
inv lve
a journal of mathematics

msp

A note on triangulations of sumsets
Károly J. Böröczky and Benjamin Hoffman

2015 vol. 8, no. 1





msp
INVOLVE 8:1 (2015)

dx.doi.org/10.2140/involve.2015.8.75

A note on triangulations of sumsets
Károly J. Böröczky and Benjamin Hoffman

(Communicated by Andrew Granville)

For finite subsets A and B of R2, we write ACB D faC b W a 2A; b 2 Bg. We
write tr.A/ to denote the common number of triangles in any triangulation of the
convex hull of A using the points of A as vertices. We consider the conjecture
that tr.ACB/

1
2 � tr.A/

1
2 C tr.B/

1
2 . If true, this conjecture would be a discrete

two-dimensional analogue to the Brunn–Minkowski inequality. We prove the
conjecture in three special cases.

1. Introduction

We write A;B to denote finite subsets of Rd , and j � j to stand for their cardinality.
For objects X1; : : : ;Xk in Rd , ŒX1; : : : ;Xk � denotes their convex hull. Our starting
point is two classical results. One is due to Freiman from the 1960s; namely,

jACBj � jAjC jBj � 1; (1)

with equality if and only if A and B are arithmetic progressions of the same
difference. The other result, the Brunn–Minkowski inequality, dates back to the
19th century. It says that if X;Y � Rd are compact sets, then

�.X CY /
1
d � �.X /

1
d C�.Y /

1
d ;

where � stand for the Lebesgue measure, and equality holds if X and Y are convex
homothetic sets. This theorem has been successfully applied to estimating the
size of a sumset, for example by Ruzsa, Green, and Tao. In turn, various discrete
analogues of the Brunn–Minkowski inequality have been established in papers by
Bollobás and Leader, Gardner and Gronchi, Green and Tao and, most recently,
by Grynkiewicz and Serra in the planar case. All these papers use the method of
compression, which changes a finite set into a set better suited for sumset estimates,
but which cannot control the convex hull. See [Freiman 1973; 2002] for the earlier
history, and [Ruzsa 2009] and [Tao and Vu 2006] for thorough surveys.
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Unfortunately the known analogues are not as simple in their form as the original
Brunn–Minkowski inequality. A formula due to Gardner and Gronchi says that if
A is not contained in any affine subspace of Rd , then

jACBj � .d!/�
1
d .jAj � d/

1
d CjBj

1
d :

In this paper, we discuss a more direct version of the Brunn–Minkowski inequality
in the plane, which would improve Freiman’s inequality if both A and B are
two-dimensional.

In the planar case (d D 2), a recent conjecture by Matolcsi and Ruzsa (personal
communication, 2009) might point to the right version of the Brunn–Minkowski
inequality. Let A be a finite noncollinear point set in R2. We write tr A to denote
the common number of triangles in any triangulation of ŒA� using the points of A

as vertices. If bA and iA denote the number of points of A in @ŒA� and intŒA�, then
the Euler formula yields

tr AD bAC 2iA� 2: (2)

If… is a polygon with vertices in Z2, and ADZ2\…, then Pick’s theorem says that

tr AD 2�.…/:

Now the Ruzsa–Matolcsi conjecture proposes that if A and B in the plane are
not collinear, then

tr.ACB/
1
2 � tr.A/

1
2 C tr.B/

1
2 : (3)

We note that equality holds if for a polygon … whose vertices are in Z2 and integers
k;m� 1, we have AD Z2\ k… and B D Z2\m….

In this paper, we verify (3) in some special cases. To present our main idea we
note that if ˛; ˇ > 0, then

.˛Cˇ/2 � 2.˛2
Cˇ2/; (4)

with equality if and only if ˛ D ˇ. Thus conjecture (3) follows from

tr.ACB/� 2 Œtr AC tr B�: (5)

This inequality does not hold in general. For example, let … be a polygon with
vertices in Z2, and let AD Z2\ k… and B D Z2\m… for integers k;m� 1. If
k ¤m, then we have equality in the Brunn–Minkowski theorem for X D ŒA� and
Y D ŒB�. Still, as we verify, (5) holds in several interesting cases.

