On distance labelings of amalgamations
and injective labelings of general graphs
Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell and Junjie Zhu
On distance labelings of amalgamations and injective labelings of general graphs

Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell and Junjie Zhu

(Communicated by Jerrold Griggs)

An $L(2, 1)$-labeling of a graph G is a function assigning a nonnegative integer to each vertex such that adjacent vertices are labeled with integers differing by at least 2 and vertices at distance two are labeled with integers differing by at least 1. The minimum span across all $L(2, 1)$-labelings of G is denoted $\lambda(G)$. An $L'(2, 1)$-labeling of G and the number $\lambda'(G)$ are defined analogously, with the additional restriction that the labelings must be injective. We determine $\lambda(H)$ when H is a join-page amalgamation of graphs, which is defined as follows: given $p \geq 2$, H is obtained from the pairwise disjoint union of graphs H_0, H_1, \ldots, H_p by adding all the edges between a vertex in H_0 and a vertex in H_i for $i = 1, 2, \ldots, p$. Motivated by these join-page amalgamations and the partial relationships between $\lambda(G)$ and $\lambda'(G)$ for general graphs G provided by Chang and Kuo, we go on to show that $\lambda'(G) = \max\{n_G - 1, \lambda(G)\}$, where n_G is the number of vertices in G.

1. Introduction

In a well-studied model of the classic channel assignment problem introduced in [Hale 1980], each vertex of a graph G represents a transmitter in a communications network, and edges connect vertices corresponding to transmitters operating in close proximity which must receive sufficiently different frequencies to avoid interference. In a simplified instance of the problem, a frequency assignment is represented by an $L(2, 1)$-labeling of G, which is a function f from the vertex set to the nonnegative integers such that $|f(x) - f(y)| \geq 2$ if vertices x and y are adjacent and $|f(x) - f(y)| \geq 1$ if x and y are at distance two. $L(2, 1)$-labelings and their variations have been studied extensively since their introduction in [Griggs and Yeh 1992] (see the surveys [Calamoneri 2011; Griggs and Král 2009; Yeh 2006]) and continue to generate a rich literature to this date (see a sample of the

MSC2010: primary 68R10, 94C15; secondary 05C15, 05C78.

Keywords: $L(2, 1)$-labeling, distance two labeling, injective $L(2, 1)$-labeling, amalgamation of graphs, channel assignment problem.
most recent works in [Calamoneri 2013; Franks 2015; Karst et al. 2015; Li and Zhou 2013; Lin and Dai 2015; Lu and Zhou 2013; Shao and Solis-Oba 2013]).

An $L(2, 1)$-labeling of a graph G that uses labels in the set $\{0, 1, \ldots, k\}$ will be called a k-$L(2, 1)$-labeling. The minimum k so that G has a k-$L(2, 1)$-labeling is called the λ-number of G, denoted by $\lambda(G)$. Griggs and Yeh [1992] conjectured that $\lambda(G) \leq \Delta^2(G)$, where $\Delta(G)$ denotes the maximum degree of G. This conjecture holds for $\Delta(G) \geq 10^6$ [Havet et al. 2012], but it remains open even when $\Delta(G) = 3$. The best general upper bound yet established is $\lambda(G) \leq \Delta^2(G) + \Delta(G) - 2$ [Gonçalves 2008]. Recently, it has been proven that this conjecture also holds for small enough graphs, namely, graphs with at most $(\lceil \Delta(G)/2 \rceil + 1)(\Delta^2(G) - \Delta(G) + 1) - 1$ vertices [Franks 2015]. As the general problem of determining $\lambda(G)$ is NP-hard [Georges et al. 1994], a significant body of literature has focused on finding bounds or exact λ-numbers for particular classes of graphs. In particular, [Adams et al. 2013] focused on the amalgamations of graphs.

Definition 1.1. Let H_1, H_2, \ldots, H_p be $p \geq 2$ graphs each containing a fixed induced subgraph isomorphic to a graph H_0. The amalgamation of H_1, H_2, \ldots, H_p along H_0 is the simple graph $H = \text{Amalg}(H_0; H_1, H_2, \ldots, H_p)$ obtained by identifying H_1, H_2, \ldots, H_p at the vertices in the fixed subgraphs isomorphic to H_0 in each H_1, H_2, \ldots, H_p respectively. H_0 is referred to as the spine and H_k as the k-th page of the amalgamation for $k = 1, 2, \ldots, p$. (We refer the reader to [Adams et al. 2013] for some concrete examples.)

