Theorem 4.3],
Weissler [1980, Theorem 1], Émery and Yukich [1987, page 1], and Deuschel and
Stroock [1990, Remark 1.14 (i)].

3.1. Weissler’s proof. Weissler proved a stronger result than Proposition 2.1 by
Fourier expansion of functions of period 2π .

Proposition 3.1 [Weissler 1980, Theorem 1]. Let f (θ)=
∞∑

n=−∞
aneinθ be in L2 and

suppose f (θ)≥ 0 almost everywhere. Then∫
f 2 log f ≤

∞∑
n=−∞

|n||an|
2
+‖ f ‖22 log‖ f ‖2

in the sense that if the right-hand side is finite, then so is the left-hand side and the
inequality holds. (02 log 0 is taken to be 0.)
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Obviously the above inequality is stronger than the inequality∫
f 2 log f ≤

∞∑
n=−∞

|n|2|an|
2
+‖ f ‖22 log‖ f ‖2,

which is equivalent to Proposition 2.1 by change of variables as in Corollary 2.4.
Weissler [1980] cited [Rothaus 1978] but did not have [Rothaus 1980], where

Rothaus gave his proof of Proposition 2.1.

3.2. Rothaus’s proof. Rothaus proved Proposition 2.1 by a variational method.
(References in this section are relative to [Rothaus 1980].) He considered an
equivalent problem with a positive parameter ρ in Section 4. If a related constant
bρ is zero, then the log-Sobolev inequality on the circle with the constant 2/ρ holds.
For each bρ , he showed in Theorem 4.2 that a minimizing function exists, is positive
and satisfies a related differential equation. Moreover, for ρ > 1/2π2, the only
positive solution to the differential equation is the constant function 1 (Theorem 4.3)
and hence bρ is zero. Therefore in the limit b1/2π2 is zero, and our Proposition 2.1
follows.

Rothaus cited [Weissler 1980], saying that “a result related to Theorem 6.3
appears in” that paper.

3.3. Émery and Yukich’s proof. Proposition 2.1 was proved by Émery and Yukich
[1987, page 1] by using estimates deploying the Brownian motion semigroup.

Émery and Yukich [1987] cited both Weissler [1980] and Rothaus [1980].

3.4. Deuschel and Stroock’s proof. Deuschel and Stroock considered the log-
Sobolev inequality in general spaces with densities. As a special case, they proved
[Deuschel and Stroock 1990, Remark 1.14 (i)] that the log-Sobolev constant for the
circle of length 1 with Lebesgue measure is the first eigenvalue of the Laplacian,
namely 4π2 (corresponding to the first eigenfunction sin 2πx).

Deuschel and Stroock [1990] cited [Émery and Yukich 1987].
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Analysis of a Sudoku variation using partially
ordered sets and equivalence relations

Ana Burgers, Shelly Smith and Katherine Varga

(Communicated by Ann Trenk)

Sudoku is a popular game of logic, and there are many variations of the standard
puzzle. We investigate a variation of Sudoku that uses inequalities between cells
rather than numerical clues. We begin with an overview of the rules and strategies
of the game. We then examine the solvability of an individual m× n block with
the use of partially ordered sets, and combine 2× 2 blocks to form 4× 4 puzzles.

1. Introduction

The basic concepts behind the popular Sudoku number puzzles may be familiar
from the newspaper, the internet, or any variety of puzzle books. A Sudoku board
is a 9× 9 grid in which the entries 1 through 9 appear exactly once in each row,
column, and 3× 3 block. A Sudoku puzzle is created from a board by strategically
removing some of the entries, leaving only select clues from which the player must
try to reconstruct the original board. In order to be a valid puzzle, the clues must
lead to a unique solution. In this paper, we will refer to this game as standard
Sudoku (see Figure 1, left).

One variation on the basic puzzle is Greater Than Sudoku. A Greater Than
Sudoku board (Figure 1, right) meets the same criteria as the standard board, but
has an additional condition: within each block, every pair of adjacent entries, both
horizontal and vertical, must satisfy the inequality which separates them. While
the standard puzzle begins with some entries filled in, providing the player with
numerical clues which will lead to a unique solution, a Greater Than Sudoku puzzle
gives the player only the inequalities on an empty grid. Furthermore, the inequalities
must be arranged in such a way that a unique solution exists.

The primary focus of this paper is a smaller version called Greater Than Shidoku
(Figure 2, left) consisting of a 4× 4 grid partitioned into four 2× 2 blocks, which
is played with the entries 1 through 4. Many results are also extended to blocks of
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Figure 1. Left: standard Sudoku puzzle [Mepham 2011]; right:
Greater Than Sudoku puzzle [Sudoku 2006].

larger variations, including Greater Than Rokudoku (Figure 2, right), which has six
2× 3 blocks, and Greater Than Sudoku.

2. Playing the game

Solving a Greater Than puzzle of any size requires a slightly different approach
than that used to play standard Sudoku, and this approach will also prove to be
instrumental in the analysis of Greater Than puzzles of any size. In particular, the
player identifies the minimal and maximal cells as well as using the conditions
placed on rows, columns, and blocks. A minimal cell of a block is any unfilled
cell whose inequalities all point inward from adjacent unfilled cells. Similarly, a
maximal cell is any unfilled cell with all inequalities pointing outward into adjacent
unfilled cells. Since these properties depend upon the cells that have not yet been
filled, the maximal and minimal cells will change as the game is played. In Figure 3,
the unfilled Greater Than Shidoku block contains one minimal cell, identified by •,
and one maximal cell, identified by©.

Our first step in solving the Greater Than Shidoku puzzle in Figure 2 is to identify
where to place the 1 entries. (The solutions to the other puzzles are at the end of

Figure 2. Smaller puzzles. Left: Greater Than Shidoku; right:
Greater Than Rokudoku.
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Figure 3. Minimal and maximal cells.

this article.) Since 1 is the smallest element we use, each 1 must be placed in a
minimal cell in an unfilled block. For example, in Figure 4, the top two blocks each
contain only one (shaded) minimal cell, so we know those cells must contain 1.
The bottom two blocks, however, each contain two cells that are minimal. In such
cases where the inequalities do not determine unique placement of each 1 entry, the
next step is to consider any information provided by the rows and columns. Thus,
while there are two possible placements of 1 entries in each block of the lower half
of the board, by using the columns it is possible to uniquely determine their proper
placement.

Next we will determine where to place the 2 entries by considering the minimal
cells among those that remain unfilled. If necessary, the rows and columns may
again be used to determine the correct placements. Similarly, a 3 entry must have
inequalities pointing inward from each adjacent cell not containing a 1 or a 2,
and so on. The player may also begin with the largest entry and work backwards
by looking for maximal cells. A 4 must be placed in a maximal cell, where the
inequalities all point outward. A 3 would have inequalities pointing out into any
cell not containing a 4, and so on.

minimal cells

1

1

1

1

1 entries

2

2

2

1

1

1

1

2

2 entries

2

2

2

1

1

1

1

2

3

3

3

3

3 entries

2

2

2

1

1

1

1

2

3

3

3

3

4

4

4

4

solved puzzle

Figure 4. Playing Greater Than Shidoku.
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3. Inequality blocks and cycles

A Greater Than puzzle contains inequalities that compare adjacent entries; however,
only entries within the same block are considered. The player must begin by
examining the ways in which individual blocks can be filled before moving on
to the puzzle as a whole. Similarly, we begin our investigation of Greater Than
puzzles by considering individual blocks.

Definition 1. An inequality block is an m × n grid, with m, n ∈ N, in which an
inequality separates each pair of horizontally or vertically adjacent cells.

In one block of Greater Than Shidoku there are four inequalities, and each can be
oriented in one of two directions. Thus there are 24

= 16 possible 2× 2 inequality
blocks. There are four cells in each block, so without considering the inequalities
there are 4! = 24 ways of permuting the entries. Similarly, we can count the number
of inequality blocks and permutations of any size block. Greater Than Rokudoku
blocks have 27

= 128 ways of arranging the inequalities and 6! = 720 permutations
of entries. For Greater Than Sudoku, we have 212

= 4096 inequality blocks and
9! = 362,880 ways of permuting the entries.

Definition 2. An inequality block is solvable if there exists at least one permutation
of entries satisfying all inequalities in that block. A block is unsolvable if no such
permutation exists.

Note that for each size block, there are many more ways to permute the entries
than there are ways to arrange the inequalities. Each permutation of entries corre-
sponds to one arrangement of the inequalities because, given any filled block, we
can insert the inequalities accordingly. However, since there are significantly fewer
inequality arrangements than permutations, some inequality arrangements must
correspond to more than one permutation. In other words, without considering the
other blocks in a puzzle, many inequality blocks have more than one solution. This
leads to two natural questions: are all inequality blocks solvable, and for those that
are, how many solutions exist? We can only use solvable blocks to create Greater
Than puzzles, so our first goal is to determine criteria for deciding which blocks
are solvable.

A path in an inequality block is a sequence of adjacent cells where the inequalities
are always increasing or always decreasing. If a path includes any cell more than
once, that path contains a cycle. A cycle of cells is impossible to fill with entries
without contradicting at least one of the inequalities; thus any inequality block
containing a cycle is unsolvable. In a 2×2 inequality block, there are two inequality
arrangements that produce a cycle of the four cells, shown in Figure 5. These two
cycles correspond to two unsolvable inequality blocks, leaving us with 14 that are
acyclic.
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Figure 5. Unsolvable 2× 2 blocks.

In Greater Than Rokudoku, the 2× 3 inequality blocks may also contain cycles,
but more than two unsolvable blocks result from such arrangements. There are six
different cycles that may appear in a 2× 3 block, shown in Figure 6.

A block that contains a cycle is unsolvable, but some inequality arrangements
may contain more than one cycle, so to count the number of blocks with cycles, we
use the principle of inclusion-exclusion. Let Ci be the set of all blocks containing
cycle i for 1≤ i ≤ 6. Blocks from sets C1 through C4 each have three inequalities
that are not involved in the given cycle, so |Ci | = 23 for 1 ≤ i ≤ 4. Sets C5

and C6 consist of blocks with only one inequality not involved in the cycle, thus
|C5| = |C6| = 2, and consequently

∑6
i=1 |Ci | = 36. However, some blocks will be

counted in two sets; for example, if the remaining inequality in a block from set C5

is pointing down, that block also contains cycle 1, thus that block is included in set
C1. If the inequality is pointing up, that block is included in set C3. Similarly, one
block in C6 is also contained in set C2, while the other is contained in set C4. There
is one block containing both cycles 1 and 4, and another containing cycles 2 and
3. There are no 2× 3 blocks that contain 3 different cycles. Thus we have double
counted 6 blocks that are in two sets, and so we subtract this from our previous tally,
resulting in a total of 30 2× 3 inequality blocks with at least one cycle. These 30
blocks are unsolvable, so we eliminate them from the number of inequality blocks
we need to consider. This leaves us with 98 acyclic 2× 3 inequality blocks.

cycle 1 cycle 2 cycle 3

cycle 4 cycle 5 cycle 6

Figure 6. Cycles in 2× 3 blocks.
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We employ the same strategy with 3×3 Sudoku blocks, but now we have twenty-
six possible cycles that can be formed among the inequalities (see if you can find
them all!). Many inequality arrangements contain multiple cycles. To count the
number of blocks that contain at least one cycle, we again use inclusion-exclusion.
There are 1698 such puzzle blocks that are impossible to fill in, so of the 4096 3×3
inequality blocks, 2398 are acyclic. The results of this section are summarized in
the following theorem.

Theorem 1. There are 14 acyclic 2×2 inequality blocks, 98 acyclic 2×3 inequality
blocks, and 2398 acyclic 3× 3 inequality blocks.

4. Posets and solvable blocks

We have shown that every inequality block containing a cycle is unsolvable; however,
it remains to be seen that every acyclic inequality block is solvable. While playing
the game, we compared cells using the inequalities and identified minimal cells, but
we found that minimal cells were not always unique. This suggests considering an
acyclic block as a partially ordered set and leads us to another way of describing
solutions of the block.

Definition 3. A partial order � on a set A is a binary relation that is reflexive,
antisymmetric, and transitive. A partially ordered set, or poset, is a pair (A,�),
where � is a partial order on the set A.

We now define a relation on inequality blocks of arbitrary size and show that it
satisfies the above definition:

Definition 4. Let A = {a1, a2, . . . , amn} be the set of cells of an m × n acyclic
inequality block. For all ai , a j ∈ A, we define a relation � on A such that ai � a j

if ai = a j or if ai precedes a j in an increasing path.

Theorem 2. With A and � as defined above, (A,�) is a partially ordered set.

Proof. Let ai ∈ A. Since ai = ai , then ai � ai and consequently � is reflexive.
Now let ai , a j ∈ A, where ai � a j and a j � ai , and assume that ai 6= a j . Then ai

precedes a j in an increasing path, and a j precedes ai in an increasing path. The
concatenation of these two increasing paths will contain a cycle, which contradicts
our assumption that the block is acyclic. Thus ai = a j , and � is antisymmetric.
Finally, let ai , a j , ak ∈ A, where ai � a j and a j � ak . If ai = a j or a j = ak , it is
clear that ai � ak , so let us consider the case where ai 6= a j and a j 6= ak . This means
that ai precedes a j in an increasing path, and a j precedes ak in an increasing path.
The concatenation of these paths forms an increasing path in which ai precedes ak .
Thus ai � ak , and � is transitive. Therefore, � is a partial order on A, and (A,�)

is a poset. �
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Figure 7. Inequality block (left) and Hasse diagram (right) of
poset of cells.