The triangulation conjecture (3) can be written in the following form.

Conjecture 1 (main conjecture). If A and B are finite noncollinear sets R2, thenp
2iACBC bACB � 2 �

p
2iAC bA� 2C

p
2iBC bB � 2:
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In turn, (5) is equivalent with

2iACBC bACB � 4iAC 4iBC 2bAC 2bB � 6: (6)

2. Remarks on the boundary

In the following, we need the notion of exterior normal. A vector u is an exterior
normal at x0 to ŒA�, where x0 2A, if

u �x0 Dmaxfu �x W x 2Ag:

It immediately follows that only points in the boundary of ŒA� will have nonzero
exterior normals. It also follows that if aC b is a boundary point of ŒACB� for
a 2A and b 2 B, then an exterior unit normal u at aC b to ŒACB� is an exterior
unit normal at a to ŒA�, and at b to ŒB�. We conclude the following:

Lemma 2. If A and B are finite noncollinear sets in R2, and a 2 A and b 2 B,
then aCb lies on the boundary of ŒACB� with nonzero exterior unit normal vector
u if and only if u is an exterior normal to ŒA� at a and to ŒB� at b.

For a unit vector u, and finite set A, define the collinear set of points

Au D fx 2A W u �x Dmax
y2A

.u �y/g:

Lemma 3. For any finite noncollinear sets A and B in R2, we have

bACB � bAC bB;

with equality if and only if the inequalities jAuj � 2 and jBuj � 2 for a unit vector
u imply that Au and Bu are arithmetic progressions of the same difference.

Proof. For a finite collinear set C , let S.C / D jC j � 1, namely, the number of
segments the points of C divide the line into. Therefore if C and D are contained in
parallel lines, then S.C CD/�S.C /CS.D/, with equality if and only if jC j D 1,
jDj D 1, or C and D are arithmetic progressions of the same difference. Applying
this observation to C DAu and D D Bu for each unit vector which is an exterior
normal to a side of ŒACB� yields the lemma. �

3. Sums with unique representation for each point

In this section we consider the case where representation of points in ACB is
unique. We say that the representation is unique when for all x 2 A C B, if
x D a1C b1 and x D a2C b2, then a1 D a2 and b1 D b2.

Theorem 4. If the representation of points in ACB is unique, then Conjecture 1
holds.
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Proof. From the previous section, we see that whether x D aC b 2ACB lies on
the boundary of ŒACB� depends only on the exterior normals of a 2A and b 2 B.
So applying any transformation to A or B that preserves jACBj, tr A, tr B, and
the exterior normals of A and B will also preserve tr.ACB/. Note that scalar
multiplication by �, where �AD f�a W a 2Ag, satisfies the latter three conditions
immediately. Since the representation of points in ACB is unique, picking � so that
the representation of points in �ACB is also unique will satisfy the first condition.

We pick � small enough so that, for fixed b 2B, letting �ACbDfaCb W a2 �Ag,
for any x 2 �ACB, if x 2 Œ�ACb�, then x 2 �ACb. Geometrically, this amounts
to shrinking A enough that �ACB looks like a little copy of A placed at each
point in B. It follows that the representation of points in �ACB is unique, and
hence tr.�ACB/D tr.ACB/.

