An interesting proof of the nonexistence of a continuous bijection between \mathbb{R}^n and \mathbb{R}^2 for $n \neq 2$

Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek
An interesting proof of the nonexistence of a continuous bijection between \mathbb{R}^n and \mathbb{R}^2 for $n \neq 2$

Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek

(Communicated by Joel Foisy)

We show that there is no continuous bijection from \mathbb{R}^n onto \mathbb{R}^2 for $n \neq 2$ by an elementary method. This proof is based on showing that for any cardinal number $\beta \leq 2^{\aleph_0}$, there is a partition of \mathbb{R}^n ($n \geq 3$) into β arcwise connected dense subsets.

1. Introduction

In 1877 Cantor discovered a bijection of \mathbb{R} onto \mathbb{R}^n for any $n \in \mathbb{N}$. Cantor’s map was discontinuous, but the discovery of the Peano curve in 1890 showed that there existed continuous (although not injective) maps of \mathbb{R} onto \mathbb{R}^n. Between then and 1910, several mathematicians showed that there does not exist a bicontinuous bijection (homeomorphism) from \mathbb{R}^m onto \mathbb{R}^n for the cases $m = 2$ and $m = 3$ and $n > m$. Finally in 1911, Brouwer showed that there does not exist a homeomorphism between \mathbb{R}^m and \mathbb{R}^n for $n \neq m$ (for a modern treatment, see [Munkres 1984, p. 109]). The present paper proves the nonexistence of a continuous bijection from \mathbb{R}^n onto \mathbb{R}^2 for $n \neq 2$ by an elementary method.

Rudin [1963] showed that for any countable cardinal $\alpha > 2$, we cannot partition the plane into α arcwise connected dense subsets. In this paper we show that for any cardinal number $\beta \leq 2^{\aleph_0}$, there is a partition of \mathbb{R}^n ($n \geq 3$) into β arcwise connected dense subsets; then by using this we show that there is no continuous bijection from \mathbb{R}^n onto \mathbb{R}^2 for $n \neq 2$.

Lemma 1. There is a partition of $\mathbb{R}^+ \cup [0, \infty)$ into 2^{\aleph_0} dense subsets.

Proof. Consider the additive group $(\mathbb{R}, +)$. The quotient group \mathbb{R}/\mathbb{Q} has 2^{\aleph_0} elements which are dense subsets of \mathbb{R}. Intersect them with \mathbb{R}^+. □

Theorem 1. There is a partition of \mathbb{R}^3 into 2^{\aleph_0} arcwise connected dense subsets.

MSC2010: primary 54-XX; secondary 54CXX.

Keywords: arcwise connected, dense subset, homeomorphism.
Proof. Let \(\{S_i \mid i \in I\} \) be a partition of \(\mathbb{R}^+ \) into \(2^{\aleph_0} \) dense subsets. The set \(I \) is just an index set, so we may suppose that \(I = (0, 1) \). Define \(L_i = \{(t, it, 0) \mid t > 0\} \) and \(M = \bigcup_{i \in I} L_i \) and let \(A_i \) be the union of all spheres with center at the origin and radius from \(S_i \), that is, \(A_i = \{x \in \mathbb{R}^3 \mid \|x\| \in S_i\} \). Let \(B_i = (A_i \setminus M) \cup L_i \). If \(S \) is a sphere centered at the origin, then \(S \setminus M \) is a sphere with a small arc removed. Therefore \(A_i \setminus M \) is the union of some arcwise connected punctured spheres. Open half-line \(L_i \) pastes these punctured spheres together, so \(B_i \) is arcwise connected. It is obvious that \(\{B_i \mid i \in I\} \) is a partition of \(\mathbb{R}^3 \) with size \(2^{\aleph_0} \). Since \(S_i \) is dense in \(\mathbb{R}^+ \), \(A_i \) and consequently \(B_i \) are dense in \(\mathbb{R}^3 \).

Corollary 1. There is a partition of \(\mathbb{R}^n \) into \(2^{\aleph_0} \) arcwise connected dense subsets for \(n \geq 3 \).

Proof. It is enough to set \(B_i^{(n)} = B_i \times \mathbb{R}^{n-3} \), in which \(B_i \) is as above. The collection \(\{B_i^{(n)} \mid i \in I\} \) is a partition of \(\mathbb{R}^n \) satisfying the claim.

