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The crossing lemma holds in R2 because a real line separates the plane into
two disjoint regions. In C2 removing a complex line keeps the remaining point-
set connected. We investigate the crossing structure of affine line segment-like
objects in C2 by defining two notions of line segments between two points
and give computational results on combinatorics of crossings of line segments
induced by a set of points. One way we define the line segments motivates a
related problem in R3, which we introduce and solve.

1. Introduction

A graph is planar if it can be drawn on the plane such that none of its edges cross.
For any graph G, we define the crossing number cr(G) to be the smallest possible
number of edge crossings over all the planar drawings of G. In this paper, we
will study and present some computational results in the two-dimensional complex
plane motivated by the crossing number inequality. The crossing number inequality
is a well-known tool in discrete geometry as it gives a lower bound for the crossing
number of a graph [Ajtai et al. 1982]:

Theorem 1.1 (crossing number inequality). If an undirected graph with n vertices
and m edges satisfies m > 4n, then we have cr(G)≥ m3/64n2.

One of the applications of the inequality is a short proof [Székely 1997] of the
Szemerédi–Trotter theorem [1983]:

Theorem 1.2 (Szemerédi–Trotter theorem). Given n points and m lines in the
plane, the number of point-line pairs such that the point lies on the line is

O(n2/3m2/3
+ n+m).

Theorem 1.2 generalizes to the two-dimensional complex plane [Tóth 2003] with
lines of complex variable and points in the two-dimensional complex plane, and in
a slightly weaker form to spaces of higher dimension [Solymosi and Tao 2012].
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The main motivation of our work is the question of whether a suitable gen-
eralization of the crossing number inequality could yield a simple proof for the
complex generalization of the Szemerédi–Trotter theorem in similar vein as in the
real counterpart. The answer to this question is still out of reach and very little
is known. One significant difficulty in understanding the crossing number of a
graph in C2 is that interpreting an edge in such a graph as a line segment is not
as straightforward as in R2. One natural way to attempt to understand crossings
of graphs in C2 is to look for complete graphs without crossings. In R2 it is well
known that the complete graph with five or more vertices always has at least one
crossing. Analogously, given a set of five or more points in R2, if we connect all the
points with line segments, at least two of the line segments will cross. It is not clear
to what extent the same is true in C2, and this will be the main focus of our study.
In Section 2, we will present two ways to define a complex line segment and devise
an algorithm that looks for configurations of n points such that the corresponding
complete graph has no crossings. We will discuss the results and based on them
give two conjectures regarding arrangements of points in C2 and crossings of the
line segments between them. In Section 3, we introduce and present a solution to a
problem in R3 motivated by our earlier discussion.

2. Line segments in C2

The two-dimensional complex plane is the set of points

C2
= {(z1, z2) : z1, z2 ∈ C},

and a complex line determined by the constants a, b ∈ C is the subset

{(u, v) ∈ C2
: v = au+ b}.

The two-dimensional complex plane can be considered as a four-dimensional
real Euclidean space with complex lines being two-dimensional affine subspaces.
Since lines in C2 are two-dimensional, it is not obvious how to define a line
segment between two points z1, z2 ∈C2. In general, we want a line segment to be a
region enclosed by a simply connected curve on the complex line that contains the
points z1, z2. For simplicity, we focus on two particular types of line segments: one
given by the closed disk that has z1 and z2 as its antipodal points and another that is
the union of the two closed disks centered at z1 and z2, both having radius ‖z1−z2‖.

Before making these notions precise, let us briefly discuss the problem we will
study: any arrangement of five points in R2 is such that if we draw the line segments
between all the points, then at least two of the line segments cross1. The same is

1By crossing of line segments we mean an intersection of two line segments that is not an endpoint
of either line segment.
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not true for every configuration of four points. This is equivalent to saying that
the smallest complete graph with nonzero crossing number is the one with five
vertices, K5. We are interested in studying to what extent this is true for complex
line segments in C2, or in particular, what is the number of points such that the
induced line segments necessarily contain at least one crossing? We will present a
computational algorithm that looks for configurations of points with no crossings
for a given number of points. Using the algorithm, we can look for a lower bound
for the number of points such that the induced graph does not have a crossing.