Assume without loss of generality that tr AD tr.�A/� tr B. We begin to draw
lines between points in �ACB to form a partial triangulation, which can be extended
to a triangulation of �ACB. For each b 2 B, draw lines on �AC b that form a
triangulation of that set. Then, consider a triangulation T of B. For b1; b2 2 B

that are connected by a line in T , consider �AC b1 and �AC b2. Pick a point
b�

1
2 �ACb1 that has exterior normal b2�b1 in Œ�ACb1�. Pick a point b�

2
2 �ACb2

that has exterior normal b1�b2 in Œ�ACb2�. Now, in �ACB, draw a line between
b�

1
and b�

2
. Geometrically, we have mimicked a triangulation of A at each little

copy of A, and a triangulation of B on a large scale, treating each little copy of A

as a point in B. Letting ptr.�ACB/ denote the number of polygons enclosed in
this partial triangulation, it follows that

tr.ACB/D tr.�ACB/� ptr.�ACB/D jBj tr AC tr B: (7)

Conjecture 1 then follows from the inequalityp
jBj tr AC tr B �

p
tr AC

p
tr B: (8)

Since jBj � 3 and tr A� tr B, .jBj�2/ tr A� tr B holds, which then implies (8). �

4. The case iA D iB D 1

We see that Lemma 3 yields that (6), and in turn Conjecture 1, would follow from

2iACB � 4iAC 4iBC bAC bB � 6; (9)

which we have already noted does not always hold. However, in the remainder of this
paper we show it holds for two special cases. The proof of the first case is simple:

Theorem 5. When iA D iB D 1, Conjecture 1 holds.

Proof. From Lemma 2, it follows that if a 2 Aint D fa 2 A W a 2 intŒA�g, then
aCB � .ACB/int. So by (1), since iA and iB are nonempty, iACB � iACjBj�1,
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and similarly iACB � iBCjAj � 1. Thus, since jAj D iAC bA and jBj D iBC bB ,
we have

2iACB � 2iAC 2iBC bAC bB � 2: (10)

In the case that iA D iB D 1, (9) follows. �

5. The case jAj D bA and jB j D bB

We now turn to the case jAj D bA and jBj D bB , or in other words, both A and B

lie on the boundary of their convex hulls. In this case, (9) becomes

2iACB � bAC bB � 6: (11)

The bad news is that (11) does not always hold. Let

zAD f.0; 0/; .1; 0/; .0; 1/g D f.x;y/ 2 N2
W xCy � 1g;

zB D f.0; 0/; .1; 0/; .0; 1/; .2; 0/; .1; 1/; .0; 2/g D f.x;y/ 2 N2
W xCy � 2g:

Therefore j zAj D b zA D 3, j zBj D b zB D 6, and zAC zB D f.x;y/ 2 N2 W xCy � 3g

yields i zAC zB D 1. In particular, (11) fails to hold for zA and zB, but the good news is
that Conjecture 1 does hold for them.

We note that zB D zAC zA. Actually, if A is any set of three noncollinear points,
and BDACA, then there exists a linear transformation ' such that A is a translate
of ' zA, and B is a translate of ' zB. Therefore (11) does not hold for that A and B,
as well. However, in the remainder of the paper, we prove the following theorem.
From this result Conjecture 1 holds for the case when jAj D bA and jBj D bB .

Theorem 6. If A and B are finite noncollinear sets in R2 such that jAj D bA,
jBj D bB and (11) fails to hold, then either jAj D 3, and B is a translate of ACA,
or jBj D 3, and A is a translate of BCB.

To prove Theorem 6, we consider a unit vector v not parallel to any side of ŒA�
or ŒB�. We think of v as pointing vertically upwards. Let lv;A and rv;A be the
leftmost and rightmost vertices of ŒA�, respectively. We note that lv;A and rv;A are
unique, because v is not parallel to any side of ŒA�. Similarly, let lv;B and rv;B be
the (unique) leftmost and rightmost vertices of ŒB�, respectively.