In [Adams et al. 2013], upper bounds for the λ-number of the amalgamation of graphs along a given graph were established by determining the exact λ-number of amalgamations of complete graphs along a complete graph. They also provided the exact λ-numbers of amalgamations of rectangular grids along a path, or more specifically, of the Cartesian products of a path and a star with spokes of arbitrary lengths. This focus on the Cartesian products motivated us to investigate amalgamations of the join of graphs.

Definition 1.2. Let G_1 and G_2 be two disjoint graphs. The union $G_1 \cup G_2$ is the graph with vertex (resp., edge) set equal to the union of the vertex (resp., edge) sets of G_1 and G_2. The join $G_1 + G_2$ is obtained from $G_1 \cup G_2$ by adding an edge between each vertex in G_1 and each vertex in G_2.

Definition 1.3. Let $G_0, G_1,$ and G_2 be pairwise disjoint graphs. The graph $G = \text{Amalg}(G_0; G_0 + G_1, G_0 + G_2)$ is called a join-page amalgamation of G_1, G_2 along G_0. Note that G is isomorphic to $G_0 + (G_1 \cup G_2)$.

Definitions 1.2 and 1.3 can be extended for more than two graphs G_1, G_2. The λ-numbers of the union and join of graphs are well known as stated in the next two results.
Result 1.4 [Chang and Kuo 1996, Lemma 3.1]. For any two graphs G and H,
\[\lambda(G \cup H) = \max(\lambda(G), \lambda(H)). \]

Result 1.5 [Georges et al. 1994, Corollary 4.6]. For any two graphs G and H with n_G and n_H vertices respectively,
\[\lambda(G + H) = \max\{n_G - 1, \lambda(G)\} + \max\{n_H - 1, \lambda(H)\} + 2. \]

In Section 2, we provide the exact λ-number for all join-page amalgamations. Motivated by a connection between this λ-number and the minimum span over injective $L(2, 1)$-labelings, Section 3 revisits these labelings for general graphs which were first introduced in [Chang and Kuo 1996]. More specifically, we establish a new exact relationship between the λ-number of a graph and the minimum span over all injective $L(2, 1)$-labelings of this graph.

2. The λ-number of join-page amalgamations

Theorem 2.1. Let $G = \text{Amalg}(G_0; G_0 + G_1, G_0 + G_2, \ldots, G_0 + G_p)$ be a join-page amalgamation, where G_i is a graph with $n_i \geq 1$ vertices for $i = 0, 1, \ldots, p \geq 2$ so that $n_1 \geq n_j$ for $j = 2, 3, \ldots, p$, and let $n = n_1 + n_2 + \cdots + n_p$. Then,
\[\lambda(G) = \max\{n_0 - 1, \lambda(G_0)\} + \max\{n - 1, \lambda(G_1)\} + 2. \]

Proof. Since G is isomorphic to $G_0 + (G_1 \cup G_2 \cup \cdots \cup G_p)$, using Results 1.4 and 1.5,
\[
\begin{align*}
\lambda(G) &= \lambda(G_0 + (G_1 \cup G_2 \cup \cdots \cup G_p)) \\
&= \max\{n_0 - 1, \lambda(G_0)\} + \max\{n - 1, \lambda(G_1 \cup G_2 \cup \cdots \cup G_p)\} + 2 \\
&= \max\{n_0 - 1, \lambda(G_0)\} + \max\{n - 1, \lambda(G_1), \lambda(G_2), \ldots, \lambda(G_p)\} + 2.
\end{align*}
\]
For $i = 2, 3, \ldots, p$, we have $\lambda(G_i) \leq \lambda(K_{n_i}) = 2n_i - 2 \leq n_1 + n_i - 2 < n - 1$, where K_{n_i} denotes the complete graph with n_i vertices, and therefore
\[\max\{n - 1, \lambda(G_1), \lambda(G_2), \ldots, \lambda(G_p)\} = \max\{n - 1, \lambda(G_1)\}, \]
and the desired result follows. }

It is worth noting that Theorem 2.1 implies that $\lambda(G)$ depends on the number of vertices in G_2, G_3, \ldots, G_p but not on their particular λ-numbers.