Let us denote the set of points in C2 by

P = {z1, z2, . . . , zn}

= {(u1, v1), (u2, v2), . . . , (un, vn)}, ui , vi ∈ C,

and a line containing the points zi , z j by

L i j = {(u, au+ b)⊂ C2
: a, b ∈ C s.t. auk + b = vk, k = i, j}.

We can now introduce the two notions of line segments.

Definition. Call the set

SI(z1, z2)=
{

z ∈ L12 :

∥∥∥z−
z1+ z2

2

∥∥∥≤ ∥∥∥ z1− z2

2

∥∥∥}
a textitline segment of type I.

Definition. Call the set

SII(z1, z2)= {z ∈ L12 : ‖z− z1‖ ≤ ‖z1− z2‖ or ‖z− z2‖ ≤ ‖z1− z2‖}

a line segment of type II.

If the type of the line segment is irrelevant, we will just write S(z1, z2). We say
that the line segments S(zi , z j ) and S(zk, zl) (where no two points are equal) have
a crossing if and only if

S(zi , z j )∩ S(zk, zl)= L i j ∩ Lkl 6=∅.

Computational setup. We observe that if two line segments do not cross, then the
intersection point of the lines defined by the points lies outside of at least one of
the line segments. This motivates us to look for configurations of points where the
intersection point of any two lines is in some sense close to the boundary of the
curve defining the line segment.

Let zi , z j , zk, zl be distinct points of the set P . Denote by z = L i j ∩ Lkl the
intersection of one of the pairs of lines induced by the points. For an intersection
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of line segments of type I, set

r I
i j =

∥∥z− zi+z j
2

∥∥
1
2‖zi − z j‖

to measure the relative distance of the intersection point from the center of the
circle defining the line segment. For the lines L i j and Lkl , define

ρI
i j,kl =max{r I

i j , r
I
kl}.

For each pair of lines, ρI
i j,kl picks the one for which the intersection point of the

lines is relatively further from the center of the circle defining the line segment.
Finally, set

ρI
= min

zi ,z j ,zk ,zl∈P
{ρI

i j,kl, ρ
I
ik, jl, ρ

I
il, jk},

where all the points zi , z j , zk, zl are distinct. Similarly, for an intersection of line
segments of type II, set

r II
i j =min

{
‖z− zi‖

‖zi − z j‖
,
‖z− z j‖

‖zi − z j‖

}
,

and define the quantities ρII
i j,kl and ρII in the same way we did for the line segment

of type I. In what follows, we will just write ρ instead of ρI or ρII when it does not
matter which type of line segment is in question. Furthermore, notice that ρ is a
function of the set of points P , but to simplify notation we will leave it unwritten.

Evidently if ρ > 1, none of the line segments defined by the points in the
configuration have a crossing. We will use a randomized algorithm to search for
configurations with ρ close to 1 in hope of either finding a configuration that
contains no crossing of the induced line segments or a configuration that is extremal
in the sense that ρ ≈ 1.

The way our algorithm works is as follows: Initially start with a random config-
uration P0 = {z1, . . . , zn}. On iteration k, choose an index j ∈ {1, . . . , n} randomly
using a uniform distribution and set ẑ j = z j + ε, where ε ∈ C2 is some uniformly
distributed random variable with 0 mean and small variance. If the ρ computed for
the new configuration is larger than the ρ of the configuration from the previous
iteration, replace z j by ẑ j in the configuration, otherwise do nothing.

In order to justify the algorithm, let us make the following remarks: The results
of the described algorithm provide us with lower bounds for the number of points
whose induced complete graph does not necessarily have a crossing. The algorithm
makes small local perturbations to maximize the quantity ρ, but it is not clear
whether or not there are several local optima that differ from a global optimum.
Therefore, the cases where the algorithm fails to find a noncrossing configuration
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are inconclusive. However, when applied to R2, the algorithm found noncrossing
configurations for four points but not for five, agreeing with known results.