We may visualize a poset by creating a Hasse diagram of the set. In a Hasse
diagram, the vertices represent the elements of the set. If x � y, then the vertex for
x is placed below the vertex for y. If x 6= y, x � y, and there is no intermediate
element z 6= x, y such that x � z � y, then we say that y covers x , and an edge
is drawn connecting the two elements. However, if there is such an element z, an
edge from x to z, and one from z to y, then x � y by transitivity. Figure 7 shows
an acyclic 3× 3 inequality block as well as the corresponding Hasse diagram.

This type of relation is called a partial order because it may not be possible to
use the relation to compare all of the elements in the set.

Definition 5. Let � be a partial order on a set A. Elements a and b are called
comparable if and only if either a�b or b�a. Otherwise, a and b are incomparable.

Even though cells c and h are not adjacent in the above inequality block, there
is an increasing path c, b, e, h; therefore c � h and we know any solution for this
block must have a smaller element in cell c than in cell h. On the other hand, there
is no such increasing path between b and g, so those two cells are incomparable
and we cannot predict which cell will contain the larger entry. A useful fact about
posets is that any finite, nonempty poset has a minimal element, and furthermore,
any subset of a poset is also a poset [Epp 2004]. This means that if we remove a
minimal element from a poset, we will always have at least one minimal element
among the remaining cells.

This brings us back to our technique for solving the Greater Than Shidoku puzzle
by identifying minimal cells in each block. When we placed the 1 entries, we
effectively removed those cells from the posets for each block, then we identified
the minimal cells in the resulting posets in order to place the 2 entries. Previously
proven results about posets give us another way to view our solution to the puzzle.

Definition 6. If � is a relation on a set A, and for any two elements a and b in A
either a � b or b � a, then � is a total order on A. A linear extension is obtained
by putting a total order on a poset (A,�) which preserves the partial order �.
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Figure 8. Creating a linear extension to solve a block.

Theorem 3. Every partial order may be extended to a total order.

This theorem was first proven by Szpilrajn in [1930], and from it we may conclude
that we can put a total order on the poset of cells of any acyclic inequality block.
Furthermore, creating a linear extension of the poset of cells is the same as finding
a solution for the block, which leads us directly to the following corollary.

Corollary 4. Every acyclic m× n inequality block is solvable.

To demonstrate, we will create a linear extension of our poset in Figure 8. First,
we pick a minimal cell g and label it with 1. Once g has been labeled and thus
removed from future comparisons, our new set of minimal cells consists of c, d,
and i . We arbitrarily choose d and label it 2. The minimal cells are now c and i ;
we choose cell i and label it 3. We continue to choose and label minimal elements
until all are labeled. Figure 8 shows one example of how the remaining entries can
be labeled, and the corresponding solution of the inequality block. However, at
each step in the process, there were often multiple minimal cells to choose from, so
the solution in the figure is only one of the many solutions we could have chosen.

Now that we can find a solution of any acyclic inequality block, the next step
is to find a method of counting the number of solutions of any such block. This
is essential because some blocks have a large number of solutions, so it is often
tedious to attack this task by hand. Many researchers have studied the question of
creating and counting linear extensions of posets; we used A Maple Package for
Posets, created by John R. Stembridge [2009] of the University of Michigan. This
package includes a command to count the number of linear extensions of any given
poset, and when we applied it to the 3×3 block in Figure 7, we found that there are
actually 261 solutions to the block. Surprising as this might seem, it is far from the
highest number of solutions of a 3× 3 block. After testing all possible inequality
combinations on a block, we find that there are 34 3×3 blocks that have over 1000
solutions. In fact, the block in Figure 9 has 4800 solutions!
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Figure 9. Block with 4800 solutions.

5. Equivalent Shidoku blocks

There are 14 acyclic, and therefore solvable, inequality blocks that we can use to
create a Greater Than Shidoku puzzle. Each 4× 4 grid is comprised of four blocks,
which means that there are 144

= 38,416 possible combinations of inequality blocks
to choose from, although we shall see that the number of Greater Than Shidoku
boards and puzzles is considerably smaller. For Greater Than Rokudoku and Sudoku,
the number of possible combinations are 986

≈ 8.9× 1011 and 23989
≈ 2.6× 1030,

respectively. For this reason, we are interested in grouping similar blocks together,
thereby reducing the number of possible combinations to a more manageable size;
thus we will define a method of grouping inequality blocks based on the positions
of minimal and maximal cells in an unfilled block.

In Greater Than Shidoku, each block has four entries, and we want to find all
combinations of maximal and minimal cells. Recall that every inequality block
must have at least one maximal and at least one minimal cell. Further note that,
given any two adjacent cells, the entry in one must be larger than that of the other,
thus it is not possible to have two adjacent minimal cells nor two adjacent maximal
cells. Finally, we recognize that if we have two maximal cells diagonal from each
other, the inequalities of the remaining two cells are determined, and those cells are
forced to be minimal. Consequently there are two cases for the number of minimal
and maximal cells: we may either have one minimal and one maximal cell, or we
may have two of each. To take all the different arrangements into account, we
define the following relation.

Definition 7. Let S2,2 be the set of all solvable 2× 2 inequality blocks. We define
a relation ∼ as follows. Let A, B ∈ S2,2. Then A ∼ B if and only if A can be
transformed into B using some sequence of reflections across the vertical, horizontal,
and diagonal axes of the block.

Theorem 5. The relation ∼ is an equivalence relation on S2,2.

Proof. To prove ∼ is an equivalence relation, we must show that it is reflexive,
symmetric, and transitive. Let A ∈ S2,2. Clearly A ∼ A because no transformation
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class I class II class III

Figure 10. Representatives of the three equivalence classes.

is necessary, and thus ∼ is reflexive. Now let A, B ∈ S2,2 such that A ∼ B. Then
A can be transformed into B by some sequence of reflections. Applying these
reflections to B in reverse order transforms B into A. Thus B ∼ A, and ∼ is
symmetric. Finally, let A, B, C ∈ S2,2, with A ∼ B and B ∼ C . Then there is a
sequence of reflections that will transform A into B, and another sequence which
will transform B into C . The concatenation of these sequences yields a sequence
of reflections that will transform A into C . Thus the relation ∼ is transitive, and ∼
is an equivalence relation. �

Using equivalence relation ∼, the set of solvable blocks can be partitioned into
equivalence classes. Blocks within a class are equivalent, and those from different
classes are said to be distinct.

Theorem 6. There are three equivalence classes of 2× 2 inequality blocks.

This is easily verified by checking the 14 blocks in S2,2. An example from each
class is shown in Figure 10. We next consider the number of solutions of each block.
For the following section, we will also find it helpful to observe that within an
equivalence class, the same entry is always placed diagonally from 1 in the block.

Consider a block from class I in Figure 11. When solving the block, we see
there is only one possible position for the 1 entry, and similarly, only one way to
place the 4 entry. The 2 and 3 entries are adjacent to one another, and so the 3
must go in the greater of these two cells. There is only one way to fill in this block,
and reflections do not change the number of solutions. In fact, blocks of class I
correspond to all blocks with unique solutions. We further note that in each block,
entries 1 and 3 will be placed diagonally in the block.

1

4

2

3

Figure 11. Class I blocks have 1 solution.
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1

4

Figure 12. Class II blocks have 2 solutions.

Figure 13. Class III blocks have 4 solutions.

Following the same procedure with blocks from class II, we can see in Figure 12
that the 1 and 4 entries are uniquely placed. However, examining the remaining
two cells, we see that the entries in each must be greater than the 1 entry and less
than the 4 entry. It is not possible from this arrangement to uniquely determine
placement of the remaining two entries. Thus, blocks from class II correspond to
blocks with two solutions, and in each solution 1 and 4 will be placed diagonally.

In class III blocks, however, we have two possible positions for the 1 entry.
Similarly, there are two possible placements of the 4 entry. Once 1 and 4 are placed
in the cells, there is only one way to place 2 and 3. Each puzzle block from this
class has four solutions as shown in Figure 13; entries 1 and 2 will be in the minimal
cells, which are placed diagonally.

6. Greater Than Shidoku puzzles

Now that we have a better understanding of the different types of inequality blocks,
we are able to examine ways in which they can be combined to form puzzles.
Recall that a Greater Than board is an mn×mn grid, where m, n ∈ N, in which
the numbers 1 through mn must satisfy the inequalities between adjacent cells and
appear exactly once in each row, column, and m× n block. If when the numerical
entries are removed there is a unique solution to the board, the unfilled board is a
Greater Than puzzle.

It is important to note that, by definition, every Greater Than board is solvable
when the entries are removed. It is not necessarily the case, however, that each
board has a unique solution and is therefore a puzzle. In this section, we will first
find a way to create Greater Than Shidoku boards, then determine whether the
unfilled boards are puzzles. Previously, we saw that each of the three equivalence
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a b

c d

Figure 14. Initial block.

classes of blocks may be identified by the entry that is diagonal from 1 when a
block is solved. This is a useful tool in proving Theorem 7, which states a rule for
combining blocks to create boards. Although the proof begins by considering only
entries without inequalities, a Greater Than board can be formed from the standard
board by inserting the appropriate inequalities between adjacent cells within each
block.

Theorem 7. Every block of a Greater Than Shidoku board must be horizontally or
vertically adjacent to another block from the same equivalence class.

Proof. Assume, to the contrary, that a block need not be adjacent to another block
from the same equivalence class. Without loss of generality, consider the filled
block in Figure 14.

To complete the top row, we place c and d in one of two ways. Once these are
placed, we then position a and b in the second row to ensure that the top two blocks
are from different classes. Although we don’t know which cell will contain the
1 entry, it is sufficient to ensure that the blocks do not contain any common diagonal.
We use similar logic on the first two columns to fill in the bottom-left block in one
of two ways, again ensuring that it is not equivalent to the first block. This gives
us the four cases shown in Figure 15. In each case we attempt to complete the
board by filling in the last block. There is only one cell where we can place the
a entry, but then we find that we are unable to place the d entry without violating
the condition that an entry may only appear once in each row and column, leading

a b

c d

c d

b a

b c

d a

a

Case 1

a b

c d

c d

b a

d a

b c a

Case 2

a b

c d

d c

a b

b c

d a

a

Case 3

a b

c d

d c

a b

d a

b c a

Case 4

Figure 15. Each case leads to a contradiction.
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II II
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type (I, II)
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type (I, III)

II II

II II

type (II, II)

II II

III III

type (II, III)

III III

III III

type (III, III)

Figure 16. Six types of Greater Than Shidoku boards.

to our desired contradiction. Thus, every block must be adjacent to at least one
equivalent block to form a Greater Than Shidoku board. �

Corollary 8. There are six types of Greater Than Shidoku boards.

This corollary follows directly from counting the possible combinations of our
three equivalence classes, shown in Figure 16. A board of type (I, II), for example,
is comprised of two blocks from class I and two from class II. Note that boards
comprised of two different block classes may be written in four different ways,
taking rotations of 90◦, 180◦, and 270◦ into consideration. Each of these types may
be used to form Greater Than Shidoku boards, so our next goal is to determine
which of these boards have unique solutions when the entries are removed, and are
therefore Greater Than Shidoku puzzles. In the following lemmas, we will see that
4 of these 6 board types correspond to puzzles, and we will count the number of
puzzles of each type.

Lemma 9. Every board of type (I, I) has a unique solution when the entries are
removed, and therefore corresponds to a Greater Than Shidoku puzzle. There are
32 puzzles of type (I, I).

Proof. Consider any board of type (I, I) and remove all entries, leaving only
inequalities. This board consists of Greater Than blocks from class I, and each
of these blocks has a unique solution, so there is only one way to fill in entries
on the entire board. Thus every board of type (I, I) corresponds to a puzzle. To
create a board, there are eight ways to order the first block, since there are four
cells in which to place the 1 entry, two ways to place 4 adjacent to 1, and then the
cells containing 2 and 3 are uniquely determined. The second and third blocks can
each be arranged in two ways, similar to the argument in the proof of Theorem 7,
and the fourth block is uniquely determined by the first three. We then place the
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Figure 17. Type (I, II) example.

appropriate inequalities to finish the board. Consequently, there are (8)(2)(2)= 32
puzzles of type (I, I). �

Lemma 10. Each of the 64 type (I, II) boards corresponds to a puzzle.

Proof. Consider a board of type (I, II) such as that in Figure 17, and remove the
entries. Without loss of generality, suppose the top two blocks are from class I
and the lower two from class II. Since blocks from class I can only be filled in
one way and blocks from class II have uniquely determined 1 and 4 entries, the
only entries not uniquely determined by inequalities are the 2 and 3 entries on the
blocks from class II. However, these entries are placed diagonally in their block, so
each column has only one unfilled cell. Thus, by standard Shidoku rules, there is
only one possible entry that can be placed in each unfilled cell, leading to a unique
solution for the unfilled board. To count these puzzles, we will start by counting
boards with blocks placed as in Figure 17. In the top-left block, there are four ways
to place the 1 entry, then the 3 entry must be diagonal from 1. There are two ways
to place the remaining 2 and 4 entries. In both the top-right block (class I) and the
class II block on the bottom-left, we have two choices for placing 1 so that it isn’t
in the same row or column as the 1 in the first block. Once those choices are made,
the placement of the other entries in those blocks is uniquely determined. All of
the entries in the last block are uniquely determined, and once again we finish by
writing in the inequalities. Thus there are (4)(2)(2)= 16 puzzles of type (I, II) in
the form described, however, since each of these puzzles may be rotated 90◦, 180◦,
or 270◦ to create new puzzles, there are 64 puzzles of this type. �

Lemma 11. There are 64 type (I, III) puzzles.

