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We offer a formula to compute the omega values of the generators of the numerical
monoid S = 〈k, k+ 1, k+ 2〉 where k is a positive integer greater than 2.

1. Introduction and the main result

The notion of a prime element is a central focus in the study of algebra and number
theory. Several recent papers [Anderson and Chapman 2010; 2012; Anderson et al.
2011] have considered the following generalization of the notion of prime elements
in the context of numerical monoids. This definition, which we state for a general
commutative cancellative monoid, originally appeared in [Geroldinger and Hassler
2008].

Definition 1.1. Let M be a commutative, cancellative, atomic monoid with set of
units M× and set of irreducibles (or atoms) A(M). For x ∈ M \ M×, we define
ωM(x) = n if n is the smallest positive integer with the property that whenever
x | a1 · · · at , where each ai ∈A(M), there is a T ⊆ {1, 2, . . . , t} with |T | ≤ n such
that x |

∏
k∈T ak . If no such n exists, then ωM(x) =∞. For x ∈ M×, we define

ωM(x)= 0.

As in [Anderson et al. 2011], when our context is clear, we will shorten ωM(x)
to ω(x). It follows easily from the definition that an element x ∈ M \M× is prime
if and only if ω(x)= 1. Hence, in some sense the omega function measures how
far an element is from being prime. Some basic properties of this function can
be found not only in the papers mentioned above, but also in [Geroldinger and
Halter-Koch 2006]. Anderson and Chapman [2010; 2012] study the behavior of the
omega function in the setting of the multiplicative monoid of a commutative ring.
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Anderson, Chapman, Kaplan and Torkornoo [Anderson et al. 2011, Section 3]
offer a finite time algorithm for computing ω(x) when x is an element in a numer-
ical monoid S. Recall that a numerical monoid is an additive submonoid of the
nonnegative integers (which we denote by N0). Using elementary number theory, it
is easy to show that such a submonoid is finitely generated and possesses a unique
minimal (in terms of cardinality) generating set. If n1, n2, . . . , nt is the minimal
generating set for a numerical monoid S, then we write

S = 〈n1, . . . , nt 〉 =
{

x1n1+ · · ·+ xt nt | xi ∈ N0 for each i
}
.

The value t is known as the embedding dimension of S. The elements n1, . . . , nt

are the irreducibles of S, and as noted in Definition 1.1, we will write A(S) =
{n1, . . . , nt }. When considering the complete class of numerical monoids, elemen-
tary isomorphism arguments allow us to reduce to the case where gcd(n1, . . . , nt)=

1. Such a numerical monoid is called primitive. [Rosales and García-Sánchez 2009]
is a good general reference on numerical monoids and semigroups. [Bowles et al.
2006; Chapman et al. 2006; 2009; Omidali 2012] examine factorization properties
of numerical monoids which are related in various ways to the omega function.

A version of the algorithm in [Anderson et al. 2011] mentioned above has been
programmed and can be found in the numerical semigroups package available
for Gap (gap-system.org/Manuals/pkg/numericalsgps/doc/manual.pdf). Using data
generated by this program, much of the work in [Anderson et al. 2011] is dedicated
to showing that closed forms for particular values of ω(x) are highly nontrivial to
determine. In [Anderson et al. 2011, Propositions 3.1 and 3.2], the authors determine
formulas for this when S = 〈n, n+ 1, . . . , 2n− 1〉 and S = 〈n, n+ 1, . . . , 2n− 2〉
(where n ≥ 2), and in [Anderson et al. 2011, Theorem 4.4] they handle the case
where S = 〈n1, n2〉. The paper also takes interest in computing the values ω(n1),
ω(n2), and ω(n3) when S=〈n1, n2, n3〉 is of embedding dimension 3. In particular,
they offer a chart [Anderson et al. 2011, p. 101] to illustrate how these omega values
can differ. We include a modified form in Table 1.

There are 5 possibilities that Table 1 omits. With the programs then available,
Anderson et al. [2011] were unable to find examples of these missing orderings.
With some improved programming techniques, the present authors were able to
compute ω(n1), ω(n2) and ω(n3) for all embedding dimension-three numerical
monoids with generators less than or equal to 100. This yielded two of the remaining
five cases.