Results. Our computational experiments motivate the following remark and two
conjectures:

Remark. There is a configuration of seven points in C2 such that none of the line
segments of type I between any pairs of points have a crossing.

One such configuration, with ρI
≈ 1.1047, is

z1 = (0.4358− 0.3796i, 0.5726+ 0.3896i),

z2 = (−0.3382+ 0.0719i,−0.1316+ 0.3220i),

z3 = (0.6391+ 0.0141i, 0.8889− 0.3292i),

z4 = (0.6302− 0.5513i, 0.2813− 0.8285i),

z5 = (0.9731− 1.3291i, 2.3615+ 0.4571i),

z6 = (1.7105− 0.7780i,−1.4009− 0.8982i),

z7 = (0.0099− 0.9417i, 1.3350− 0.9040i).

We were not able to produce a configuration of eight points such that ρI
≥ 1. We

observed that when executing the search algorithm with 20000 iterations ten times,
ρI was found to lie between 0.978347 and 0.999998. Hence we state the following
conjecture:

Conjecture. Every configuration of eight points in C2 has four points such that the
line segments of type I induced by the points have an intersection. In particular,
there exists a configuration of eight points such that ρI

= 1.

For line segments of type II, we were not able to produce a configuration of four
points such that ρII > 1 after executing the search algorithm with 20000 iterations
ten times. We noticed that there exists a configuration such that ρII

= 1; for example,
consider the points

z1 = (0, 0),

z2 = (1, 0),

z3 =
( 1

2 +
√

3
2 i, 0

)
,

z4 = (u, v), where u, v ∈ C, v 6= 0.

It is not difficult see that this configuration has the claimed property, as z1, z2 and z3

all lie on the same complex line and have equal distance from each other. Thus the
following conjecture is motivated:
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Conjecture. Every configuration of four points in C2 is such that at least two of
the line segments of type II induced by the points have an intersection.

3. A related problem in R3

Line segments of type I define a disk with two given points as antipodal points.
In the above treatment, we were interested in configurations of points in C2 such
that the line segments between the points do not intersect. This motivates a similar
question in R3, which we will introduce and produce a solution for.

Consider a set of n points P = {p1, p2, . . . , pn} ⊂ R3. For each pair of
points pi , p j , denote by Ti j some plane containing both points and by Di j the
closed disk lying on Ti j with antipodal points pi , p j . In other words,

Di j =

{
x ∈ R3

: x ∈ Ti j ,

∥∥∥x −
pi − p j

2

∥∥∥≤ ∥∥∥ pi − p j

2

∥∥∥}.
We will call D={Di j : i < j, i, j =1, . . . , n} a disk system induced by P . For a pair
of such disks, Di j , Dkl ∈D, we say that the disks intersect properly if Di j∩Dkl * P .
Fixing the set P does not trivially determine if there is a pair of disks that intersect
properly in D since there is some freedom in choosing each of the planes Ti j (i.e.,
the rotation of the disk Di j around the line passing through pi and p j ). We are
now interested in determining the conditions for the set P such that none of the
pairs of disks intersect properly. In what follows, we prove the following result:

Theorem 3.1. The maximal size of the set P such that the induced disks do not
intersect properly is four. In such a configuration all the points lie on a plane T ,
and three of the points form a triangle with one point in its interior. All the disks
intersect T perpendicularly.

Remark. Notice the differences between line segments of type I we defined in
Section 2 and the disks considered here: the line segments of type I reside in
four-dimensional space and their rotation along the axis given by the two points
is fixed. In addition, when considering the proper intersections of the disks Di j

and Dkl here, we do not require that i, j, k, l are all different.

Proofs. We will first characterize proper intersections of two disks sharing a com-
mon point. Then using this characterization, we show that for three points, there
is only one way of choosing the rotations of the disks such that no two intersect
properly, which quickly implies Theorem 3.1.

