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The 12 conjecture holds for graphs of small order
Cole Franks

(Communicated by Ronald Gould)

An L(2, 1)-labeling of a simple graph G is a function f : V (G) → Z such
that if xy ∈ E(G), then | f (x) − f (y)| ≥ 2, and if the distance between x
and y is two, then | f (x)− f (y)| ≥ 1. L(2, 1)-labelings are motivated by radio
channel assignment problems. Denote by λ2,1(G) the smallest integer such that
there exists an L(2, 1)-labeling of G using the integers {0, . . . , λ2,1(G)}. We
prove that λ2,1(G)≤12, where 1=1(G), if the order of G is no greater than
(b1/2c+1)(12

−1+1)−1. This shows that for graphs no larger than the given
order, the 1992 “12 conjecture” of Griggs and Yeh holds. In fact, we prove more
generally that if L ≥12

+ 1, 1≥ 1, and

|V (G)| ≤ (L −1)
(⌊ L−1

21

⌋
+ 1

)
− 1,

then λ2,1(G) ≤ L − 1. In addition, we exhibit an infinite family of graphs with
λ2,1(G)=12

−1+ 1.

1. Introduction

The channel assignment problem is the determination of assignments of channels
(integers) to stations in such a way that those stations close enough to interfere
receive distant enough channels. Hale [1980] formulated the problem in terms of
T -colorings, which are integer colorings in which adjacent vertices’ colors cannot
differ by a member of a set of integers T with {0} ⊂ T . Roberts [1988] proposed
a generalization in which closer transmitters would be required to have channels
that differed by more than those of the slightly more distant transmitters, adding a
condition for nonadjacent vertices as well. The L(2, 1)-labeling problem was first
studied by Griggs and Yeh [1992] in response to Roberts’ proposal. An L(2, 1)-
labeling of a graph G is an integer labeling of G in which two vertices at distance
one from each other must have labels differing by at least 2, and those at distance
two must differ by at least 1. Denote by λ2,1(G) the smallest number such that there
exists an L(2, 1)-labeling of G with the difference λ2,1(G) between the highest and

MSC2010: 97K30.
Keywords: L(2,1)-labeling, graph labeling, channel assignment.
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542 COLE FRANKS

lowest label. If there is no possibility for confusion, λ2,1(G) is sometimes written
λ2,1. The L(2, 1)-labeling problem has been studied extensively with the central
goal of finding bounds on λ2,1. Griggs and Yeh bounded the λ2,1 number for cycles,
paths, trees, and the n-cube. They also proved the bound λ2,1 ≤1(G)2+ 21(G),
where 1(G) is the maximum degree over the set of degrees of vertices in V (G). In
this paper, we will write 1 when the meaning is clear from context. Chang and Kuo
[1996] improved the bound to12

+1, and by modifying their algorithm, Gonçalves
[2007] reduced the bound to12

+1−2. Bounds on the λ2,1 number have been found
for many subclasses of graphs, such as Sakai’s bound [1991] of (1+ 3)2/4 for
chordal graphs — graphs containing no induced cycle of length four. All examples
tested have corroborated the conjecture Griggs and Yeh made in their 1992 paper:

12 conjecture. If 1(G)≥ 2, then λ2,1 ≤1
2.

However, the conjecture remains unproven, and it is difficult to test the bound for
graphs of any significant size. The largest step towards the proof of the conjecture
was made by Havet, Reed, and Sereni [2012] who proved that the conjecture
holds for all graphs with 1 larger than some 10, but 10 ≈ 1069. Consequently,
λ2,1(G) ≤ 12

+ C for some absolute constant C . The upper bound set by the
conjecture, if proven, would be tight — the Moore graphs are known to satisfy
λ2,1 =1

2 [Griggs and Yeh 1992].

2. Preliminaries

The proof of Theorem 3 involves a classic result of Pósa about the existence of
Hamilton cycles and paths in graphs of high degree (see [Kronk 1969]). In this
respect, our argument has a similar flavor to the proof in [Griggs and Yeh 1992]
that λ2,1 ≤ 1

2 for graphs of order less than 12
+ 1. In addition, we will use the

powerful result of Szemerédi and Hajnal [1970] on equitable colorings.

Theorem (Pósa). Let G have n ≥ 3 vertices. If for every k, 1≤ k ≤ (n− 1)/2 and
|{v : d(v)≤ k}|< k, then G is Hamiltonian.

Corollary 1. Let G have n ≥ 2 vertices. If for every k, 0 ≤ k ≤ (n − 2)/2 and
|{v : d(v)≤ k}| ≤ k, then G has a Hamilton path.

Proof. The corollary follows easily by adding a dominating vertex to G and
observing that by Pósa’s theorem the new graph is Hamiltonian. �

Theorem (Szemerédi, Hajnal). If 1(G)≤ r , then G can be equitably colored with
r + 1 colors; that is, the sizes of the color classes differ by at most one.

See also [Kierstead et al. 2010; Kierstead and Kostochka 2008].
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3. Main result

The following lemma is the key ingredient in the proof of the main result. The
lemma requires a concept which we will call the square color graph. Let G be a
graph. Let C0, . . . ,Cl−1 be the color classes of a proper coloring C of G2 with l
colors, where G2 is the graph with V (G2)= V (G) and E(G2)= {xy|d(x, y)≤ 2}.
The square color graph of C , denoted G, is the graph with

V (G)={C0, . . . ,Cl−1} and E(G)=
{
Ci C j

∣∣G[Ci∪C j ] contains an edge of G
}
.

Here G[Ci ∪C j ] denotes the induced subgraph formed by the vertices in Ci ∪C j .

Lemma 2. Let G be a graph, and let C be a proper coloring of G2 with l colors.
If the complement Gc of the square color graph of C has a Hamilton path, then
λ2,1(G)≤ l − 1.

Proof. By assumption, Gc has a Hamiltonian path P = {p0, p1, . . . , pl−1}. Recall
that the vertices of P are color classes partitioning G. Let f : V (G)→Z be defined
as f : v 7→ i , where i is the unique index such that v ∈ pi . We now check that f is
an L(2, 1)-labeling of G. If d(x, y)= 2, then x and y are given two different labels
because C is a coloring of G2. If d(x, y)= 1, then x and y are in two distinct color
classes pi and p j such that pi p j ∈ E(G). Then pi p j /∈ E(Gc), so i 6= j±1 because
otherwise pi p j ∈ E(P). Therefore | f (x)− f (y)| ≥ 2, and f is an L(2, 1)-labeling
for G. �

Theorem 3. Let G be a graph with 1 = 1(G) ≥ 1, and let L be an integer with
L ≥12

+ 1. Then λ2,1(G)≤ L − 1 if

|V (G)| ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1.

Before the proof of Theorem 3, we will discuss two corollaries that have impli-
cations for the 12 conjecture.

Corollary 4. Let G be a graph of with 1=1(G)≥ 1. Then λ2,1(G)≤12 if

|V (G)| ≤
(⌊
1

2

⌋
+ 1

)
(12
−1+ 1)− 1.

Proof. Using Theorem 3 with L =12
+ 1 gives the desired result. �

Corollary 4 significantly expands the known orders of graphs that satisfy the
12 conjecture; it does so more dramatically as 1(G) increases. For 1(G) = 3,
|V (G)| ≤ 13 suffices as opposed to the previously known |V (G)| ≤ 10 [Griggs and
Yeh 1992]. For1(G)=4, we have |V (G)|≤38 as opposed to |V (G)|≤17 [loc. cit.].
If G is the Hoffman–Singleton graph, then 1(G) = 7, |V (G)| = 50 = 12

+ 1,
and, in fact, λ2,1(G) = 49 = 12 [loc. cit.]. It might seem productive to look
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among minor variations of the Hoffman–Singleton graph for counterexamples to
the 12 conjecture, but Corollary 4 suggests otherwise — the conjecture holds if
1(G) = 7 and |V (G)| ≤ 169. The bounds on |V (G)| established in Corollary 4
grow quickly with 1, as they are cubic in 1 rather than quadratic as in [loc. cit.].

For some |V (G)|, we can also use Theorem 3 to find upper bounds on λ2,1(G)
that are stronger than the best known bound of Gonçalves [loc. cit.]. The bound on
|V (G)| in the following corollary is larger than the bound in Theorem 3.

Corollary 5. Let G be a graph with1=1(G)≥ 3. Then λ2,1(G) <12
+1−2 if

|V (G)| ≤
(⌊
1

2

⌋
+ 1

)
(12
− 2)− 1.

Proof. Apply Theorem 3 with L =12
+1− 2. This gives

|V (G)| ≤
(⌊
1

2
+

1
2
−

3
21

⌋
+ 1

)
(12
− 2)− 1.

Since we have assumed 1≥ 3, we have 0≤ 1/2− 3/(21) < 1/2, so⌊
1

2
+

1
2
−

3
21

⌋
=

⌊
1

2

⌋
. �

We now proceed to the proof of Theorem 3.

Proof. Let L be as in Theorem 3. We will show that for any integers q, r with
q ≥ 0, 0≤ r ≤ L − 1, and

Lq + r ≤ M = (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1,

if |V (G)| = Lq + r and 1(G) = 1, then G has an L(2, 1)-labeling with span
at most L − 1. This is sufficient to prove Theorem 3, as for any integer n, there
exist unique integers q ≥ 0 and r ∈ {0, . . . , L − 1} with Lq + r = n. Suppose
|V (G)| = Lq+ r . Recall that L ≥12

+ 1≥1(G2)+ 1. By the Szemerédi–Hajnal
theorem, G2 has an equitable coloring C with L color classes. For convenience,
we will use all L color classes even if several are empty. This means L − r classes
have q vertices and r classes have q + 1 vertices. Our goal is to prove that the
complement of the square color graph of C , or Gc, has a Hamiltonian path. Note
that dG(V )≤1|V | for all V ∈ V (G). Write the degree of V in Gc as dc(V ).