(i) S = 〈6, 7, 9〉 yields ω(6)= 3, ω(7)= 5, and ω(9)= 3. Hence, ω(6) < ω(7),
ω(9) < ω(7), and ω(6)= ω(9).

(ii) S= 〈7, 8, 20〉 yields ω(7)= 6, ω(8)= 4, and ω(20)= 5. Hence, ω(7) >ω(8),
ω(8) < ω(20), and ω(7) > ω(20).
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〈n1, n2, n3〉 ω(n1) ω(n2) ω(n3) Ordering of the omega values

〈6, 8, 13〉 3 4 7 ω(6)<ω(8)<ω(13)
〈5, 7, 11〉 3 5 5 ω(5)<ω(7)=ω(11)
〈4, 5, 6〉 2 4 3 ω(4)<ω(5), ω(5)>ω(6), ω(4)<ω(6)
〈6, 9, 11〉 3 3 7 ω(6)=ω(9)<ω(11)
〈7, 11, 17〉 5 5 5 ω(7)=ω(11)=ω(17)
〈6, 7, 11〉 4 3 5 ω(6)>ω(7), ω(7)<ω(11), ω(6)<ω(11)
〈7, 8, 12〉 5 4 4 ω(7)>ω(8)=ω(12)
〈7, 8, 13〉 5 4 5 ω(7)>ω(8), ω(8)<ω(13), ω(7)=ω(13)

Table 1. Differing values of omega (modified from [Anderson et al. 2011]).

We strongly suspect the final three orderings are not possible. Hence, we state this
as a potential problem.

Problem. Let S = 〈n1, n2, n3〉 be an embedding dimension-3 numerical monoid.
Show that the sequence ω(n1), ω(n2), and ω(n3) does not satisfy any of the
following three orderings:

• ω(n1) > ω(n2) > ω(n3).

• ω(n1)= ω(n2) > ω(n3).

• ω(n1) < ω(n2), ω(n2) > ω(n3), ω(n3) < ω(n1).

In the course of attempting to solve this problem, numerous classes of embedding
dimension-3 numerical monoids were studied. We encountered one with especially
nice omega values on the generators. The remainder of this paper will consist of a
proof of the following theorem.

Theorem 1.2. Let k be a positive integer.

(a) If S1 = 〈2k+ 1, 2k+ 2, 2k+ 3〉, then

ω(2k+ 1)= k+ 1 and ω(2k+ 2)= ω(2k+ 3)= k+ 2.

(b) If k ≥ 2 and S2 = 〈2k, 2k+ 1, 2k+ 2〉, then

ω(2k)= k, ω(2k+ 1)= k+ 2 and ω(2k+ 2)= k+ 1.

The proof will require two results from the literature. The first allows one to
reduce the definition of ω(x) from that of checking arbitrary products to checking
only products of irreducibles.

Theorem 1.3 [Anderson and Chapman 2010, Theorem 2.1]. Let M be a com-
mutative cancellative monoid and suppose that x ∈ M\M×. Then the following
statements are equivalent:

(a) ω(x)= m ∈ N.
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(b) m is the least positive integer such that if x | x1 · · · xn with each xi ∈ M irre-
ducible, then x | xi1 · · · xit for some {i1, . . . , it } ⊆ {1, . . . , n} with t ≤ m.

(c) If x | x1 · · · xn with each xi ∈ M irreducible and n ≥ m, then x | xi1 · · · xim for
some {i1, . . . , im} ⊆ {1, . . . , n}, and there are irreducible x1, . . . , xm ∈M such
that x | x1 · · · xm , but x divides no proper subproduct of the xi .

For an element x ∈ S, the product x1 · · · xm alluded to in part (c) above will be
called a bullet for x .

The second necessary result is an amazing characterization of the membership
problem for a numerical monoid generated by an interval of integers.

