

Embedding groups into distributive subsets of the monoid of binary operations

Gregory Mezera

Embedding groups into distributive subsets of the monoid of binary operations

Gregory Mezera

(Communicated by Kenneth S. Berenhaut)

Let *X* be a set and Bin(*X*) the set of all binary operations on *X*. We say that $S \subset Bin(X)$ is a distributive set of operations if all pairs of elements $*_{\alpha}, *_{\beta} \in S$ are right distributive, that is, $(a *_{\alpha} b) *_{\beta} c = (a *_{\beta} c) *_{\alpha} (b *_{\beta} c)$ (we allow $*_{\alpha} = *_{\beta}$).

The question of which groups can be realized as distributive sets was asked by J. Przytycki. The initial guess that embedding into Bin(X) for some X holds for any G was complicated by an observation that if $* \in S$ is idempotent (a * a = a), then * commutes with every element of S. The first noncommutative subgroup of Bin(X) (the group S_3) was found in October 2011 by Y. Berman.

Here we show that any group can be embedded in Bin(X) for X = G (as a set). We also discuss minimality of embeddings observing, in particular, that X with six elements is the smallest set such that Bin(X) contains a nonabelian subgroup.

1.	Introduction	433
2.	Regular distributive embedding	435
3.	General conditions for a distributive embedding	435
4.	Future directions; multiterm homology	436
Acknowledgements		437
References		437

1. Introduction

Let *X* be a set and Bin(*X*) the set of all distributive operations on *X*. We say that $S \subset Bin(X)$ is a distributive set of operations if all pairs of elements $*_{\alpha}, *_{\beta} \in S$ are right distributive, that is, $(a *_{\alpha} b) *_{\beta} c = (a *_{\beta} c) *_{\alpha} (b *_{\beta} c)$ (we allow $*_{\alpha} = *_{\beta}$). It was observed in [Przytycki 2011] (see also [Romanowska and Smith 1985]) that Bin(*X*) is a monoid with composition $*_{1}*_{2}$ given by $a *_{1}*_{2}b = (a *_{1} b) *_{2} b$ and the identity $*_{0}$ being the right trivial operation, that is, $a *_{0} b = a$ for any $a, b \in X$.

MSC2010: primary 55N35; secondary 18G60, 57M25.

Keywords: monoid of binary operations, distributive set, shelf, multishelf, distributive homology, embedding, group.

The submonoid of Bin(X) of all invertible elements in Bin(X) is a group denoted by $Bin_{inv}(X)$. If $* \in Bin_{inv}(X)$ then $*^{-1}$ is usually denoted by $\bar{*}$.

We say that a subset $S \subset Bin(X)$ is a distributive set if all pairs of elements $*_{\alpha}, *_{\beta} \in S$ are right distributive, that is, $(a *_{\alpha} b) *_{\beta} c = (a *_{\beta} c) *_{\alpha} (b *_{\beta} c)$ (we allow $*_{\alpha} = *_{\beta}$). Additionally, (X; S) is called a multishelf¹.

The following important basic lemma was proven in [Przytycki 2011]:

- **Lemma 1.1.** (i) If S is a distributive set and $* \in S$ is invertible, then $S \cup \{\bar{*}\}$ is also a distributive set.
- (ii) If S is a distributive set and M(S) is the monoid generated by S, then M(S) is a distributive monoid.
- (iii) If S is a distributive set of invertible operations and G(S) is the group generated by S, then G(S) is a distributive group.

The question of which groups can be realized as distributive sets was asked by J. Przytycki. Soon after the definition of a distributive submonoid of Bin(X)was given in [Przytycki 2011], Michal Jablonowski, a graduate student at Gdańsk University, noticed that any distributive monoid whose elements are idempotent operations is commutative.

Proposition 1.2 [Przytycki 2011]. Consider $*_{\alpha}, *_{\beta} \in Bin(X)$ such that $*_{\beta}$ is idempotent $(a *_{\beta} a = a)$ and distributive with respect to $*_{\alpha}$. Then $*_{\alpha}$ and $*_{\beta}$ commute. In particular:

- (i) If M is a distributive monoid and *_β ∈ M is an idempotent operation, then *_β is in the center of M.
- (ii) A distributive monoid whose elements are idempotent operations is commutative.