If q ≤ b(L − 1)/21c− 1, then

1(q + 1)≤1
⌊L − 1

21

⌋
≤

⌊L − 1
2

⌋
,

so that δ(Gc)≥ L−1−b(L−1)/2c ≥ (L−1)/2, and the conditions of Corollary 1
are satisfied. Therefore Gc has a Hamiltonian path.
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Otherwise, q = b(L − 1)/21c and

r ≤ L − 1−1
(⌊

L−1
21

⌋
+ 1

)
≤ L − 1

because otherwise Lq + r > M .
Now suppose k is an integer with 0 ≤ k ≤ (L − 2)/2 as in Corollary 1. If

dc(V )≤ k, then

L−2
2
≥ L − 1− dG(V )≥ L − 1−1|V |,

so that |V | ≥ (1/1)(L − 1− (L − 2)/2) = (L − 1)/21+ 1/21 > q. Therefore
|V | = q+ 1, so we know there are at most r vertices with dc(V )≤ k. For any such
vertex V ,

dc(V )≥ L − 1− (q + 1)1= L − 1−1
(⌊

L−1
21

⌋
+ 1

)
≥ r ≥ 0.

Now the conditions of Corollary 1 are satisfied, so Gc still has a Hamiltonian
path. From Lemma 2, Gc having a Hamiltonian path implies that λ2,1G ≤ L−1. As

Lq + L − 1−1
(⌊

L−1
21

⌋
+ 1

)
= (L −1)

(⌊
L−1
21

⌋
+ 1

)
− 1= M,

this argument works for any |V (G)| ≤ M . �

Corollary 6. Let G be a graph of order n with 1 = 1(G) ≥ 1, and let L be an
integer with L ≥12

+ 1. If

n ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1,

then there is an L(2, 1)-labeling of G with a span at most L− 1 that is equitable. If
n ≥ L , the labeling is no-hole.

Proof. The proof follows immediately from the proof of Theorem 3. �

The next corollary concerns algorithms involved in finding these labelings. In
general, determining if λ2,1(G) ≤ k for positive integers k ≥ 4 is NP-complete
[Fiala et al. 2001].

Corollary 7. Let G be a graph of order n with1=1(G)≥1 and L≥12
+1. There

is an algorithm with polynomial running time in n to compute an L(2, 1)-labeling
of G with span at most L − 1 for all n and L such that

n ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1.
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Proof. If L ≥ 2n + 1, the appropriate labeling can be obtained by labeling the
vertices 0, 2, . . . , 2n in any order [Griggs and Yeh 1992]. This can clearly be
done in polynomial time. Otherwise, in [Kierstead et al. 2010] there is shown to
be an algorithm, polynomial in n, to equitably color G2 with L colors. Degree
sequences satisfying the conditions of Pósa’s theorem also satisfy those of Chvátal’s
theorem [Bondy and Chvátal 1976], and the paper’s authors exhibit an algorithm,
polynomial in p, to find Hamilton cycles in graphs of order p which satisfy the
conditions of Chvátal’s theorem. From the proofs of Lemma 2 and Corollary 1, we
see that to find the labeling, it is enough find a Hamilton cycle in a certain graph,
namely Gc with a dominating vertex added, of order L + 1≤ 2n+ 2 that satisfies
the conditions of Pósa’s theorem. From [Bondy and Chvátal 1976], we can do this
with an algorithm that is polynomial in L + 1, which must also be polynomial in n.
These two algorithms in succession yield the desired algorithm. �

4. Comments on diameter-2 graphs

It was previously known that diameter-2 graphs satisfy the 12 conjecture, and for
other than a few exceptional graphs, 12

− 1 suffices to label diameter-2 graphs
[Griggs and Yeh 1992]. In this section, we knock this bound down by one, showing
that 12

− 2 suffices to label all but a finite handful of diameter-2 graphs.

Theorem 8 [Griggs and Yeh 1992]. The12 conjecture holds for diameter-2 graphs.
In addition, λ2,1 ≤1

2
− 1 for diameter-2 graphs with 1≥ 2 except for C3, C4, and

the Moore graphs. For these exceptional graphs, λ2,1 =1
2.

The proof of these facts rely on Brooks’ theorem and several results from Griggs
and Yeh:

Theorem 9 (Brooks [Lovász 1975]). If G is an odd cycle or a complete graph,
χ(G)≤1+ 1; otherwise, χ(G)≤1.

Lemma 10 [Griggs and Yeh 1992]. λ2,1(G)≤ |V (G)| +χ(G)− 2.

Lemma 11 [Griggs and Yeh 1992]. There exists an injective L(2, 1)-labeling
of a graph G with span |V (G)| − 1 if and only if the complement of G has a
Hamilton path.

Theorem 12 [Griggs and Yeh 1992]. Let Cn be a cycle on n vertices. Then
λ2,1(Cn)= 4.

We now proceed to prove Theorem 8.

Proof. If 1= 2, one can verify the theorem readily using Theorem 12. Suppose
1≥ 3. We now split into cases.

In the first case, suppose 1≥ (|V (G)|)/2. Lemma 10 implies

λ2,1(G)≤ 21+χ(G)− 2.
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If G is a complete graph, then clearly λ2,1(G) = 21(G). As 1 ≥ 3, G is not an
odd cycle. Otherwise, 21+χ(G)− 2≤ 31− 2 by Brooks’ theorem. Note that in
both cases, 1(G)≥ 3 implies that λ2,1(G)≤12

− 2.
In the second case, suppose 1≤ (|V (G)|−1)/2. Then δ(Gc)≥ (|V (G)|−1)/2.

Also, we have assumed G has 1 ≥ 3, so |V (G)| ≥ 7. By Corollary 1, Gc has
a Hamilton path. By Lemma 11, there is an L(2, 1)-labeling of G with span
|V (G)| − 1. As the Moore graphs are the only diameter-2 graphs with |V (G)| =
12
+ 1, Theorem 8 holds. �

In fact, we can do better by the following result:

Theorem 13 [Erdős et al. 1980]. Except C4, there is no diameter-2 graph of or-
der 12.

This and the proof of Theorem 8 imply the following theorem.

Theorem 14. With the exception of C3, C4, C5, and the Moore graphs, any diameter-
2 graph with 1(G)≥ 2 has λ2,1(G)≤12

− 2.

We also have some comments on a special family of diameter-2 graphs that have
large λ2,1 number. In order to do this, we must define the points of the Galois plane,
denoted PG2(n). Let F be a finite field of order n. Let P = F3

\{(0, 0, 0)}. Define
an equivalence relation ≡ on P by (x1, x2, x3) ≡ (y1, y2, y3)⇐⇒ (x1, x2, x3) =

(cy1, cy2, cy3) for some c ∈ F . The points of PG2(n) are the equivalence classes.

Definition 15. The polarity graph of PG2(n), denoted H , is the graph with the
points of PG2(n) as vertices and with two vertices (x1, x2, x3) and (y1, y2, y3)

adjacent if and only if y1x1+ y2x2+ y3x3 = 0.

By the properties of PG2(n), we know that the diameter of H is two, 1(H)=
n+ 1, and its order is n2

+ n+ 1=12
−1+ 1 [Kárteszi 1976]. This implies that

λ2,1(H)≥12
−1. In fact, Yeh showed that λ2,1(H)=12

−1 [Griggs and Yeh
1992]. This is an infinite family of graphs, as finite fields exist for n = pk with p
prime.

However, we can improve this by one. This construction follows that of Erdős,
Fajtlowicz and Hoffman [Erdős et al. 1980]. A vertex (x, y, z) in H has degree n if
and only if the norm x2

+y2
+z2 is equal to 0. Suppose F has characteristic 2 and the

order of F is n. If (a, b, c) is in H then it is adjacent to the point (b+c, a+c, a+b),
which has norm equal to 0 and is also in H . In other words, every vertex in H
is adjacent to a vertex of degree n. We proceed to find the number of points of
degree n in H . Since F has characteristic 2, f (x) = x2 is injective and hence
surjective on F . This means we can choose x2 and y2 freely as long as one of them
is nonzero, and then z2 is determined. We must also eliminate proportional pairs,
so in total this leaves (n2

− 1)/(n− 1)= n+ 1 vertices of degree n.
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Now we can make an (n+1)-regular, diameter-2 graph H̃(n) by adding a vertex
that is adjacent to all vertices of degree n. This graph is of order n2

+ n + 2 =
12
−1+ 2.

Theorem 16. The graph H̃(n) has λ2,1(H̃)=12
−1+ 1.

Proof. Because H̃ has diameter 2, λ2,1(H̃) ≥ 12
−1+ 1. As 1 ≥ 3, we have

1 ≤ (12
−1+ 1)/2 = (|V (H)| − 1)/2. By the proof of Theorem 8, λ2,1(H̃) ≤

|V (G)| − 1=12
−1+ 1. �

Since H̃(n) exists for all n = 2k , this is an infinite family of graphs.
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Linear symplectomorphisms
as R-Lagrangian subspaces

Chris Hellmann, Brennan Langenbach and Michael VanValkenburgh

(Communicated by Ravi Vakil)

The graph of a real linear symplectomorphism is an R-Lagrangian subspace of
a complex symplectic vector space. The restriction of the complex symplectic
form is thus purely imaginary and may be expressed in terms of the generating
function of the transformation. We provide explicit formulas; moreover, as an
application, we give an explicit general formula for the metaplectic representation
of the real symplectic group.

1. Introduction

1.1. Overview. As part of our symplectic upbringing, our ancestors impressed
upon us the Symplectic Creed:

Everything is a Lagrangian submanifold [Weinstein 1981].

Obviously false if taken literally, rather than a “creed” it might be called the
Maslow–Weinstein hammer, or, in French, la déformation professionnelle symplec-
tique, saying that “if all you have is a [symplectic form], everything looks like a
[Lagrangian submanifold],” or, in other words, to a symplectic geometer, everything
should be expressed in terms of Lagrangian submanifolds. In this paper we consider
a vector space endowed with two symplectic forms, namely the real and imaginary
parts ReωC and ImωC of a complex symplectic form ωC, and begin with the simple
observation that

Not every Lagrangian submanifold [with respect to ReωC] is a Lagrangian
submanifold [with respect to ImωC].