Theorem 1.4 [García-Sánchez and Rosales 1999, Corollary 2]. An element n ∈N

belongs to S = 〈a, a+ 1, . . . , a+ x〉 if and only if

n (mod a)≤
⌊n

a

⌋
x,

where b·c represents the greatest integer function and residues are assumed to be
least.

To prove Theorem 1.2, we will verify the 6 claimed values of the omega function.
To do this, we will pivot on Theorem 1.3(c) and produce a bullet for each of the six
elements. The condition in Theorem 1.4 will be vital in these arguments. In the
two monoids we consider, the condition will reduce to

n (mod 2k+ 1)≤
⌊ n

2k+ 1

⌋
2

for S1 = 〈2k+ 1, 2k+ 2, 2k+ 3〉 and

n (mod 2k)≤
⌊ n

2k

⌋
2

for S2 = 〈2k, 2k+ 1, 2k+ 2〉. To finish the proof, we will then verify the first part
of Theorem 1.3(c); namely if the bullet is of length j , then divisibility by a sum of
length greater than or equal to j yields divisibility by a subsum of length j or less.

2. Proof of Theorem 1.2 for S1

Lemma 2.1. In S1 we have the following divisibility relationships:

(a) (2k+ 1)
∣∣ k+1∑

i=1
(2k+ 3);

(b) (2k+ 2)
∣∣ k+2∑

i=1
(2k+ 1);

(c) (2k+ 3)
∣∣ k+2∑

i=1
(2k+ 1).
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Proof. (a) Now,
∑k+1

i=1 (2k + 3) = (k + 1)(2k + 3) = 2k2
+ 5k + 3. To prove the

claim, we must show that (2k2
+ 5k+ 3)− (2k+ 1) ∈ S1. Now (a) follows since

(2k2
+ 5k+ 3)− (2k+ 1)= 2k2

+ 3k+ 2= k(2k+ 1)+ (2k+ 2).
For the proof of (b) and (c), note that

∑k+2
i=1 (2k+1)= (k+2)(2k+1)=2k2

+5k+2.
For (b), we must show that (2k2

+ 5k+ 2)− (2k+ 2) ∈ S1. Since

(2k2
+ 5k+ 2)− (2k+ 2)= 2k2

+ 3k = k(2k+ 3),

part (b) follows. For (c), we must show that (2k2
+ 5k+ 2)− (2k+ 3) ∈ S1. Since

(2k2
+5k+2)−(2k+3)= 2k2

+3k−1= 2k+2+(k−1)(2k+3), part (c) follows
and the proof of the lemma is complete. �

In the next three lemmas, we show that the sums produced in Lemma 2.1 are
actually bullets for 2k+ 1, 2k+ 2 and 2k+ 3.

Lemma 2.2. In S1, 2k+ 1 does not divide any proper subsum of
k+1∑
i=1
(2k+ 3).

Proof. To prove the claim, we must show that 2k+ 1 does not divide j (2k+ 3) for
1≤ j ≤ k. This is equivalent to showing that

j (2k+ 3)− (2k+ 1) 6∈ S1,

for each 1≤ j ≤ k. Using Theorem 1.4, we must show that

j (2k+ 3)− (2k+ 1) (mod 2k+ 1) >
⌊

j (2k+ 3)− (2k+ 1)
2k+ 1

⌋
· 2, (1)

for each 1≤ j ≤ k. Now, (1) reduces to

2 j >
⌊

j (2k+ 3)− (2k+ 1)
2k+ 1

⌋
2, (2)

and hence

j >
⌊

j
(

2k+ 3
2k+ 1

)
− 1

⌋
. (3)

Equation (3) can be rewritten as

j >
⌊

j
(

2k+ 3
2k+ 1

)
− 1

⌋
=

⌊
j − 1+ j

(
2

2k+ 1

)⌋
= j − 1+

⌊
2 j

2k+ 1

⌋
.

Since j ≤ k, we have

2 j
2k+ 1

≤
2k

2k+ 1
<

2k+ 1
2k+ 1

= 1,

so b2 j/(2k+ 1)c = 0 and Equation (3) is true, which completes the proof. �
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Lemma 2.3. In S1, 2k+ 2 does not divide any proper subsum of
k+2∑
i=1
(2k+ 1).

