An exploration of ideal-divisor graphs

Michael Axtell, Joe Stickles, Lane Bloome, Rob Donovan, Paul Milner, Hailee Peck, Abigail Richard and Tristan Williams
An exploration of ideal-divisor graphs

Michael Axtell, Joe Stickles, Lane Bloome, Rob Donovan, Paul Milner, Hailee Peck, Abigail Richard and Tristan Williams

(Communicated by Scott T. Chapman)

Zero-divisor graphs have given some interesting insights into the behavior of commutative rings. Redmond introduced a generalization of the zero-divisor graph called an ideal-divisor graph. This paper expands on Redmond’s findings in an attempt to find additional information about the structure of commutative rings from ideal-divisor graphs.

1. Definitions and introduction

Throughout, we assume that R is a finite commutative ring with identity, though in some instances the proofs given can be extended to more general rings. A zero-
divisor in R is an element x such that there exists a nonzero $y \in R$ with $xy = 0$. The set of all zero-divisors in R is denoted by $Z(R)$. The set of all nonzero zero-divisors is denoted by $Z(R)^*$.

A graph G is defined by a vertex set $V(G)$ and an edge set

$$E(G) \subseteq \{\{a, b\} \mid a, b \in V(G)\}.$$

Two vertices x and y joined by an edge are said to be adjacent, denoted $x - y$. A vertex x is said to be looped if $x - x$. A path between two elements $a_1, a_n \in V(G)$ is an ordered sequence $\{a_1, a_2, \ldots, a_n\}$ of distinct vertices of G such that $a_{i-1} - a_i$ for all $1 < i \leq n$. If there exists a path between any two distinct vertices, then the graph is said to be connected. A graph is said to be complete if every vertex is adjacent to every other vertex, and we denote the complete graph on n vertices by K^n. A graph G is a finite graph if $V(G)$ is a finite set.

If the vertices of a graph G can be partitioned into two sets with vertices adjacent only if they are in distinct sets, then G is bipartite. If vertices in a bipartite graph are adjacent if and only if they are in distinct vertex sets, then the graph is called complete bipartite. We will denote the complete bipartite graph with distinct vertex sets of cardinalities m and n by $K^{m,n}$. A star graph is a complete bipartite graph

MSC2010: 13M05.

Keywords: commutative ring with identity, radical ideal, zero-divisor graph, ideal-divisor graph.
such that one of its vertex sets has cardinality one. In general, we say a graph G is a *refinement* of a graph H if $V(G) = V(H)$ and $E(H) \subseteq E(G)$. We note that any graph of radius one is a refinement of a star graph.

For any other terms not defined here, see [Chartrand 1985] for a graph theory reference, and see [Herstein 1990] for a ring theory reference. The figures in this paper were generated by Mathematica using programs originally written by Brendan Kelly, Darrin Weber, and Elisabeth Wilson and modified to suit our needs.

Beck [1988] was the first to define the zero-divisor graph of a commutative ring. However, it was in the seminal paper [Anderson and Livingston 1999] that the structure was first used extensively to reveal ring-theoretic properties. In this paper, the *zero-divisor graph* of R, denoted $\Gamma(R)$, is the simple graph with vertex set $V(\Gamma(R)) = Z(R)^*$ and edge set

$$E(\Gamma(R)) = \{\{a, b\} \mid a, b \in V(\Gamma(R)), \ ab = 0 \ \text{and} \ a \neq b\}.$$

Redmond [2003] introduced *ideal-divisor graphs*, a generalization of zero-divisor graphs. For I an ideal of R, an element $x \in R$ is an *ideal-divisor* if there exists some $y \in R \setminus I$ such that $xy \in I$. The set of ideal-divisors of R with respect to I is denoted $Z_I(R)$. The *ideal-divisor graph* of a R with respect to an ideal I, denoted $\Gamma_I(R)$, is the simple graph with vertex set $V(\Gamma_I(R)) = Z_I(R)^*$ and edge set

$$E(\Gamma_I(R)) = \{\{x, y\} \mid x, y \in V(\Gamma_I(R)), \ x \neq y \ \text{and} \ xy \in I\}.$$

Redmond [2003] proved that if I is an ideal of R, then $\Gamma_I(R)$ is connected with $\text{diam}(\Gamma_I(R)) \leq 3$. He proved further that if $\Gamma_I(R)$ contains a cycle, then $g(\Gamma_I(R)) \leq 7$, and he developed an algorithm for constructing the graph of $\Gamma_I(R)$ from $\Gamma(R/I)$.