Proof. As in the previous case, we will consider a board of type (I, III) such as
that in Figure 18 with class I blocks on top and class III below. Again, the class I
blocks have a unique solution. The blocks from class III all have the entry 2 placed
diagonally from 1, with 3 and 4 on the other diagonal. Since entries 1 and 2 must
be in different columns in the class III blocks, the two blocks from class I must be
oriented so entries 1 and 2 are also in different columns to avoid contradiction with
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1

1

2
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3
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4

1, 2 in different columns

Figure 18. Type (I, III) example.

the class III blocks. Furthermore, we recall that each column in a class III block
contains both a maximal and minimal cell. Each column of the board contains
either a 1 or a 2 in the top two blocks; the other is placed in the minimal cell in that
column. Similarly, each column already contains either a 3 or a 4; the other must
go in the remaining cell, which is a maximal cell. Thus each cell is filled uniquely,
and the board corresponds to a puzzle of type (I, III). We count the puzzles as in
the previous lemma: four ways to fill the first block, two ways to fill blocks to right
and below, then one way to complete the last block. Including rotations, there are
64 type (I,III) puzzles. �

Lemma 12. There are 64 type (II, III) puzzles.

Proof. Suppose our board has class II blocks on top and class III blocks below, such
as in Figure 19. The entries are uniquely placed in the top blocks. As argued in
the proof of Lemma 11, there is a maximal and minimal cell in each column of the
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Figure 19. Type (II, III) example.
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4
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uniquely placed entries

Figure 20. Type (II, II) example.

bottom blocks. Since the 1 entries have already been placed in two of the columns
of the puzzle, the minimal entries in each of the remaining columns on the lower
band must contain 1 entries. Similarly, the 4 entries have already been placed in
two columns; the maximal entries in each of the remaining columns on the lower
band must contain 4 entries as well. There are now two remaining cells in each
bottom block. These cells are adjacent, and thus the 2 entry is placed in the lesser
of the cells, while the 3 is placed in the greater of the two. So the bottom blocks
are uniquely filled in. Now, returning to the top blocks we see that there is only
one remaining unfilled cell in each column. Therefore, there is only one possible
entry for each cell, which completes the unique solution, so the type (II, III) board
corresponds to a puzzle.

There are four choices in placing the 1 in the top-left class II block; after that
the 4 must be placed diagonally from 1. The 1 and 2 entries cannot be in the same
column, since 1 and 2 must be in different columns in the class III block below it,
so the placement of the 2 and 3 entries in the first block is uniquely determined.
There are two choices for orienting each of the blocks adjacent to the top-left block,
and one way to complete the remaining block. Thus there are (4)(2)(2)= 16 ways
to fill in the board, and taking into consideration the 4 possible rotations there are
64 puzzles. �

Lemma 13. Boards of type (II, II) do not correspond to puzzles.

Proof. Consider a block from class II. The 1 and 4 elements are uniquely determined,
but there are two remaining cells which contain precisely the same inequality set.
Thus, given any class II block, it is not possible to identify a unique placement of
either the 2 or the 3 entries. As we see in Figure 20, even when the 1 and 4 entries
are placed in a type (II, II) board we still have two choices for placing 2 and 3, and
therefore removing the entries does not create a puzzle. �

Lemma 14. Boards of type (III, III) do not correspond to puzzles.

Proof. Class III blocks each have two minimal and two maximal cells. Regardless
of how we orient the blocks in a type (III, III) board, when we remove the entries
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Figure 21. Type (III, III) example.

the unfilled board will have two minimal cells in each row and column. As seen
in Figure 21, we have two choices for placing the 1 entry in the first block, which
then determines the placement of the remaining 1 entries as well as the 2 entries.
Similarly, having two maximal cells in each row and column will result in two
different ways to place the set of 3 and 4 entries. Thus the unfilled board has 4
solutions and is not a valid puzzle. �

Combining these six lemmas, we can now make a statement about Greater Than
Shidoku puzzles.

Theorem 15. There are 224 Greater Than Shidoku puzzles.

7. Further explorations

When creating Greater Than puzzles of any size, we must avoid the use of blocks
that contain cycles because these blocks are unsolvable. We have shown that
every acyclic inequality block is solvable, thus the acyclic Greater Than Shidoku,
Rokudoku, and Sudoku blocks that were counted in Section 3 may all potentially
be used to create Greater Than puzzles. Nevertheless, we have also seen that not
all types of solvable blocks may be used together to form a valid puzzle. The
task of combining blocks to form puzzles becomes increasingly complex as the
size of the puzzle increases, and research related to standard Sudoku is not always
directly applicable. For example, Rosenhouse and Taalman [2011] showed that
there are 288 standard Shidoku boards, but those corresponding to types (II, II) and
(III, III) do not have a unique solution when the numbers are removed and only the
inequalities remain, so there are fewer Greater Than Shidoku puzzles than boards.
The equivalence relation defined on 2×2 acyclic blocks can also be applied to other
sets of m× n acyclic blocks (excluding reflection across the diagonals if m 6= n).
This will allow us to partition the sets of acyclic blocks into equivalence classes
that may facilitate our investigation, but Felgenhauer and Jarvis’ computer-aided
calculation [2006] of 6,670,903,752,021,072,936,960 standard 9×9 Sudoku boards
hints at the challenge presented by task.
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Spanning tree congestion of planar graphs
Hiu Fai Law, Siu Lam Leung and Mikhail I. Ostrovskii

(Communicated by Joseph A. Gallian)

This paper is devoted to estimates of the spanning tree congestion for some planar
graphs. We present three main results: (1) We almost determined (up to ±1) the
maximal possible spanning tree congestion for planar graphs. (2) The value of
congestion indicator introduced by Ostrovskii [Discrete Math. 310, 1204–1209]
can be very far from the value of the spanning tree congestion. (3) We find some
more examples in which the congestion indicator can be used to find the exact
value of the spanning tree congestion.

1. Introduction

Let G be a graph and let T be a spanning tree in G. We follow the terminology and
notation of [Clark and Holton 1991]. For each edge e of T , let Ae and Be be the
vertex sets of the components of T − e (see Figure 1). By eG(Ae, Be) we denote
the number of edges in G with one end vertex in Ae and the other end vertex in Be.
We define the edge congestion of G in T by

ec(G : T )= max
e∈E(T )

eG(Ae, Be).

The number eG(Ae, Be) is called the congestion in e. The name comes from the
following analogy. Imagine that edges of G are roads, and edges of T are those
roads which are cleaned of snow after snowstorms. If we assume that each edge in
G bears the same amount of traffic, and that after a snowstorm each driver takes the
corresponding (unique) detour in T , then ec(G : T ) describes the traffic congestion
at the most congested road of T . Clearly, it is interesting for applications to find a
spanning tree which minimizes the congestion.

MSC2010: primary 05C05; secondary 05C10, 05C35.
Keywords: dual graph, dual spanning tree, minimum congestion spanning tree, planar graph.
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T

e

T− e

e

eB

eA

Figure 1. Left: spanning tree T of a graph G. Right: subgraph
T − e of G. In this case, eG(Ae, Be)= 5.

We define the spanning tree congestion of G by

s(G)=min{ec(G : T ) : T is a spanning tree of G}. (1)

Each spanning tree T in G satisfying ec(G : T ) = s(G) is called a minimum
congestion spanning tree. The definitions of ec(G :T ) and s(G)were introduced and
their study initiated in [Ostrovskii 2004]. Closely related parameters were introduced
earlier in [Simonson 1987, p. 236; Khuller et al. 1993]. After the publication of
[Ostrovskii 2004], the spanning tree congestion became the object of active study.
As a result the spanning tree congestion was computed and estimated for many
families of graphs — see [Law and Ostrovskii 2010; Otachi 2011] for surveys of
such results and further references. Algorithmic issues of the problem were studied
in [Bodlaender et al. 2012; Löwenstein 2010; Otachi et al. 2010]. In [Löwenstein
2010, Section 5.6] and [Otachi et al. 2010] it was independently discovered that
the spanning tree congestion is computationally hard. The contents of the latter
were incorporated in [Bodlaender et al. 2012], which contains a systematic analysis
and the strongest known results on the algorithmic complexity of problems related
to the spanning tree congestion. In a note to Lemma 8, we mention what seems
to be the easiest known way to show that the spanning tree congestion problem is
NP-hard even for planar graphs.

In this paper we restrict our attention to the study of the spanning tree congestion
for planar graphs. In this case some additional tools are available, but computing
the spanning tree congestion is still NP-hard and offers some challenging problems.

The main results of this paper:

(1) We almost determined (up to ±1) the maximal possible spanning tree conges-
tion for planar graphs; see Section 3.

(2) The computational hardness of the spanning tree congestion problem makes us
interested in parameters which approximate the spanning tree congestion. We
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G*

G

T

T #

Figure 2. Left: The dual graph G∗ of a graph G. Right: the dual
tree T ] of a spanning tree T .

find that the value of the congestion indicator introduced in [Ostrovskii 2010]
is very far from the value of the spanning tree congestion for some graphs; see
Section 4.

(3) We find more examples in which the congestion indicator introduced in [Ostro-
vskii 2010] can be used to find the exact value of the spanning tree congestion;
see Section 5.

2. Dual graphs, indices and center-tail systems

In this section we introduce tools which can be used to estimate the spanning tree
congestion and which are available for planar graphs only. By a plane graph we
mean a planar graph whose planar drawing is fixed.

Definition 1. The dual graph G∗ of a plane graph G is defined to be the multigraph
whose vertices correspond to the faces of G, including the exterior face O . Two faces
are joined by an edge if and only if they have a common edge in their boundaries.
(If two faces have several common edges in their boundaries, the corresponding
edges are multiple edges.) Note that an edge e∗ ∈ E(G∗) corresponding to e∈ E(G)
joins the faces of G (equal to the vertices of V (G∗)) whose boundaries contain e. If
T is a spanning tree of G, then the dual tree T ] is defined as a spanning subgraph
of G∗ such that e∗ ∈ E(T ]) if an only if e /∈ E(T ) (see Figure 2). As is well known,
T ] is a spanning tree in G∗ (see [Lovász 2007, solution of Problem 5.23] for an
explanation).

Definition 2 [Ostrovskii 2010]. An edge e ∈ E(G) is said to be an outer edge of
G if it lies on the boundary of the exterior face. The index i(F, e), where F is a
bounded face and e is an outer edge, is defined to be the length of the shortest path
in G∗ which joins the exterior face O with F and satisfies the condition that e∗ is
the first edge in the path.
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Definition 3 [Ostrovskii 2010]. A center-tail system S in the dual graph G∗ of a
plane graph G consists of:

(1) A connected set C of vertices of G∗, which is called a center.

(2) A set of paths in G∗ which join some vertices of the center C with the exterior
face. Such a path is called a tail. The tip of a tail is the last vertex of the
corresponding path before it reaches the exterior face.

(3) An assignment of opposite tails for outer edges of G. This means that for each
outer edge e, a tail is assigned to be the opposite tail, which is denoted by
N (e) and its tip by t (e).

Definition 4 [Ostrovskii 2010]. The congestion indicator CI(S) of a center-tail
system S is defined as the minimum of three numbers:

(1) minF,H, f,h
(
i(F, f )+ i(H, h)+ 1

)
, where the minimum is taken over all pairs

F , H of adjacent vertices in the center C and over all pairs f , h of outer edges
with f 6= h. In the case where the center consists of just one vertex, we assume
that the minimum is∞.

(2) mine i(t (e), e)+ 1, where the minimum is taken over all outer edges of G.

(3) mine minF∈N (e) minẽ 6=e
(
i(F, e) + i(H, ẽ) + 1

)
, where the first minimum is

taken over all outer edges of G; the second minimum is over vertices F from
the path N (e) different from t (e) and the exterior face, and H is the vertex in
N (e) which follows immediately after F if one moves along N (e) from F to
t (e); and the third minimum is over all outer edges different from e.

Theorem 5 [Ostrovskii 2010]. Let S be any center-tail system in a connected planar
graph G. Then s(G)≥ CI(S).

Definition 6 [Ostrovskii 2010]. The absolute index i(F) of a face F is defined as
mine i(F, e), where the minimum is over all outer edges.

Theorem 7 [Ostrovskii 2010]. For each connected planar graph G with at least
two bounded adjacent faces, we have s(G) ≤ max

(
i(F)+ i(H)

)
+ 1, where the

maximum is over all pairs F, H of bounded faces which have a common edge in
their boundaries.