Proof. To prove the claim, we must show that 2k+ 2 does not divide j (2k+ 1) for
1≤ j ≤ k+ 1. This is equivalent to showing that

j (2k+ 1)− (2k+ 2) 6∈ S1,

for each 1≤ j ≤ k+ 1. Using Theorem 1.4 again, we must show that

j (2k+ 1)− (2k+ 2) (mod 2k+ 1) >
⌊

j (2k+ 1)− (2k+ 2)
2k+ 1

⌋
2, (4)

for each 1≤ j ≤ k. Now,

j (2k+ 1)− (2k+ 2)≡−1≡ 2k (mod 2k+ 1),

and thus (4) reduces to

k >
⌊

j −
2k+ 2
2k+ 1

⌋
. (5)

Note that⌊
j −

2k+ 2
2k+ 1

⌋
=

⌊
j − 1−

1
2k+ 1

⌋
= j − 1+

⌊
−

1
2k+ 1

⌋
= j − 2.

Since j ≤ k, Equation (5) holds which completes the proof. �

Lemma 2.4. In S1, 2k+ 3 does not divide any proper subsum of
k+2∑
i=1
(2k+ 1).

Proof. To prove the claim, we must show that 2k+ 3 does not divide j (2k+ 1) for
1≤ j ≤ k+ 1. This is equivalent to showing that

j (2k+ 1)− (2k+ 3) 6∈ S1,

for each 1≤ j ≤ k+ 1. Using Theorem 1.4 again, we must show that

j (2k+ 1)− (2k+ 3) (mod 2k+ 1) >
⌊

j (2k+ 1)− (2k+ 3)
2k+ 1

⌋
2, (6)

for each 1≤ j ≤ k. Now,

j (2k+ 1)− (2k+ 3)≡−2≡ (2k− 1) (mod 2k+ 1),

and thus (6) reduces to

2k− 1>
⌊

j −
2k+ 3
2k+ 1

⌋
2.

Notice that 1 < (2k + 3)/(2k + 1) < 2, and so b j − (2k + 3)/(2k + 1)c = j − 2.
Hence,

2k− 1> 2( j − 2)= 2 j − 4,
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and thus
k+ 3

2 > j.

The last statement is true since 1 ≤ j ≤ k + 1, which completes the proof of the
lemma. �

To complete the argument for S1, we must verify that the first condition in
Theorem 1.3(c) holds.

Proposition 2.5. (a) If (2k+ 1) |α1+ · · ·+αt where each αi is irreducible in S1

and t ≥ k + 1, then there is a proper subsum αi1 + · · · + αir of α1+ · · · + αt

with r ≤ k+ 1 such that (2k+ 1) |αi1 + · · ·+αir .

(b) If (2k+2) |α1+· · ·+αt where each αi is irreducible in S1 and t ≥ k+2, then
there is a proper subsum αi1 + · · · +αir of α1+ · · ·+αt with r ≤ k+ 2 such
that (2k+ 2) |αi1 + · · ·+αir .

(c) If (2k+3) |α1+· · ·+αt where each αi is irreducible in S1 and t ≥ k+2, then
there is a proper subsum αi1 + · · · +αir of α1+ · · ·+αt with r ≤ k+ 2 such
that (2k+ 3) |αi1 + · · ·+αir .

Proof. (a) We can clearly reduce to the case where all the αi are of the form 2k+2
or 2k+3. We also note that since (2k+2)+(2k+2)= 4k+4= (2k+1)+(2k+3),
it follows that (2k+1) | (2k+2)+(2k+2). Hence, if the sum α1+· · ·+αt contains
two or more irreducibles of the form 2k+ 2, then we are done. Assume that this
is not the case. If there are no irreducibles of the form 2k + 2, then the result
follows by Lemma 2.1(a). If there is exactly one copy of 2k + 2, then consider
k(2k+ 3)+ (2k+ 2)= 2k2

+ 5k+ 2. It follows that

(2k2
+ 5k+ 2)− (2k+ 1)= 2k2

+ 3k+ 1= (k+ 1)(2k+ 1).