Redmond, like Anderson and Livingston, did not include looped vertices in his definition of the ideal-divisor graph. The following definitions have therefore been modified to include looped vertices. The *zero-divisor graph* of R (denoted $\Gamma(R)$) has vertex set $V(\Gamma(R)) = Z(R)^*$ and edge set

$$E(\Gamma(R)) = \{\{a, b\} \mid a, b \in V(\Gamma(R)) \ \text{and} \ ab = 0\}.$$

The *ideal-divisor graph* of R with respect to an ideal I, denoted $\Gamma_I(R)$, has vertex set $V(\Gamma_I(R)) = Z_I(R)^*$ and edge set

$$E(\Gamma_I(R)) = \{\{x, y\} \mid x, y \in V(\Gamma_I(R)) \ \text{and} \ xy \in I\}.$$

These modified definitions allow a vertex b in $\Gamma(R)$ or $\Gamma_I(R)$ to be adjacent to itself if and only if $b^2 = 0$ or $b^2 \in I$ for each graph, respectively.

In Sections 2 and 3, we expand upon Redmond’s results by examining the structure of $\Gamma_I(R)$. We also consider the relationships between $\Gamma_I(R)$ and $\Gamma(R/I)$. In particular, we establish conditions for $\Gamma_I(R)$ to be finite, demonstrate several
relationships between the cut-sets of $\Gamma(R/I)$ and $\Gamma_I(R)$, and prove a result on the connectivity of $\Gamma_I(R)$. In Section 4, we modify and prove a modification of a proposition presented in [Redmond 2003]. A brief discussion at the end of this paper examines the structure of $\Gamma_I(R)$ when I is a radical, primary, or weakly prime ideal.

The following results are included for reference. Although these results were proven for graphs without loops, it is straightforward to check that they still hold when the graphs are looped.

Theorem 1.1 [Redmond 2003, Theorem 2.5]. Let I be an ideal of R, and let $x, y \in R \setminus I$. Then:

1. If $x + I$ is adjacent to $y + I$ in $\Gamma(R/I)$, then x is adjacent to y in $\Gamma_I(R)$.
2. If x is adjacent to y in $\Gamma_I(R)$ and $x + I \neq y + I$, then $x + I$ is adjacent to $y + I$ in $\Gamma(R/I)$.
3. If x is adjacent to y in $\Gamma_I(R)$ and $x + I = y + I$, then $x^2, y^2 \in I$.

Corollary 1.2 [Redmond 2003, Corollary 2.6]. If x and y are (distinct) adjacent vertices in $\Gamma_I(R)$, then all (distinct) elements of $x + I$ and $y + I$ are adjacent in $\Gamma_I(R)$. If $x^2 \in I$, then all the distinct elements of $x + I$ are adjacent in $\Gamma_I(R)$.

2. Structure of $\Gamma_I(R)$

In this section, we investigate the relationship between $\Gamma_I(R)$ and $\Gamma(R/I)$, and provide some results about the general structure of $\Gamma_I(R)$.

A few definitions are needed for clarification in this section. Elements of the vertex set of $\Gamma_I(R)$ which are elements of the same coset in R/I form a column in $\Gamma_I(R)$ [Redmond 2003, Theorem 2.9]. Corollary 1.2 gives that if a vertex $a + I$ is looped (i.e., $(a + I)^2 = 0 + I$) in $\Gamma(R/I)$, then all the vertices in the corresponding column of $\Gamma_I(R)$ are adjacent to one another. Finally, the ideal annihilator of an element $a \in R \setminus I$ with respect to some ideal I is the set $(I : a) = \{b \mid ab \in I \text{ and } b \in R \setminus I\}$.

Proposition 2.1. Let I be an ideal of R. If $(a + I)$ and $(b + I)$ are distinct vertices in $\Gamma(R/I)$ with $(a + I) - (b + I)$, then the columns corresponding to $a + I$ and $b + I$, taken as a pair, form a subgraph that is a refinement of a complete bipartite graph in $\Gamma_I(R)$. Moreover, for any $a + i \in V(\Gamma_I(R))$, $|\Gamma_I(a + i)|$ is equal to $k|I|$ for some $k \in \mathbb{N}$.