Proof. We have $(a *_{\alpha} b) *_{\beta} b \stackrel{\text{distrib}}{=} (a *_{\beta} b) *_{\alpha} (b *_{\beta} b) \stackrel{\text{idemp}}{=} (a *_{\beta} b) *_{\alpha} b.$

A few months later, Agata Jastrzębska (also a graduate student at Gdańsk University) checked that any distributive group in $Bin_{inv}(X)$ for $|X| \le 5$ is commutative.

The first noncommutative subgroup of Bin(X) (the group S_3) was found in October 2011 by Yosef Berman. Soon after, Berman and Carl Hammarsten constructed an embedding of a general dihedral group $D_{2\cdot n}$ in Bin(X) where X has 2nelements. The embedding of Berman, $\phi : D_{2\cdot 3} \to Bin(X)$, is given as follows: if $X = \{0, 1, 2, 3, 4, 5\}$ then the subgroup $D_{2\cdot 3} \subset Bin(X)$ is generated by binary

¹If (*X*; *) is a magma and * is a right self-distributive operation then (*X*; *) is called a shelf, the term coined by Alissa Crans [2004].

operations $*_{\tau}$, which generates reflection, and $*_{\sigma}$, which generates a 3-cycle;

$$*_{\tau} = \begin{pmatrix} 1 & 1 & 3 & 5 & 5 & 3 \\ 0 & 0 & 4 & 2 & 2 & 4 \\ 3 & 3 & 5 & 1 & 1 & 5 \\ 2 & 2 & 0 & 4 & 4 & 0 \\ 5 & 5 & 1 & 3 & 3 & 1 \\ 4 & 4 & 2 & 0 & 0 & 2 \end{pmatrix} \quad \text{and} \quad *_{\sigma} = \begin{pmatrix} 2 & 4 & 2 & 4 & 2 & 4 \\ 5 & 3 & 5 & 3 & 5 & 3 \\ 4 & 0 & 4 & 0 & 4 & 0 \\ 1 & 5 & 1 & 5 & 1 & 5 \\ 0 & 2 & 0 & 2 & 0 & 2 \\ 3 & 1 & 3 & 1 & 3 & 1 \end{pmatrix},$$

where i * j is placed in the *i*-th row and *j*-th column, and $D_{2\cdot 3} = \{\tau, \sigma \mid \tau \sigma \tau = \sigma^{-1}\}$.

2. Regular distributive embedding

We now show that any group G can be embedded in Bin(X) for some X.

Theorem 2.1 (Regular embedding). Every group G embeds in Bin(G). This embedding (monomorphism), $\phi^{\text{reg}} : G \to \text{Bin}(G)$, sends g to $*_g$, where $a *_g b = ab^{-1}gb$.

Proof. (i) We check that the set $\{*_g\}_{g \in G}$ is a distributive set. We have

$$(a *_{g_1} b) *_{g_2} c = (ab^{-1}g_1b) *_{g_2} c = ab^{-1}g_1bc^{-1}g_2c,$$

and

 $(a *_{g_2} c) *_{g_1} (b *_{g_2} c) = (ac^{-1}g_2c) *_{g_1} (bc^{-1}g_2c) = ab^{-1}g_1bc^{-1}g_2c,$

as needed.

(ii) Now we check that the map ϕ^{reg} is a monomorphism. The image of the identity $*_0$ is the identity in Bin(G). Furthermore, $a *_{g_1g_2} b = ab^{-1}g_1g_2b$ and $a *_{g_1} *_{g_2}b = (a *_{g_1}b) *_{g_2}b = ab^{-1}g_1bb^{-1}g_2b = ab^{-1}g_1g_2b$, as needed. We have proven that ϕ^{reg} is a homomorphism. To show that ϕ^{reg} is a monomorphism, we substitute b = 1 in the formula for $a *_g b$ to get $a *_g 1 = ag$; so different choices of g give different binary operations in Bin(G). Notice that $\phi^{\text{reg}}(g^{-1}) = \bar{*}_g$.

We call our embedding *regular*, analogous to the regular representation of a group. We do not claim that the regular embedding is minimal, so finding minimal distributive embeddings is a very interesting problem in itself.