The following corollary is equivalent to Theorem 2.3 in [Adams et al. 2013] but with an alternative and more compact proof.

Corollary 2.2. Let $G = \text{Amalg}(K_0; K_0 + K_1, K_0 + K_2, \ldots, K_0 + K_p)$ be a join-page amalgamation, where K_i is the complete graph with $n_i \geq 1$ vertices for $i = 0, 1, \ldots, p \geq 2$ so that $n_1 \geq n_j$ for $j = 2, 3, \ldots, p$, and let $n = n_1 + n_2 + \cdots + n_p$. Then $\lambda(G) = 2n_0 + \max\{n - 1, 2n_1 - 2\}.$
Proof. By Theorem 2.1,
\[\lambda(G) = \max\{n_0 - 1, \lambda(K_0)\} + \max\{n - 1, \lambda(K_1)\} + 2 \]
\[= \max\{n_0 - 1, 2n_0 - 2\} + \max\{n - 1, 2n_1 - 2\} + 2 \]
\[= 2n_0 - 2 + \max\{n - 1, 2n_1 - 2\} + 2 \]
\[= 2n_0 + \max\{n - 1, 2n_1 - 2\}. \] □

3. A connection between join-page amalgamation and injective \(L(2, 1)\)-labelings

When examining the \(L(2, 1)\)-labelings of a join-page amalgamation of the form \(G = \text{Amalg}(G_0; G_0 + G_1, G_0 + G_2, \ldots, G_0 + G_p)\), as described in Theorem 2.1 in Section 2, we noticed that we could extend an injective \(L(2, 1)\)-labeling of \(G_0\) of minimum span over all its injective labelings to a \(\lambda(G)\)-\(L(2, 1)\)-labeling of the entire \(G\). We suspected that this was not a coincidence, which led us to revisit the following variation of \(L(2, 1)\)-labelings introduced in [Chang and Kuo 1996].

Definition 3.1. An \(L'(2, 1)\)-labeling of a graph \(G\) is an injective \(L(2, 1)\)-labeling of \(G\). The definitions of \(k-L'(2, 1)\)-labeling, \(\lambda'\)-number and \(\lambda'(G)\) are analogous to those of \(k-L(2, 1)\)-labeling, \(\lambda\)-number, and \(\lambda(G)\) when restricted to injective labelings.

The following basic properties were previously known.

Result 3.2 [Chang and Kuo 1996, Lemmas 2.1, 2.2, 2.3]. For any graph \(G\) with \(n_G\) vertices, (i) \(\lambda'(H) \leq \lambda'(G)\) for any subgraph \(H\) of \(G\); (ii) \(\lambda(G) \leq \lambda'(G)\) with equality if \(G\) has diameter at most two; and (iii) \(c(G) = \lambda'(G^c) - n_G + 2\), where \(c(G)\) is the path covering number of \(G\), i.e., the smallest number of vertex-disjoint paths needed to cover all the vertices of the graph \(G\), and \(G^c\) is the complement of \(G\).

In Theorem 3.4, we will strengthen Result 3.2(ii) by providing a surprisingly simple exact relationship between \(\lambda(G)\) and \(\lambda'(G)\) for any graph \(G\). We will be using the following auxiliary result in the proof of Theorem 3.4.

Result 3.3 [Georges et al. 1994, Theorem 1.1]. For any graph \(G\) on \(n_G\) vertices, (i) \(\lambda(G) \leq n_G - 1\) if and only if \(c(G^c) = 1\); and (ii) \(\lambda(G) = n_G + c(G^c) - 2\) if and only if \(c(G^c) \geq 2\).

Theorem 3.4. For any graph \(G\) with \(n_G\) vertices,
\[\lambda'(G) = \max\{n_G - 1, \lambda(G)\}. \]
Proof. Suppose $\lambda(G) \leq n_G - 1$. By Result 3.3(i), $c(G^c) = 1$, and Result 3.2(iii) implies $1 = c(G^c) = \lambda'(G) - n_G + 2$. Therefore,

$$\lambda'(G) = n_G - 1 = \max\{n_G - 1, \lambda(G)\}.$$

Assume, on the other hand, that $\lambda(G) > n_G - 1$. Item (i) in Result 3.3 implies $c(G^c) \geq 2$, and item (ii) implies $\lambda(G) = n_G + c(G^c) - 2$, or equivalently, $c(G^c) = \lambda(G) - n_G + 2$. Finally, Result 3.2(iii) implies

$$\lambda'(G) = c(G^c) + n_G - 2 = (\lambda(G) - n_G + 2) + n_G - 2 = \lambda(G) = \max\{n_G - 1, \lambda(G)\}. \quad \Box$$