Proof. This result follows directly from Theorem 1.1. \qed

Example 2.2. In Figure 1, each adjacent pair of columns of $\Gamma_8(\mathbb{Z}_{24})$ is a refinement of a complete bipartite graph.
Theorem 2.3. Let S be a commutative ring. Then $\Gamma_I(S)$ is finite if and only if either S is a finite ring or I is a prime ideal. In particular, if $1 \leq |\Gamma_I(S)| < \infty$, then S is a finite ring and I is not a prime ideal.

Proof. (\Rightarrow) If I is prime, then $\Gamma_I(S) = \emptyset$. So, assume I is not prime.

(1) If I is infinite, then by [Redmond 2003, Corollary 2.7], $\Gamma_I(S)$ is infinite.

(2) If I is finite and S is infinite, then S/I is infinite and not an integral domain, so $\Gamma(S/I)$ is infinite (see [Ganesan 1964]). By [Redmond 2003, Theorem 2.5], since $\Gamma(S/I)$ is isomorphic to a subgraph of $\Gamma_I(S)$, $\Gamma_I(S)$ is also infinite.

(\Leftarrow) Clear. □

3. Cut-sets and connectivity

In a connected graph, a cut-vertex is a vertex that, when it and any edges incident to it are removed, separates the graph into two or more connected components. Cut-vertices were introduced into the analysis of zero-divisor graphs in [Axtell et al. 2009] and were further studied in [Axtell et al. 2011]. In [Redmond 2003, Theorem 3.2], Redmond proved that $\Gamma_I(R)$ contains no cut-vertices whenever I is a nonzero proper ideal of R. Cut-sets, a generalization of the cut-vertex, were also introduced into the analysis of zero-divisor graphs in [Coté et al. 2011]. For a connected graph G, a subset $A \subset V(G)$ is a cut-set if there exist $c, d \in V(G) \setminus A$ such that every path from c to d contains at least one vertex from A, and no proper subset of A satisfies the same condition. It is easy to show that for a given nonempty set of vertices A, the existence of such c and d is equivalent to the existence of two subgraphs X and Y of G whose (vertexwise and edgewise) union equals G, and whose vertex sets satisfy $V(X) \cap V(Y) = A$, $V(X) \setminus A \neq \emptyset$, and $V(Y) \setminus A \neq \emptyset$. When this happens we say that A separates X and Y.
Theorem 3.1. Let I be an ideal of R. If A is a cut-set in $\Gamma_I(R)$, then A is a column or a union of columns.

Proof. Assume A is a cut-set of $\Gamma_I(R)$. Let $x, y \in V(\Gamma_I(R)) \setminus A$. Let $x - \cdots - a + i - \cdots - y$ be a path from x to y, where $a + i \in A$. Since $x - \cdots - a + \tilde{i} - \cdots - y$ is also a path from x to y for all $\tilde{i} \in I$, we must have $a + I \subseteq A$. □

As an example, let $R = \mathbb{Z}_{24}$ and let $I = (12)$. Since $R/I \cong \mathbb{Z}_{12}$, we can identify $\Gamma(R/I)$ with Figure 2. We notice that the vertices 4 and 8 form a cut-set. Likewise, looking at Figure 3, in $\Gamma_{(12)}(\mathbb{Z}_{24})$ the set $\{4, 8, 16, 20\}$ is a cut-set. We note that in this figure 4 and 16 form the column associated with $4 + (12)$, while 8 and 20 form the column associated with $8 + (12)$.

Theorem 3.2. If A is a cut-set in $\Gamma(R/I)$, then $B = \{a + i \mid a + I \in A, i \in I\}$ is a cut-set in $\Gamma_I(R)$.

Proof. Let X and Y be subgraphs of $\Gamma(R/I)$ separated by the cut-set A. Let $x, y \in V(\Gamma_I(R))$ such that $x + I$ and $y + I$ are vertices of X and Y, respectively. Let $x + I - \cdots - y + I$ be a path from $x + I$ to $y + I$. Then since A is a cut-set, this path must contain at least one element from A.