For the study of maximal spanning tree congestion, we make use of results on
graph radius. Recall that given a connected graph G, the radius is

rad(G)= min
x∈V (G)

max
y∈V (G)

dG(x, y). (2)

A vertex x for which the minimum in (2) is attained is called central. (Warning:
this notion of centrality is not related to the center-tail systems introduced above.)
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For planar graphs the spanning tree congestion is closely related to the widely
used notion of stretch; see [Peleg 2000, p. 166].

If H is a connected spanning subgraph in G, then its stretch is defined by

Stretch(H)= max
u,v∈V (G)

dH (u, v)
dG(u, v)

. (3)

The following observations can be found in [Ostrovskii 2010; Otachi et al. 2010;
Peleg 2000].

Lemma 8. Let G be a connected planar graph.

(a) If T is a spanning tree in G and T ] is its dual tree, then

ec(G : T )= Stretch(T ])+ 1.

(b) s(G)= infT ] Stretch(T ])+ 1, where the infimum is over all spanning trees T ]

in the dual graph G∗.

(c) minT ] Stretch(T ])≤ 2 rad(G∗).

Proof. It is easy to see that the number of detours using an edge e ∈ T is the length
of the cycle obtained by adding the edge e∗ to T ]. On the other hand, the length
of this cycle is exactly dT ](u, v)+ 1, where u, v are the ends of e∗. Therefore
ec(G : T )= Stretch(T ])+ 1, proving (a).

The statement (b) follows immediately from (a).
To prove (c) it suffices to observe that any breadth-first search (BFS) tree T ]

in G∗ rooted at one of its central vertices C satisfies Stretch(T ]) ≤ 2 rad(G∗).
(See [Rosen et al. 2000, Section 9.2.1] or [Nishizeki and Chiba 1988, p. 31] for
information on BFS trees.) To see the inequality Stretch(T ])≤ 2 rad(G∗) we need
only the defining property of a BFS tree in G∗ rooted at C : it is a spanning tree
in G∗ in which the distance between any vertex and C is the same as in G∗, and
therefore is ≤ rad(G∗). �

Note. Fekete and Kremer [2001] proved that the determination of the least t for
which a planar graph has a spanning tree T with Stretch(T )= t is NP-hard. Com-
bining this with Lemma 8 we get that the problem of computation of s(G) for
planar graphs is also NP-hard.

3. On the maximal spanning tree congestion of planar graphs

The purpose of this section is to find sharp estimates of the quantity

µp(n)=max{s(G) : G is a planar graph with n vertices}.

Graphs G with n vertices satisfying s(G)=µp(n) can be called the most congested
planar graphs with n vertices.
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Note. A consequence of Euler’s formula is that a simple planar graph with n ≥ 3
vertices has at most 3n− 6 edges. As n− 1 of them are in a spanning tree, they
are detours for themselves. Therefore the spanning tree congestion cannot exceed
3n− 6− (n− 1)+ 1. Thus µp(n) ≤ 2n− 4. Our purpose is to get more precise
estimates for µp(n).

Theorem 9. Let n ≥ 5. If n is even, then n ≤ µp(n) ≤ n + 1. If n is odd, then
n− 1≤ µp(n)≤ n.

The proof of this theorem naturally splits into two parts: estimates from above
(Section 3.1) and estimates from below (Section 3.2).

Problem 10. Fill the gap of size 1 between the upper and lower estimates in
Theorem 9.

3.1. Estimates from above. We need some terminology and notation of [Diestel
2000]. A plane graph is called a plane triangulation if all faces of it are triangles.
Adding some edges (but not vertices) to an arbitrary planar graph G we get a plane
triangulation G t which we call a triangulation of G. It is easy to construct examples
showing that G t , in general, is not uniquely determined by G.

Lemma 11. rad G∗t ≥ rad G∗.

Proof. To see this, it suffices to observe that G∗ is a minor of G∗t , obtained if sets
of triangular faces of G t that originated from the same face of G are considered as
branch sets (see [Diestel 2000, p. 16] for minor-related definitions). It is clear that
such sets are connected in G∗t and the corresponding minor is isomorphic to G∗.
Since in creating this minor we did not delete any edges or vertices, the radius of
the resulting graph can only be less than the radius of G∗t , and we get the desired
inequality. �

The following two facts are well known; see, for example, [Diestel 2000, Sec-
tion 4.4; Exercise 40 in Chapter 4].

Lemma 12. A triangulation of a planar graph with at least 4 vertices is 3-connected.

Lemma 13. The dual graph of a 3-connected planar graph is a 3-connected planar
graph.

Finally we need the following tight estimate for a radius of a 3-connected graph
obtained in [Iida 2007]. (See [Egawa and Inoue 1999; Harant 1993; Harant and
Walther 1981; Iida and Kobayashi 2006; Inoue 1996] for preceding and related
estimates.)

Theorem 14 [Iida 2007]. Let G be a 3-connected graph with radius r . Then

|V (G)| ≥ 4r − 4.
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Lemma 15. Let n ≥ 4. Then

µp(n)≤
{

n+ 1 if n is even,
n if n is odd.

Proof. Let G be a plane graph with n vertices satisfying s(G) = µp(n). By
Lemma 12 the graph G t is 3-connected. By Lemma 13 the graph G∗t is also 3-
connected. An easy computation with Euler’s formula shows that G∗t has 2n− 4
vertices. By Theorem 14 we get rad(G∗t ) ≤ 2n/4 = n/2. By Lemma 11 we get
rad(G∗)≤ n/2. Therefore rad(G∗)≤ n/2 if n is even and rad(G∗)≤ (n− 1)/2 if
n is odd. Combining these inequalities with Lemma 8 we get

s(G)≤
{

n+ 1 if n is even,
n if n is odd.

�

3.2. Estimates from below. For n ≥ 5, we let Bn be graphs of bipyramids whose
bases are (n− 2)-gons. These graphs can be constructed in the following way: we
start with Cn−2 (cycle of length n− 2), then introduce two more vertices and join
each of them with each of the vertices in the cycle.

Lemma 16. Let n ≥ 5. Then

s(Bn)=

{
n if n is even,
n− 1 if n is odd.

(4)

Proof. Observe that the dual of Bn is B∗n = Cn−2× K2.
Denote by `(n) the case-defined function given by the right-hand side of (4). By

the proof of Lemma 8, in order to prove s(Bn)≥ `(n) it suffices to show that for an
arbitrary spanning tree T ] in B∗n there is an edge e∗ in B∗n which is not in T ] and
such that T ]

∪ {e∗} contains a cycle of length ≥ `(n). The inequality s(Bn)≤ `(n)
will also follow from our argument, but it is clear that the main point of Lemma 16
is the lower estimate.

An edge in B∗n is called vertical if its end vertices are (c, k1) and (c, k2), where
c is a vertex of Cn−2 and k1, k2 are vertices of K2; otherwise, it is horizontal. Two
horizontal edges form a couple if they correspond to the same edge in Cn−2.

If all vertical edges are in T ], then there is a couple e∗, f ∗ of horizontal edges
which are both not in T ] (otherwise T ] would contain a cycle). Clearly, at least
one of e∗, f ∗ creates together with edges of T ] a cycle of length at least n ≥ `(n).

Now suppose that there are vertical edges which are not in T ]. Let e∗ be one
of the vertical edges in E(B∗n ) \ E(T ]). Then T ]

∪ {e∗} contains a cycle. If this
cycle contains an edge from each couple of the horizontal edges, we say that it
goes around. It is clear that if the cycle contained in T ]

∪ {e∗} goes around, then it
has length ≥ n ≥ `(n). If it does not go around, then it contains exactly one more
vertical edge.
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e*

(e )ψ *

Figure 3. Different sides of e∗ and ψ(e∗) in B∗8 .

Therefore, if there are no cycles of the described type which go around, then
there is a mapping ψ from the set of vertical edges which are not in E(T ]) to the
set of vertical edges which are in E(T ]) satisfying this condition: all couples of
horizontal edges on one of the “sides” between e∗ and ψ(e∗) belong to T ]. To
clarify the meaning of the word “sides” in the previous sentence we show different
sides in Figure 3 using dashed and continuous lines, respectively, attribution of
vertical edges to sides does not matter; the tree T ] is shown using thick lines, dashed
or continuous. In this way, vertical edges split into groups having the common
image under ψ . We include f ∗ in the group of edges e∗ for which ψ(e∗) = f ∗.
It is clear that all vertical edges between e∗ and ψ(e∗) which are on the suitable
side (see above) belong to the same group as e∗. Therefore, the groups partition the
vertex set of the cycle Cn−2 into connected pieces.

If there is just one connected piece, then there is just one vertical edge in E(T ]),
and all but two horizontal edges are in E(T ]). It is clear that the missing horizontal
edges should form a couple (otherwise there would be a vertical edge e∗ for which
the cycle in T ]

∪ {e∗} goes around). It is in this case that we get a weaker estimate
for odd n.

In fact, if the end vertices of the only vertical edge of T ] divide those pieces
of Cn−2 × {k1} and Cn−2 × {k2} which are in T ] into parts of equal length (this
is possible if n is odd), then the maximal length of the cycle in T ]

∪ {e∗} over
e∗ ∈ E(B∗n ) \ E(T ]) is n− 1. (Otherwise, the longest cycle in T ]

∪ {e∗} has length
at least n+ 1.)

On the other hand, if n is even, the cycle obtained by adding to E(T ]) the vertical
edge which is most distant from the one contained in E(T ]) produces a cycle of
length at least n.

Now we suppose that there are at least two connected pieces. We consider
horizontal edges between the neighboring intervals. It is easy to check that if there
are at least three intervals, there is a pair of neighboring intervals with no edges in
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T ] between them. If there are two intervals, then on one side there are no edges in
T ] between them.

Let e∗1 and e∗2 be the corresponding missing horizontal edges. Then E(T ])∪{e∗1}
or E(T ])∪ {e∗2} contains a cycle which contains vertical edges and therefore has
length ≥ n ≥ `(n). �

4. Limitations of center-tail systems

In this section we show that for some classes of planar graphs the estimates of the
spanning tree congestion given by center-tail systems (see Theorem 5) are far from
being sharp. More precisely we prove the following result.

Theorem 17. There exists a sequence {Gn}
∞

n=1 of planar graphs such that

lim
n→∞

s(Gn)=∞,

but for any center-tail system Sn in Gn , we have CI(Sn)≤ 6.

Note. By a center-tail system for a planar graph we mean a center-tail system of
any of its drawings. In particular, any of the faces of the graph can be regarded as
its exterior face.

Proof. Before defining the graphs Gn , it is convenient to define a two-parametric
family of graphs, which we denote {Qn,m}

∞

n,m=1. To construct the graph Qn,m we
start with a family of 2n+m concentric circles. They cut out of the plane 2n+m−1
concentric annuli. We cut both the outer and the inner annuli into 4 pieces each
using radial cuts (see Figure 4). We next cut annuli, both from the inner and the
outer side, into 42 equal pieces using radial cuts. We make these radial cuts in
such a way that they extend the radial cuts done in the first step (see Figure 4).
Continuing, for each k ≤ n we cut the k-th annuli, both from the inner and the outer

Figure 4. A planar graph Q3,2.
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Figure 5. A planar graph Q3,2 with pieces of the dual graph needed
to estimate the congestion indicator.

side, into 4k equal pieces using radial cuts. We cut the remaining m− 1 annuli in
the same way as the annuli in the last set, that is, using 4n radial cuts. In Figure 4,
we show the resulting graph in the case where n = 3 and m = 2.

Then Gn is defined as Qn,4n−2. Now we estimate the congestion indicator. Recall
that CI is a minimum of three terms, one of which is

min
e

i(t (e), e)+ 1.

Clearly this term, in the case where the face playing the role of the exterior face is
denoted by w, does not exceed

max
u,v

d(u, v)+ 2, (5)

where the maximum is over pairs u, v of vertices in G∗n , both of which are adjacent
to w, and d is the graph distance in G∗n −w. To estimate from above the value of
(5), we observe that vertices adjacent to w in G∗n belong to a cycle in G∗n−w whose
length is between 4 and 9. See Figure 5, in which we denote several possible choices
of w by w0, w1, w2, w3, and w4, and denote the cycles described in the previous
sentence by N0, N1, N2, N3, and N4, respectively. It is clear that the distance
between any two vertices of such a cycle of length ≤ 9 does not exceed 4, so the



SPANNING TREE CONGESTION OF PLANAR GRAPHS 215

maximum in (5) does not exceed 6. We get the desired estimate: the congestion
indicator of any center-tail system in any of the graphs Qn,m , and therefore in any
of the graphs Gn , does not exceed 6.

Now we turn to spanning tree congestion estimates. Here we use the approach
suggested in [Ostrovskii 2004] using centroids and isoperimetric estimates.

Definition 18 [Jordan 1869]. Let u be a vertex of a tree T . Let the weight of T at
u be the maximal number of vertices in components of T − u. A vertex v of T is
called a centroid vertex if the weight of T at v is minimal.

Let T be an optimal tree in Gn so that ec(Gn : T )= s(Gn). Let u be a centroid
of T . Since the maximum degree of Gn is 4, there are at most 4 edges incident
with u. Let

OGn =

⌈
|V (Gn)|−1

4

⌉
.

Since u is a centroid, it is not hard to see that there is a component of T − u
whose vertex set A satisfies

OGn ≤ |A| ≤
|V (Gn)|

2
.

As the edge connecting u with A is used in eGn (A, V (Gn)− A) detours, any lower
bound of this number, where A runs over sets of size within the above range, is a
lower bound of s(Gn).