We study its implications for the classification of real linear symplectomorphisms
H, as the graph of H is essentially by definition a Lagrangian subspace with respect
to ReωC; we ask, with some abuse of language:
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Open problem. Is every 2n×2n skew-symmetric matrix of the form ImωC
|graphH

for some H?

We believe that an answer would shed some light on the structure of linear
symplectomorphisms. While our primary reason for writing this article is to
precisely formulate the above open problem, which we do in Section 1.2, our
primary technical result is to rewrite it in terms of generating functions; after all, if
one guiding principle is the Symplectic Creed, another is that “symplectic topology
is the geometry of generating functions” [Viterbo 1992]. Or, to go further back,
while Sir William Rowan Hamilton first conceived of generating functions (or as
he called them, characteristic functions) as mathematical tools in his symplectic
formulation of optics, he later found, in his symplectic formulation of classical
mechanics, that the generating function for a physical system is the least action
function, in a sense that we will not make precise [Abraham and Marsden 1978;
Hamilton 1834]; this gives a striking connection with the calculus of variations.
Moreover, in Fresnel optics and quantum mechanics, the generating function is
used as the phase function of an oscillatory integral operator; the integral operator
is said to “quantize” the corresponding symplectomorphism [Grigis and Sjöstrand
1994; Guillemin and Sternberg 1984]. (Loosely speaking, when differentiating
the integral, one finds that the phase function must satisfy the Hamilton–Jacobi
equation.) This topic will be touched upon in Section 3. For us, the generating
function corresponding to the linear symplectomorphism H is the scalar-valued
function 8 in our main theorem:

Theorem 1. For each H∈Sp(2n,R) there exists a quadratic form8 :Cn
z×R2n

θ →R

such that

graphC H=
{(

z,−2∂8
∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
,

and the restriction of ωC to graphC H is given by

ωC

((
z,−2∂8

∂z
(z, θ)

)
,
(
w,−2∂8

∂z
(w, η)

))
= 2

n∑
j=1

2n∑
`=1

∂28

∂z j∂θ`
(z jη`−w jθ`)+ 2

n∑
j,m=1

∂28

∂z j∂zm
(z jwm −w j zm). (1)

Moreover, our construction provides an explicit general formula for 8.

Our notation will be explained in the following subsection, along with the necessary
background and a restatement of the open problem. We prove the theorem in
Section 2, and in Section 3 we show how our construction seems to adequately
answer a question of Folland [1989] regarding the metaplectic representation. We
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conclude with a broad indication of future work. In the Appendix we give addi-
tional linear-algebraic background and some new elementary results relevant to our
problem, and also give an additional restatement of our open problem.

1.2. Background and restatement of the problem. In a real symplectic vector
space there is already a natural complex structure; the model example is R2n with
the 2n × 2n matrix J =

( 0 −I
I 0

)
, where of course J 2

= −I . What we mean by
“complex symplectic linear algebra” is something else; we instead consider C2n

with the above matrix J , that is, we consider

ωC
=

n∑
j=1

dζ j ∧ dz j on Cn
z ×Cn

ζ

(a nondegenerate alternating bilinear form over C). The basic formalism of complex
symplectic linear algebra is not new; indeed, complex symplectic structures naturally
appear in the theory of differential equations and have been studied through that lens
(see, for example, [Schapira 1981] and [Sjöstrand 1982], or [Everitt and Markus
2004] for another perspective). The point of view of this paper is that elementary
linear-algebraic aspects remain unexplored in the complex case and may help us
better understand the real case.

A symplectic vector space over a field1 K is by definition a pair (V, ω), where
V is a finite-dimensional vector space over K and ω is a nondegenerate alternating
bilinear form on V . The basic example is Rn

x × Rn
ξ with the symplectic form

ω =
∑n

j=1 dξ j ∧ dx j :

ω((x, ξ), (x ′, ξ ′))=
n∑

j=1

(ξ j x ′j − x jξ
′

j ). (2)

In fact, this is essentially the only example: for a general symplectic vector space
(V, ω) over a field K one can find a basis {e1, . . . , en, f1, . . . , fn} for V such that

ω(e j , ek)= 0, ω( f j , fk)= 0, ω( f j , ek)= δ jk for all j, k.

Such a basis is called a symplectic basis, and ω is of the form (2) in these coordinates.
(In particular, a symplectic vector space is necessarily even-dimensional.) Note
that ω vanishes on the span of the e j , and it vanishes on the span of the f j ; such
a subspace is called a Lagrangian subspace: a maximal subspace on which ω
vanishes. (A Lagrangian subspace of V is necessarily of dimension n.)

The symplectic formalism is fundamental in Hamiltonian mechanics: the sym-
plectic form provides an isomorphism between tangent space and cotangent space,

1Duistermaat’s book [1996] on Fourier integral operators contains a brief treatment of symplectic
vector spaces over a general field.
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mapping the Hamiltonian vector field of a function f to the differential of f :

d f = ω( · , H f ).

A linear symplectomorphism T on (V, ω) is a linear isomorphism on V such
that T ∗ω = ω, that is,

ω(Tv, Tv′)= ω(v, v′) for all v, v′ ∈ V .

This is equivalent to the property that a symplectic basis is mapped to a symplectic
basis.

We now let (V, ω) be a real symplectic vector space. Then

(V × V, ω⊕−ω)

is a real symplectic vector space. We write ω0 = ω⊕−ω so that, by definition,

ω0((v,w), (v
′, w′))= ω(v, v′)−ω(w,w′).

The following classical result (see [Tao 2012] for a broad perspective) justifies this
choice of the symplectic form:

A map H : V → V is a linear symplectomorphism if and only if its graph
{(v,H(v)) : v ∈ V } is a Lagrangian subspace of (V × V, ω0).

For a basic example, let

H : Rn
x ×Rn

ξ → Rn
y ×Rn

η, (x, ξ) 7→ (y, η),

be a linear symplectomorphism. Then graphH is a Lagrangian subspace for

ωR
=

n∑
j=1

dξ j ∧ dx j − dη j ∧ dy j .

The point of view of this paper is to consider graphH as an R-linear subspace of
a complex symplectic vector space. After all, with z j = x j + iy j and ζ j = ξ j + iη j ,
we have the complex symplectic form

ωC
=

n∑
j=1

dζ j ∧ dz j on Cn
z ×Cn

ζ ,

which induces the two real symplectic forms

ReωC
=

n∑
j=1

dξ j ∧ dx j − dη j ∧ dy j , ImωC
=

n∑
j=1

dξ j ∧ dy j + dη j ∧ dx j

on R2n
x,ξ×R2n

y,η. We then say that an R-linear 2n-dimensional subspace of R2n
x,ξ×R2n

y,η
is an R-Lagrangian subspace if it is Lagrangian with respect to ReωC, and an
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I-Lagrangian subspace if it is Lagrangian with respect to ImωC. Thus the graph of
H :R2n

x,ξ→R2n
y,η may be considered as an R-Lagrangian subspace of (Cn

z ×Cn
ζ , ω

C).
Writing a symplectic matrix H ∈ Sp(2n,R) as H=

(
A B
C D

)
, we have

graphH= {((x, ξ), (Ax + Bξ,Cx + Dξ)) : (x, ξ) ∈ R2n
};

or, in terms of (z, ζ ), we have

graphC H= {(x + i(Ax + Bξ), ξ + i(Cx + Dξ)) : (x, ξ) ∈ R2n
}.

Thus
ωC
|graphC H = i ImωC

|graphH

is given by

ωC
(
(x+ i(Ax+ Bξ), ξ+ i(Cx+Dξ)), (x ′+ i(Ax ′+ Bξ ′), ξ ′+ i(Cx ′+Dξ ′))

)
= i

(
xT ξ T

) (CT
−C −AT

− D
A+ DT B− BT

)(
x ′

ξ ′

)
.

The symplectic form ReωC vanishes, but the symplectic form ImωC might not
vanish; that is, graphC H is R-Lagrangian but not necessarily I-Lagrangian.

We have thus defined a map from the group of symplectic matrices to the space
of skew-symmetric matrices

X : Sp(2n,R)→ so(2n,R),

(
A B
C D

)
7→

(
CT
−C −AT

− D
A+ DT B− BT

)
.

We can thus restate our open problem:

Open problem. Is the map X : Sp(2n,R)→ so(2n,R) a surjection?

While we do not solve this problem, the main result of the paper is Theorem 1;
we can explicitly construct a generating function 8 for H and thus give an alternate
characterization of ωC

|graphC H and hence of X.

2. In terms of generating functions: the proof of the theorem

Generating functions (in the sense of symplectic geometry) were discovered by
Sir William Rowan Hamilton in his extensive work on optics. In modern language
(and in the linear case), light rays are specified by the following data: R2

x is a plane
of initial positions perpendicular to the optical axis of the system, ξ ∈ R2 are the
initial “directions” (multiplied by the index of refraction), R2

y is a plane of terminal
positions, and η∈R2 are the terminal directions. The spaces R4

x,ξ and R4
y,η are given

the standard symplectic structures. Taken piece by piece, the optical system consists
of a sequence of reflections and refractions for each light ray, the laws of which
were long known; Hamilton’s discovery was that, taken as a whole, the optical
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system is determined by a single function, the generating function, or, as Hamilton
called it, the characteristic function, of the optical system. The transformation from
initial conditions to terminal conditions is a symplectomorphism expressible in
terms of a single scalar-valued function, “by which means optics acquires, as it
seems to me, an uniformity and simplicity in which it has been hitherto deficient”
[Hamilton 1828, Section IV, Paragraph 20].2

The optical framework gives an intuitive reason why, in the symplectic matrix
H =

(
A B
C D

)
, the rank of B plays a special role in characterizing H and thus its

generating function. Again, H maps the initial (position, direction)-pair (x, ξ) to
the terminal (position, direction)-pair(

y
η

)
=

(
Ax + Bξ
Cx + Dξ

)
.