Suppose there exists a path $x - z_1 - \cdots - z_n - y$ from x to y that does not contain at least one element from B. From Corollary 1.2, it can be assumed without loss of generality that each z_j is in a distinct column of $\Gamma_I(R)$, where $1 \leq j \leq n$. Thus, by
Theorem 1.1, \((x + I) - (z_1 + I) - \cdots - (z_n + I) - (y + I)\) is a path in \(\Gamma(R/I)\). This path does not contain at least one element from \(A\), contradicting the fact that \(A\) is a cut-set. Therefore, every path between \(x\) and \(y\) contains at least one element of \(B\).

Suppose \(B\) is not the minimal such set. Then there exists some \(b \in B\) such that every path from \(x\) to \(y\) contains at least one vertex from \(B \setminus \{b\}\). Then \(b + I \in A\), and every path from \(x\) to \(y\) contains at least one element from \(A \setminus \{b + I\}\). This contradicts that \(A\) is a cut-set of \(\Gamma(R/I)\).

The converse is not always true. Consider the graph of

\[
\Gamma((\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)/\{(0) \times \{0\} \times \mathbb{Z}_2\}),
\]

shown in Figure 4, which is isomorphic to \(K^2\).

There are no cut-vertices or cut-sets in the above graph. However, the sets \{(0, 1, 0), (0, 1, 1)\} and \{(1, 0, 0), (1, 0, 1)\} are cut-sets in \(\Gamma((\{0\} \times \{0\} \times \mathbb{Z}_2)/(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2))\).

Lemma 3.3. If \(x, y \in \Gamma_1(R)\) are distinct and every path connecting \(x\) to \(y\) contains a vertex \(z \in A \subseteq V(\Gamma_1(R))\), then every path connecting \(x + I\) to \(y + I\) in \(\Gamma(R/I)\) contains an element of \(B = \{a + I \mid a \in A\}\).

Proof. Let \((x + I) - (w_1 + I) - \cdots - (w_k + I) - (y + I)\) be a path from \(x + I\) to \(y + I\) in \(\Gamma(R/I)\). If \(w_n \notin A\) for all \(1 \leq n \leq k\), then there exists a path \(x - w_1 - \cdots - w_k - y\) in \(\Gamma_1(R)\) that does not contain an element of \(A\), a contradiction.

Theorem 3.4. If a cut-set \(A\) in \(\Gamma_1(R)\) is a union of \(n\) columns and \(|Z(R/I)^*| - n \geq 2\), then \(B = \{a + I \mid a \in A\}\) is a cut-set in \(\Gamma(R/I)\).

Proof. Suppose \(A\) is a cut-set in \(\Gamma_1(R)\). Since \(|Z(R/I)^*| - n \geq 2\), there are \(b, c \in \Gamma_1(R) \setminus A\) such that \(b\) and \(c\) are in different columns, and any path connecting \(b\) and \(c\) contains an element \(a \in A\). To see this, note that if two vertices are in the same column and are separated by \(A\), then these vertices must be isolated when \(A\) is removed, because vertices in the same column are adjacent to the same set of vertices by Corollary 1.2. Since there are at least two columns left after the removal of \(A\), we can now choose \(b\) and \(c\) in different columns that meet the desired conditions.

By Lemma 3.3, any path from \(b + I\) to \(c + I\) in \(\Gamma(R/I)\) must contain \(a + I\) for some \(a \in A\). The set of all such points is \(B\); thus, \(B\) is a cut-set or contains a cut-set.

Propose \(B\) is not minimal. Then there exists some \(a_i + I \in B\) such that \(C \subseteq B \setminus \{a_i + I\} = \{a + I \mid a \in A \setminus \{a_i\}\}\) is a cut-set in \(\Gamma(R/I)\). Then by Theorem 3.2, \(D = \{a + I \mid a + I \in C, i \in I\} \subset A\) is a cut-set in \(\Gamma_1(R)\), a contradiction.
If $|Z(R/I)^*| - n < 2$, then B would certainly not be a cut-set in $\Gamma(R/I)$. If there was only one column remaining after the removal of A from $\Gamma_1(R)$, then there would only be one coset representative remaining after the removal of B from $\Gamma(R/I)$.