Two disks. To keep notation simple, let v,w ∈ R3 be two nonparallel vectors. Let
Tv, Tw be two planes such that Tv is spanned by v and some (still unspecified)
vector, and Tw is similarly spanned by w and some other vector. Denote by Dv the
disk lying in Tv such that the antipodal points of Dv are the origin and v, and by
Dw the disk lying in Tw with the origin and w as antipodal points.
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Figure 1. The disk Dv, line S and its spanning vector s on the Tv-plane.

Since Tv and Tw both contain the origin, their intersection is always nonempty.
Let S= Tv∩Tw be the line given by the intersection of the two planes and s a vector
such that S= span s. Ignoring the trivial case of span v= span s or spanw= span s,
we have that Tv = span(v, s) and Tw = span(w, s). Therefore, the disks Dv, Dw

and thus their intersection is determined by the three vectors v,w and s.
The line S is given by the intersection of the planes Tv and Tw, but what does

it tell us about the intersection of the disks? First, let us see how things look on
the Tv-plane (see Figure 1). If s is perpendicular to v, then clearly the disk Dv

does not intersect the plane Tw outside of the origin and hence cannot intersect Dw

properly. Otherwise it is clear that there exists some real α 6= 0 such that αs ∈ Dv ,
i.e., S intersects Dv outside the origin.

The same conclusion naturally holds for the disk Dw. Let us use this observation
to prove the following lemma:

Lemma 3.2. The disks Dv and Dw intersect properly if and only if

〈v, s〉〈w, s〉> 0.

Proof. If Dv and Dw intersect properly, there is some nonzero α ∈ R such that
αs ∈ Dv ∩ Dw since the intersection S∩ Dv ∩ Dw is not just the origin. Then, from
the way we have defined the disks Dv , Dw to lie on the planes Tv, Tw (see Figure 1),
it follows that the projection of αs to the vector v has the same direction as v, and the
projection of αs to w has the same direction as w. In other words, 〈v, αs〉> 0 and
〈w, αs〉> 0. Multiplying these two inequalities together yields α2

〈v, s〉〈w, s〉> 0.
On the other hand, if 〈v, s〉〈w, s〉 > 0, then either 〈v, s〉 and 〈w, s〉 are both

strictly positive or negative. Assume they are both positive. This means that for an
arbitrarily small α > 0, we must have αs ∈ Dv and αs ∈ Dw, i.e., αs ∈ Dv ∩ Dw,
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Figure 2. The region of all the vectors u satisfying 〈v,u〉〈w,u〉≤0
on the plane spanned by v,w (shaded).

so the intersection of the disks contains points other than the origin. If both of the
inner products are negative, the same conclusion holds for −α. �

To see one useful interpretation of the above lemma, let us consider the orthogonal
projection s ′ of s to the plane T = span(v,w). First, note that 〈v, s〉 = 〈v, s ′〉 and
〈w, s〉 = 〈w, s ′〉, so

〈v, s〉〈w, s〉 = 〈v, s ′〉〈w, s ′〉.

Therefore, the set of vectors s such that the disks Dv , Dw do not intersect properly,
i.e., 〈v, s〉〈w, s〉 ≤ 0, is characterized by the cone C in T (see Figure 2), where

C = {u ∈ T : 〈u, v〉 ≤ 0 and 〈u, w〉 ≥ 0 or 〈u, v〉 ≥ 0 and 〈u, w〉 ≤ 0}.

Three disks. We will now look at the implications of Lemma 3.2 to configurations
of three disks. First we will show a fact from plane geometry concerning triangles
and cones. Let a, b, c be noncollinear points on the plane and abc the corresponding
triangle. To each vertex of the triangle we can associate a cone, as in Figure 2. Let the
cones associated with the points a, b and c be called Ca,Cb and Cc (see Figure 3).

Lemma 3.3. The intersection of the cones is empty, that is, Ca ∩Cb ∩Cc =∅.