Remember that v points upwards. We observe that lv;A and rv;A divide the
boundary of ŒA� into one “upper” and one “lower” polygonal arc. Let Av;upp

and Av;low denote the set of points of A in the upper and lower polygonal arcs,
respectively, excluding lv;A and rv;A. For a 2A, we have

a2Av;upp if and only if u � v > 0 for any unit exterior normal u to ŒA� at a; (12)

a2Av;low if and only if u � v < 0 for any unit exterior normal u to ŒA� at a: (13)
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In addition, as lv;A and rv;A are excluded, we have

jAv;uppjC jAv;lowj D bA� 2: (14)

Similarly, lv;B and rv;B divide the boundary of ŒB� into an “upper” and a “lower”
polygonal arc; let Bv;upp and Bv;low denote the set of points of B in the upper and
lower polygonal arcs, respectively, excluding lv;B and rv;B . For b 2 B, we have

b2Bv;upp if and only if u � v > 0 for any unit exterior normal u to ŒB� at b; (15)

b2Bv;low if and only if u � v < 0 for any unit exterior normal u to ŒB� at b; (16)

jBv;uppjC jBv;lowj D bB � 2: (17)

Lemma 7. Let A and B be finite noncollinear sets in R2, and let v be a unit vector
not parallel to any side of ŒA� or ŒB�. If Av;upp, Av;low, Bv;upp and Bv;low are all
nonempty, then (11) holds.

Proof. Lemma 2, (12) and (16) yield that Av;uppCBv;low � intŒACB�; therefore

iACB � jAv;uppCBv;lowj � jAv;uppjC jBv;lowj � 1:

In addition, Lemma 2, (13) and (15) yield that Av;lowCBv;upp� intŒACB�; therefore

iACB � jAv;lowCBv;uppj � jAv;lowjC jBv;uppj � 1:

We deduce from (14) and (17) that

2iACB � jAv;uppjC jBv;lowjC jAv;lowjC jBv;uppj � 2D bAC bB � 6: �

In other words, Lemma 7 says that if (11) does not hold, then at least one of
the sets Av;upp, Av;low, Bv;upp and Bv;low is empty. We observe that replacing v
by �v simply exchanges Av;upp and Av;low on the one hand, and Bv;upp and Bv;low

on the other hand. Therefore Proposition 9 will refine Lemma 7. Before that, we
verify another auxiliary statement. Let Œp; q� denote the closed line segment with
end points p; q 2 R2.

Lemma 8. Let A and B be finite noncollinear sets in R2, and let v be a unit vector
not parallel to any side of ŒA� or ŒB�. If Av;low D ∅, then iACB � jBv;uppj � 2,
where equality would imply that Bv;low � Œlv;B; rv;B �, and the segments Œlv;A; rv;A�

and Œlv;B; rv;B � are parallel.

Proof. We drop the reference to v in the notation. After applying a linear transfor-
mation fixing v, we may assume that

w � v D 0 for w D rA� lA. (18)

We may also assume that
lA � v D rA � v D 0: (19)



A NOTE ON TRIANGULATIONS OF SUMSETS 81

If rB � v > lB � v, then we reflect both A and B through the line Rv. This keeps v,
but interchanges the roles of lA and rA on the one hand, and the roles of lB and rB

on the other hand. Therefore we may assume that

rB � v � lB � v: (20)

Understanding exterior normals helps bound interior points in ŒACB�. As A

has some point above ŒlA; rA� by Alow D∅, (18) yields that

either u �w > 0 or uD�v for any exterior unit normal u at rA to ŒA�; (21)

either u �w < 0 or uD�v for any exterior unit normal u at lA to ŒA�: (22)

We may assume that Bupp ¤∅ (otherwise Lemma 8 trivially holds). We subdivide
Bupp into the sets

B�upp D fb 2 Bupp W u �w < 0 for any exterior unit normal u at b to ŒB�g; (23)

BCupp D fb 2 Bupp W u �w > 0 for any exterior unit normal u at b to ŒB�g; (24)

B0
upp D fb 2 Bupp W v is an exterior unit normal u at b to ŒB�g: (25)

Since for any b 2 B, the set of all exterior unit normals u at b to ŒB� is an arc of
the unit circle, the sets B�upp, BCupp and B0

upp are pairwise disjoint, and their union is
Bupp. In addition, we define

zB�upp D

(
flBg[B�upp if there exists b 2 B with b � v < lB � v,

B�upp if b � v � lB � v for all b 2 B.
(26)

It follows that if b 2 zB�upp, then

either u �w < 0 or uD v for an exterior unit normal u to ŒB� at b. (27)