It is proved in [Coté et al. 2011] that if R is not local and if B is a cut-set of $\Gamma(R)$, then $B \cup \{0\}$ is an ideal. A similar theorem for cut-sets in $\Gamma_1(R)$ is provided.

Theorem 3.5. Let I be an ideal of R such that R/I is nonlocal, let A be a cut-set in $\Gamma(R/I)$, and let $B = \{a + i \mid a + I \in A, i \in I\}$. Then $B \cup I$ is an ideal of R.

Proof. Let A be a cut-set in $\Gamma(R/I)$. Then $A \cup \{0 + I\}$ is an ideal of R/I by [Coté et al. 2011]. Then $B \cup I = \phi^{-1}(A \cup \{0 + I\})$, where $\phi : R \to R/I$ is the canonical homomorphism, is an ideal of R. □

The connectivity of a connected graph G, denoted $\kappa(G)$, is the minimum number of vertices that must be removed from G to produce a disconnected graph. It is customary to define the connectivity of the complete graph K^n to be $\kappa(K^n) = n - 1$. In other words, $\kappa(G)$ is the order of the smallest cut-set of G, when G is not isomorphic to K^n. The following result on the connectivity of $\Gamma_1(R)$ is Theorem 3.3 of [Redmond 2003].

Theorem 3.6. Let I be a nonzero proper ideal of R.

1. If $\Gamma(R/I)$ is the graph on one vertex, then $\kappa(\Gamma_1(R)) = |I| - 1$.
2. If $\Gamma(R/I)$ has at least two vertices, then $2 \leq \kappa(\Gamma_1(R)) \leq |I| \cdot \kappa(\Gamma(R/I))$.
3. $|I| - 1 \leq \kappa(\Gamma_1(R))$.

In light of this theorem, consider $\Gamma(\mathbb{Z}_{27}/(9))$, shown in Figure 5. The connectivity of $\kappa(\Gamma(\mathbb{Z}_{27}/(9)))$ is 1. So, by the above theorem, $\kappa(\Gamma_1(\mathbb{Z}_{27}))$ should be 2 or 3. However, since $\Gamma_1(\mathbb{Z}_{27})$ (shown in Figure 6) is complete, $\kappa(\Gamma_1(\mathbb{Z}_{27})) = |\Gamma_1(\mathbb{Z}_{27})| - 1 = 5$. A reading of the proof of this theorem in [Coté et al. 2011] shows this problem arises only when $\Gamma(R/I)$ is complete. We provide the following modification of this theorem to take into account complete graphs.

Theorem 3.7. Let I be a nonzero proper ideal of R.

1. If $\Gamma(R/I)$ is complete on more than two vertices, then
 \[
 \kappa(\Gamma_1(R)) = |I| \cdot |V(\Gamma(R/I))| - 1.
 \]
(2) If \(\Gamma(R/I) \) is the graph on two vertices, then
\[
\kappa(\Gamma_I(R)) = |I| \quad \text{or} \quad |I| \cdot |V(\Gamma(R/I))| - 1.
\]

(3) If \(\Gamma(R/I) \) is not complete and has at least three vertices, then
\[
2 \leq \kappa(\Gamma_I(R)) \leq |I| \cdot \kappa(\Gamma(R/I)).
\]

(4) \(|I| - 1 \leq \kappa(\Gamma_I(R))\).

Proof. Parts 3 and 4 are proved in [Coté et al. 2011].

(1) Suppose \(\Gamma(R/I) \) is complete. Then for all \(a + I, b + I \in \Gamma(R/I) \), we have \((a + I) - (b + I)\). By [Anderson and Livingston 1999, Theorem 2.8], \(Z(R/I)^2 = \{0\} \). Thus, by Theorem 1.1, \(\Gamma_I(R) \) is complete. Hence \(\kappa(\Gamma_I(R)) = |\Gamma_I(R)| - 1 = |I| \cdot |\Gamma(R/I)| - 1 \). (See [Coté et al. 2011, Remark 28].)

(2) Suppose \(\Gamma(R/I) \) is the graph on two vertices, \(x + I \) and \(y + I \). Then by [Anderson and Livingston 1999, Theorem 2.8], either \(R/I \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \) or \(Z(R/I)^2 = \{0\} \). Thus, there are two cases:

(a) Suppose \(x^2 + I \neq 0 + I = y^2 + I \). Then \(\Gamma_I(R) \) is complete. Thus, \(\kappa(\Gamma_I(R)) = |I| \cdot |\Gamma(R/I)| - 1 \).