We use the following special case of the isoperimetric result of Bollobás and
Leader [1991, Theorem 3]. Let R(k) be the graph with vertex set

[k]2 = {0, 1, 2, 3, . . . , k− 1}2

in which x = (x1, x2) is adjacent to y = (y1, y2) if and only if |xi − yi | = 1 for
some i and x j = y j for j 6= i .

Theorem 19. Let B be a subset of [k]2 with |B| ≤ k2/2. Then

eR(k)(B, B̄)≥min{2
√
|B|, k}. (6)

Let us introduce the function

fk(t)=min{k, 2
√

t} for t ∈
[
0, k2

2

]
.

Observe that the graph Gn has a subgraph Sn isomorphic to R(4n). Indeed, we
may take Sn to contain all vertices of the 4n central circles and all the corresponding
edges except one “radial” set of 4n edges. The subgraph Sn has 4n

× 4n
= 42n

vertices. In addition, Gn has 2(4+ 42
+ · · ·+ 4n−1)= 8

3(4
n−1
− 1) vertices on the

2(n− 1) circles which are not in Sn . It is clear that the intersection of the set A
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with the vertex set of Sn has at most 2 · 42n−1
+

4
3(4

n−1
− 1) vertices. We need also

the inequality
|A∩ V (Sn)| ≥ 42n−1

− 2(4n−1
− 1).

To get this inequality we recall that

|A| ≥
⌈
|V (Gn)|−1

4

⌉
≥ 42n−1

+
2
3(4

n−1
− 1)− 1

4 ,

and observe that

|A∩ V (Sn)| ≥ |A| − (|V (Gn)| − |V (Sn)|)

≥ 42n−1
+

2
3(4

n−1
− 1)− 1

4 −
8
3(4

n−1
− 1)

= 42n−1
− 2(4n−1

− 1)− 1
4 .

We may drop 1
4 since |A∩ V (Sn)| is an integer.

Applying Theorem 19 to the smaller of A∩V (Sn) and V (Sn)\ A, we get that the
number of edges joining A∩V (Sn) with V (Sn)\ A can be estimated from below by

min
t
{ f4n (t)},

where t ranges from min
{
42n−1

− 2(4n−1
− 1), 42n

−
(
2 · 42n−1

+
4
3(4

n−1
− 1)

)}
to 2 · 42n−1. It is clear that these minima approach ∞ as n → ∞. Therefore
limn→∞ s(Gn)=∞. This completes the proof of the theorem. �

Note. It is known that for some planar graphs, center-tail systems and the cor-
responding congestion indicators give sharp lower bounds of the spanning tree
congestion. However, as the above example shows, in some cases the lower bound
given by center-tail systems is very far from the actual value of the spanning tree
congestion.

Problem 20. Is it possible to define a flexible version of the congestion indicator
(FCI) such that for some function f : N→ N and any planar graph G we have
s(G)≤ f (n) if the maximal possible value of FCI (on the corresponding analogue
of the center-tail system in G) has value ≤ n?

5. Computing spanning tree congestion by center-tail systems

Center-tail systems were introduced in [Ostrovskii 2010] as a tool to compute or
estimate the spanning tree congestion of some plane graphs. In [Ostrovskii 2010]
the computation was performed for the triangular grids. Another grid for which
center-tail systems give the exact value of the spanning tree congestion was found
in [Bodlaender et al. 2011, Theorem 3.7]. In this section we use the center-tail
systems and Theorems 5 and 7 to find the spanning tree congestion of other sets of
planar graphs.
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D3 D4 D5

Figure 6. A sequence of square-triangular graphs.

5.1. Square-triangular grids. Consider the sequence of square-triangular graphs
in Figure 6. In this figure, there is a vertex at each intersection of the line segments.
The spanning tree congestion of these graphs is computed in the next theorem.

Theorem 21. Let n ∈ N. Then

s(Dk)=

{
4n if k = 2n+ 1,
4n+ 3 if k = 2n+ 2.

Proof. Case 1. k = 2n+ 1, where n ∈N. We start by considering the graph D3 and
its center-tail system S3 shown in Figure 7. The center for the system S3 consists
of one vertex and is marked with the letter C . The tail whose tip points to the
upper-left corner is assigned as the opposite tail for the outer edges on the right
and at the bottom of D3. The tail with right-most tip is assigned as the opposite
tail for those outer edges on the left. The tail with bottom-most tip is assigned to
those outer edges on top. It is easy to see that the congestion indicator CI(S3) (see
Definition 4) of the center-tail system S3 is the minimum of three numbers: (i)∞,

C

1

2

1

1

1

1

2

1

Figure 7. Left: D3 with a center-tail system S3. Right: absolute
indices for D3.
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C

Figure 8. D5 with a center-tail system S5.

(ii) 5 and (iii) 4. Hence CI(S3)= 4 and, by Theorem 5, s(D3)≥ 4. According to
Theorem 7, we have s(D3)≤ 4 (see the values of the absolute indices in Figure 7),
therefore s(D3)= 4.

Adding a row on each side of D3 gives us the graph D5. We consider what can
be regarded as a natural extension of S3 to S5; the only feature of this extension
which is not completely predictable is that the tail whose tip points to the upper-left
corner in S3 is now splitting into two tails in S5 (see Figure 8). The tail whose tip
points to the left is assigned to the outer edges on the right, and the tail whose tip
points upward is assigned to those outer edges at the bottom. Since the indices of
the central triangles increase by two as we add a row on each side of the graph, the
spanning tree congestion increases by four, so s(D5)= s(D3)+4= 4+4= 8. It is
clear by induction that s(D2n+1)= 4n for each n ∈ N.

Case 2: k = 2n+ 2. First we consider the graph D4 and its center-tail system S4,
described as follows. The center of S4 consists of two vertices which are labeled C
(see Figure 9). There are four tails, which are drawn in Figure 9 with thick lines.
The assignments of opposite tails for outer edges are done in the natural way. For

C

C

1
1

2
1

2
1

1
2

3
3

2
1

1
2

1
2

1
1

Figure 9. Left: center-tail system S4. Right: absolute indices for
D4 and a minimum congestion spanning tree for D4.
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C

C

Figure 10. D6 with a center-tail system S6.

example, the tail whose tip points to the left is assigned to the outer edges on the
right. The tail whose tip points upward is assigned to the outer edges at the bottom
of the graph.

It is easy to see that the congestion indicator CI(S4) of the center-tail system S4

is the minimum of the following three numbers: (i) 3+3+1= 7, (ii) 6+1= 7 and
(iii) 7. Hence CI(S4) = min{7, 7, 7} = 7. By Theorem 5, s(D4) ≥ 7. The values
of absolute indices i(F) for D4 are shown in Figure 9. According to Theorem 7,
s(D4) ≤ max

(
i(F)+ i(H)

)
+ 1 = 3+ 3+ 1 = 7, where F and H are bounded

faces with an edge in common, and the maximum is taken over F and H . Hence,
s(D4)= 7. Following the argument of the proof of Theorem 7 in [Ostrovskii 2010],
we sketch one of the spanning trees for which the congestion is 7; see Figure 9.

By adding one row on each side of the graph, we obtain the square-triangular
grid D6 (see Figure 10). Addition of a row on each side increases the indices
of central triangles by two. Straightforward computation shows that all of the
estimates increase by 4, hence s(D6)= s(D4)+ 4= 11. We use induction to show
that s(D2n+2)= 4n+ 3 for each n ∈ N. �

H1 H2 H3

Figure 11. A sequence of hexagonal grids.
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5.2. Hexagonal grids. A hexagonal grid Hk is constructed following the pattern
shown in Figure 11. Our next purpose is to compute s(Hk).

In fact, the following theorem was stated in [Castejon et al. 2007], but its proof
was insufficient. The authors of [Castejon et al. 2007] wrote that the proof is the
same as their proof for rectangular grids; errors of their proof for rectangular grids
were described in [Ostrovskii 2010, p. 1209]. We provide a proof of this theorem
using center-tail systems.

Theorem 22. Let n ≥ 0 be an integer. Then

s(Hk)=


2n+ 2 if k = 3n+ 1,
2n+ 3 if k = 3n+ 2,
2n+ 3 if k = 3n+ 3.

Proof. Case 1: k = 3n + 1. Since H1 is isomorphic to C6, it is easy to see that
s(H1)= 2.

By adding one row on each side of H1, we obtain the graph H4 (see Figure 12).
Here the center of the center-tail system S4 consists of one vertex, labeled C . The
tails are drawn with thick lines. The assignments of opposite tails to the outer
edges are done in the natural way. The tail whose tip points to the left, downward
and upward is assigned to outer edges on the right, the left and at the bottom,
respectively (see Figure 12). According to the center-tail system S4, we have the
three numbers defined in Definition 4: (i)∞, since there is only one face in the
center, (ii) 3+1= 4, witnessed by an outer edge e in the middle of any of the three
sides since i(t (e), e) is 3, and (iii) 2+ 1+ 1= 4. We pick an outer edge e in the
middle of one of the three sides, let F = C , and H be the face that contains t (e).
Then i(F, e)= 2 and i(H, ẽ)= 1, where ẽ is an outer edge on the boundary of the
face that contains H . So CI(S4) = min{∞, 4, 4} = 4. By Theorem 5, s(H4) ≥ 4.

C

1

1 1

1

1 111

1 2

Figure 12. Left: H4 with center-tail system S4. The shaded region
represents the additional rows added on each side of H1. Right:
absolute indices for H4 and minimum spanning congestion tree
for H4.
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CC

C

11

1

Figure 13. Left: H2 with center-tail system S2. Right: absolute
indices for H2.

The absolute indices of faces are shown in Figure 12 (right). The sum of indices of
adjacent faces never exceeds 3. Therefore, by Theorem 7, we have s(H4)≤ 4. So
s(H4)= 4.

Now we prove that
s(H3n+1)= 2n+ 2 (7)

for each n ∈ N. We use induction. We have shown that (7) holds for n = 0, 1. It
remains to show that s(H3n+1)= 2n+ 2 implies s(H3(n+1)+1)= 2(n+ 1)+ 2. To
see this, we observe that if an additional row is added on each side of H3n+1, then
each side has three more hexagons and the graph becomes H3n+1+3 = H3(n+1)+1.
An increment of one row on each side increases the indices of central vertices by
one, so each of the three numbers defined in Definition 4, as well as the number
max

(
i(F)+ i(H)

)
+ 1 (see Theorem 7), increase by two. Hence, s(H3(n+1)+1)=

2(n+ 1)+ 2.

Case 2: k = 3n + 2. Now consider the graph H2 with the center-tail system S2

(see Figure 13). The center of S2 consists of three vertices labeled C . The tails are
represented by the arrows; their tips correspond to the arrow heads. The tail whose
tip points to the right, downward and upward is assigned to the outer edges on the
left, the right and the bottom, respectively. According to Definition 4, CI(S2) is the
minimum of the following three numbers: (i) 1+1+1= 3, since the distance from
the exterior face O to any face that contains a vertex of the center is 1. (ii) 2+1= 3,
since every tail has length 1, and the distance from O to any face that contains a
vertex of the center is also 1. (iii) 1+ 1+ 1= 3, based on the same reasoning as
in (ii). So CI(S2) = min{3, 3, 3} = 3. By Theorem 5, s(H2) ≥ 3. Since there are
only three faces in H2 and each face is adjacent to one another, by Theorem 7, we
have s(H2)≤ 1+ 1+ 1= 3. Therefore, s(H2)= 3.

We can obtain the graph H5 from H2 by simply adding a row on each side of H2

(see Figure 14). Notice that the configuration of the center-tail system S5 for H5 is
different than S2. The center of S5 also consists of three vertices (labeled C), and
they are located in the middle of the graph (see Figure 14). The tails are drawn with
thick lines. The assignment of opposite tails to the outer edge is done in the natural
way. The tail whose tip points to the left, downward and upward is assigned to
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C

C C

Figure 14. H5 with center-tail system S5. The shaded region
represents the additional rows added on each side of H2.

the outer edges on the right, the left and the bottom, respectively. By Definition 4,
CI(S5) is the minimum of (i) 2+2+1= 5, (ii) 4+1= 5 and (iii) 5. By Theorem 5,
s(H5)≥ CI(S5)= 5, and by Theorem 7, s(H5)≤ 2+ 2+ 1= 5. So s(H5)= 5. As
in the previous case, we can use the natural extensions of the center-tail system S5

to prove that s(H3n+2)= 2n+ 3 for each n ∈ {0} ∪N.

Case 3: n = 3n+3. The hexagonal grid H3 and the center-tail system S3 are shown
in Figure 15. The center of S3 consists of three vertices, labeled C . The tails for the
system are drawn with thick lines. The assignments of opposite tails to the outer
edges are natural. The tail whose tip points to the right, upward and downward is
assigned to the outer edges on the left, the bottom and the right, respectively (see
Figure 15). The congestion indicator CI(D3) for H3 is determined as the minimum
of the following three numbers defined in Definition 4: (i) 1+1+1= 3, (ii) 3+1= 4
and (iii) 2+ 1+ 1= 4. Hence, by Theorem 5, s(H3)≥ CI(S3)= 3. According to
Theorem 7, s(H3)≤ 1+ 1+ 1= 3 (see Figure 15). So s(H3)= 3.

