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The calculation of the probability of correct selection (PCS) shows how likely it
is that the populations chosen as “best” truly are the top populations, according to
a well-defined standard. PCS is useful for the researcher with limited resources
or the statistician attempting to test the quality of two different statistics. This
paper explores the theory behind two selection goals for PCS, G-best and d-best,
and how they improve previous definitions of PCS for massive datasets. This
paper also calculates PCS for two applications that have already been analyzed
by multiple testing procedures in the literature. The two applications are in
neuroimaging and econometrics. It is shown through these applications that
PCS not only supports the multiple testing conclusions but also provides further
information about the statistics used.

1. Introduction

Because of the advancements in technology and science, a new development in sta-
tistics must involve correctly and usefully analyzing massive datasets. With internet
applications and financial data, there can be as many as ten million populations
to analyze, and sometimes more. Statisticians have developed methods such as
family-wide error control and the false discovery rate to deal with the multiple
testing problem — the problem of finding too many false positives when testing k
hypotheses simultaneously. This paper deals instead with ranking and selection
methodology, which is a separate branch of statistics that has also been expanded
to apply to massive datasets.

Ranking and selection methodology (RSM) is a well-defined system of ranking
a set of populations based on sample data and selecting those that are “best”. In
laboratory research, resources are always limited. A scientist may want to know
which of 10,000 genes available will provide the most information, to avoid studying
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all of them. Similarly, no one can invest in every company on the stock market,
and so an investor only wants to know which ones will make the most money. In
these two cases, best can be defined as the highest expression levels or the highest
average returns on investment, respectively. Traditional hypothesis tests are not
meant for ranking and selection purposes. Instead, one can calculate the probability
of correct selection (PCS) to evaluate a chosen set of populations and see if the
best have actually been chosen.

As with multiple testing procedures, PCS has evolved in the last century from
being accurate with large datasets (≈10 samples) to being accurate with massive
datasets. The two previous methods of ranking and/or selecting the best populations
are the indifference zone method (IZ), originated by Robert Bechhofer [1954], and
the subset selection method (SS), originated by Shanti S. Gupta [1956]. More
recently there have been improvements in PCS for massive datasets by Cui and
Wilson [2008] in the form of G-best and d-best selection. In this paper, we explore
both the theory and some applications of this improved method of calculating PCS.

Specifically, we look at the definitions of G-best and d-best selection, the use of
index sets in those definitions, and the use of each selection goal. We also apply
PCS to a neuroimaging dataset and an econometrics dataset. We find that PCS
supports the results found using multiple testing procedures with the neuroimaging
application. In addition, PCS provides us with a measure of how accurate our choice
of the best populations was. We were able to find the probability that the populations
we chose as best based on sample data actually were the best populations. The
same information was found for the econometrics data, which is measured by two
statistics. PCS was easily adapted for both statistics. These applications show the
usefulness of PCS and how it can be applied generally.

The remainder of this paper is organized as follows. Section 2 gives account of
the theory behind PCS and G-best and d-best selection. Two applications of PCS
to datasets already analyzed by multiple testing procedures are given in Section 3.
Finally, we draw conclusions in Section 4.

2. G-best and d-best selection

2.1. Introduction. This section describes the mathematical theory behind G-best
and d-best selection. The purpose of ranking and selection methodology is ultimately
to choose the top t populations for some specified t . To do this, we first look at
how to denote the ranking of both population parameters and sample statistics.
We also use sets of indices to make the definitions of G-best and d-best selection
more compact. The notation is somewhat subtle, but necessary, and is covered
in Section 2.2. Furthermore, in Section 2.3, we define both G-best and d-best
selection in terms of index sets, and describe how they each meet different needs of
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Population i 1 2 3 4 5

Sample mean Yi 2.97 1.26 2.90 3.58 1.36
True mean θi 2.30 1.70 2.50 4.20 2.50

Table 1. Each column of this table of example statistics shows
information about a hypothetical population. The populations are
numbered i = 1, . . . , 5. All of this information will be used to
illustrate the notation for PCS.

a researcher. We formally state how to calculate PCS in Section 2.4. Finally, we
note the improvements these selection goals make for analyzing massive datasets
in Section 2.6.