(b) Suppose \(x^2 + I \neq 0 + I \neq y^2 + I \). Then \(\Gamma_I(R) \) is isomorphic to \(K_{|I|, |I|} \). Without loss of generality, let \(x + I \subset V(\Gamma_I(R)) \). Then \(x \) is adjacent to every vertex in \(y + I \). Thus, to create a disconnected graph from \(\Gamma_I(R) \), every vertex in \(y + I \) is removed, i.e., we remove \(|I|\) vertices. \(\square \)

4. **Classifying ideals via ideal-divisor graphs**

Let \(I \) be an ideal of \(R \). The **radical** of \(I \) is the set \(\sqrt{I} = \{r \in R \mid r^n \in I \text{ for some } n \in \mathbb{N}\} \). For any ideal \(I \), \(\sqrt{I} \) is an ideal of \(R \), and if \(\sqrt{I} = I \), then \(I \) is called a **radical ideal**. Note that for a radical ideal \(I \) of \(R \), if \(|I| \geq 2\), then there are no connected columns.
Lemma 4.1. Let I be an ideal of R and let $a \in Z_I(R)^*$. If no vertex of $\Gamma_I(R)$ is looped, then $a^n \notin I$ for all $n \in \mathbb{N}$.

Proof. Suppose $a^n \in I$ for some least $n \in \mathbb{N}$. Then, $a^{n-1} \in Z_I(R)^*$ and $(a^{n-1})^2 \in I$. Thus, a^{n-1} is looped, a contradiction. □

Theorem 4.2. Let I be an ideal of R. Then I is a radical ideal if and only if no vertex in $\Gamma_I(R)$ is looped (equivalently, $\Gamma_I(R)$ has no connected columns).

Proof. (\Rightarrow) Consider $a \in V(\Gamma_I(R))$. Since $a \notin I$, $a^n \notin I$ for all $n \in \mathbb{N}$. Thus, $a^2 \notin I$.

(\Leftarrow) Let $a \in V(\Gamma_I(R))$. By Lemma 4.1 and the definition of an ideal divisor, $a^n \notin I$ for all $n \in \mathbb{N}$. Hence, if $b^n \in I$ for some $n \in \mathbb{N}$, we must have $b \in I$. Thus, I is a radical ideal. □

We now move to a classification of primary and weakly prime ideals. Let Q be an ideal of R. We say Q is a primary ideal if whenever $ab \in Q$, either $a \in Q$ or $b^n \in Q$ for $n \in \mathbb{N}$. Let P be a proper ideal of R. Then, P is weakly prime if $0 \neq ab \in P$ implies $a \in P$ or $b \in P$ (see [Anderson and Smith 2003]).

Lemma 4.3. Let I be an ideal of R. Let $K = \{k_1, k_2, \ldots, k_n\} \subseteq R \setminus I$ such that for each $k_i \in K$, there exists a minimal $m_i \in \mathbb{N}$ such that $k_i^{m_i} \in I$. Then there exists $a \in R \setminus I$ such that $ak_i \in I$ for all $k_i \in K$.

Proof. There exists a minimal $m_1 \geq 2$ such that $k_1^{m_1} \in I$. Let $a_1 = k_1^{m_1-1}$. Clearly, $a_1k_1 \in I$ and $a_1 \notin I$. Now, there exists a minimal n_2 with $1 \leq n_2 \leq m_2$ such that $a_1k_2^{n_2} \in I$. Now let $a_2 = a_1k_2^{n_2-1}$. Again, $a_2k_2 \in I$ and $a_2 \notin I$. Continuing in this fashion, there exists an $n_j - 1$ (possibly zero, in which case $a_j = a_{j-1}$) such that $a_j = a_{j-1}k_j^{n_j-1} \notin I$ but $a_1k_1 \in I$. Let $a = a_n$. By construction, a is connected to every $k_i \in K$. □

Theorem 4.4. Let I be a nonzero ideal of R that is not prime. Then I is a primary ideal if and only if $\Gamma_I(R)$ is a refinement of a star graph.