Proof. Assume that the angle α = 6 bac corresponding to the point a is the largest
angle of the triangle. Since the opening angle of the cone is the same as the
corresponding angle in the triangle, the opening angle of Ca is greater than the
opening angles of Cb and Cc. Denote by l the line passing through the point a such
that l halves the angle α. Then l divides the plane into two parts, one containing
the point b and once containing the point c; denote these half-planes by Hb and Hc.

Since the opening angle of Ca is greater than the opening angle of Cb and Cc, and
the opening angles of the cones are equal to the corresponding angles in the triangle,
we have that the opening angles of Cb and Cc are strictly less than π/2. Thus Cb



CROSSINGS OF COMPLEX LINE SEGMENTS 293

a b

c

p′
Ca

Cb

Cc

Figure 3. The triangle abc, the projection p′ of p and the cones
Ca,Cb and Cc.

or Cc cannot contain any points in the triangle and so a /∈Cb∪Cc. Therefore, the inter-
section Ca∩Cb is entirely contained in Hb\l and the intersection Ca∩Cc in Hc\l. �

Now we can show that there is only one way three points can induce a disk system
without proper intersections. The points a, b, c lie on a plane T and determine a
triangle abc. Each vertex of the triangle is a touching point of two disks, and each
side of the triangle is the rotation axis of one disk. The rotation of a disk determines
a plane containing the corresponding side of the triangle. If none of the three planes
are equal, there are exactly two different cases for their intersection: either all three
planes intersect in one point, or they are all perpendicular to the plane T and thus
do not have a common intersection point.

We will show now that if the three planes have a mutual intersection point, then
at least two of the disks will intersect properly. So assume there is a point p where
the three planes intersect, and consider the orthogonal projection p′ of p onto the
plane T containing the points a, b, c (see Figure 3). As we saw earlier, if two disks
touching in one vertex of the triangle do not intersect properly, then the line segment
from the vertex to p′ lies in the cone associated with the vertex. So to require that
none of the pairs of disks intersect is the same as requiring that p′ ∈ Ca ∩Cb ∩Cc,
which by Lemma 3.3 is not possible.

We have justified the following:

Lemma 3.4. The only disk system induced by three points such that no two disks
intersect properly is the one where all the disks perpendicularly intersect the plane
containing the points.

Theorem 3.1 follows now without much effort. First, assume there is a configura-
tion of four points p1, . . . , p4 such that no two disks intersect properly and all the
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points do not lie on the same plane. Then by Lemma 3.4, the disks induced by p1, p2

and p3 must all perpendicularly intersect the plane T containing p1, p2 and p3.
But the points p1, p2 and p4 lie on a plane T ′ 6= T , and the induced disks have to
intersect T ′ perpendicularly. Therefore D12 intersects T and T ′ perpendicularly,
which leaves no option other than T = T ′, which contradicts our assumption.

Hence, for any number of points, we have to have that the points lie on a plane
in order to not have properly intersecting disks in the induced disk system. The
points and the disks give rise to a complete graph on the plane, as we can think of
the points as vertices and the rotation axes as edges of the graph. Clearly the disks
intersect properly if the graph has crossing edges. Any complete graph with five or
more vertices has an edge crossing, which concludes the proof of Theorem 3.1.

Acknowledgements

I wish to express my gratitude to my advisor József Solymosi for his support and
ideas for this project.

References

[Ajtai et al. 1982] M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi, “Crossing-free subgraphs”,
pp. 9–12 in Theory and practice of combinatorics, edited by A. Rosa et al., North-Holland Math.
Stud. 60, North-Holland, Amsterdam, 1982. MR 86k:05059 Zbl 0502.05021

[Solymosi and Tao 2012] J. Solymosi and T. Tao, “An incidence theorem in higher dimensions”,
Discrete Comput. Geom. 48:2 (2012), 255–280. MR 2946447 Zbl 1253.51004

[Székely 1997] L. A. Székely, “Crossing numbers and hard Erdős problems in discrete geometry”,
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