The case B = 0 corresponds to perfect focusing: all the rays from a given position x
arrive at the same position y, resulting in a perfect image. And the case det B 6= 0
corresponds to no such focusing: two rays with initial position x but different initial
directions must arrive at different positions y. (See [Guillemin and Sternberg 1984]
for an exposition of symplectic techniques in optics.)

2.1. When B is invertible. We recall that

graphC H=
{(

x + i(Ax + Bξ), ξ + i(Cx + Dξ)
)
: (x, ξ) ∈ R2n},

taken over the reals, is an R-Lagrangian subspace of (Cn
z ×Cn

ζ , ω
C), and we note

that

π : graphC H→ Cn, (z, ζ ) 7→ z,

is an R-linear transformation whose kernel is given by (x, ξ) ∈ {0}× ker B. Thus
it is an R-linear isomorphism if and only if B is invertible. In this case, the general
theory of symplectic geometry gives the existence of a real C∞ function 8 defined
on graphC H such that

graphC H=
{(

z,−2∂8
∂z
(z)
)
: z ∈ Cn

}
.

2There are different types of generating functions in symplectic geometry, and, as Arnold writes,
“[the apparatus of generating functions] is unfortunately noninvariant and it uses, in an essential
way, the coordinate structure in phase space” [Arnold 1978, Section 47]. For our purposes, we may
take the term “generating function” to broadly mean a scalar-valued function which generates a
symplectomorphism (or, more generally, a Lagrangian submanifold) in the same sense that a potential
function generates a conservative vector field. Our generating functions are denoted by the symbol 8
below.
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Hence if det B 6= 0, then

graphC H=
{(

x + i(Ax + Bξ), ξ + i(Cx + Dξ)
)
: (x, ξ) ∈ R2n}

=
{(

z,−2(∂8/∂z)(z)
)
: z ∈ Cn}

=
{(

p+ iq, B−1(q − Ap)+ i(Cp+ DB−1(q − Ap))
)
: p+ iq ∈ Cn},

where we write z = p+ iq, so that

8(p, q)= 1
2 pT B−1 Ap− pT B−1q + 1

2qT DB−1q. (3)

This function appears in [Folland 1989, Equation (4.54)] and in [Guillemin and
Sternberg 1984, Section 11]. (Note that B−1 A and DB−1 are symmetric since H
is symplectic.) Substituting p = x and q = Ax + Bξ , we arrive at the following
expression, with the obvious abuse of notation:

8(x, ξ)= 1
2 xT AT Cx + xT CT Bξ + 1

2ξ
T BT Dξ. (4)

Or, writing 8 with respect to z and z, we have

8(z)= 1
8 zT (B−1 A+ 2i B−1

− DB−1)z

+
1
4 zT (B−1 A− i(BT )−1

+ i B−1
+ DB−1)z

+
1
8 zT (B−1 A− 2i B−1

− DB−1)z.

Thus (
∂28

∂z j∂zk

)
=

1
4(B
−1 A− i B−1

+ i(BT )−1
+ DB−1).

We can directly compute ωC restricted to graphC H in terms of z and z:

ωC

((
z,−2∂8

∂z
(z)
)
,
(

z′,−2∂8
∂z
(z′)

))
= 4i Im

(∑
j,k

z j

(
∂28

∂z j∂zk

)
z′k

)

= 2
∑
j,k

∂28

∂z j∂zk
(z j z′k − z′j zk).

If we substitute
z = x + i(Ax + Bξ),

z′ = x ′+ i(Ax ′+ Bξ ′),

then after a lengthy mechanical calculation we recover the expression

ωC

((
z,−2∂8

∂z
(z)
)
,
(

z′,−2∂8
∂z
(z′)

))
= 2

∑
j,k

∂28

∂z j∂zk
(z j z′k − z′j zk)= i

(
xT ξ T

)
X(H)

(
x ′

ξ ′

)
.
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2.2. When B is not invertible. When B is not invertible, we seek

8=8(z, θ) ∈ C∞(Cn
×RN )

such that

graphC H=
{(

z,−2
∂8

∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
. (5)

We follow the general method outlined by Guillemin and Sternberg [1977].
Let

W = graphC H, X = {(z, 0); z ∈ Cn
}, Y = {(0, ζ ); ζ ∈ Cn

}.

Since W is an R-Lagrangian subspace, we know that W ∩ Y and PW ⊂ X are
orthogonal with respect to ReωC, where P is the projection onto X along Y . Indeed,

W ∩Y = {(0, ξ+ i Dξ) : ξ ∈ ker B}, PW = {(x+ i(Ax+ Bξ), 0) : (x, ξ) ∈R2n
},

and we can check directly that, with ξ ∈ ker B,

ωC((0, ξ + i Dξ), (x ′+ i(Ax ′+ Bξ ′), 0))= i
[
ξ T (A+ DT )x ′+ ξ T Bξ ′

]
.

Since graphC H is not a C-linear subspace but an R-linear subspace, for now we
prefer to write

W ∩ Y = {(0, ξ ; 0, Dξ) : ξ ∈ ker B},

PW = {(x, 0; Ax + Bξ, 0) : (x, ξ) ∈ R2n
}.

We note that PW ⊕ (W ∩Y ) has real dimension 2n, hence is a Lagrangian subspace
of (R4n,ReωC).

We seek to write graphH as the graph of a function from PW ⊕ (W ∩ Y ) to
a complementary Lagrangian subspace; as a first step, we choose a convenient
symplectic basis. We let {b1, . . . , bk} be an orthonormal basis for ker B and extend
to an orthonormal basis {b1, . . . , bn} for Rn , so that

{(0, b j ; 0, Db j ) : j = 1, . . . , k}

is a basis for W ∩ Y , and

{(0, 0; Bb j , 0) : j = k+ 1, . . . , n} ∪ {(b j , 0; Ab j , 0) : j = 1, . . . , n}

is a basis for PW . We then extend to the following symplectic basis for (R4n,ReωC):

{(0, 0; Ab j , 0) : j = 1, . . . , k} ↔ {(0, b j ; 0, Db j ) : j = 1, . . . , k},

{(0, 0; Bb j , 0) : j = k+ 1, . . . , n} ↔ {(0, ATβ j ; 0, β j ) : j = k+ 1, . . . , n},

{(b j , 0; Ab j , 0) : j = 1, . . . , n} ↔ {(0,−b j ; 0, 0) : j = 1, . . . , n},

(6)
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where the {β j }
n
j=k+1 satisfy{

ATβ j ∈ (ker B)⊥ = Im BT ,

bJ · BTβ j = δJ j for all J ∈ {k+ 1, . . . , n}.
(7)

One advantage of using the particular symplectic basis (6) is that the vectors on the
left are all “horizontal,” and the vectors on the right are all “vertical”. (The arrows
signify the symplectically dual pairs.)

The following proposition implies the existence of {β j }
n
j=k+1.

Proposition 2. The set {Ab1, . . . , Abk, Bbk+1, . . . , Bbn} is a basis for Rn .

Proof. Suppose
k∑

j=1

α j Ab j +

n∑
j=k+1

α j Bb j = 0.

We take the dot product with DbJ , J ∈ {1, . . . , k}, to get α1 = · · · = αk = 0, and
the rest are zero by the linear independence of {Bbk+1, . . . , Bbn}. �

Thus for J ∈ {k+ 1, . . . , n} we can take βJ to be the unique vector orthogonal
to the set

{Ab1, . . . , Abk, Bbk+1, . . . , B̂bJ , . . . , Bbn}

(where the wide hat denotes omission) and satisfying

βJ · BbJ = 1.

We will now describe graphH in terms of the above symplectic coordinate system:
we write a general linear combination of the 4n vectors and find necessary and
sufficient conditions on the coefficients to make the vector in graphH. Explicitly,
we write the general vector in R4n as

k∑
j=1

t ′j (0, 0; Ab j , 0)+
n∑

j=k+1

t ′′j (0, 0; Bb j , 0)+
n∑

j=1

t ′′n+ j (b j , 0; Ab j , 0)

+

k∑
j=1

θ ′j (0, b j ; 0, Db j )+

n∑
j=k+1

θ ′′j (0, ATβ j ; 0, β j )+

n∑
j=1

θ ′′n+ j (0,−b j ; 0, 0) (8)

(the primes are not necessary but are useful for bookkeeping), and we will describe
graphH as (t ′, θ ′′) as a function of (t ′′, θ ′).

We have the following necessary and sufficient conditions for the vector (8) to
be in graphH:
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k∑
j=1

t ′j Ab j −

n∑
j=k+1

θ ′′j ABTβ j +

n∑
j=k+1

θ ′′n+ j Bb j

=−

n∑
j=k+1

t ′′j Bb j −

n∑
j=k+1

θ ′′j C BTβ j +

n∑
j=1

θ ′′n+ j Db j =

n∑
j=1

t ′′n+ j Cb j .

In matrix form, this says:

| | | | | |

Ab1 · · · Abk (−ABTβk+1) · · · (−ABTβn) Bb1 · · · Bbn

| | | | | |

| | | |

0n,k (−C BTβk+1) · · · (−C BTβn) Db1 · · · Dbn

| | | |





t ′

θ ′′



=



| |

(−Bbk+1) · · · (−Bbn) 0n,n

| |

| |

0n,n−k Cb1 · · · Cbn

| |



t ′′


. (9)

We would now like to invert the matrix on the left to get (t ′, θ ′′) as a function of
(t ′′, θ ′). Once we do that, we are close to our goal of expressing graphH in terms
of a generating function 8.

Letting 5 denote the orthogonal projection onto ker B, we find that the inverse
of the matrix on the left side of (9) is

——— Db1 ———
... 0k,n

——— Dbk ———

——— D(5CT B− I )bk+1 ——— ——— Bbk+1 ———
...

...

——— D(5CT B− I )bn ——— ——— Bbn ———

——— (D5AT
− I )Cb1 ——— ——— Ab1 ———
...

...