3. General conditions for a distributive embedding

We now discuss a method that can be used to embed groups into subsets of $Bin_{inv}(X)$ satisfying an arbitrary condition. We then use this method when the condition is right distributivity, which leads us to the regular distributive embedding of *G* in Bin(G) and should be a natural tool to look for minimal embeddings. For the group S_3 , we know, by Jastrzebska's calculations, that *X* consisting of six elements is the minimal set such that S_3 embeds in Bin(X).

We start from the following basic observation:

Lemma 3.1. There is an isomorphism between $\operatorname{Bin}_{\operatorname{inv}}(X)$ and $S_{|X|}^{|X|}$, where |X| is the cardinality of |X| and $S_{|X|}$ is the group of permutations on set X (i.e., bijections of the set X). The isomorphism α : $\operatorname{Bin}_{\operatorname{inv}}(X) \to S_X^{|X|} = \prod_{y \in X} S_X^y$ is described as follows: $\alpha(*)(y) : X \to X$ is the bijection where $(\alpha(*)(y))(x) = x * y$. In other words, $\alpha(*)(y)$ is the bijection corresponding to the y-coordinate of $S_X^{|X|}$.

Using the map α , we can translate conditions on a set of binary operations in Bin(X) into a group-theoretic condition on (coordinates of) elements of $S_X^{|X|}$. With some work, we can use this to find an embedding of a group into Bin(X). This is possible since the group axioms require that such an embedding must sit inside Bin_{inv}(X). Let us consider distributive, invertible sets \mathcal{G} of binary operations in Bin_{inv}(X). These are subsets $\mathcal{G} \subseteq \text{Bin}_{inv}(X)$ that satisfy

$$(x *_i y) *_j z = (x *_j z) *_i (y *_j z)$$
 for all $*_i, *_j \in S$ and $x, y, z \in X$.

Let $\sigma_{i,y} = p_y \alpha(*_i)$, where $p_y : S_X^{|X|} \to S_X$ is projection onto the *y*-th coordinate. Then translating the distributivity condition via α ,

$$\sigma_{i,z}(x *_i y) = \sigma_{i,(y *_i z)}(x *_i z)$$

or

$$\sigma_{j,z}(\sigma_{i,y}(x)) = \sigma_{i,\sigma_{j,z}(y)}(\sigma_{j,z}(x)),$$

which leads to

$$\sigma_{i,\sigma_{j,z}(y)} = \sigma_{j,z}\sigma_{i,y}\sigma_{j,z}^{-1}.$$

Now the problem of embedding a group into $\operatorname{Bin}_{\operatorname{inv}}(X)$ is reduced to finding subsets of $S_{|X|}^{|X|}$ satisfying the condition above that are isomorphic to the group. We can then use tools of group theory (e.g., representation theory) to solve the problem. This process can be attempted for subsets of $\operatorname{Bin}_{\operatorname{inv}}(X)$ satisfying any condition and leads to the embedding defined in the previous section for distributive subsets.

4. Future directions; multiterm homology

Przytycki [2011] defined multiterm homology for any distributive set. This provided motivation to have many examples of distributive sets. The regular embedding of a group (Theorem 2.1) provides an interesting family of distributive sets ripe for the study of their homology (compare with [Crans et al. 2014; Przytycki 2011; 2012; Przytycki and Putyra 2013; Przytycki and Sikora 2014]). As a nontrivial example, we propose computing *n*-term distributive homology related to the regular embedding of the cyclic group Z_n . Another problem related to Theorem 2.1 is determining which monoids are distributive submonoids of Bin(*X*).

A key motivation is to use multiterm distributive homology in knot theory. This possibility arises from the relation of the third Reidemeister move with right distributivity (and eventually the Yang–Baxter operator) and the important work of Carter, Kamada, and Saito [2001] and other researchers on applications of quandle homology to knot theory.

Acknowledgements

I was partially supported by the George Washington University Presidential Merit Fellowship.

I would like to thank Professor Józef Przytycki, Carl Hammarsten, and Krzysztof Putyra for helpful discussion, and Mieczysław Dąbkowski for his moral support.