2.2. Notation. For clarification, we will use the following example throughout this
section. Suppose we know the true means from five populations of interest. We
also have taken samples from each population, and have calculated each sample
mean. Our example data is given in Table 1.

With this in mind, consider k populations, each with the same cumulative distribu-
tion function (CDF), except with varying location parameter θi , i = 1, . . . , k. In the
example, we have k = 5. Let θ = (θ1, . . . , θk) be the vector of these parameters. In
Table 1, θ1 would then be equal to 2.30. We are really interested in the order of the
parameters, and so also have a numbering system for rank. Let θ(1) ≤ · · · ≤ θ(k) be
the ordered parameters of θ . For example, in the table, θ(1)= 1.70, while θ(5)= 4.20.

Sometimes a researcher is interested in the largest statistics, and sometimes
the smallest. The definition of the best populations must be defined explicitly for
each application. Without loss of generality we assume in this paper that the best
population has the largest statistic. What we are ultimately trying to find, then, is
the population with the top t parameters, θ(k−t+1), . . . , θ(k), or the top t parameters
themselves. For example, if we want the top t = 3 means from our example, we
would want θ(5−3+1), . . . , θ(5), or θ(3), θ(4), and θ(5).

Because the top parameters are assumed to be unknown, we must pick a statistic Y
to estimate the unknown population parameter. Each statistic will have a continuous
CDF. Yi denotes the particular statistic of the i-th population. If we are interested
in the usual mean, for example, let the statistic Y denote the mean, so that

Y2 = Y (X2,1, X2,2, X2,3)

= (.75+ 1.78+ 1.25)/3= 1.26,

where X2,1, X2,2, . . . denote particular observations from the second population.
To order the sample statistics, we use the notation Y[i] to indicate that Y[1] ≤

Y[2] ≤ · · · ≤ Y[k]. On the other hand, we denote by Y(i) the sample statistic that
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Population i 2 5 3 1 4

Sample mean Y[1] = 1.26 Y[2] = 1.36 Y[3] = 2.90 Y[4] = 2.97 Y[5] = 3.58
True mean θ(1) = 1.70 θ(3) = 2.50 θ(3) = 2.50 θ(2) = 2.30 θ(4) = 4.20

Table 2. This table contains the same information as Table 1, but
with the technical notation for PCS added. It is also now sorted by
sample mean from lowest to highest.

is drawn from the same population as the ordered parameter θ(i). With Table 1,
then, Y[4] = Y(2) = 2.97, because 2.97 is the fourth largest statistic, but it was from
the population with θ(2). With this notation, we can label our data, illustrated in
Table 2.

To choose which populations we should assert to be the top t , we use the top t
statistics. The way we will notate correct selection is using index notation. Let s be
the set of indices of the top t statistics. For example, if t = 1, then Y[5] is the top
statistic, but it comes from population i = 4. So s in this case would be s = {4}.
Then let At be the set of indices of the top t population parameters. In our case,
θ(4) is the highest, and also comes from population i = 4. Therefore, At = {4} in
this case as well. Rule R resulting in a correct selection is denoted by

CSt = {s = At }.

Our example would yield a correct selection, then, since the sets s and At are equal.
It is important to note here that if two population parameters are equal (θi = θ j

for some i 6= j), both are ranked equally, as we have done in Table 2. In past
selection methods, if more than one parameter was equal in value, only one would
be randomly chosen and asserted as the correct selection. This may significantly
reduce the value of PCS in an unnecessary manner. We will handle this situation
in this paper similarly to Cui and Wilson [2008]. If population parameters θi and
θ j are equal, then At = {i} or { j}. In other words, if t = 1 and θi = θ j are the top
ranked populations, then either s = {i} or s = { j} will result in a correct selection.
In our example, if t = 2, then At = {4, 3} or At = {4, 5} because 4.20 and 2.50 are
the two largest values among the parameters. Therefore s = {4, 3} or s = {4, 5}
would both result in a correct selection. This generalizes to handle more than two
populations with the same values.