Proof. (\Rightarrow) Let $a, b \in V(\Gamma_I(R))$ with $ab \in I$. By definition of $V(\Gamma_I(R))$ and the fact that I is primary, we have $a^r, b^s \in I$ for some $r, s \geq 2$. Therefore, we have $V(\Gamma_I(R)) \subseteq R \setminus I$, and for each $x \in V(\Gamma_I(R))$ there is some $n \in \mathbb{N}$ such that $x^n \in I$. By Lemma 4.3, we have at least one $y \in V(\Gamma_I(R))$ with $xy \in I$ for all $x \in V(\Gamma_I(R))$. That is, the vertex y connects to every other vertex in $\Gamma_I(R)$. Thus, $\Gamma_I(R)$ is a refinement of a star graph.

(\Leftarrow) If $\Gamma_I(R)$ is a refinement of a star graph, then the diameter of $\Gamma_I(R)$ is 2. According to Corollary 2.7 in [Redmond 2003], since I is an ideal of R, $\Gamma_I(R)$ contains a subgraph that is isomorphic to $\Gamma(R/I)$. Using Theorem 1.1 and Corollary 1.2, there exists an element $x + I$ that is connected to every other element, including itself, in $\Gamma(R/I)$. Then, applying Lemma 3.1 in [Axtell et al. 2009] gives us that $Z(R/I)$ is an ideal. If the zero-divisors of a finite ring form an ideal, then that ideal
is the maximal ideal of the ring, and the ring is local. It is well known that if a ring is local and finite, every zero-divisor is nilpotent. Every zero-divisor in R/I is nilpotent, so I is a primary ideal. □

Example 4.5. Let $R = \mathbb{Z}_{64}$ and $I = (8)$. We see I is a primary ideal of R, and in the figure below, we see that we have a refinement of a star graph. Note that any of \{4, 12, 20, 28, 36, 44, 52, 60\} could work as our central vertex (see Figure 7).

Note that the condition that I is a nonzero ideal of R in Theorem 4.4 is necessary for the “if” portion on the proof, for if $R = \mathbb{Z}_2 \times F$, where F is a field, and $I = \{(0, 0)\}$, then $\Gamma(R/I)$ is a star graph, but I is not a primary ideal. The issue that arises in this case is that $(1, 0)$ is connected to every other vertex in $\Gamma(R/I)$, but it is not looped.

Lemma 4.6. Let I be a weakly prime ideal and let $a \in R \setminus I$. If $a^k \in I$ for some $k \in \mathbb{N}$, then $a^k = 0$.

Proof. Let $a \in R \setminus I$ and assume $a^k \in I^*$. Then $0 \neq a \cdot a^{k-1} \in I$. Since $a \notin I$, we have $a^{k-1} \in I$ because I is weakly prime. Continuing, we obtain $0 \neq a \cdot a \in I$, but $a \notin I$, a contradiction. □

Theorem 4.7. Let I be a nonzero ideal of R that is not prime. Then I is weakly prime if and only if $\Gamma_I(R)$ is the induced subgraph of $\Gamma(R)$ on $Z(R) \setminus I$.

Proof. (\Rightarrow) According to Theorem 7 in [Anderson and Smith 2003], R is not decomposable, so R is either local or a field. Supposing R is local, it is well known
that every zero-divisor is nilpotent. Let \(a \in Z(R) \setminus I \). Since \(a \) is nilpotent, there exists a minimal \(n \in \mathbb{N} \) such that \(a^n = 0 \notin I \). Hence, \(a \in V(\Gamma_I(R)) \). Now let \(a, b \in V(\Gamma_I(R)) \) with \(ab \in I \). Since \(I \) is weakly prime, \(ab = 0 \). Hence, \(Z(R) \setminus I = V(\Gamma_I(R)) \), and \(a - b \in \Gamma_I(R) \) if and only if \(ab = 0 \). Thus, \(\Gamma_I(R) \) is the induced subgraph of \(\Gamma(R) \) on \(Z(R) \setminus I \).