In view of Theorem 3.4, the general problem of determining the λ'-number of graphs is as complex as determining their λ-numbers, which, as mentioned previously, is known to be an NP-hard problem. Furthermore, the exact λ'-numbers of families of graphs, such as the ones derived in [Chang and Kuo 1996] using more involved techniques (e.g., paths, cycles, union and join of two graphs), can be readily obtained using Theorem 3.4 and the vast list of known exact λ-numbers in the $L(2, 1)$-labeling literature.

If $G = \text{Amalg}(G_0; G_0 + G_1, G_0 + G_2, \ldots, G_0 + G_p)$ and we apply Theorem 3.4 to G_0 in Theorem 2.1, we obtain a relationship between $\lambda(G)$ and $\lambda'(G_0)$, confirming the connection between injective $L(2, 1)$-labelings of G_0 and $L(2, 1)$-labelings of G we mentioned in the first paragraph of this section. The following corollary provides this relationship.

Corollary 3.5. Let $G = \text{Amalg}(G_0; G_0 + G_1, G_0 + G_2, \ldots, G_0 + G_p)$ be a join-page amalgamation, where G_i is a graph with n_i vertices for $i = 0, 1, \ldots, p \geq 2$ so that $n_1 \geq n_j$ for $j = 2, 3, \ldots, p$, and let $n = n_1 + n_2 + \cdots + n_p$. Then $\lambda(G) = \lambda'(G_0) + \max\{n - 1, \lambda(G_1)\} + 2$.

Acknowledgements

The authors would like to thank Sarah Spence Adams for handling administrative requirements regarding student research credits. Denise Sakai Troxell would like to thank Babson College for its support through the Babson Research Scholar award.

References

N. Karst, J. Oehrlein, D. Troxell and J. Zhu

Received: 2014-02-03 Revised: 2014-05-24 Accepted: 2014-05-31

nkarst@babson.edu Mathematics and Sciences Division, Babson College, Babson Park, MA 02457, United States

jessica.oehrlein@students.olin.edu Franklin W. Olin College of Engineering, Olin Way, Needham, MA 02492, United States

troxell@babson.edu Mathematics and Sciences Division, Babson College, Babson Park, MA 02457, United States

jjzhu@stanford.edu Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States
Colorability and determinants of $T(m, n, r, s)$ twisted torus knots for $n \equiv \pm 1 \pmod{m}$
Matt DeLong, Matthew Russell and Jonathan Schrock

Parameter identification and sensitivity analysis to a thermal diffusivity inverse problem
Brian Leventhal, Xiaojing Fu, Kathleen Fowler and Owen Eslinger

A mathematical model for the emergence of HIV drug resistance during periodic bang-bang type antiretroviral treatment
Nicoleta Tarfulea and Paul Read

An extension of Young’s segregation game
Michael Borchert, Mark Burek, Rick Gillman and Spencer Roach

Embedding groups into distributive subsets of the monoid of binary operations
Gregory Mezera

Persistence: a digit problem
Stephanie Perez and Robert Styer

A new partial ordering of knots
Arazelle Mendoza, Tara Sargent, John Travis Shrontz and Paul Drube

Two-parameter taxicab trigonometric functions
Kelly Delp and Michael Filipski

$3F_2$-hypergeometric functions and supersingular elliptic curves
Sarah Pitman

A contribution to the connections between Fibonacci numbers and matrix theory
Miriam Farber and Abraham Berman

Stick numbers in the simple hexagonal lattice
Ryan Bailey, Hans Chaumont, Melanie Dennis, Jennifer McCloud-Mann, Elise McMahon, Sara Melvin and Geoffrey Schuette

On the number of pairwise touching simplices
Bas Lemmens and Christopher Parsons

The zipper foldings of the diamond
Erin W. Chambers, Di Fang, Kyle A. Sykes, Cynthia M. Traub and Philip Trettenero

On distance labelings of amalgamations and injective labelings of general graphs
Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell and Junjie Zhu