The graph H6 can be obtained by adding a row on each side of the graph H3.
The configuration of the center-tail system S6 is shown in Figure 16, where the

C
C

C

1

1 1

11 1

Figure 15. Left: H3 with center-tail system S3. Right: absolute
indices for H3.
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C
C

C

Figure 16. H6 with center-tail system S6. The shaded region
represents the additional rows added on each side of H3.

assignment of opposite tail to the outer edges is done in the obvious and natural
way, that is, each tail is assigned to the outer edges in the opposite direction. By
Definition 4, CI(S6) is the minimum of (i) 2 + 2 + 1 = 5, (ii) 5 + 1 = 6 and
(iii) 3 + 2 + 1 = 6. By Theorem 5, s(H6) ≥ CI(S6) = 5, and by Theorem 7,
s(H6) ≤ 2+ 2+ 1= 5. So s(H6)= 5. Using induction (as in the previous cases)
we get s(H3n+3) = 2n + 3 for each n ∈ {0} ∪ N. This concludes our proof of
Theorem 22. �

5.3. Rectangular grids. Let Rm,n denote the rectangular grid consisting of m hori-
zontal lines and n vertical lines. The purpose of this section is to show that center-tail
systems can be used to prove the following result of Hruska.

Theorem 23 [Hruska 2008]. Suppose m < n, where m and n are natural numbers.
Then

s(Rm,n)=

{
m if m is odd,
m+ 1 if m is even.

Proof. Case 1: m is odd.

Subcase 1: n is also odd. As an instructive example, we consider R5,7 with the
center-tail system S5,7 as shown in Figure 17. The center of S5,7 consists of four
vertices, labeled C . Each tail is assigned to the diagonally opposite outer edges, for
example, the tail which is on the left half of the graph and whose tip points upward
is assigned to the outer edges at the bottom of the right half of the graph.

The three numbers corresponding (according to Definition 4) to the center-tail
system Sm,n , m < n, m and n are odd, are (i) (m − 1)/2+ (m − 1)/2+ 1 = m;
(ii) m + 1; and (iii) m + 1. Hence, CI(Sm,n) = m in the described case. Then by
Theorem 5, s(Rm,n) ≥ m. On the other hand, by Theorem 7, the values of the
absolute indices (see Figure 17 for the absolute indices in the case R5,7) imply that
s(Rm,n)≤ m. Thus s(Rm,n)= m if both m and n are odd and m < n.
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C

C

C

C

1 1 1 1 1 1

1 2 2 2 2 1

1 2 2 2 2 1

1 1 1 1 1 1

Figure 17. Left: R5,7 with center-tail system S5,7. Right: absolute
indices for R5,7 and a minimum spanning congestion tree for R5,7.

C

C

Figure 18. R5,8 with center-tail system S5,8.

Subcase 2: m is odd and n is even. An instructive example of this type is shown
in Figure 18.

We assign the tail pointing upward and downward to the outer edges at the bottom
and the top, respectively. Assignments of the tails to the vertical outer edges are
the same as before. It is easy to see that the congestion indicator of this center-tail
system is equal to 5 in the case of R5,8 and m in general. Also, it is easy to see
that computing the absolute indices (as in Figure 17), we get that s(Rm,n)= m in
Subcase 2.

Case 2: m is even. As instructive examples, we consider the cases R6,9 and R6,10

(see Figure 19). The center-tail systems S6,9 and S6,10 are also shown in Figure 19.
The centers of S6,9 and S6,10 consist of two vertices, labeled C . The tails S, T , U ,
V are assigned to the outer edges in the regions S, T, U, V, respectively. Finally,
the tail whose tip points to the left and the right is assigned to those outer edges
on the right and the left, respectively. In this case, the three numbers defined in
Definition 4 are (i) 3+3+1= 7, (ii) 6+1= 7 and (iii) 6+1= 7. So CI(S6,9)= 7
and hence, by Theorem 5, s(R6,9)≥ 7 and s(R6,10)≥ 7. By Theorem 7, we have
s(R6,9)≤ 7 and s(R6,10)≤ 7. Thus s(R6,9)= s(R6,10)= 7. Observe that the length
of the longest side of the rectangular grid does not play an important role in this
computation, since we assume n > m. It is clear that similar center-tail systems
can be used to show that s(Rm,n) = m + 1 for any even m and any n satisfying
n > m. �
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C

S T

U V

C

V U

T S

C

S T

U V

C

V U

T S

Figure 19. Left: R6,9 with center-tail system S6,9. Right: R6,10

with center-tail system S6,10.
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Convex and subharmonic functions on graphs
Matthew J. Burke and Tony L. Perkins

(Communicated by Ronald Gould)

We explore the relationship between convex and subharmonic functions on dis-
crete sets. Our principal concern is to determine the setting in which a convex
function is necessarily subharmonic. We initially consider the primary notions
of convexity on graphs and show that more structure is needed to establish the
desired result. To that end, we consider a notion of convexity defined on lattice-
like graphs generated by normed abelian groups. For this class of graphs, we are
able to prove that all convex functions are subharmonic.

1. Introduction

Classical analysis provides several equivalent definitions of a convex function, which
have led to several nonequivalent concepts of a convex function on a graph. This is
not the case for subharmonic functions, where there appears to be a consensus on
how to define subharmonic functions on graphs. In the real variable counterpart,
all convex functions are subharmonic. It is the aim of this paper to investigate this
relationship in the discrete setting.

We show that in the setting of weighted graphs over a normed abelian group,
one can prove analogs of some classical analysis theorems relating convexity
to subharmonic functions. In particular: all convex functions are subharmonic
(Theorem 13); for a fixed point a ∈ X , the distance function d(x, a) is convex
(Lemma 15); and a set F is convex if and only if the distance function d(x, F)=
infy∈F d(x, y) is subharmonic (Propositions 14 and 17).

For a discrete set with metric, there is generally one straightforward way to
define convex sets and convex functions on them. For completeness and ease of
reference, we present these in Section 2. The definitions we give (or something
equivalent to them) can be traced back at least to d-convexity [German et al. 1973;
Soltan 1972] and d-convex functions [Soltan and Soltan 1979], and possibly much
earlier. Graphs admit a natural metric — the length of the shortest path between
two vertices — which leads to one notion of convexity on graphs studied in [Soltan

MSC2010: primary 26A51; secondary 31C20.
Keywords: convex, subharmonic, discrete, graphs.
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1983; 1991]. The notion of d-convexity on graphs when d is the standard graph
metric is equivalent to the more common notion of geodesic convexity [Cáceres
et al. 2005; Farber and Jamison 1986].

Common to [Cáceres et al. 2005; Farber and Jamison 1986; Soltan 1983; 1991],
one starts with a graph and then puts a convexity theory on it by using the graph
metric. However, in Section 3 we show that convex sets and functions defined on
graphs with respect to the graph metric extend well for some, but not all, properties.

Another approach taken in Section 4 is to allow the vertices themselves to have
some underlying structure, for example, a normed abelian group, and force the
edges to be compatible with this metric. In the setting of a normed abelian group
there are many notions of a convex function (see [Kiselman 2004] and references
therein). One introduced in [Kiselman 2004] provides a natural extension of
geodesic convexity that makes use of the additional abelian group structure. In
this setting, convex and subharmonic functions are of particular interest to image
analysis, for example, [Kiselman 2004; 2005]. In this setting, we are able to prove
theorems analogous to several standard results from classical analysis.

2. Fundamental concepts

We will always assume that a graph is locally finite.

2.1. Convexity. Let X be an at most countable set with a metric d , that is,

d : X × X→ R,

with these properties:

(i) d(x, y)≥ 0 for all x, y ∈ X with d(x, y)= 0 if and only if x = y.

(ii) d(x, y)= d(y, x).

(iii) d(x, y)≤ d(x, z)+ d(z, y).

Traditionally, a set A is convex if for all points x, y ∈ A every point on the line
segment connecting them is also in A. Notice that a point z is on the line segment
connecting x, y ∈ A if and only if d(x, y)= d(x, z)+ d(z, y). Hence we take the
following definitions:

For A ⊂ X define

c1(A)=
{
z ∈ X : d(x, y)= d(x, z)+ d(z, y) for some x, y ∈ A

}
(this gives c1(A)=∅ when A=∅), and inductively set cn(A)= c1(cn−1(A)). Note
that 0= d(x, x)= d(x, x)+ d(x, x), hence A ⊆ c1(A)⊆ · · · ⊆ cn(A) for all n.
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Definition 1. Let A ⊂ X . The convex hull of A is

cvx(A)=
∞⋃

n=1

cn(A).

Naturally, the set A is said to be convex if cvx(A)= A. Clearly ∅ and X are convex.
We say that the point z is in between x and y whenever d(x, y)=d(x, z)+d(z, y)

is satisfied.

Lemma 2. A set A ⊂ X is convex if and only if A = c1(A).

Proof. If A = c1(A) then c2(A) = c1(c1(A)) = c1(A) = A. Hence by induction
cn(A)= A and so A =

⋃
cn(A)= cvx(A). Thus A is convex.

Suppose that A is convex. Then A = cvx(A) =
⋃

cn(A) ⊃ c1(A) ⊃ A. Thus
A = c1(A). �

Proposition 3. For all sets A, B ⊂ X ,

A ⊂ cvx(A), (1)

A ⊂ B⇒ cvx(A)⊂ cvx(B), (2)

cvx(A)= cvx(cvx(A)). (3)

Proof. (1) We’ve already shown that A ⊂ c1(A) ⊂ · · · ⊂ cn(A) for all n and so
A ⊂

⋃
cn(A)= cvx(A).

(2) For any sets X and Y , if X ⊂ Y then c1(X)⊂ c1(Y ). Indeed for any z ∈ c1(X)
there exists by definition x1, x2 ∈ X so that d(x1, x2)= d(x1, z)+ d(z, x2), but as
x1, x2 ∈ X ⊂ Y this shows that z ∈ c1(Y ). Then as A ⊂ B, we have c1(A)⊂ c1(B).
Then by induction, cn(A)⊂ cn(B). Therefore cvx(A)⊂ cvx(B).

(3) The claim cvx(A)= cvx(cvx(A)) amounts to saying that cvx(A) is convex. We
will use Lemma 2 to show this. Consider any z ∈ c1(cvx(A)). This means there
exists x, y ∈ cvx(A) =

⋃
cn(A) so that d(x, y) = d(x, z)+ d(z, y). However, as

A⊂ c1(A)⊂ c2(A)⊂ · · · ⊂ cn(A)⊂ · · · we know x, y ∈ cn(A) for some n, and so
z ∈ c1(cn(A))= cn+1(A)⊂ cvx(A). Hence c1(cvx(A))= cvx(A). �

The following proposition shows that our definition of convex hull is equivalent
to the usual one, that is, the convex hull of A is the intersection of all convex sets
that contain A.

Proposition 4. For any A ⊂ X , the set cvx(A) is the intersection of all convex sets
that contain A.

Proof. Let B⊂ X be a convex set containing A. As noted previously, A⊂ B implies
cvx(A)⊂ cvx(B). However, cvx(B)= B by hypothesis. Hence, cvx(A)⊂ B for
all convex B containing A. Therefore

cvx(A)⊂
⋂
{B : A ⊂ B and B convex}.
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As cvx(A) is convex and A ⊂ cvx(A), it must be included in the intersection
above. Thus ⋂

{B : A ⊂ B and B convex} ⊂ cvx(A). �

Proposition 5. If A and B are convex, then A∩ B is convex.

Proof. Let A and B be convex. Then by Lemma 2, A = c1(A) and B = c1(B).
We will show that c1(A∩ B)= c1(A)∩ c1(B)= A∩ B. We’ve already noted that
A∩ B ⊂ c1(A∩ B).

Suppose that z ∈ c1(A∩ B). Then there exists x, y ∈ A∩ B such that d(x, y)=
d(x, z)+ d(z, y). Hence z ∈ c1(A) and z ∈ c1(B), that is, z ∈ c1(A)∩ c1(B). As
A = c1(A) and B = c1(B), we now have z ∈ c1(A)∩ c1(B) = A ∩ B. Therefore
c1(A∩ B)⊂ A∩ B. Thus A∩ B = c1(A∩ B), and so A∩ B is convex. �

Proposition 6. Let I be an ordered set and take {Aα}, α ∈ I to be a collection of
convex sets in X where Aα ⊂ Aβ whenever α < β and α, β ∈ I . The set formed by
taking the union of Aα for α ∈ I is convex.

Proof. We must show that
⋃

Aα is convex. Consider the set c1
(⋃

Aα
)
. For

any z ∈ c1
(⋃

Aα
)
, we can find x, y ∈

⋃
Aα so that d(x, y) = d(x, z)+ d(z, y).

