Nonultrametric triangles
in diametral additive metric spaces
Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan,
Heidi Verheggen, Elizabeth Wesson and Anthony Weston
Nonultrametric triangles
in diametral additive metric spaces

Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan,
Heidi Verheggen, Elizabeth Wesson and Anthony Weston
(Communicated by Toka Diagana)

We prove that a diametral additive metric space is not ultrametric if and only if it
contains a diameter attaining nonultrametric triangle.

1. Introduction

Diameter and diametrical pairs of points in ultrametric spaces have been the subject
of recent extensive studies, including [Dordovskyi et al. 2011]. In this paper we
show that if a diametral additive metric space of diameter Δ is not ultrametric, then
it must contain a nonultrametric triangle of diameter Δ.

We begin by recalling some preliminary definitions and background information.

Definition 1.1. A metric space (X, d) is said to be ultrametric if for all $x, y, z \in X$, we have

$$d(x, y) \leq \max\{d(x, z), d(y, z)\}.$$

Equivalently, a metric space (X, d) is ultrametric if and only if any given three
points in X can be relabeled as x, y, z so that $d(x, y) \leq d(x, z) = d(y, z)$.

Interesting examples of ultrametric spaces include the rings \mathbb{Z}_p of p-adic integers,
the Baire space $B_{\mathbb{N}_0}$, non-Archimedean normed fields and rings of meromorphic
functions on open regions of the complex plane. There is an immense literature
surrounding ultrametrics, as they have been intensively studied by topologists,
analysts, number theorists and theoretical biologists. For example, [de Groot
1956] characterized ultrametric spaces up to homeomorphism as the strongly zero-
dimensional metric spaces. In numerical taxonomy, on the other hand, every finite

MSC2010: primary 54E35; secondary 51F99.

Keywords: ultrametric spaces, additive metric spaces, tree metrics.

The research presented in this paper was undertaken at the 2011 Cornell University Summer Mathematics Institute (SMI). The authors would like to thank the Department of Mathematics and the Center for Applied Mathematics at Cornell University for supporting this project, and the National Science Foundation for its financial support of the SMI through NSF grant DMS-0739338.
ultrametric space is known to admit a natural hierarchical description called a *dendogram*. This has significant ramifications in theoretical biology. See, for instance, [Gordon 1987].

In fact, ultrametrics are special instances of a more general class of metrics which are termed additive. As we have noted in Definition 1.1, ultrametrics are defined by a stringent three point criterion. The class of additive metrics satisfy a more relaxed four point criterion. The formal definition is as follows.

Definition 1.2. A metric space \((X, d)\) is said to be additive if for all \(x, y, z, w\) in \(X\), we have

\[
d(x, y) + d(z, w) \leq \max\{d(x, z) + d(y, w), d(x, w) + d(y, z)\}.
\]

Equivalently, a metric space \((X, d)\) is additive if and only if any given four points in \(X\) can be relabeled as \(x, y, z, w\) so that \(d(x, y) + d(z, w) \leq d(x, z) + d(y, w) = d(x, w) + d(y, z)\).

Recall that a *metric tree* is a connected graph \((T, E)\) without cycles or loops in which each edge \(e \in E\) is assigned a positive length \(|e|\). The distance \(d_T(x, y)\) between any two vertices \(x, y \in T\) is then defined to be the sum of the lengths of the edges that make up the unique minimal geodesic from \(x\) to \(y\). A brief but important paper, [Buneman 1974, Theorem 2], showed that a finite metric space is additive if and only if it is a tree metric in the sense of the following definition.

Definition 1.3. A metric \(d\) on a set \(X\) is said to be a *tree metric* if there exists a finite metric tree \((T, E, d_T)\) such that

1. \(X\) is contained in the vertex set \(T\) of the tree, and
2. \(d(x, y) = d_T(x, y)\) for all \(x, y \in X\).

In other words, \(d\) is a tree metric if \((X, d)\) is isometric to a metric subspace of some metric tree.

Ultrametrics form a very special subclass of the collection of all additive metrics. Indeed, there is a close relationship between ultrametric spaces and the leaf sets or end spaces of certain trees. This type of identification is discussed more formally in [Holly 2001; Fiedler 1998].

The notion of a diametral metric space is recalled in the following definition. It is a well-known result of mathematical analysis that all compact metric spaces are diametral [Kaplansky 1977, Theorem 68].

Definition 1.4. Let \((X, d)\) be a metric space.

1. The *diameter* of a metric space \((X, d)\) is defined to be the quantity \(\Delta = \sup\{d(x, y) : x, y \in X\}\). If we need to be more explicit about the underlying metric space, we will write \(\text{diam } X\) or \(\text{diam}(X, d)\) instead of \(\Delta\).
2. \((X, d)\) is *diametral* if there exist points \(x, y \in X\) such that \(d(x, y) = \Delta\).
A metric space \((X, d)\) is not ultrametric if it contains a \(\text{“bad”}\) triangle \(\{x, y, z\} \subseteq X\); i.e., \(x, y, z\) such that
\[
d(x, y) \geq \max\{d(x, z), d(y, z)\}.
\]

In the case of a nonultrametric diametral additive metric space \((X, d)\), we will see that there is always a bad triangle whose base length equals \(\text{diam} X\). Such triangles are the subject of the following definition.