——— (D5AT
− I )Cbn ——— ——— Abn ———



.
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Thus, defining the functions

f ′′i (t
′′)=

n∑
j=k+1

[Bbi · Db j ]t ′′j +
n∑

j=1

[Bbi ·Cb j ]t ′′n+ j for i = k+ 1, . . . , n,

f ′′n+i (t
′′)=

n∑
j=k+1

[Cbi · Bb j ]t ′′j +
n∑

j=1

[Abi ·Cb j ]t ′′n+ j for i = 1, . . . , n,

we see that (9) is equivalent to the conditions t ′ = 0, θ ′′ = f ′′(t ′′). Noting that

∂ f ′′i
∂t ′′j
=
∂ f ′′j
∂t ′′i

for all i, j ∈ k+ 1, . . . , n,

and defining

F(t ′′)=
1
2

n∑
i=k+1

n∑
j=k+1

t ′′i [Bbi · Db j ]t ′′j

+

n∑
i=k+1

n∑
j=1

t ′′i [Bbi ·Cb j ]t ′′n+ j +
1
2

n∑
i=1

n∑
j=1

t ′′n+i [Abi ·Cb j ]t ′′n+ j ,

we conclude that the vector is in graphH if and only if

t ′ = 0,
∂F
∂t ′′

(t ′′)= θ ′′.

We now define

ϕ(t ′, t ′′; θ ′, θ ′′)= θ ′ · t ′+ F(t ′′)+ (θ ′′− f ′′(t ′′))2.

Then in (t ′, t ′′; θ ′, θ ′′)-coordinates, graphH is given as{(
t ′, t ′′;

∂ϕ

∂t ′
,
∂ϕ

∂t ′′

)
:
∂ϕ

∂θ ′
= 0,

∂ϕ

∂θ ′′
= 0

}
.

Or, written in terms of the standard basis, graphH is the set of values of

k∑
j=1

t ′j (0, 0; Ab j , 0)+
n∑

j=k+1

t ′′j (0, 0; Bb j , 0)+
n∑

j=1

t ′′n+ j (b j , 0; Ab j , 0)

+

k∑
j=1

∂ϕ

∂t ′j
(t, θ)(0, b j ; 0, Db j )+

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)(0, ATβ j ; 0, β j )

+

n∑
j=1

∂ϕ

∂t ′′n+ j
(t, θ)(0,−b j ; 0, 0) (10)

subject to the condition that ∂ϕ
∂θ
(t, θ)= 0.
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We return to complex coordinates, in the standard basis; for that purpose we
write the “horizontal” parts of (10) as

z :=
k∑

j=1

i t ′j Ab j +

n∑
j=k+1

i t ′′j Bb j +

n∑
j=1

t ′′n+ j (I + i A)b j .

That is,

Re z =
n∑

j=1

t ′′n+ j b j ,

Im z =
k∑

j=1

t ′j Ab j +

n∑
j=k+1

t ′′j Bb j +

n∑
j=1

t ′′n+ j Ab j .

With the same notation as before, the inverse transformation is given by

t ′j =−b j ·Re z+ Db j · Im z for j ∈ {1, . . . , k},

t ′′j =−ATβ j ·Re z+β j · Im z for j ∈ {k+ 1, . . . , n},

t ′′n+ j = b j ·Re z for j ∈ {1, . . . , n}.

(11)

We write the “vertical” part of (10) as:

Re ζ =
k∑

j=1

∂ϕ

∂t ′j
(t, θ)b j +

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)ATβ j −

n∑
j=1

∂ϕ

∂t ′′n+ j
(t, θ)b j ,

Im ζ =

k∑
j=1

∂ϕ

∂t ′j
(t, θ)Db j +

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)β j .

(12)

Using t = t (z) to denote the transformation (11), we define

8(z, θ) := ϕ(t (z), θ),

so that (12) says

ζ =−2
∂8

∂z
(z, θ).

In summary, we now have the following expression for graphC H:

graphC H=
{(

z,−2
∂8

∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
, (13)

where the θ ∈ R2n are considered as auxiliary parameters, as in (5).
As for ωC

|graphC H, we use the expression

∂8

∂z
(z, θ)=

∂28

∂z∂θ
· θ +

∂28

∂z2 · z+
∂28

∂z∂z
· z
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to compute

ωC

((
z,−2∂8

∂z
(z, θ)

)
,
(
w,−2∂8

∂z
(w, η)

))
= 2z · ∂8

∂z
(w, η)− 2w · ∂8

∂z
(z, θ)

= 2
n∑

j=1

2n∑
`=1

∂28

∂z j∂θ`
(z jη`−w jθ`)+2

n∑
j,m=1

∂28

∂z j∂zm
(z jwm−w j zm), (14)

where the variables are related by the conditions

∂8

∂θ
(z, θ)= 0 and

∂8

∂θ
(w, η)= 0.

Of course, from Section 1, we know that (14) is equal to

i
(
xT ξ T

)
X(H)

(
x ′

ξ ′

)
, (15)

where

z = x + i(Ax + Bξ),

−2
∂8

∂z
(z, θ)= ξ + i(Cx + Dξ),

w = x ′+ i(Ax ′+ Bξ ′),

−2
∂8

∂z
(w, η)= ξ ′+ i(Cx ′+ Dξ ′).

This completes the proof of the theorem.

We leave it as an illustrative exercise for the reader to compute 8 and its deriva-
tives in the special cases when B = 0 and when B is invertible (to be compared
with the generating function (3) in Section 2.1).

3. Application: the metaplectic representation

In the previous section, we showed how to associate to a linear symplectomorphism
H a (real-valued) generating function 8. For the purposes of Fresnel optics and
quantum mechanics one then associates to the generating function 8 an oscillatory
integral operator

µ(H) : S(Rn)→ S ′(Rn), u 7→ a h−3n/2
∫∫

ei8(x+iy,θ)/hu(x) dx dθ. (16)

The map µ :H→ µ(H) is called the metaplectic representation of the symplectic
group, and µ(H) is said to be the “quantization” of the classical object H. As
defined, the operator µ(H) maps Schwartz functions to tempered distributions, but
in fact it extends to a bounded operator on L2(Rn); we choose a so that µ(H) is
unitary on L2(Rn), and here h > 0 is a small parameter. These are the operators
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of “Fresnel optics,” a relatively simple model theory for optics which accounts for
interference and diffraction, describing the propagation of light of wavelength h
[Guillemin and Sternberg 1984]. For the analytic details we refer the reader to a
text in semiclassical analysis [Dimassi and Sjöstrand 1999]; here we only show that
the standard conditions are indeed satisfied.

The above (real-valued) generating function 8, for an arbitrary H ∈ Sp(2n,R),
has the property that the 1-forms d(∂8/∂θ1), . . . , d(∂8/∂θ2n) are linearly indepen-
dent. Equivalently, with the notation from the previous section, the matrix

∂28

∂(Re z)∂θ ′
∂28

∂(Re z)∂θ ′′

∂28

∂(Im z)∂θ ′
∂28

∂(Im z)∂θ ′′

∂28

∂θ ′2
∂28

∂θ ′∂θ ′′

∂28

∂θ ′′∂θ ′
∂28

∂θ ′′2


=



| |

(−b1) · · · (−bk) ∗

| |

| |

Db1 · · · Dbk ∗

| |

0k,k 0k,(2n−k)

0(2n−k),k 2I(2n−k),(2n−k)


has linearly independent columns. (The asterisks denote irrelevant components.)
This condition says that quadratic form 8 = 8(z, θ) is a nondegenerate phase
function in the sense of semiclassical analysis [Dimassi and Sjöstrand 1999].

Folland writes: “it seems to be a fact of life that there is no simple description of
the operator µ(A) that is valid for all A ∈ Sp” [Folland 1989, p. 193]; however, we
believe that (16), combined with our construction of 8 in the proof of Theorem 1,
is such a description.

4. Conclusion

The open problem and results presented in this paper were motivated by the basic
question of the relationship between real and complex symplectic linear algebra.
Our approach to this question was to consider a real symplectomorphism as a
Lagrangian submanifold with regard to the real part of a complex symplectic form.
We believe the resulting problem of the nature of the restriction of the imaginary
part of the complex symplectic form to this submanifold (formally, X(H) for a
symplectomorphism H) is relevant to the structure of the real symplectic group.
(We direct the reader to the Appendix for a list of properties of X and reformulations
of our open problem which lend credence to this belief.) Accordingly, we view the
main result of this paper as primarily a means for further investigation of the open
problem of the image of X. In addition to solving our open problem, we believe
that, in line with our generating function formulation, it would be interesting to
have a “complexified” theory of the calculus of variations. At present we only have
trivial extensions of the real theory.
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Appendix

A. Elementary properties of X. We first note some standard facts about symplectic
matrices that are used throughout the paper; for further information, see, for example,
[Cannas da Silva 2001] or [Folland 1989]. We write

J =
(

0 −I
I 0

)
for the matrix representing the standard symplectic form.

Proposition 3 [Folland 1989]. Let H ∈ GL(2n,R). The following are equivalent:

(1) H ∈ Sp(2n,R).

(2) HTJH= J .

(3) H−1
= JHTJ −1

=

(
DT
−BT

−CT AT

)
.

(4) HT
∈ Sp(2n,R).

(5) AT D−CT B = I , AT C = CT A and BT D = DT B.

(6) ADT
− BCT

= I , ABT
= B AT and C DT

= DCT .

While X may be extended to all of M2n(R),

X : M2n(R)→ so(2n,R), M 7→ J M +MTJ , (1)

for purposes of our open problem the resulting linearity of X does not seem to help
when X is restricted to Sp(2n,R).

The following proposition presents some of the most interesting elementary
linear algebraic properties of X, which follow immediately from the definition.

Proposition 4. Let X : M2n(R)→ so(2n,R) be defined as above. Then:

(1) ker(X)= sp(2n,R), the symplectic Lie algebra.