2.3. G-best and d-best selection. All of this notation is the set-up for the two
selection goals we discuss in this paper: G-best and d-best selection, as defined
by Cui and Wilson [2008]. These are two different ways to define whether the
populations that we choose as best really are the best. One can use these methods
before an experiment to determine how many subjects to study in order to ensure the
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selection of the top populations. After an experiment, one can use these methods to
calculate the probability that the researcher has found the actual top t populations.

If our previous toy example was an actual experiment, we might have a need
to find the top, say, one statistic, but we have the resources to study two. We
would then use G-best selection, where we choose a fixed amount of populations,
t +G, that contains the top t statistics. On the other hand, if we simply needed
the populations to be within a certain threshold of quality, we would use d-best
selection. In d-best selection, we are finding a random number of populations,
say r , which contains populations that are within a certain distance d from the top
t populations. The number r is determined by an interval of prespecified length d .

Definition 2.1. Let s be the set of the indices corresponding to the top t+G statistics
for some prespecified G. Let At be a set of indices of the top t parameters. Then

CSG,t = {At ⊆ s}.

A set s that satisfies CSG,t is called G-best, and the probability that we have chosen
a G-best set is denoted by P(CSG,t).

Note that in the case that every population parameter is unique, then At will also
be unique. If two or more population parameters are equal, then At may not be
unique. Thus, the definition only calls for a possible set of At to be a subset of s in
order to satisfy CSG,t .

For example, let t = 2 and let G = 1. We will choose t +G = 3 populations that
we assert to contain the top two populations. We would then choose, from Table 2,
Y4 = Y[5] = 3.58, Y1 = Y[4] = 2.97 and Y3 = Y[3] = 2.90 as our top three statistics,
to make s = {1, 3, 4}. At would be At = {4, 3} or {4, 5}. In this case, since one
possible At is contained in s, we have chosen correctly.

With this definition, a set is not G-best unless we have actually chosen the top t
statistics. On the other hand, instead of only choosing t statistics to work with,
we are choosing t + G for some prespecified G. Thus, the G parameter allows
one to control the minimum proportion of best populations in the correct selection.
For example, selecting the top 20 out of 20 voxel clusters in a neuroimaging scan
might be highly unlikely. In this scenario we would have t = 20 and G = 0. This
does not allow for any of the chosen populations to be wrong. However, suppose
we can determine that having 90% of the populations actually being the best is
allowable. In this case, t = 18 and G = 2, and the top 18 out of 20 might have
a reasonable chance of actually being correct. It may be a low P(CSG,t), but a
reasonable chance is still an improvement. The point of ranking and selection
procedures is to narrow down the populations to the best ones, and controlling the
proportion of top populations among a group of populations does this.
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Figure 1. The labels t1(d), t2(d), and t3(d) denote the number
of population parameters in their respective intervals. Note that
t1(d)+ t2(d)= t . At1 and At2 are the sets of indices of the popu-
lations with values in their respective intervals.

Definition 2.2. Let s be the set of the indices corresponding to the top t statistics.
Let At1 be the set of indices of the parameters in the interval (θ(k−t+1)+d, θ(k)], and
At2 the set of indices of the parameters in the interval [θ(k−t+1)− d, θ(k−t+1)+ d].
See Figure 1 for a graphical representation of these intervals. A correct selection
occurs when

dCSt = {At1 ⊆ s and s\At1 ⊆ At2},

where \ denotes the set difference operator B\C = {x : x ∈ B and x 6∈ C}. If a set
s satisfies dCSt , then it is said to be a d-best set. The probability of selecting a
d-best set is P(dCSt).