Turning to B0
upp, if B0

upp¤∅, then there exist l0
B
; r0

B
2B0

upp such that r0
B
� l0

B
D sw

for s � 0, and

B0
upp D B \ Œl0

B; r
0
B �; (28)

v � b0 Dmaxfv � b W b 2 Bg DH for all b0 2 B0
upp: (29)

To estimate iACB , we deduce from Lemma 2, and from (21) and (27) on the one
hand, from (22) and (24) on the other hand, that

rAC zB
�
upp � intŒACB� if B�upp ¤∅;

lACBCupp � intŒACB� if BCupp ¤∅:
(30)

We claim that if zB�upp ¤∅ and BCupp ¤∅, thenˇ̌
.rAC zB

�
upp/\ .lACBCupp/

ˇ̌
� 1: (31)
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We observe that rACx D lACy if and only if y �x D w, and hence x � v D y � v.
However, if x1;x2 2

zB�upp and y1;y2 2 BCupp with x1 � v D y1 � v < x2 � v D y2 � v,
then .y2�x2/ �w < .y1�x1/ �w, which in turn yields (31). We conclude by (19),
(29), (30) and (31) thatˇ̌

fz 2 .ACB/\ intŒACB� W z � v <H g
ˇ̌
� j zB�uppjC jB

C
uppj � 1: (32)

We recall that there exists some p 2Aupp, and hence p �v > 0 by lA �vD 0. Thus
if B0

upp ¤ ∅, and z 2 flA; rAgCB0
upp is different from lAC l0

B
and rAC r0

B
, then

these two points of ACB lie left and right from z. Since .lAC lB/ � v < z � v and
.pCl0

B
/�v> z �v, we have z2 intŒACB�. In particular, jflA; rAgCB0

uppj� jB
0
uppjC1

yields that ˇ̌
fz 2 .ACB/\ intŒACB� W z � v DH g

ˇ̌
� jB0

uppj � 1: (33)

Adding (32) and (33) implies iACB � jBuppj � 2. If iACB D jBuppj � 2, then
zB�upp D B�upp, and hence rB � v D lB � v by (20) and (26), and Blow � ŒlB; rB �. In

particular, (18) implies that Œlv;A; rv;A� and Œlv;B; rv;B � are parallel. �

Proposition 9. Let A and B be finite noncollinear sets in R2, and let v be a unit
vector not parallel to any side of ŒA� or ŒB�. If (11) does not hold, then possibly
after exchanging A and B, or v and �v, we have the following:

(i) Av;low D∅.

(ii) Bv;low � Œlv;B; rv;B �.

(iii) Œlv;A; rv;A� and Œlv;B; rv;B � are parallel.

(iv) Either Bv;low D ∅ and bB D bA, or jBv;uppj D jAv;uppj C jBv;lowj C 1 and
bB > bA.

Proof. We drop the reference to v in the notation. To present the argument, we
make some preparations. Again using that (11) does not hold, Lemma 7 yields that
possibly after exchanging A and B, or v and �v, we may assume that

Alow D∅:

Possibly after exchanging A and B again, we may assume that

if Blow D∅, then bB � bA: (34)

Since (11) does not hold, we have

iACB <
1
2
.bAC bB/� 3: (35)
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First we show that

either jBuppj D
bAC bB

2
� 2; Blow D∅ and bA D bB ,

or jBuppj>
bAC bB

2
� 2:

(36)

If Blow D∅, then bB � bA by (34), and hence

jBuppj D bB � 2�
bAC bB

2
� 2;

with equality only if bA D bB .
If Blow ¤∅, then we use that Aupp ¤∅ by Alow D∅. Thus Lemma 2, (12) and

(16) yield that AuppCBlow lies in the interior of ŒACB�. Combining this fact with
(17) leads to

iACB � jAuppCBlowj � jAuppjC jBlowj � 1

D bA� 2C bB � 2� jBuppj � 1D bAC bB � jBuppj � 5: (37)