(2) For any H ∈ Sp(2n,R), X(H)= J (H+H−1).
In particular, for U ∈ U (n) =

{( A −B
B A

)
∈ Sp(2n,R)

}
we have U−1

= UT ,
so X(U)= J (U +UT ).

(3) For any H ∈ Sp(2n,R), X(H) is invertible (equivalently, ImωC
|graphH is

nondegenerate) if and only if −1 is not a member of the spectrum of H2.

(4) For H,R ∈ Sp(2n,R), we have HTX(R)H= X(H−1RH).

We now take some examples.
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Examples of symplectic matrices and their images under X.

(1)
(

A 0
0 (AT )−1

)
7→

(
0 −AT

− (AT )−1

A+ A−1 0

)
.

In particular, (
I 0
0 I

)
7→

(
0 −2I

2I 0

)
= 2J .

(2) For B = BT , (
I B
0 I

)
7→

(
0 −2I

2I 0

)
.

(3) For C = CT , (
I 0
C I

)
7→

(
0 −2I

2I 0

)
.

(4) J =
(

0 −I
I 0

)
7→

(
0 0
0 0

)
.

(5) For t ∈ R,(
(cos t)I (−sin t)I
(sin t)I (cos t)I

)
7→

(
0 −2(cos t)I

2(cos t)I 0

)
.

(6) For any H ∈ Sp(2n,R), we have X(H)= X(H−1).

Thus in Examples (2) and (3), graphC H is an RI -subspace (R-Lagrangian and
I-symplectic). And in Example (4), graphC H is a C-Lagrangian subspace (R-
Lagrangian and I-Lagrangian).

The exact nature of the image of X is an open question. The following is a partial
result

Proposition 5. For each k ∈ {0, 1, . . . , n}, there exists Hk ∈ Sp(2n,R) such that
rank(X(Hk)) = 2k. Moreover, for any H ∈ Sp(2n,R), we have kerX(H) =
ker(H2

+ I ).

Proof. We fix k ∈ {0, 1, . . . , n} and write

(x, ξ)= (x ′, x ′′, ξ ′, ξ ′′), x ′, ξ ′ ∈ Rk, x ′′, ξ ′′ ∈ Rn−k .

Let

Hk(x ′, x ′′, ξ ′, ξ ′′)= (x ′,−ξ ′′, ξ ′, x ′′).
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The matrix representation of Hk is
Ik 0k

0n−k −In−k

0k Ik

In−k 0n−k

 ∈ Sp(2n,R).

Then

X(Hk)=


−2Ik

0n−k

2Ik

0n−k

 ,
so that

rank(X(Hk))= 2k.

The last statement of the proposition follows from (1). �

B. Restatement of the problem. It is sometimes convenient to work with the ex-
tension of X to all of M2n(R):

X(M)= J M +MTJ .

Then X :M(2n,R)→ so(2n,R) is a linear epimorphism with kernel sp(2n,R), the
symplectic Lie algebra (see, for example, [Folland 1989, Proposition 4.2]). Thus
the map X|Sp(2n,R) is surjective if and only if every element of the quotient space
M(2n,R)/sp(2n,R) contains a symplectic matrix. So our question is:

Question. Can every M∈M(2n,R) be written as M=H+A for some H∈Sp(2n,R)

and some A ∈ sp(2n,R)?

Proposition 6. Every M ∈M(2n,R)/sp(2n,R) has a unique representative of the
form (

0 S2

S3 D

)
,

where S2 and S3 are skew-symmetric.

Proof. Existence: let

M =
(

M1 M2

M3 M4

)
∈M(2n,R).

Since
(
α β
γ δ

)
∈ sp(2n,R) if and only if δ=−αT , β = βT , γ = γ T , we may replace

M by

M̃ = M −
(

M1
1
2(M2+MT

2 )
1
2(M3+MT

3 ) −MT
1

)
=

(
0 1

2(M2−MT
2 )

1
2(M3−MT

3 ) M4+MT
1

)
.
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Uniqueness: suppose(
0 S2

S3 D

)
=

(
0 S ′2
S ′3 D′

)
∈M(2n,R)/sp(2n,R),

with the S j and S ′j skew-symmetric. Thus(
0 S2−S ′2

S3−S ′3 D−D′

)
=

(
α β

γ −αT

)
∈ sp(2n,R).

This shows that S j −S ′j is symmetric and skew-symmetric, hence zero, and it is
clear that D = D′. �

Thinking geometrically, we are to find the projection of Sp(2n,R) onto{(
0 S2

S3 D

)
: S2,S3 skew-symmetric

}
along sp(2n,R). That is, let H=

(
A B
C D

)
∈ Sp(2n,R). Then

π(H)=
(

0 1
2(B− BT )

1
2(C −CT ) AT

+ D

)
.

Is every (
0 S2

S3 D

)
of this form?

For a possible simplification, the map

Y : Sp(2n,R)→ so(2n,R), H 7→ X(−JH)=H−HT ,

has the same image as X : Sp(2n,R)→ so(2n,R) and may be easier to understand.
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Maximization of the size of
monic orthogonal polynomials on the unit circle

corresponding to the measures in the Steklov class
John Hoffman, McKinley Meyer, Mariya Sardarli and Alex Sherman

(Communicated by Sever S. Dragomir)

We investigate the size of monic, orthogonal polynomials defined on the unit
circle corresponding to a finite positive measure. We find an upper bound for the
L1 growth of these polynomials. Then we show, by example, that this upper
bound can be achieved. Throughout these proofs, we use a method developed by
Rahmanov to compute the polynomials in question. Finally, we find an explicit
formula for a subsequence of the Verblunsky coefficients of the polynomials.

1. Introduction

Let V DC.TIC/, where TDfz 2C W jzj D 1g. We define an inner product on V by

hf;gid� D

Z
T

f .z/g.z/ d�;

where d� is of the form

d�D p.�/ d� C

nX
jD1

mj ı.� � �j /;

where p.�/ is a continuous function, ı is the Dirac delta function, and the mj are
masses placed at the �j satisfying mj � 0. We will confine our analysis to measures
in the restricted Steklov class of order ı, denoted Sı, which consists of measures
with the properties

p.�/ > ı; mj� 0; h1; 1id� D 2: (1-1)
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This inner product gives a norm k � k defined as

kf .z/kd� D
q
hf; f id�:

Given a measure d� 2 Sı , there exists a unique set of monic orthogonal polyno-
mials f�n.zI d�/g [Simon 2005]. We will adopt the convention that �n.zI d�/ is the
polynomial of degree n in this set. When there is no ambiguity about what measure
is being used, we will simply write these polynomials as �n.z/. Corresponding to
the set f�n.zI d�/g is the set f'n.z/g of orthonormal polynomials, defined by

'n.z/D
�n.z/

k�n.z/k
:

These polynomials form an orthonormal set. Uniqueness of this set follows the
from uniqueness of f�n.z/g.1

A conjecture of Steklov stated that the sequence

Mn;ı D sup
d�2Sı

max
z2T
j'n.zI d�/j

is bounded in n. This was disproven by Rahmanov [1979]. In particular, Rahmanov
proved the existence of a probability measure d�D �.�/ d� C

Pn
jD1 mj ı.� � �j /

such that
j'n.1; d�/j � C ln.n/CB

for some constants B, C . The hard part in making such estimates is that, in general,
there are few tools available to compute 'n.z/ other than the Gram–Schmidt process.
To establish his result, Rahmanov found a formula for computing the �n.zI d�/,
where d�Dd�C

Pn
kD0 mj ı.���j / in terms of �n.zI d�/, meaning that d� differs

from d� only in its masses. This formula uses the Christoffel–Darboux kernel

Kn.z; �/D

nX
jD0

'j .z/'j .�/: (1-2)

The roots of the Christoffel–Darboux kernel are those �j satisfying

Kn.�j ; �i/

�
D 0 for i ¤ j ;

¤ 0 for i D j:
(1-3)

Rahmanov’s formula, in light of these definitions, is

�n.zI d�/D �n.zI d�/�

nX
jD1

mj�n.�j I d�/

1Cmj Kn�1.�j ; �j /
Kn�1.z; �j /: (1-4)

1Originally, the last condition given for the Steklov class is stated as h1; 1id� D 1. This is a minor
modification though, because 'n.z/=

p
2 is in the Steklov class S

ı=
p

2
, given the original definition.
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We now outline our results. In Theorem 2.3, we use Rahmanov’s method
for computing �n.�/ for the measure d� D d�=2� C

Pbn=4c
jD1

mj ı.� � �j /, with
�j D .2�j � �/=n, mj D 4=n and show that the corresponding polynomials
�n.zI d�/ are uniformly bounded above by 8=.5�2/ log.bn=4c� 1/CC , where C

is a constant. Our next main result is Theorem 4.1, where we construct a family of
measures d�n such that �n.1I d�n/ > 1=� log nCc, c a bounded constant. Finally,
in Theorem 5.1, we show that, given the measure d�Dd�=2�C

Pn
jD1 mj ı.���j /,

with �j D 2�j=n��0, the subsequence f˛nk�1g
1
kD1

of the Verblunsky coefficients
j̨ .d�/ satisfies

˛nk�1 D eink�0

nX
jD1

mj

1Cmj nk
:

The reader may notice that all of our results are stated in terms of �n.z/, while
Steklov’s conjecture is stated in terms of 'n.z/. We will end this introduction with
a lemma, proven by Rahmanov [1979], that shows why bounds on �n.z/ imply
bounds on 'n.z/, and thus why it is sufficient to evaluate f�n.z/g.

Lemma 1.1. Given a measure d� 2 Sı, ı > 0, there exists a constant C such that

1

C
k�n.z; d�/k � k'n.z; d�/k � Ck�n.z; d�/k

for all n� 0.