This selection goal is more complex. To illustrate, let t = 3 and d = 0.5.
Our s remains the same, because our former top three statistics are still the top
three. So s = {1, 3, 4}. Referring to Table 2, we see that At1 would be the set
of indices of the parameters in the interval (θ(3) + 0.5, θ(5)] = (3.00, 4.20). So
At1 = {4}. Then At2 would be the set of indices of the parameters in the interval
[θ(3)− 0.5, θ(3)+ 0.5] = [2.00, 3.00]. So At2 = {1, 3, 5}. Our result is that At1 =

{4} ⊆ s and s\At1 = {1, 3} ⊆ At2 = {1, 3, 5}, resulting in a correct selection.
This selection goal has different advantages and disadvantages than G-best

selection. Unlike a G-best set, a d-best set could contain indices of populations that
are not actually in the top t , and exclude some that are in the top t . The population
with the highest parameter must be chosen for the set to be considered a correct
selection though. Furthermore, d-best selection ensures that the populations deemed
a correct selection are within d of the best parameters. The situation for using d-best
selection would be when a selection of t populations is desired, and the difference
of d units between parameters is unimportant. For example, selecting the absolute
top ten best performing stocks might be virtually impossible (low P(dCSt)), but
the ten best within $0.50 might have a reasonable chance of success. Because fifty
cents is negligible, the margin of error is acceptable.

2.4. Calculation of G-best and d-best selection. The formula for P(CSG,t) and
P(dCSt) is the same, but the calculations will differ based on the definitions of
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G-best and d-best sets. The formula is
|S|∑

g=1

∫
∞

−∞

k∏
j=k−t+1

[
1− F(y− θsg, j )

]
d
{k−t∏

j=1

F(y− θs̄g, j )

}
. (1)

We use S to denote the set of all G-best or d-best sets, or all the sets s that will
result in a correct selection. Furthermore, let θg be the g-th combination of ordered
parameters. This will be a set of sets, each of which will contain the highest
parameter θ(k) and be of size t . Then θg = {θsg, j , θs̄g, j }, where θsg, j denotes the
combinations of parameters that satisfy the specific sets sg, j ∈ S and θs̄g, j contains the
combinations of parameters that do not satisfy G-best or d-best sets. That is, s̄g, j ∈ S̄.
F(y − θsg, j ) is the continuous cumulative distribution function of the statistic y,
adjusted to center around 0. See [Cui and Wilson 2008] for the derivation of (1).

These are extremely difficult integrals to integrate, analytically and even nu-
merically. There are expansions that simplify the expression in order to make a
numerical solution possible (specifically, via Gauss–Hermite quadrature [Cui and
Wilson 2008]). To calculate the PCS for our datasets we use an R package that uses
a parametric bootstrapping method.

2.5. Performance of G-best and d-best selection. A simulation study has been
performed in [Cui and Wilson 2009] to assess the performance of both G-best and d-
best selection. In this study, it was shown that for populations of a known parametric
distribution the estimated PCS was accurate for both G-best and d-best selection
when the distributional assumptions were met. Figure 2 shows one simulation of
normal data with normal estimated PCS, done in [Cui and Wilson 2009]. Note that
for this simulation n = 3 and σ 2

= 3, which means the standard error is 1. Thus,
when n > σ 2, the error decreases, and this was something that could be controlled.
Another aspect of PCS that was studied in [Cui and Wilson 2009] was the use of
shrinkage estimators. Shrinkage estimators are functions of the statistics designed
to decrease the bias in the estimated PCS. The second row of graphs in Figure 2
uses a Stein-type shrinkage estimator and shows an increase in error compared to
the PCS calculated with no shrinkage estimator. Cui and Wilson [2009] showed
that this increase in error was characteristic for four different shrinkage estimators,
which did not in general improve the bias. Thus, these shrinkage estimators were
not recommended, and are not used in this paper. It was also shown that the PCS
for G-best selection was still accurate when the normality assumption was violated,
but the PCS for d-best selection had high error for high values of d.

In the case that distributional assumptions are not satisfied, a nonparametric
method may be used through bootstrapping if the sample size is large enough. In this
case, a sufficiently narrow 95% confidence interval for the PCS could be found for
large values of t . For example, one simulation consisted of two groups of 100 normal
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Figure 2. Simulated normal data with normal estimated PCS, with
t on the horizontal axes and PCS on the vertical. Note that n = 3,
σ 2
= 3, so SDE= 1. The black lines indicate the true PCS values

and the gray lines indicate the estimated PCS in all graphs.

populations with variance 1 at a distance of three standard deviations away from one
another. The 95% confidence interval for P(d=1CSt=100) was 0.69–1.00. The 95%
confidence interval for P(CSG=10,t=100) was 0.74–1.00 [Cui and Wilson 2009].