However, x, y ∈
⋃

Aα implies that x ∈ Aα and y ∈ Aβ for some α, β ∈ I . Without
loss of generality, we assume that α<β. By hypothesis, Aα⊂ Aβ . Hence x, y ∈ Aβ .
Since z satisfies d(x, y) = d(x, z)+ d(z, y) for x, y ∈ Aβ with Aβ convex, we
see that z ∈ c1(Aβ) = Aβ . As z was arbitrarily chosen from c1

(⋃
Aα
)
, we have

c1
(⋃

Aα
)
⊂
⋃

Aα.
By construction the reverse inclusion

⋃
Aα ⊂ c1

(⋃
Aα
)

is immediate. Hence
c1
(⋃

Aα
)
=
⋃

Aα. Recall from Lemma 2 that a set A is convex if and only if
A = c1(A). Therefore

⋃
Aα is convex. �

Definition 7. Let A be a convex set. A function f : A→ R is convex at the point
z ∈ A if

f (z)≤ d(y, z)
d(x, y)

f (x)+ d(x, z)
d(x, y)

f (y)

whenever z is in between x, y ∈ A, that is, d(x, y)= d(x, z)+ d(z, y). A function
is said to be convex on A if it is convex at every point in A. Furthermore, a function
is simply called convex when it is convex on the entire set X .

The vertices of a graph admit a natural metric defined as the length of the shortest
path between them. With this, the notions of convex and convex functions extend
naturally to all graphs; see [Cáceres et al. 2005; Farber and Jamison 1986; Soltan
1983; 1991].
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2.2. Subharmonic functions on a graph. Introductions to various aspects of the
theory can be found in [Bıyıkoğlu et al. 2007; Kiselman 2005; Soardi 1994; Woess
1994].

Consider a graph G. The vertices of this graph will be denoted X (to stay
consistent with above), which shall be the domain of our (sub)harmonic functions.
A function f : X→ R is said to be harmonic at x ∈ X if

f (x)= 1
deg(x)

∑
y∼x

f (y),

and subharmonic at x ∈ X if

f (x)≤ 1
deg(x)

∑
y∼x

f (y),

where deg(x) denotes the degree of x and y ∼ x means that y is adjacent to x . A
function is (sub)harmonic if it is (sub)harmonic at every point x ∈ X . Observe that
constant functions are always harmonic (thereby subharmonic too), and so these
classes of functions are never empty.

Lemma 8. If the graph X is connected, regular of degree two and triangle free,
then a subharmonicity is the same as convexity.

Proof. Each vertex z has only two neighbors x, y. As the graph is triangle free, we
have d(x, y)= 2. Hence

1
deg(z)

∑
ζ∼z

f (ζ )= 1
2

(
f (x)+ f (y)

)
=

d(y, z)
d(x, y)

f (x)+ d(x, z)
d(x, y)

f (y).

By definition f is subharmonic at z if f (z) is less than or equal to the left side
of the equation above, and f is convex at z if f (z) is less than or equal to the right
side of the equation above. Therefore subharmonicity and convexity are equivalent
when these conditions are met. �

We will also use a standard modification of the definition of subharmonic func-
tions on graphs to allow for positive edge weights. Namely, a function f : X→ R

is subharmonic at x if

0≤
∑
y∼x

e(x, y)[ f (y)− f (x)],

which with some arithmetic becomes

f (x)≤
1

Mx

∑
y∼x

e(x, y) f (y),

where e(x, y) = e(y, x) ≥ 0 is the edge weight and Mx =
∑

y∼x e(x, y). If the
edge weights are all taken to be one, then this definition is identical to the first.
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3. The distance is given by the graph metric

In this section we provide two simple theorems which show that for a large class of
graphs, convex functions are indeed subharmonic.

Theorem 9. Let z be a point in X. Suppose that deg(z) > 1 and that z is not part
of any triangle. If f is convex at z, then f is subharmonic at z. Consequently, if the
graph has no triangles or vertices of degree less than 2, then every convex function
is subharmonic.

Proof. Let B = {y ∈ X : y ∼ z} be all the vertices adjacent to z. By hypothesis, we
have deg(z) = |B| > 1, and so there are at least two vertices y1, y2 ∈ B. As z is
adjacent to both y1 and y2 and as z is assumed to not be a part of a triangle, y1 is not
adjacent to y2. Hence z is in between y1 and y2, that is, on a geodesic connecting
y1 and y2. In fact 2= d(y1, y2)= d(y1, z)+d(z, y2), with d(y1, z)= d(z, y2)= 1.
Hence, for all y1, y2 ∈ B, we have

2 f (z)≤ f (y1)+ f (y2) (4)

by convexity.
Now we sum the inequality (4) over all unordered pairs of points y1, y2 ∈ B.

Naturally, there are
(deg(z)

2

)
such pairs and each vertex y ∈ B will appear precisely

deg(z)− 1 times. (Recall B = {y : y ∼ z} and so |B| = deg(z).) Hence(
deg(z)

2

)
2 f (z)≤ (deg(z)− 1)

∑
y∼z

f (y),

which simplifies to

f (z)≤
1

deg(z)

∑
y∼z

f (y).

Thus f is subharmonic at z. �

Theorem 10. Let z be a point in X. If the neighbors of z can be partitioned into
pairs such that the vertices in each pair are nonadjacent, then a function being
convex at z implies that it is also subharmonic at z.

Proof. For any vertices y1, y2 in a pairing of the partition of the neighbors of z that
are nonadjacent, the vertex z must be between them, and hence,

2 f (z)≤ f (y1)+ f (y2)

for any function f subharmonic at z. Consequently, if we sum this inequality over
all deg(z)/2 pairings, we have

2 deg(z)
2

f (z)≤
∑
y∼z

f (y).
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Therefore f is subharmonic at z. �

Notice that for the standard square lattice, both theorems imply that a convex
function is subharmonic. If z was connected to an odd number of nonadjacent
points, then only the first theorem implies that a function convex at z is subharmonic
at z. Similarly, when the graph is the standard triangular tiling of the plane, only
the second theorem would show that every convex function is subharmonic.

Theorem 11. Let F be any subset of X. If the distance function

d( · , F) := inf{d( · , f ) : f ∈ F}

is convex, then F is convex.

Proof. Consider any point z ∈ X that lies between x, y ∈ F . If the distance function
is convex, we have

0≤ d(z, F)≤
d(y, z)
d(x, y)

d(x, F)+
d(x, z)
d(x, y)

d(y, F),

but d(x, F)= d(y, F)= 0 as x, y ∈ F . Therefore d(z, F)= 0, and so z must also
be a point in F . �

Example 12. Consider a cycle on four vertices, that is, X = {a, x, y, z} with a ∼ x ,
x ∼ y, y ∼ z, z ∼ a. One would easily believe that F = {a} is convex. Hence
d(x, F)= d(z, F)= 1, and y is in between x and z. However

2= d(y, a) 6≤ 1
2 d(x, a)+ 1

2 d(z, a)= 1.

Hence d( · , a) is not convex and certainly not subharmonic.
Observe also the set {x, y, z} is not convex. We believe this reveals part of the

problem with this definition of convexity. Namely, a geodesic line segment need
not be convex. It seems that few graphs have convex geodesics. (However X = Z,
with x ∼ y when |x − y| = 1, and the standard triangular tiling of the plane are two
such graphs.)

It would seem that more structure is needed to have a workable theory.

4. Graphs over a normed abelian group

For the remainder of this paper, we consider weighted graphs where the vertex set
X is a normed abelian group and the graph is compatible with the norm. We will
denote the norm ‖ · ‖. We say that the graph structure is compatible with the norm
if there is a constant r > 0 such that x ∼ y if and only if ‖x − y‖ ≤ r and the edge
weights are given by the norm e(x, y)= ‖x − y‖ ≤ r .

In particular, graphs of this type include all lattice graphs. By rescaling X by r
we can always assume without loss of generality that r = 1.
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Graphs of this type pick up a number of traits from analysis. One such trait is
a local similarity property. When one does analysis in a domain D ⊂ Rn (or on a
manifold) every point z ∈ D has a neighborhood which is locally like a ball in Rn .
We see the same property here.

This can also be viewed as a translation invariance property; we could translate
any point x0 to the origin by taking X 7→ X − x0 and nothing would change. More
explicitly, we denote Br (x0) := {y ∈ X : y ∼ x0}, and for every x0 in X there is a
simple one-to-one correspondence between Br (x0) and Br (0). If y ∈ Br (x0), then
z = y− x0 ∈ Br (0), and if z ∈ Br (0), then x0+ z ∈ Br (x0).

Furthermore, if ζ ∈ Br (0), then −ζ ∈ Br (0). Hence

{y ∈ X : y ∼ x} := Br (x)= {x + ζ : ζ ∈ Br (0)} = {x − ζ : ζ ∈ Br (0)}. (5)

We maintain the same notion of a convex function, namely

‖x − y‖ f (z)≤ ‖y− z‖ f (x)+‖x − z‖ f (y),

whenever ‖x − y‖ = ‖x − z‖+‖z− y‖. However in this context we can work with
midpoints.

Kiselman [1996] defines a function f on an abelian group X to be midpoint
convex if

f (x)≤ 1
2 f (x + z)+ 1

2 f (x − z)

for all x and z in X . (Actually he uses the notion of upper addition for functions
defined on the extended real line, that is, R∪ {±∞}, but we will not be needing
such subtleties here.) Trivially a convex function is always midpoint convex.

We will now see that this notion of midpoint convexity allows us to achieve our
goals.

Theorem 13. Consider a weighted graph where the vertex set X is a normed
abelian group and the graph is compatible with the norm. Every midpoint convex
function is subharmonic.

Proof. Pick any x ∈ X . Observe that by (5)∑
y∼x

e(x, y) f (y)= 1
2

∑
z∈Br (0)

e(x, x + z) f (x + z)+ 1
2

∑
z∈Br (0)

e(x, x − z) f (x − z)

=

∑
z∈Br (0)

e(x, x + z)
( 1

2 f (x + z)+ 1
2 f (x − z)

)
.

Hence, by (midpoint) convexity

f (x)Mx = f (x)
∑

z∈Br (0)

e(x, x + z)≤
∑
y∼x

e(x, y) f (y),

which shows that f is subharmonic at x . �
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A set A ⊂ X is called convex if the function

IA(x)=
{

0 for x ∈ A,
+∞ for x ∈ X \ A

is convex, or, equivalently, if z ∈ A whenever there exists x, y ∈ A such that
‖x − y‖ = ‖x − z‖+‖z− y‖. This again easily implies midpoint convexity, that is,
if z ∈ A whenever there is an x ∈ X such that both z+ x and z− x are in A.

Proposition 14. Let F be any subset of X. If the distance function

d(x, F)= inf{‖x − y‖: y ∈ F}

is convex, then the set F is convex.

Proof. Let x ∈ X so that there is some z ∈ X with x ± z ∈ F . Then by midpoint
convexity

0≤ d(x, F)≤ 1
2 d(x + z, F)+ 1

2 d(x − z, F)= 0.

Therefore d(x, F)= 0 and so x ∈ F . �

Notice that for the simple case F = {a} we get the converse of the previous result.

Lemma 15. For any fixed a ∈ X , the function f (z)= ‖z− a‖ is midpoint convex.

Proof. This follows immediately from the triangle inequality on the norm. Indeed,
for any x, y, z ∈ X with ‖x − y‖ = ‖x − z‖+‖z− y‖ we have

2 f (x)= 2‖x − a‖ = ‖2(x − a)‖ = ‖(x − a)− z+ (x − a)+ z‖

≤ ‖(x − a)− z‖+‖(x − a)+ z‖ = f (x − z)+ f (x + z). �

The minimum of two convex functions is in general not a convex function, which
is one reason why the following result is interesting.

However, in general the classical proofs rely heavily upon the fact that for any
point x and convex set F there is always a unique nearest neighbor y ∈ F to x .

Definition 16. We say that a set F has the nearest neighbor property if for all
y1, y2 ∈ F and z ∈ X there exists a y ∈ F (possibly y1 or y2) such that

2‖y− z‖ ≤ ‖y1+ y2− 2z‖.

Proposition 17. If F is a convex subset of X with the nearest neighbor property,
then the distance function d( · , F) is midpoint convex (and hence subharmonic).

Proof. Pick any z ∈ X \ F . We will show that d( · , F) is midpoint convex at z. By
replacing F with F − z we may assume without loss of generality that z = 0.

Clearly it is possible for there to be an x ∈ Br (0) such that d(x, F) ≤ d(0, F).
However, by switching to normed abelian groups we’ve a strong property to use.
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Namely, if x ∈ Br (0) then −x ∈ Br (0). We will show for convex sets with the
nearest neighbor property that

2d(0, F)≤ d(x, F)+ d(−x, F),

that is, d( · , F) is midpoint convex (and hence subharmonic).
We can find y1, y2∈ F such that d(x, F)=‖x−y1‖ and d(−x, F)=‖(−x)−y2‖.

Let y be a point in F such that 2‖y‖ ≤ ‖y1+ y2‖. Then

2d(0, F)≤ 2‖y‖ ≤ ‖y1+ y2‖ = ‖y1+ y2+ x − x‖ = ‖(y1− x)+ (y2+ x)‖

≤ ‖y1− x‖+‖y2+ x‖ = d(x, F)+ d(−x, F). �
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New results on an anti-Waring problem
Chris Fuller, David R. Prier and Karissa A. Vasconi

(Communicated by Nigel Boston)

The number N (k, r) is defined to be the first integer such that it and every
subsequent integer can be written as the sum of the k-th powers of r or more
distinct positive integers. For example, it is known that N (2, 1)= 129, and thus
the last number that cannot be written as the sum of one or more distinct squares
is 128. We give a proof of a theorem that states if certain conditions are met, a
number can be verified to be N (k, r). We then use that theorem to find N (2, r)

for 1≤ r ≤ 50 and N (3, r) for 1≤ r ≤ 30.