Proof. Since

j'n.z/j D
j�n.z/j

k�n.z/kd�
;

it suffices to find constant upper and lower bounds on k�n.z/kd�.
To find an upper bound, we first claim that �n.z/ minimizes the integralZ

T

jP .z/j2 d�;

where P .z/ is any monic polynomial of degree n. Let q.z/ be an arbitrary poly-
nomial of degree less than n. Then, since �n.z/ is orthogonal to all polynomials
of degree less than n under the measure d� and the inner product of a polynomial
with itself is nonnegative, we have

h�n.z/C q.z/; �n.z/C q.z/id�

D h�n.z/; �n.z/id�Ch�n.z/; q.z/id�Chq.z/; �n.z/id�Chq.z/; q.z/id�

D h�n.z/; �n.z/id�Chq.z/; q.z/id�

� h�n.z/; �n.z/id�:
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Hence �n.z/ minimizes the integral
R

T
jP .z/j2 d�. In particular this gives us

k�n.z/k
2
d� D

Z 2�

0

j�n.z/j
2 d��

Z 2�

0

jzn
j
2 d�D

Z 2�

0

1 d�D 2: (1-5)

We can derive a lower bound using the fact that d� 2 Sı and, in particular,
that d� satisfies (1-1), which gives

k�n.z/k
2
d� D

1

2�

Z 2�

0

j�n.e
i� /j2p.�/ d� C

lX
jD1

mj j�n.e
i�j /j2

�
ı

2�

Z 2�

0

j�n.e
i� /j2 d�:

Let the coefficient of the zk term of �n.z/ be ak . In particular, an D 1. Using that
the integral of eik� over the unit circle is 0 for a nonzero integer k, we get

Z 2�

0

j�n.e
i� /j2 d� D

Z 2�

0

nX
kD0

a2
k d� �

Z 2�

0

a2
n d� D 2�:

Hence, k�n.z/k
2
d�
� ı.

Combining this with the upper bound on k�n.z/k
2
d�

from (1-5) gives

ı � k�n.z/k
2
d� � 2;

and as a result
j�n.z/j
p

2
� j'n.z/j �

j�n.z/j
p
ı
: �

2. Review of Rahmanov’s result

We begin by reviewing Rahmanov’s argument [1979] to show that the growth of
the monic polynomials under Rahmanov’s scheme is bounded below by c log n,
where c is a constant. Before doing that, though, we need to prove two lemmas that
simplify our future calculations.

We now characterize the roots of the Christoffel–Darboux kernel (which we
defined on page 2) for a certain measure:

Lemma 2.1. For d�D d�=2� , the roots of the Christoffel–Darboux kernel are the
n-th roots of unity times a constant of modulus one.
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Proof. Recall the definition of the Christoffel–Darboux kernel and its roots from
(1-2) and (1-3). For our d�, 'j D zj , so assuming �j is of modulus one for all j ,

Kn�1.�i ; �j /D

n�1X
jD0

�
j
i =�

j
j

D
�n

i =�
n
j � 1

�i=�j � 1
(since this is a geometric series)

D
�n

i � �
n
j

.�i � �j /�
n�1
j

: (2-1)

Therefore, by (2-1), �j D e2i�j=n �0, where 1 � j � n and �0 is an arbitrary
point on the unit circle, and so �j is an n-th root of unity times a constant. �
Lemma 2.2. We need only assess �n.zI d�/ at z D 1, since

sup
�2Sı

max
z2T
j�n.zI d�/j D sup

�2Sı

j�n.1I d�/j:

Proof. Let

d�1 D p.�/ d� C

mX
jD1

mj ı.� � �j /;

where d�1 2 Sı. Then d�2 2 Sı, where

d�2 D p.� � ��/ d� C

mX
jD1

mj ı.� � �
�
� �j /; �� 2 Œ0; 2�/:

In particular, �n.e
i� I d�1/D �n.e

i.�C��/I d�2/.
Hence,

max
z2T
j�n.zI d�1/j Dmax

z2T
j�n.zI d�2/j;

sup
�2Sı

max
z2T
j�n.zI d�/j D sup

�2Sı

j�n.1I d�/j:

Henceforth, we will only look at �n.zI d�/ evaluated at z D 1. �

Theorem 2.3. Under a finite measure d�D d�C
Pbn=4c

jD1
mj ı.� � �j /, the monic

polynomials are not uniformly bounded from above; specifically, there exists a d�

such that the maximums are greater than or equal to 8=.5�2/ log.bn=4c� 1/.

Remark 2.4. This is Rahmanov’s result [1979], whose proof we have included for
the reader’s convenience.

Proof. First, we will deal generally with some d� without specifying the added
masses.
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In light of Lemma 2.1, let �j D .2�j ��/=n for 1 � j � bn=4c. Then, using
Rahmanov’s formula in (1-4), we have

�n.zI d�/D �n.zI d�/�

bn=4cX
jD1

mj �n.�j I d�/

1Cmj Kn�1.�j ; �j /
Kn�1.z; �j /; (2-2)

which, by noting that Kn�1.�j ; �j /D
Pn�1

jD1 1D n and substituting z and �j into
(2-2), becomes

�n.zI d�/D zn
�

bn=4cX
jD1

mj�
n
j

1Cmj n

�zn� 1

ze�i�j � 1

D zn
C

bn=4cX
jD1

mj

1Cmj n

znC 1

1� ze�i�j
:

Now we want to find a lower bound for j�nj:

max
z2T
j�n.zI d�/j �max

z2T

ˇ̌̌̌
Im
�

zn
C

bn=4cX
jD1

mj

1Cmj n

znC 1

1� ze�i�j

�ˇ̌̌̌
:

We take z D 1, in line with Lemma 2.2, to get

max
z2T
j�n.zI d�/j �

ˇ̌̌̌
Im
�

1C 2

bn=4cX
jD1

mj

1Cmj n

1

1� e�i�j

�ˇ̌̌̌

D

ˇ̌̌̌
Im
�

1� 2

bn=4cX
jD1

mj

1Cmj n

ei�j � 1

j1� e�i�j j2

�ˇ̌̌̌
:

Note that 0< �j < �=2, j1� e�i�j j � �j , and

Im.ei�j � 1/D sin �j �
2�j

�
for � 2

�
0;
�

2

�
;

which givesˇ̌̌̌
Im
�

1� 2

bn=4cX
jD1

mj

1Cmj n

ei�j � 1

j1� e�i�j j2

�ˇ̌̌̌
� 2

bn=4cX
jD1

mj

1Cmj n

2

��j
: (2-3)

Now, we specify the masses of d� to get a precise bound. Let mj D 4=n for
all j . This simplifies (2-3) to

max
z2T
j�n.zI d�/j �

16

5�n

bn=4cX
jD1

1

.2j � 1/�
n

�
8

5�2

bn=4cX
jD1

1

j
:



MAXIMIZATION OF ORTHOGONAL POLYNOMIALS 577

Note that log aD
aR
1

1=x dx �
a�1P
jD1

1=j since 1=x is decreasing.

Therefore,

max
z2T
j�n.zI d�/j �

8

5�2
log
�j

n

4

k
� 1

�
: (2-4)

Since 4=.5�2/ log.bn=4c� 1/ is strictly increasing in n, maxz2T j�n.z; d�/j is not
uniformly bounded from above. �

3. Finding a general upper bound

In this section, we find a general upper bound for the growth of the monic orthogonal
polynomials under a d� which differs from d�=2� only in the discrete portion. We
prove the following theorem by making a sequence of overestimates of j�n.1; d�/j.

Theorem 3.1. Let d� be a measure such that

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0, �j D 2�j=nC �0 for 1� j � n, and �0 2 Œ0; 2�/.
Then

j�n.1; d�/j �
1
�

log nCC;

where C is a constant uniformly bounded in n.

Remark 3.2. Note the generalized offset �0 in the theorem. In Section 2, we used
the specific offset of �0 D��=n, but here, we find a general upper bound under
any offset.

We prove the theorem using two lemmas. The first, Lemma 3.3, finds an overes-
timate for j�n.1; d�/j using Rahmanov’s formula [1979] . The second, Lemma 3.4,
makes another overestimate using Taylor series.

Lemma 3.3. Let d� be a measure such that

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0 and �j D 2�j=nC �0; 1� j � n.
Then

j�n.1/j D

8̂<̂
:
j1�ein�0 j

2

ˇ̌̌ nP
jD1

mj
1Cmjn

sin �j
1�cos �j

ˇ̌̌
C cn if �0 ¤ 0;

cn if �0 D 0;

where jcnj< 2 for all n.
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Proof. We first consider the case where �0 D 0. If �0 D 0, then Kn�1.1; e
i�j /D 0

for 1� j < n and Kn�1.1; e
i�n/D n. From Rahmanov’s formula (1-4),

j�n.1/j D

ˇ̌̌̌
1�

mn

1Cmnn
n

ˇ̌̌̌
< 1:

Therefore, �n.1/ is not increasing in n for �0D 0. Henceforth, we restrict ourselves
to working with �0 ¤ 0.

From Rahmanov’s formula in (1-4) and applying Lemma 2.1, we derive

�n.1/D 1�

nX
jD1

mj

1Cmj n
ein�j

ein�j � 1

ei�j � 1
:

Then, using algebra, we find that

�n.1/D 1C

nX
jD1

mj

1Cmj n

1� ein�j

1� ei�j

D 1C
1� ein�0

2

nX
jD1

mj

1Cmj n

�
1� i

sin �j
1� cos �j

�
;

(3-1)

which implies by the triangle inequality thatˇ̌̌̌
�n.1/�

1� ein�0

2
i

nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
� 1C

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

ˇ̌̌̌
:

Note that

j1� ein�0 j � 2 and 0�
mj

1Cmj n
�

1

n
; so

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

ˇ̌̌̌
� 1:

Hence, ˇ̌̌̌
�n.1/�

1� ein�0

2
i

nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
� 2: �

Thus, it is sufficient to consider the growth of

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
: (3-2)

We want to eliminate the magnitude around the sum in (3-2).
Since mj � 0, and sin �j=.1 � cos �j / is positive on .0; �/ and negative on

.�; 2�/, we have
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jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌

�max
�ˇ̌̌̌ X
�j2.0;�/

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
;

ˇ̌̌̌ X
�j2.�;2�/

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌�
:

Now, if we alter d� so that the masses are instead located at �j� D �2�j=n� �0,
essentially reflecting the discrete portion of the measure over the real axis, we see
that (3-2) does not change.