2.6. The improvements for massive datasets. The use of G-best and d-best se-
lection is very practical with massive datasets. Ranking and selection methods
to reduce the number of populations to study can be used along with multiple
testing methods, but may even suit the needs of the researcher better than these
methods. Furthermore, G-best and d-best selection are an improvement on previous
definitions of PCS with respect to massive datasets. First of all, because G-best
and d-best sets are defined in terms of index sets, they deal with the problem of
having two equal parameters effectively. Also, d-best selection is especially useful
for a dataset with high density, which is characteristic of massive datasets. The
more the population parameters are approximately equal to other parameters, the
more dense the data is. A researcher may not actually be interested in the absolute
top t populations, but rather which populations will be most worthwhile to study.
With d-best selection, the researcher can choose an interval around the true top
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Figure 3. View of a brain 3D scan, showing the coordinate cross-
sections containing a certain voxel (marked with <) situated in the
front left of the brain, a little less than halfway from the bottom.

parameters that is allowably close to find populations that may not be the best, but
will be worth spending time on.

3. Application

3.1. Introduction. Although G-best and d-best selection are fully generalizable,
in the literature to date they have only been applied to microarray data. To test
and illustrate the applicability and usefulness of P(CSG,t) and P(dCSt), we will
calculate the probability of correct selection in neuroimaging [Nichols and Hayasaka
2003] and econometrics [Romano and Wolf 2005] data. To calculate the probability
of correct selection for these applications, we use the R package PCS, which can
be found at www.r-project.org.

3.2. Neuroimaging. First of all, we look at brain scans from a test on verbal
fluency. Scientists conducted the study on five people, who both listened passively
and said words aloud. They then studied whether areas of the brain were activated
more in listening to or in generating words. To study the brain, they used 3D scans
composed of voxels, which are three-dimensional pixels. Figure 3 shows the shaded
voxels that represent activated areas of the brain common to all five subjects.

Nichols and Hayasaka [2003] took this study and measured each of the 55,027
voxels of the brain scans to see if any part of the brain was more active for word
generation as opposed to passive listening. With this particular experiment, no voxels
were found to be significant. To analyze these results with PCS, we used the program
SPM8 [Friston et al. 2013] to find the possible clusters of voxels that might be sig-
nificant in the conjunction of all five brains. We then calculated the probability that

http://www.r-project.org
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t 1 2 3 4

P(CS0,t)= P(0CSt) 0.11 0.02 0.00 0.00
P(CS2,t) 0.33 0.11 0.03 0.01
P(CS4,t) 0.49 0.22 0.08 0.03
P(CS6,t) 0.60 0.33 0.15 0.06

P(0.5CSt) 0.19 0.04 0.05 0.03
P(1CSt) 0.24 0.19 0.35 0.29

Table 3. These low probabilities support Nichols’ and Hayasaka’s
findings. For example, when t = 3 and G = 4, the probability that
the clusters selected actually are best is only .08.

one, two, three or four of these clusters may actually be the best clusters of voxels, or
show the most brain activity. The calculation of PCS for this data supports Nichols’
and Hayasaka’s conclusion that there were no significant voxels (see Table 3).

The very low probabilities in Table 3 show that if one were to choose even one
cluster as significant, it would not likely be the best cluster of voxels. Consider the
probability of correct selection of t = 1 for both G = 2 and d = 0.5. To understand
the meaning of the probability of a G-best selection, refer to Definition 2.1. For
t = 1 and G = 2, the probability of correct selection is .33. In the table, this is
denoted by P(CS2,1)= .33. If one chooses the top three clusters of voxels, there
is only a .33 probability that the best cluster is among them. For d-best selection,
refer to Definition 2.2. With t = 1 and d = 0.5, the probability of correct selection
is .19. That is, P(0.5CS1) = .19. The probability that the top cluster of voxels
is even within a margin of 0.5 of the top clusters is only .19. This complements
the multiple testing result that none of the voxels are significantly different from
any of the others. The highest probability found was for t = 1 and G = 6. These
parameters result in a probability of more than half. This supports Nichols’ and
Hayasaka’s findings, but adds the information that we would have to choose seven
clusters just to find one that stands out.