Hence, (2k+ 1) | k(2k+ 3)+ (2k+ 2), which completes the proof.

(b) It is only necessary to look at the case where all the αi are of the form 2k+ 1
or 2k + 3. We first note that since (2k + 1)+ (2k + 3) = 4k + 4 = 2(2k + 2), it
follows (2k+2) | (2k+1)+ (2k+3), and if the sum α1+· · ·+αt contains at least
one of each irreducible 2k+1 and 2k+3, then we are done. If the sum contains no
copies of 2k + 3, then the result holds by Lemma 2.1(b). If the sum contains no
copies of 2k+ 1, then the equality

(k+ 1)(2k+ 3)− (2k+ 2)= 2k2
+ 3k+ 1= (k+ 1)(2k+ 1)

completes the proof.

(c) It is only necessary to look at the case where the αi are of the form 2k + 1
or 2k + 2. Now, (2k + 2)+ (2k + 2) = (2k + 3)+ (2k + 1) and thus, if the sum
α1 + · · · + αt contains at least 2 irreducibles of the form 2k + 2, then we are



664 SCOTT T. CHAPMAN, WALTER PUCKETT AND KATY SHOUR

done. If there are no irreducibles of the form 2k + 2, then this result follows by
Lemma 2.1(c). If there is exactly one irreducible of the form 2k+ 2, then consider
(k+ 1)(2k+ 1)+ (2k+ 2)= 2k2

+ 5k+ 3. Now,

(2k2
+ 5k+ 3)− (2k+ 3)= 2k2

+ 3k = k(2k+ 3),

and thus (2k+ 3) | (k+ 1)(2k+ 1)+ (2k+ 2), which completes the proof. �

3. Proof of Theorem 1.2 for S2

Lemma 3.1. In S2, we have the following divisibility relationships:

(a) 2k
∣∣ k∑

i=1
(2k+ 2);

(b) (2k+ 1)
∣∣ k+2∑

i=1
2k;

(c) (2k+ 2)
∣∣ k+1∑

i=1
2k.

Proof. (a)
∑k

i=1(2k+2)= 2k2
+2k. Now, (2k2

+2k)− (2k)= 2k2
= 2k(k). Thus,

2k | k(2k+ 2) and the result follows.

(b)
∑k+2

i=1 (2k)= (k+2)(2k)=2k2
+4k. Now, (2k2

+4k)−(2k+1)=2k2
+2k−1=

(k− 1)(2k+ 2)+ (2k+ 1) ∈ S2. Thus, (2k+ 1) | (k+ 2)(2k) and the result follows.

(c)
∑k+1

i=1 (2k)= (k+1)(2k)=2k2
+2k. Now, (2k2

+2k)−(2k+2)= (k−1)(2k+2)∈
S1. Thus, (2k+ 2) | 2k(k+ 1) and the result follows. �

Lemma 3.2. In S2, 2k does not divide any proper subsum of
k∑

i=1
(2k+ 2).

Proof. To prove this claim, we must show that 2k does not divide j (2k + 2) for
1≤ j ≤ k− 1. This is equivalent to showing that

j (2k+ 2)− 2k 6∈ S2,

for each 1≤ j ≤ k− 1. Using Theorem 1.4, we must show that

j (2k+ 2)− 2k (mod 2k) > 2
⌊

j (2k+ 2)− 2k
2k

⌋
.

As in the arguments in Section 2, this reduces to

j >
⌊

jk+ j − k
k

⌋
,

which is equivalent to

j >
⌊

j +
j
k
− 1

⌋
.
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Since j ≤ k− 1, we have j/k < 1. So,

j − 1=
⌊

j +
j
k
− 1

⌋
and j > j − 1=

⌊
j +

j
k
− 1

⌋
.

Thus, no subsum is in S2. �

Lemma 3.3. In S2, 2k+ 1 does not divide any proper subsum of
k+2∑
i=1
(2k).