1. Introduction

In 1770, Waring conjectured that for each positive integer k there exists a g(k) such
that every positive integer is a sum of g(k) or fewer k-th powers of positive integers.
After Hilbert proved this theorem true in 1909, the challenge that became known
as Waring’s problem was the question that asks, for each k, what is the smallest
g(k) such that the statement holds. For more information on Waring’s problem, see
[Weisstein].

Recently, two papers have tackled the following “anti-Waring” conjecture: If k
and r are positive integers, then every sufficiently large positive integer is the sum
of r or more k-th powers of distinct positive integers.

The fact that there must be r or more k-th powers motivated the choice of the
designation anti-Waring in [Johnson and Laughlin 2011], where the conjecture
was put forth. What sets this statement apart from Waring’s problem is the word
“distinct”. The conjecture was later proved in [Looper and Saritzky 2012]. A natural
anti-Waring problem arising from this proven conjecture is to find the smallest
integer N (k, r) such that it and every subsequent integer can be written as the sum
of r or more k-th powers of distinct positive integers. Johnson and Laughlin proved
that N (2, 1)= N (2, 2)= N (2, 3)= 129.

The following results are restricted to the case when k = 2 and k = 3. N (2, r) is
the smallest integer such that it and every subsequent integer can be written as the
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sum of r or more distinct squares. N (2, r) has been found for 1≤ r ≤ 50. N (3, r)

is the smallest integer such that it and every subsequent integer can be written as
the sum of r or more distinct cubes. N (3, r) has been found for 1 ≤ r ≤ 30. For
the purposes of this paper we use two definitions.

Definitions. An integer is (k, r)-good if it can be written as the sum of r or more
k-th powers of distinct positive integers. An integer is (k, r)-bad if it cannot be
written as the sum of r or more k-th powers of distinct positive integers.

To see an example of this idea, consider the case when k = 2 and r = 4. Since
129 can be written as 22

+ 32
+ 42
+ 102, 129 is (2, 4)-good. However, it is a brief

exercise to verify that there is no way to write 128 as the sum of four or more distinct
squares, and hence 128 is (2, 4)-bad. The fact that 129 is (2, 4)-good also directly
implies that it is (2, r)-good for any integer 1≤ r ≤ 4. Using these definitions, the
problem of finding N (2, r) can be reworded to be the problem of finding the first
(2, r)-good integer such that every subsequent integer is also (2, r)-good. In the
case when r = 4, the fact that 128 is (2, 4)-bad implies that N (2, 4)≥ 129.

As will be seen, an inductive argument used in the following theorems requires
a consecutive list of (k, r)-good integers whose size grows as r does. Computer
software was used to attain these large lists of (k, r)-good integers as well as to
verify that certain key integers are in fact (k, r)-bad.

2. Results

Before stating the general result of this paper, it may be helpful to offer a less
general theorem and proof that will serve as valuable context for Theorem 2.2.

Theorem 2.1. N (2, 4)= 129.

Proof. As shown previously, N (2, 4) ≥ 129. It is also true that the consecutive
integers {129, . . . , 182

} are (2, 4)-good. Therefore, if n ≤ 182 and n is (2, 4)-bad,
then n ≤ 128. The rest of the proof continues by induction on m with m ≥ 18.

The induction statement: If n ≤m2 and n is (2, 4)-bad, then n ≤ 128. If m = 18,
the statement is clearly true as we know the consecutive integers {129, . . . , 182

}

are (2, 4)-good.
Now suppose n ≤ (m+ 1)2 and n is (2, 4)-bad. If n ≤m2, then by the induction

hypothesis, n ≤ 128. Thus we can say

(m+ 1)2
≥ n ≥ m2

+ 1. (1)

Consider the integer n− (m− 4)2. From (1) and the fact that m ≥ 18, we know
that

m2
≥ n− (m− 4)2

≥ m2
+ 1− (m− 4)2

≥ 129. (2)
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To see that n− (m− 4)2 is (2, 4)-bad, suppose that it is (2, 4)-good and hence

n− (m− 4)2
= a2

1 + a2
2 + · · ·+ a2

t with t ≥ 4, ai 6= a j for all i and j,

or
n = a2

1 + a2
2 + · · ·+ a2

t + (m− 4)2.

Since n is (2, 4)-bad, there is some j ∈ {1, 2, . . . , t} such that a j = (m − 4).
Therefore

n− (m− 4)2
≥ 12
+ 22
+ 32
+ (m− 4)2,

and equivalently, n−m2
≥ m2

− 16m+ 46.
Combining this with (1), we get

(m+ 1)2
≥ n ≥ 2m2

− 16m+ 46

or
0≥ m2

− 18m+ 45,

which is untrue when m ≥ 18. Therefore n−(m−4)2 must be (2, 4)-bad, and by (2)
and the inductive hypothesis, n− (m− 4)2

≤ 128. However, this is a contradiction
since by (2) it is also true that n− (m− 4)2

≥ 129, and thus there are no n that are
(2, 4)-bad and satisfy (1). �

In Theorem 2.1, 129 was the expected result for N (2, 4) after using computer
software to generate a long list of consecutive (2, 4)-good integers that began with
129. The aim of Theorem 2.2 is to offer a theorem such that under given conditions,
expected results for N (k, r) can be proven for any positive integers k and r . To
simplify the notation Sk(z) will be used to represent

∑z
i=1 ik .

Theorem 2.2. If the consecutive integers {N̂ (k, r), . . . , bk
} are all (k, r)-good,

N̂ (k, r)− 1 is (k, r)-bad, and if there exists an integer x such that

(i) 0 < Sk(r − 1)+ 2(m− x)k
− (m+ 1)k for all m ≥ b,

(ii) (m+ 1)k
− (m− x)k

≤ mk for all m ≥ b,

(iii) mk
+ 1− (m− x)k

≥ N̂ (k, r) for all m ≥ b, and

(iv) 0 < x < b− r ,

then N̂ (k, r)= N (k, r).

Proof. We use induction on m ∈N with m ≥ b. The induction statement: If n ≤mk

and n is (k, r)-bad, then n ≤ N̂ (k, r)− 1.
If m = b, the statement is clearly true as we know the consecutive integers
{N̂ (k, r), . . . , bk

} are all (k, r)-good.
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Now suppose n ≤ (m+ 1)k and n is (k, r)-bad. If n ≤mk , then by the induction
hypothesis, n ≤ N̂ (k, r)− 1. Thus we can say

(m+ 1)k
≥ n ≥ mk

+ 1. (3)

We will show that n cannot satisfy (3), and hence all cases have been addressed.
Consider the integer n− (m− x)k . Using (3) and condition (iii), we know that

n− (m− x)k
≥ mk

+ 1− (m− x)k
≥ N̂ (k, r)

or
n− (m− x)k

≥ N̂ (k, r). (4)

To see that n− (m− x)k is (k, r)-bad, suppose it is (k, r)-good. Then

n− (m− x)k
= ak

1 + ak
2 + · · ·+ ak

t with t ≥ r, ai 6= a j for all i 6= j,

or
n = ak

1 + ak
2 + · · ·+ ak

t + (m− x)k .

Since n is (k, r)-bad, a j = m − x for some j ∈ {1, 2, . . . , t}. This, along with
condition (iv), implies that n− (m− x)k

≥ Sk(r − 1)+ (m− x)k . Combining this
with (3), we get

(m+ 1)k
≥ n ≥ Sk(r − 1)+ 2(m− x)k,

or
0≥ Sk(r − 1)+ 2(m− x)k

− (m+ 1)k .

This contradiction of condition (i) means n− (m− x)k must be (k, r)-bad.
Now from (3) and condition (ii),

n− (m− x)k
≤ (m+ 1)k

− (m− x)k
≤ mk .

Thus by the induction hypothesis, n− (m− x)k
≤ N̂ (k, r)− 1. This contradicts

(4) and means that there are no n that are (k, r)-bad and satisfy (3). �

As a result of Theorem 2.2, in order to find N (k, r) one must simply find a suitable
list of (k, r)-good consecutive integers {N̂ (k, r), . . . , bk

} such that N̂ (k, r)− 1 is
(k, r)-bad and an integer x that satisfies the four conditions of the theorem. It is
this strategy that gives way to the tables of values in Theorems 2.3 and 2.4. Again,
computer software was a valuable tool in determining whether a given number was
(k, r)-good or (k, r)-bad for k ∈ {2, 3}. For each r in the following two theorems,
corresponding values for x and b are listed in Tables 1 and 2 rather than in the
proof of the theorem.

Theorem 2.3. Table 1 is a list of N (2, r) for integers 1≤ r ≤ 50.
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r N (2, r) x b r N (2, r) x b r N (2, r) x b r N (2, r) x b

1 129 4 18 14 1398 19 47 27 7953 54 101 40 23679 100 169
2 129 4 18 15 1723 21 52 28 8677 57 105 41 25348 104 174
3 129 4 18 16 1991 24 54 29 9538 61 109 42 27208 108 180
4 129 4 18 17 2312 26 58 30 10394 63 114 43 29093 112 186
5 198 6 22 18 2673 28 62 31 11559 67 120 44 31229 116 193
6 238 6 23 19 3048 31 65 32 12603 71 125 45 33298 120 199
7 331 8 26 20 3493 34 69 33 13744 74 130 46 35290 123 205
8 383 9 27 21 4094 36 75 34 14864 78 135 47 37654 127 212
9 528 10 32 22 4614 39 79 35 16253 81 141 48 40043 132 218

10 648 12 33 23 5139 42 83 36 17529 85 146 49 42488 135 225
11 889 14 39 24 5719 44 87 37 18958 89 151 50 45024 140 231
12 989 15 41 25 6380 48 91 38 20482 92 158
13 1178 17 44 26 7124 51 96 39 22043 96 163

Table 1. For each r listed, N (2, r)− 1 is (2, r)-bad, and the list
of consecutive integers {N (2, r), . . . , b2

} is (2, r)-good. The three
necessary conditions of Theorem 2.2 are satisfied by x .

Proof. For 1 ≤ r ≤ 4, N (2, r) = 129 by [Johnson and Laughlin 2011] and
Theorem 2.1. For each r , N (2, r)− 1 has been shown to be (2, r)-bad. There
exist b and x such that the consecutive integers {N (2, r), . . . , b2

} are (2, r)-good,
and x satisfies the four conditions of Theorem 2.2. �

Theorem 2.4. Table 2 is a list of N (3, r) for integers 1≤ r ≤ 30.

Proof. For each r , N (3, r)−1 has been shown to be (3, r)-bad. There exist b and x
such that the consecutive integers {N (3, r), . . . , b3

} are (3, r)-good, and x satisfies
the four conditions listed in Theorem 2.2. �

r N (3, r) x b r N (3, r) x b r N (3, r) x b r N (3, r) x b

1 12759 5 32 9 16224 6 33 17 56076 11 47 25 179520 18 67
2 12759 5 32 10 18149 6 35 18 66534 12 50 26 201921 19 69
3 12759 5 32 11 22398 7 37 19 75912 12 52 27 227400 20 72
4 12759 5 32 12 24855 7 38 20 87567 13 54 28 256254 22 73
5 12759 5 32 13 28887 8 39 21 101093 14 56 29 289869 23 76
6 15279 6 33 14 36951 9 42 22 122064 15 60 30 325590 24 79
7 15279 6 33 15 39660 9 43 23 138696 16 62
8 15279 6 33 16 49083 10 46 24 156498 17 64

Table 2. For each r listed, N (3, r)− 1 is (3, r)-bad, and the list
of consecutive integers {N (3, r), . . . , b3

} is (3, r)-good. The three
necessary conditions of Theorem 2.2 are satisfied by x .



244 CHRIS FULLER, DAVID R. PRIER AND KARISSA A. VASCONI

3. Future work

The list of values of N (k, r) can be extended indefinitely for any value of k. Cur-
rently we are only limited by our computing speed. A natural direction for further
research would be to attempt to find an explicit formula for N (k, r) for a specific k.
In [Johnson and Laughlin 2011], it was noticed that N (1, r)= r(r+1)/2. However,
we have not found a formula for N (2, r) or N (3, r).

Another area that seems natural is to attempt to find N (k, r) for values of k
greater than 3. We have attempted to use our current software to find N (4, 1) and
N (5, 1), but our methods appear to be too inefficient. At this point, all that can be
said confidently is that N (4, 1) is greater than 4.3 million, N (5, 1) is greater than
26.25 million, and perhaps they are both much larger.

It is also clear that N (k, i) ≤ N (k, j) when i ≤ j , and it seems natural to
conjecture that N (x, r) ≤ N (y, r) when x ≤ y. Since N (1, r) = (r(r + 1))/2,
N (1, r) ≤ Sk(r) ≤ N (k, r) for any integer k ≥ 1. However, it is possible for an
integer that it is (k, r)-bad to be (l, r)-good with k < l. For example, 9 is (2, 2)-bad
but (3, 2)-good. Thus, a proof of this conjecture eludes us currently.

Note. After finishing this paper, it was brought to our attention that [Deering and
Jamieson] had recently been submitted for publication. This paper has some of the
same results as ours. In particular, our method of discovering N (k, r), with proof,
is very much like that of Deering and Jamieson. However, we feel that our method
is sufficiently different and easier to use to merit publication.
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