3.3. Econometrics. The economics data we chose comes from the Center for In-
ternational Securities and Derivatives Market from January 1992 to March 2004.
There are 105 hedge funds, and each fund has 147 recorded returns, one from each
month in the time period. Instead of simply recording the return on investment
for each month, the data records the amount the return is above or below a certain
benchmark. In this case, the benchmark is the risk-free rate, i.e., the rate of return
on an investment with zero risk. Romano and Wolf [2005] used stepwise multiple
testing procedures to find the top ten absolute best performing funds. They defined
best as the fund with the largest return in excess of the benchmark. We have
calculated the probability that the ten funds that Romano and Wolf chose are
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Excess Fund

1.70 Libra Fund
1.41 Private Investment Fund
1.36 Aggressive Appreciation
1.27 Gamut Investments
1.26 Turnberry Capital
1.14 FBR Weston
1.11 Berkshire Partnership
1.09 Eagle Capital
1.07 York Capital
1.07 Cabelli International

Table 4. The ten highest-performing funds from January 1992 to
March 2004, ranked by average return in excess of the risk-free rate.

actually the top ten using different parameters of G-best and d-best selection, but
always choosing ten funds. The index set of the ten chosen funds is

s = {31, 105, 16, 8, 25, 101, 38, 4, 82, 57},

and the chosen funds according to [Romano and Wolf 2005] are shown in Table 4.
Table 5 shows the probabilities of correct selection.

From these probabilities, one can see that it is not very certain that all ten funds
chosen are truly the top ten funds. The probability P(CS0,10)= P(0CS10)= .13
shows that these ten funds only have a 13% chance of being the top ten. Using
G-best selection, we can be confident that these top ten statistics contain the top
five funds, but that only accounts for half of the funds chosen. Furthermore, by
looking at d-best selection, there is an .86 probability that the top ten funds found
with the absolute statistic are within two ranks of the top ten funds. This is actually
a very large margin. The reason the probabilities are not that certain is because
there is a large amount of variability in this statistic. To address this issue, Romano
and Wolf propose standardizing the statistic.

Romano and Wolf studentize the absolute statistic, that is, they used the usual t-
statistic, which is calculated by dividing the statistic used above by the standard error.
Romano and Wolf estimate variance using a sophisticated method involving a time-
series bootstrap, whose code is unavailable. Thus, for this paper we simply divide
the first statistic by the usual standard error (standard deviation divided by

√
n) of

each fund. The top ten funds Romano and Wolf chose using the t-statistics were a
completely disjoint set from the nonstudentized set of best funds. The index set of
the top ten funds found using the usual standard error is

s = {61, 60, 102, 100, 23, 30, 18, 22, 63, 46}.
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Absolute Statistic Studentized Statistic

P(CSG,t ) P(dCSt ) P(CSG,t ) P(dCSt )

P(CS0,10)= 0.13 P(0CS10)= 0.13 P(CS0,10)= 0.71 P(0CS10)= 0.71
P(CS1,9)= 0.29 P(0.5CS10)= 0.32 P(CS1,9)= 0.98 P(0.5CS10)= 0.71
P(CS2,8)= 0.53 P(1CS10)= 0.52 P(CS2,8)= 1.00 P(1CS10)= 0.95
P(CS3,7)= 0.74 P(1.5CS10)= 0.78 P(CS3,7)= 1.00 P(1.5CS10)= 0.95
P(CS4,6)= 0.92 P(2CS10)= 0.86 P(CS4,6)= 1.00 P(2CS10)= 0.97
P(CS5,5)= 1.00 P(2.5CS10)= 0.93 P(CS5,5)= 1.00 P(2.5CS10)= 1.00
P(CS6,4)= 1.00 P(3CS10)= 0.99 P(CS6,4)= 1.00 P(3CS10)= 1.00
P(CS7,3)= 1.00 P(3.5CS10)= 1.00 P(CS7,3)= 1.00 P(3.5CS10)= 1.00
P(CS8,2)= 1.00 P(4CS10)= 1.00 P(CS8,2)= 1.00 P(4CS10)= 1.00
P(CS9,1)= 1.00 P(4.5CS10)= 1.00 P(CS9,1)= 1.00 P(4.5CS10)= 1.00