Note that the union of any number of the sets \(B_i^{(n)} \) is an arcwise connected dense subset of \(\mathbb{R}^n \), hence:

Corollary 2. For any cardinal number \(\beta \leq 2^{\aleph_0} \), there is a partition of \(\mathbb{R}^n \) (\(n \geq 3 \)) into \(\beta \) arcwise connected dense subsets.

Theorem 2. For any countable cardinal \(\alpha > 2 \), we cannot partition the plane into \(\alpha \) arcwise connected dense subsets.

Proof. This statement is proved in [Rudin 1963].

Lemma 2. Let \(X, Y \) be metric spaces and \(T : X \to Y \) be a continuous map.

(a) If \(A \) is dense in \(X \) and \(T \) is surjective, then \(T(A) \) is dense in \(Y \).

(b) If \(B \subseteq X \) is arcwise connected, then \(T(B) \) is also arcwise connected.

Theorem 3. There is no continuous bijection from \(\mathbb{R} \) onto \(\mathbb{R}^m \) for \(m \neq 1 \).

Proof. Suppose the contrary: Let \(g : \mathbb{R} \to \mathbb{R}^m \) be a continuous bijective map. We put \(B_n = [-n, n] \), and so we have \(\mathbb{R}^m = g\left(\bigcup_{n=1}^{\infty} B_n \right) = \bigcup_{n=1}^{\infty} g(B_n) \). Since \(\mathbb{R}^m \) is not in the first category, at least one of the \(g(B_n) \), for example \(g(B_k) \), has nonempty interior in \(\mathbb{R}^m \). Suppose \(B(x, r) \subseteq g(B_k) \). Since \(B_k \) is compact, \(f : B_k \to g(B_k) \) is a homeomorphism. It follows that \(B(x, r) \) is homeomorphic with an interval in \(\mathbb{R} \). This is a contradiction, because if we remove 3 points from \(B(x, r) \) it remains connected, but this is not the case for the intervals in \(\mathbb{R} \).

Theorem 4. There is no continuous bijection from \(\mathbb{R}^n \) onto \(\mathbb{R}^2 \) for \(n \neq 2 \).

Proof. Suppose the contrary:

(a) If \(n > 2 \), then according to Corollary 2 and Lemma 2 we can partition \(\mathbb{R}^2 \) into 3 arcwise connected dense subsets, and this contradicts Theorem 2.

(b) If \(n = 1 \), then this contradicts Theorem 3.
NONEXISTENCE OF A CONTINUOUS BJECTION BETWEEN \mathbb{R}^n AND \mathbb{R}^2 FOR $n \neq 2$

Acknowledgments

The authors are grateful to Professor Nicolas Hadjisavvas for his valuable advice and comments. The authors are also grateful to the referee for an extensive critical report including helpful hints and corrections, and extend our special thanks to Johannes Hahn for the useful point leading to the solution of the problem for case $n = 1$.

References

Received: 2012-06-03 Revised: 2012-11-27 Accepted: 2012-12-01
hr.daneshpajouh@ipm.ir School of Mathematics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5746, Tehran, Iran
hdp@mehr.sharif.ir Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415 Tehran, Iran
malek@kntu.ac.ir Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
An interesting proof of the nonexistence of a continuous bijection between \mathbb{R}^n and \mathbb{R}^2 for $n \neq 2$

Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek

Analysing territorial models on graphs

Marie Bruni, Mark Broom and Jan Rychtář

Binary frames, graphs and erasures

Bernhard G. Bodmann, Bijan Camp and Dax Mahoney

On groups with a class-preserving outer automorphism

Peter A. Brooksbank and Matthew S. Mizuhara

The sharp log-Sobolev inequality on a compact interval

Whan Ghang, Zane Martin and Steven Waruhiu

Analysis of a Sudoku variation using partially ordered sets and equivalence relations

Ana Burgers, Shelly Smith and Katherine Varga

Spanning tree congestion of planar graphs

Hiu Fai Law, Siu Lam Leung and Mikhail I. Ostrovskii

Convex and subharmonic functions on graphs

Matthew J. Burke and Tony L. Perkins

New results on an anti-Waring problem

Chris Fuller, David R. Prier and Karissa A. Vasconi