Definition 1.5. Let \((X, d)\) be a metric space of diameter \(\Delta < \infty\). We say that a subset \(T = \{x, y, z\}\) of three distinct points from \(X\) forms a diameter nonultrametric triangle if \((T, d)\) is not ultrametric and \(\text{diam} T = \text{diam} X\).

2. Nonultrametric triangles in diametral additive metric spaces

In this section we show that every nonultrametric diametral additive metric space \((X, d)\) contains a diameter nonultrametric triangle. We further note that this result is not true in the more general class of diametral metric spaces. Thus the assumption of additivity is necessary.

Henceforth we will assume that \(|X| \geq 3\). The following lemma treats the cases \(|X| = 3\) or 4.

Lemma 2.1. Let \((X, d)\) be a three or four point additive metric space. If \(X\) is not ultrametric, then \(X\) contains a diameter nonultrametric triangle.

Proof. The lemma is true by inspection if \(|X| = 3\), so we will assume that \(|X| = 4\). Let \(X = \{x, y, z, a\}\) and suppose that \(d(a, z) = \Delta\), where \(\Delta\) is the diameter of \(X\). If \(X\) is not ultrametric, then there exist three distinct points in \(X\) that do not satisfy the ultrametric inequality. That is, there exists a three point subset of \(X\) that is not ultrametric.

Consider the three point subsets of \(X\): \(\{x, y, z\}, \{x, y, a\}, \{y, z, a\}, \{x, z, a\}\).

Case 1: \(\{y, z, a\}\) is not ultrametric. Since \(a, z \in \{y, z, a\}\) and \(d(a, z) = \Delta\), we see that \(\text{diam}\{y, z, a\} = \Delta\). Then \(\{y, z, a\}\) forms a diameter nonultrametric triangle by definition.

Case 2: \(\{x, z, a\}\) is not ultrametric. The argument proceeds analogously to Case 1 and is omitted.

Case 3: \(\{x, y, z\}\) is not ultrametric. If \(\max\{d(a, x), d(x, z)\} < \Delta\), then \(\{x, z, a\}\) is not ultrametric, and if \(\max\{d(a, y), d(y, z)\} < \Delta\), then \(\{y, z, a\}\) is not ultrametric. Then we are reduced to Cases 1 and 2. Suppose that \(\max\{d(a, x), d(x, z)\} = \max\{d(a, y), d(y, z)\} = \Delta\). If \(d(x, z) = \Delta\), then \(\text{diam}\{x, y, z\} = \Delta\) and so \(\{x, y, z\}\) forms a diameter nonultrametric triangle. The same occurs if \(d(y, z) = \Delta\). Now let \(d(a, x) = d(a, y) = \Delta\). As we are assuming that the metric space \((X, d)\) is additive and that \(d(a, z) = \Delta\), it follows from [Buneman 1974, Theorem 2] that \(x, y\) and \(z\) are equidistant from \(a\) in some finite metric tree. In particular, no three point subset
of \(\{x, y, z, a\}\) that includes \(a\) can lie on a common geodesic in this tree. Thus \(x, y\) and \(z\) must be leaves in the minimal subtree generated by the vertices \(\{x, y, z, a\}\). The vertex \(a\) may or may not be a leaf in this subtree. However, if \(a\) is a leaf in this subtree, we may replace it with the vertex \(a'\) in the subtree that minimizes \(d(x, a')\) subject to the constraint \(d(x, a') = d(y, a') = d(z, a')\). So, by proceeding in this way (if necessary) and by ignoring all irrelevant internal vertices in the subtree, it follows that \(\{x, y, z\}\) forms the leaf set of a centered metric tree that has at most five vertices. Thus \(\{x, y, z\}\) is ultrametric by [Fiedler 1998, Theorem 2.2].

Case 4: \(\{x, y, a\}\) is not ultrametric. The argument proceeds analogously to Case 3 and is omitted.

Theorem 2.2. A diametral additive metric space \((X, d)\) is not ultrametric if and only if \(X\) contains a diameter nonultrametric triangle.