Table 5. The first two columns show the PCS for the absolute
statistic. These probabilities are significantly lower than those from
the studentized statistic, shown in the third and fourth columns.
The difference is due to the studentized statistic accounting for the
variability in the data.

Just as in [Romano and Wolf 2005], this is a completely different set of ten funds
chosen as best. Table 5 shows the probability that the studentized statistic shows
the true top ten studentized funds.

As one can see, the probability that these ten chosen funds are in actuality the
best funds is significantly more than with the nonstudentized statistic. From these
results, we can see that the studentized statistic, even using the usual standard error
for each fund, is much more likely to identify the true best hedge funds according
to the t-statistic.

Romano and Wolf show that the studentized statistic is a better measure of the per-
formance of a fund because it takes into account the amount of risk involved. As one
can see in Figure 4, the magnitude of the return of the top fund chosen according to
the absolute statistic is much larger than that of the top fund chosen according to the
studentized statistic. However, the second graph in Figure 4 shows that the return of
the top fund according to the studentized statistic is in positive excess of the risk-free
rate for the vast majority of the months recorded. The high probabilities found with
PCS further support that the standardized statistic is superior to the absolute statistic.
It is also important to note that the PCS of the studentized statistics may change
with the more sophisticated estimate of variance. Still, even in this application, PCS
provides useful information on both the absolute and studentized statistics.

3.4. Results. Applying PCS to these areas shows how useful ranking and selection
methodology can be. The probability of correct selection has thus far been consistent
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Figure 4. The graph on the left shows the return of the fund chosen
as best according to the absolute statistics (black) and of the fund
chosen as best according to the studentized statistic (red). The
graph on the right shows the return of the top fund chosen using
the studentized statistic alone.

with the latest multiple testing procedures, as it is in the neuroimaging application.
However, PCS provides different information than a multiple hypothesis test. In
each application we found a measure of how accurate our chosen best populations
actually are. Instead of simply choosing the best statistics, one can have a better idea
of how close they are to actually being best. If a neuroimaging scientist actually
found a significant cluster of voxels, he or she would know how unlikely it is
for that cluster to be best. With the econometrics application, investors can see
the probability that the ten funds chosen either contain the actual top t funds, or
that they are within a certain margin of the actual top ten funds. This is valuable
information that can help drive the development of a new hypothesis.

4. Conclusions

The probability of correct selection is a useful tool in statistics, and we have striven
to illustrate this through both the theory behind G-best and d-best selection and its
application to differing areas. The use of PCS deals with the problem of massive
datasets by accommodating dense datasets that may have many parameters in
common or close enough to study. Furthermore, G-best and d-best selection are
useful tools for a researcher with limited resources. Instead of having a list of
significant populations too large to adequately study, one can actually find the
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populations that are most likely to be the best. Depending on the needs of the
researcher, G-best or d-best selection may be more useful. Both selection goals
were found to be consistent with previous claims of significance in the neuroimaging
application, which supported their validity. In the econometrics application, PCS
provided information on two separate statistics in the same study, which showed its
adaptability. In both applications, PCS provided additional information that was
not available through hypothesis testing. With PCS, we gain an insight into the
quality of the populations chosen as best by seeing how likely it is that they truly
are best. Clearly, PCS is a powerful tool.

For further research, we would like to find the variance estimator for a time-series
regression bootstrap in order to find the PCS of the top ten funds actually chosen
by Romano and Wolf. We would also like to apply PCS to mass spectrometry and
other large k populations found in the literature.
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