References

- [Carter et al. 2001] J. S. Carter, S. Kamada, and M. Saito, "Geometric interpretations of quandle homology", *J. Knot Theory Ramifications* **10**:3 (2001), 345–386. MR 2002h:57009 Zbl 1002.57019
- [Crans 2004] A. S. Crans, *Lie 2-algebras*, Ph.D. thesis, University of California, Riverside, 2004, Available at http://search.proquest.com/docview/305198326. MR 2706291 Zbl 1057.17011
- [Crans et al. 2014] A. S. Crans, J. H. Przytycki, and K. K. Putyra, "Torsion in one-term distributive homology", *Fund. Math.* **225** (2014), 75–94. MR 3205566 Zbl 06292117
- [Przytycki 2011] J. H. Przytycki, "Distributivity versus associativity in the homology theory of algebraic structures", *Demonstratio Math.* **44**:4 (2011), 823–869. MR 2906433 Zbl 1286.55004
- [Przytycki 2012] J. H. Przytycki, *Teoria węzłów i związanych z nimi struktur dystrybutywnych*, University of Gdańsk Press, 2012.
- [Przytycki and Putyra 2013] J. H. Przytycki and K. K. Putyra, "Homology of distributive lattices", J. *Homotopy Relat. Struct.* **8**:1 (2013), 35–65. MR 3031593 Zbl 1284.06016
- [Przytycki and Sikora 2014] J. H. Przytycki and A. S. Sikora, "Distributive products and their homology", *Comm. Algebra* **42**:3 (2014), 1258–1269. MR 3169627 Zbl 06288603
- [Romanowska and Smith 1985] A. B. Romanowska and J. D. H. Smith, *Modal theory: an algebraic approach to order, geometry, and convexity*, Research and Exposition in Mathematics **9**, Heldermann Verlag, Berlin, 1985. MR 86k:08001 Zbl 0553.08001

Received: 2012-10-31	Revised: 2014-03-20	Accepted: 2014-04-27	
gregmezera@yahoo.com	•	1athematics, George Washington 20052, United States	University,

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS								
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu					
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu					
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu					
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu					
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz					
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu					
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com					
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu					
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir					
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu					
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu					
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu					
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu					
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com					
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch					
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu					
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu					
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu					
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu					
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu					
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu					
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu					
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu					
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu					
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu					
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com					
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu					
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu					
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it					
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com					
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu					
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu					

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US \$140/year for the electronic version, and \$190/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2015 Mathematical Sciences Publishers

2015 vol. 8 no. 3

Colorability and determinants of $T(m, n, r, s)$ twisted torus knots for $n \equiv \pm 1 \pmod{m}$ MATT DELONG, MATTHEW RUSSELL AND JONATHAN SCHROCK	361
Parameter identification and sensitivity analysis to a thermal diffusivity inverse	385
problem	
BRIAN LEVENTHAL, XIAOJING FU, KATHLEEN FOWLER AND OWEN Eslinger	
A mathematical model for the emergence of HIV drug resistance during periodic	401
bang-bang type antiretroviral treatment	
NICOLETA TARFULEA AND PAUL READ	
An extension of Young's segregation game	421
MICHAEL BORCHERT, MARK BUREK, RICK GILLMAN AND SPENCER ROACH	
Embedding groups into distributive subsets of the monoid of binary operations GREGORY MEZERA	433
Persistence: a digit problem	439
STEPHANIE PEREZ AND ROBERT STYER	
A new partial ordering of knots	447
ARAZELLE MENDOZA, TARA SARGENT, JOHN TRAVIS SHRONTZ AND PAUL Drube	
Two-parameter taxicab trigonometric functions	467
KELLY DELP AND MICHAEL FILIPSKI	
$_{3}F_{2}$ -hypergeometric functions and supersingular elliptic curves	481
SARAH PITMAN	
A contribution to the connections between Fibonacci numbers and matrix theory	491
MIRIAM FARBER AND ABRAHAM BERMAN	
Stick numbers in the simple hexagonal lattice	503
Ryan Bailey, Hans Chaumont, Melanie Dennis, Jennifer	000
McLoud-Mann, Elise McMahon, Sara Melvin and Geoffrey	
Schuette	
On the number of pairwise touching simplices	513
BAS LEMMENS AND CHRISTOPHER PARSONS	
The zipper foldings of the diamond	521
ERIN W. CHAMBERS, DI FANG, KYLE A. SYKES, CYNTHIA M. TRAUB AND	
PHILIP TRETTENERO	
On distance labelings of amalgamations and injective labelings of general graphs	535
NATHANIEL KARST, JESSICA OEHRLEIN, DENISE SAKAI TROXELL AND	-
JUNJIE ZHU	