Proof. \((\Rightarrow)\) We prove the contrapositive of the forward implication. Let \((X, d)\) be a diametral metric space with diameter \(\Delta\). Suppose \(X\) contains no diameter nonultrametric triangles. We may choose \(a, b \in X\) with \(d(a, b) = \Delta\). Let \(x, y, z \in X\) be given. We show that the ultrametric inequality holds for \(x, y, z\). Without loss of generality, we may assume that \(x \neq a, b\). Consider the set \(X' = \{a, b, x\}\). Clearly \(\text{diam}(X', d) = \Delta\). If \(X'\) is not ultrametric, then \(X'\) forms a diameter nonultrametric triangle in \(X\). So \(X'\) must be ultrametric. Thus \(d(a, x) = \Delta\) or \(d(b, x) = \Delta\). Without loss of generality, we may assume that \(d(a, x) = \Delta\). Now consider \(X'' = \{a, x, y, z\}\). By construction, \(\text{diam}(X'', d) = \Delta\). It follows that any diameter nonultrametric triangle of \(X''\) is also a diameter nonultrametric triangle of \(X\). However, \(X\) contains no diameter nonultrametric triangles. So \(X''\) contains no diameter nonultrametric triangles. By Lemma 2.1, \(X''\) is ultrametric. Hence \(d(x, y) \leq \max\{d(x, z), d(y, z)\}\), and so \(X\) is ultrametric.

\((\Leftarrow)\) Any metric space that contains a diameter nonultrametric triangle is not ultrametric. □

The following example shows that the forward implication of Theorem 2.2 may fail if the metric space is not assumed to be additive. Consider any nonultrametric metric triangle \((\{x, y, z\}, d)\). Let \(\Delta\) denote the diameter of this triangle. We may assume that \(\Delta = d(x, y) > \max\{d(x, z), d(y, z)\}\). Now adjoin a fourth point \(a\) at distance \(\Delta + \varepsilon\) from \(x, y\) and \(z\) where \(\varepsilon > 0\). The resulting four point diametral metric space is not additive and contains no diameter nonultrametric triangles.

Acknowledgments

The example following Theorem 2.2 is due to the referee of a previous paper. Comments by that referee motivated this paper in no small measure.
References

Received: 2012-06-20 Accepted: 2013-01-10

tef36@drexel.edu Department of Mathematics, Drexel University, Philadelphia, PA 19104, United States

kdk7rn@virginia.edu Department of Mathematics, University of Virginia, Charlottesville, VA 22904, United States

mkm233@cornell.edu Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, United States

heidiv@sas.upenn.edu Department of Economics, University of Pennsylvania, Philadelphia, PA 19104, United State

enw27@cornell.edu Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, United States

westona@canisius.edu Faculty of Arts and Sciences, Australian Catholic University, North Sydney, NSW 2060, Australia

and

Department of Mathematics and Statistics, Canisius College, Buffalo, NY 14208, United States
Efficient realization of nonzero spectra by polynomial matrices
NATHAN MCNEW AND NICHOLAS ORMES

The number of convex topologies on a finite totally ordered set
TYLER CLARK AND TOM RICHMOND

Nonultrametric triangles in diametral additive metric spaces
TIMOTHY FAVER, KATELYNN KOCHALSKI, MATHAV KISHORE MURUGAN, HEIDI VERHEGGEN, ELIZABETH WESSON AND ANTHONY WESTON

An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial sequences
DANIEL J. GALIFFA AND TANYA N. RISTON

Average reductions between random tree pairs
SEAN CLEARY, JOHN PASSARO AND YASSER TORUNO

Growth functions of finitely generated algebras
ERIC FREDETTE, DAN KUBALA, ERIC NELSON, KELSEY WELLS AND HAROLD W. ELLINGSEN, JR.

A note on triangulations of sumsets
KÁROLY J. BÓRÓCZKY AND BENJAMIN HOFFMAN

An exploration of ideal-divisor graphs
MICHAEL AXTELL, JOE STICKLES, LANE BLOOME, ROB DONOVAN, PAUL MILNER, HAILEE PECK, ABIGAIL RICHARD AND TRISTAN WILLIAMS

The failed zero forcing number of a graph
KATHERINE FETCIE, BONNIE JACOB AND DANIEL SAAVEDRA

An Erdős–Ko–Rado theorem for subset partitions
ADAM DYCK AND KAREN MEAGHER

Nonreal zero decreasing operators related to orthogonal polynomials
ANDRE BUNTON, NICOLE JACOBS, SAMANTHA JENKINS, CHARLES McKENRY JR., ANDRZEJ PIOTROWSKI AND LOUIS SCOTT

Path cover number, maximum nullity, and zero forcing number of oriented graphs and other simple digraphs
ADAM BERLINER, CORA BROWN, JOSHUA CARLSON, NATHANAEAL COX, LESLIE HOBGEN, JASON HU, KATRINA JACOBS, KATHRYN MANTERNACH, TRAVIS PETERS, NATHAN WARNBERG AND MICHAEL YOUNG

Braid computations for the crossing number of Klein links
MICHAEL BUSH, DANIELLE SHEPHERD, JOSEPH SMITH, SARAH SMITH-POLDERMAN, JENNIFER BOWEN AND JOHN RAMSAY