Proof. To prove this claim, we must show that 2k + 1 does not divide j (2k) for
1≤ j ≤ k+ 1. This is equivalent to showing that

j (2k)− (2k+ 1) 6∈ S2,

for each 1≤ j ≤ k− 1. Using Theorem 1.4, we must show that

j (2k)− (2k+ 1) (mod 2k) > 2
⌊

j2k− (2k+ 1)
2k

⌋
.

This is equivalent to

(2k− 1) > 2
⌊

j2k− (2k+ 1)
2k

⌋
.

Since 1< (2k+ 1)/2k < 2, we know that

j − 2= b j − 2c =
⌊

j −
2k+ 1

2k

⌋
=

⌊
j2k− (2k+ 1)

2k

⌋
.

By the limits on j , it follows that k− 1
2 > j−2. Combining the last two inequalities

and multiplying by 2 yields the desired result. �

Lemma 3.4. In S2, 2k+ 2 does not divide any proper subsum of
k+1∑
i=1

2k.

Proof. To prove this claim, we must show that 2k + 2 does not divide j (2k) for
1≤ j ≤ k. This is equivalent to showing that

j (2k)− (2k+ 2) 6∈ S2,

for each 1≤ j ≤ k. Using Theorem 1.4, we must show that

j (2k)− (2k+ 2) (mod 2k) > 2
⌊

j2k− (2k+ 2)
2k

⌋
.

This is equivalent to

k− 1>
⌊

jk− k− 1
k

⌋
=

⌊
j − 1−

1
k

⌋
= j − 2,

from which the result follows. �
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Proposition 3.5. (a) If 2k |α1+ · · · + αt where each αi is irreducible in S1 and
t ≥ k, then there is a proper subsum αi1 +· · ·+αir of α1+· · ·+αt with r ≤ k
such that 2k |αi1 + · · ·+αir .

(b) If (2k+1) |α1+· · ·+αt where each αi is irreducible in S1 and t ≥ k+2, then
there is a proper subsum αi1 + · · · +αir of α1+ · · ·+αt with r ≤ k+ 2 such
that (2k+ 1) |αi1 + · · ·+αir .

(c) If (2k+2) |α1+· · ·+αt where each αi is irreducible in S1 and t ≥ k+1, then
there is a proper subsum αi1 + · · · +αir of α1+ · · ·+αt with r ≤ k+ 1 such
that (2k+ 1) |αi1 + · · ·+αir .

Proof. (a) We can clearly reduce to the case where the αi are of the form 2k+ 1
and 2k+ 2. Also note that we can assume that t > k, as the result clearly holds if
t = k. Since

(2k+ 1)+ (2k+ 1)= 4k+ 2= (2k+ 2)+ (2k),

the result holds if at least two of the αi are of the form 2k+ 1. If at least k of the
αi are of the form 2k+ 2, then the result holds by Lemma 3.1(a). If not, then we
have at least two of the form 2k+ 1, which completes the proof of (a).

(b) We can clearly reduce to the case where the αi are of the form 2k and 2k+ 2.
We proceed as in (a) and assume that t > k+ 2. Note that

(2k)+ (2k+ 2)= (2k+ 1)+ (2k+ 1).

Hence if at least one of the αi is of each type, then we are done. If all the αi are of
the form 2k, then we are done by Lemma 3.1(b). To complete the argument, note
that (k+ 1)(2k+ 2)= 2k2

+ 4k+ 2 and

2k2
+ 4k+ 2− (2k+ 1)= 2k2

+ 2k+ 1= k(2k)+ (2k+ 1) ∈ S2.

(c) We can clearly reduce to the case where the αi are of the form 2k and 2k+ 1.
Assume as in (a) and (b) that t > k+ 1. As before,

(2k+ 1)+ (2k+ 1)= 4k+ 2= (2k+ 2)+ (2k),

and if at least two of the αi are of the form 2k+ 1, then we are done. Otherwise,
we have at least 2k+ 1 copies of 2k, and the result follows by Lemma 3.1(c). �
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