Therefore

jBuppj>
bAC bB

2
� 2

by (35), proving (36).
It follows from (35) and (36) that iACB < jBuppj�1; thus Lemma 8 implies that

iACB D jBuppj � 2, and in turn Proposition 9(ii) and (iii) hold. To prove (iv), we
deduce from (35) that

bAC bB � 6> 2iACB D 2jBuppj � 4:

Therefore (36) yields that either Blow D∅ and bA D bB , or

bAC bB � 4< 2jBuppj< bAC bB � 2:

In particular, 2jBuppj D bAC bB � 3 in the second case, which is in turn equivalent
to jBuppj D jAuppjC jBlowjC 1 by jAuppj D bA� 2 and (17). In addition, jBuppj D

jAuppjC jBlowjC 1 implies that bB > bA. �
We have now developed enough machinery to prove Theorem 6, which we restate

here:

Theorem 6. If A and B are finite noncollinear sets in R2 such that jAj D bA,
jBj D bB and (11) fails to hold, then either jAj D 3, and B is a translate of ACA,
or jBj D 3, and A is a translate of BCB.

Proof. We follow Proposition 9, and choose A, B, and v as in that result. For
each x 2A, we have that if x lies on a corner of ŒA�, there exist vectors vx;l and
vx;r such that x D lvx;l ;A and x D rvx;r ;A. Since Av;low D ∅, in the first case
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rvx;l ;A D rv;A, and in the second lvx;r ;A D lv;A. Consider one such x 2Av;upp. By
Proposition 9, it follows that A is a subset of the triangle TA formed by lv;A, rv;A,
and x. And, by the same proposition, all the sides of ŒB� must be parallel to sides
in A, so B is a subset of some triangle TB D �TA, where � is the composition of a
transposition and scalar multiplication. Then the corners of ŒB� are lv;B , rv;B , and
some point y 2 B. We define open line segments

s1 D .lv;A; rv;A/; s2 D .lv;A;x/; s3 D .x; rv;A/;

t1 D .lv;B; rv;B/; t2 D .lv;B;y/; t3 D .y; rv;B/:

Let Ai D si \A and Bi D ti \B for i 2 f1; 2; 3g. Note that A1 D ∅, and si is
parallel to ti , yet Ai D∅ or Bi D∅.

Assume for contradiction that jAj > 3. By Proposition 9, jBv;uppj � 2. Thus
Bi ¤ ∅ for one i 2 f2; 3g. Assume without loss of generality that B3 ¤ ∅; then
by Proposition 9, A3 D∅ and so A2 ¤∅. Thus, letting p 2A2, since B1 and B3

share no nonzero exterior normals with p, and since A2 and rv;B share no nonzero
exterior normals, B1Cp, A2C rv;B , and B3Cp are all in .ACB/int. And since
TB D �TA, these three sets are pairwise disjoint. So

iACB � jB1CpjC jA2C rv;BjC jB3Cpj D bAC bB � 6; (38)

and thus (11) holds, contrary to our assumption. So jAj D 3.
By Proposition 9, we have that if Bv;low D∅, then bA D bB D 3. So, 2iACB �

bAC bB � 6D 0, and again (11) holds. Thus, we have that jBv;lowj � 1, and so

jBv;uppj D jBv;lowjC 2: (39)

That is,

jB2jC jB3j D jB1jC 1: (40)

By the same argument, we get

jB1jC jB2j D jB3jC 1; (41)

jB1jC jB3j D jB2jC 1: (42)

It follows that jB1j D jB2j D jB3j D 1 and so bB D 6.
Now, iACB > 0, and if iACB � 2 then (11) holds, contradicting our assumption.

Assuming then that iACB D 1, we let bi 2 Bi for i 2 f1; 2; 3g. Then we see
that x C b1 D rv;A C b2 D lv;A C b3. And since TB D �TA, B must just be a
translated version of ACA. And, as was mentioned in the beginning of this section,
Conjecture 1 holds for A and B. �
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