\((\Leftarrow)\) Assume the ideal-divisor graph is the induced subgraph of \(\Gamma(R) \) on \(Z(R) \setminus I \). Let \(a, b \notin I \) and \(ab \in I \). Since \(\Gamma_I(R) \) is the induced subgraph of \(\Gamma(R) \) on \(Z(R) \setminus I \), \(ab = 0 \). Thus, \(I \) is a weakly prime ideal. \(\square \)

Acknowledgements

This paper is a collaborative effort of two faculty and several undergraduate students. The research of Hailee Peck was funded by the Summer Undergraduate Research Fellowship through Millikin University, as well as the Undergraduate Research Fellow Program for the 2012–2013 year through Millikin University. Lane Bloome was also funded through the Undergraduate Research Fellow Program for the 2012–2013 year through Millikin University. The work of Robert Donovan, Paul Milner, Abigail Richard, and Tristan Williams was the result of undergraduate research performed at the 2010 Wabash College mathematics REU in Crawfordsville, Indiana, which was funded through the National Science Foundation grant DMS-0755260. The authors would like to thank the referees for their helpful suggestions.

References

Received: 2013-02-19 Revised: 2013-06-25 Accepted: 2013-07-03

axte2004@stthomas.edu Department of Mathematics, University of St. Thomas, St Paul, MN 55105, United States
jstickles@millikin.edu Department of Mathematics, Millikin University, Decatur, IL 62522, United States
lbloome@millikin.edu Department of Mathematics, Millikin University, Decatur, IL 62522, United States
rdonovan2@worcester.edu Department of Mathematics and Computer Science, Worcester State College, Worcester, MA 01602, United States
paul.milner89@gmail.com Department of Mathematics, University of St. Thomas, St. Paul, MN 55105, United States
hpeck@millikin.edu Department of Mathematics, Millikin University, Decatur, IL 62522, United States
richarah@miamioh.edu Department of Mathematics, Miami University, Oxford, OH 45056, United States
tristan-williams@uiowa.edu Department of Mathematics, University of Iowa, Iowa City, IA 52242, United States
Efficient realization of nonzero spectra by polynomial matrices
NATHAN MCNEW AND NICHOLAS ORMES

The number of convex topologies on a finite totally ordered set
TYLER CLARK AND TOM RICHMOND

Nonultrametric triangles in diametral additive metric spaces
TIMOTHY FAYER, KATELYNN KOCHALSKI, MATHAV KISHORE MURUGAN, HEIDI VERHEGGEN, ELIZABETH WESSON AND ANTHONY WESTON

An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial sequences
DANIEL J. GALIFFA AND TANYA N. RISTON

Average reductions between random tree pairs
SEAN CLEARY, JOHN PASSARO AND YASSEr TORUNO

Growth functions of finitely generated algebras
ERIC FREDETTE, DAN KUBALA, ERIC NELSON, KELSEY WELLS AND HAROLD W. ELLINGSEN, JR.

A note on triangulations of sumsets
KÁROLY J. BÖRÖCZKY AND BENJAMIN HOFFMAN

An exploration of ideal-divisor graphs
MICHAEL AXTELL, JOE STICKLES, LANE BLOOME, ROB DONOVAN, PAUL MILNER, HAILEE PECK, ABIGAIL RICHARD AND TRISTAN WILLIAMS

The failed zero forcing number of a graph
KATHERINE FETCIE, BONNIE JACOB AND DANIEL SAAVEDRA

An Erdős–Ko–Rado theorem for subset partitions
ADAM DYCK AND KAREN MEAGHER

Nonreal zero decreasing operators related to orthogonal polynomials
ANDRE BUNTON, NICOLE JACOBS, SAMANTHA JENKINS, CHARLES McNERNY JR., ANDRZEJ PIOTROWSKI AND LOUIS SCOTT

Path cover number, maximum nullity, and zero forcing number of oriented graphs and other simple digraphs
ADAM BERLINER, CORA BROWN, JOSHUA CARLSON, NATHANAEL COX, LESLIE HOGBEN, JASON HU, KATRINA JACOBS, KATHRYN MANTERNACH, TRAVIS PETERS, NATHAN WARNBERG AND MICHAEL YOUNG

Braid computations for the crossing number of Klein links
MICHAEL BUSH, DANIELLE SHEPHERD, JOSEPH SMITH, SARAH SMITH-POLDERMAN, JENNIFER BOWEN AND JOHN RAMSAY