Hence, since we are looking to find an upper bound of (3-1) that is independent
of mj and �0, we can assume without loss of generality that we are only looking at
�j 2 .0; �/, and thus take

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
�
j1� ein�0 j

2

X
�j2.0;�/

mj

1Cmj n

sin �j
1� cos �j

:

Since replacing �0 with �0C 2�=n and then shifting the index of the mj does not
affect the value of (3-2), assume �0 2 .�2�=n; 0/. Having made these simplifica-
tions, we can now move on to the main lemma, which finds an upper bound as
described in the theorem.

Lemma 3.4.

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

� n
�
1C

1

�
C

1

�
log
j

n

2

k�
;

where �j D 2�j=nC �0; �0 2 .�2�=n; 0/.

Proof. We separate the first term from the sum, since that term contributes the most
to the magnitude. Recall that �1 D 2�=nC �0. Thus,

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

�
j1� ein�0 j

2

sin �1

1� cos �1

C

X
�j2.2�=n;�/

sin �j
1� cos �j

since j1� ein�0 j � 2. We now bound these two terms of the sum separately.
We claim that

j1� ein�0 j

2

sin �1

1� cos �1

� n

for �0 2 .�2�=n; 0/. Recall �1 D �0C 2�=n, so hence j1� ein�0 j D j1� ein�1 j.
Denote �1 by t , where t 2 .0; 2�=n/. We do the calculation
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j1� eint j

2

sin t

1� cos t

D

p
.1� cos nt/2C .sin nt/2

2

sin t

2
�
sin t

2

�2 D
p

2� 2 cos nt

2

sin t

2
�
sin t

2

�2 :
Because sin.nt=2/ is nonnegative for t 2 .0; 2�=n/, we have

sin
nt

2

sin t

2
�
sin t

2

�2 D sin nt
2

�
2 sin t

2
cos t

2

�
2
�
sin t

2

�2 D
sin nt

2
cos t

2

sin t
2

;

sin.nt=2/=sin.t=2/ is nonnegative for t 2 .0; 2�=n/ and cos t=2 is bounded above
by 1. Hence, the expression is bounded above by sin.nt=2/=sin.t=2/. It remains to
show this is bounded above by n.

This is clearly true for nD 1. Let n> 1. Recall that nt 2 .0; 2�/. Consider an
.nC 1/-gon inscribed in a unit circle in which n of the sides of the polygon form
a central angle of t . The last side of the polygon forms a central angle of nt (this
angle may be reflexive.) Recall that the length of a chord of a unit circle which
forms a central angle of t is 2 sin.t=2/. Similarly the length of the chord which
forms a central angle of nt is 2 sin.nt=2/. As the polygon is not degenerate, the
sum of the lengths of the n equal side lengths is greater than the length of the
remaining side length. Namely 2n sin.t=2/� 2 sin.nt=2/ as desired.

We now handle the second term. To boundX
�j2.2�=n;�/

sin �j
1� cos �j

;

note that sin �j=.1� cos �j / is decreasing on .0; 2�/, so

X
�j2.2�=n;�/

sin �j
1� cos �j

�

bn=2cX
jD1

sin
�

2�
n

j
�

1� cos
�

2�
n

j
� :

Recall from the Taylor expansion that we can approximate sin x=.1� cos x/

near 0 by 2=x. In fact, since

lim
x!0

sin x

1� cos x
�

2

x
D 0

and for x 2 .0; ��, we have

d

dx

�
sin x

1� cos x
�

2

x

�
< 0;

we arrive at the inequality

sin x

1� cos x
�

2

x
for x 2 .0; ��:
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Therefore,
bn=2cX
jD1

sin
�

2�
n

j
�

1� cos
�

2�
n

j
� � bn=2cX

jD1

2
2�
n

j
D

n

�

bn=2cX
jD1

1

j
:

Recall that log aD
aR
1

1=x dx �
aP

jD2

1=j since 1=x is decreasing, so that

n

�

bn=2cX
jD1

1

j
D

n

�
C

n

�

bn=2cX
jD2

1

j
�

n

�
C

n

�
log
j

n

2

k
;

and thus

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

� n
�
1C

1

�
C

1

�
log
j

n

2

k�
: �

Returning to the statement of the theorem,

j�n.1/j � 2C
j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌

� 2C
j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

1

n

sin �j
1� cos �j

ˇ̌̌̌
� 3C

1

�
C

1

�
log
j

n

2

k
:

Since logbn=2c is equal to log n plus some uniformly bounded term, we can
conclude that

j�n.1/j �
1
�

log nCC;

where C is constant in n, which completes the proof of the theorem.

Remark 3.5. Note that here we used that

mj

1Cmj n
�

1

n
:

If we were to use the Rahmanov scheme of distributing masses and set all mj D 1=n

then
mj

1Cmj n
D

1

2n
;

and the monic orthogonal polynomials given by the Rahmanov type of measure
would have growth bounded from above by 1=2� log nC b, where b is a bounded
constant.
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4. Proving the lower bound

In this section, we construct a measure that achieves the upper bound of 1=� log n

plus a bounded term, as described in Theorem 3.1. We accomplish this primarily
by applying the technique of Lagrange multipliers to find an optimal measure.

Theorem 4.1. For all n 2 N, there exists a measure

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0 and
Pn

jD1 mj D 1 such that

j�n.1; d�/j �
1
�

log nC c;

where c is a bounded constant.

We will prove this theorem as a sequence of lemmas.
The first lemma, Lemma 4.2, finds a lower bound for the expression from

Lemma 3.3 which is simpler to manipulate. In the second lemma, Lemma 4.4, we
apply the technique of Lagrange multipliers to that lower bound to find a critical
“point”, in our case a scheme of mj s. Finally, in the third lemma, Lemma 4.6, we
insert those derived mj into the approximation and find that we achieve the growth
stated in the theorem.

Set �j D .2�j ��/=n. Inserting those �j into (3-1), we have that

j�n.1/j D
j1�e��i j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1�cos �j

ˇ̌̌̌
Ccn D

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1�cos �j

ˇ̌̌̌
Ccn

for some constant jcnj<2. We know that sin �j=.1�cos �j / is positive for �j 2 .0; �/
and negative for �j 2 .�; 2�/. Thus, in order to maximize j�n.1/j, we set mj D 0

for all j such that �j 2 .�; 2�/, which prevents destructive interference from the
other side of the circle.

Under this setting, we can say thatˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
D

bn=2cX
jD1

mj

1Cmj n

sin �j
1� cos �j

:

We next bound this equation from below with a simpler expression.

Lemma 4.2. For �j D .2�j ��/=n and mj � 0,

bn=2cX
jD1

mj

1Cmj n

sin �j
1� cos �j

�
1

�

bn=2cX
jD1

nmj

1Cmj n

1

j
C d;

where d is some constant.
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Remark 4.3. It may appear contradictory that we first find a lower bound when we
want the n-th degree monic polynomial to be as large as possible. However, this
lower bound is easier to manipulate, and we show in the subsequent lemmas that it
actually achieves the growth stated in the theorem.

Proof. We prove this lemma using two approximations. We first approximate
sin �j=.1 � cos �j / by 2=�j , from the Taylor series; we then approximate 2=�j
by 1=.�j /.

First, we show that 2=�j is a good approximation of sin �j=.1� cos �j /. Let

M D max
�j2Œ0;��

ˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
:

This maximum, M , is achieved becauseˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
is continuous in an open neighborhood containing Œ0; ��. Thus, 2=�j is a good
approximation and we can bound the following difference by a constant:ˇ̌̌̌bn=2cX

jD1

mj

1Cmj n

sin �j
1� cos �j

�

bn=2cX
jD1

mj

1Cmj n

2

�j

ˇ̌̌̌

�

bn=2cX
jD1

mj

1Cmj n

ˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
�

bn=2cX
jD1

1

n
M �M:

Having established this, we can now replace 2=�j with 2n=..2j � 1/�/ and
attain the inequality

bn=2cX
jD1

mj

1Cmj n

2

�j
�

n

�

bn=2cX
jD1

mj

1Cmj n

1

j
:

Combining this and the previous inequality proves the lemma. �

Now that we have the simplified lower bound

1

�

bn=2cX
jD1

nmj

1Cmj n

1

j
;

we can apply the method of Lagrange multipliers to it in order to construct the mj

that prove the theorem.

Lemma 4.4. Let n 2 N. Consider any l 2 N with l � n. Under the constraints
mj � 0 and

Pl
jD1mj D 1, we achieve the maximum of
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lX
jD1

mj n

.1C nmj /j

by setting

mj D
m1
p

j
C

1

n

�
1
p

j
� 1

�
for all 1� j � l , where

m1 D

�
1C

l

n

�
1Pbn=2c

jD1
1=
p

j
�

1

n
:

Proof. Set up f , the function to be maximized, and the constraint g, where m is
the vector listing all mj :

f .m/D

lX
jD1

mj n

.1C nmj /j
;

g.m/D

lX
jD1

mj � 1D 0:

(4-1)

If f under the constraint g has a local extremum at m0 and m0 is not on the boundary,
for example m0j > 0 for all 1� j � l , then there is a � 2 R such that

rf .m0 /D �rg.m0 /: (4-2)

To simplify the following expressions, denote

lX
jD1

1p
j
D ˛.l/:

Calculations yield that, for all j ,
n

.1C nm0
1
/2
D

n

j .1C nm0j /
2
;

which, substituting m0
1

and m0j , gives m0j in terms of m0
1
, that is,

m0j D
m0

1p
j
C

1

n

�
1p
j
� 1

�
: (4-3)

Inserting that expression for m0j into g.m0/D
Pl

jD1 m0j � 1D 0 yields

m01 D
�
1C

l

n

�
1

˛.l/
�

1

n
:
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Remark 4.5. For all 1 � j � l , we have m0j > 0 since ˛.l/ <
lR

0

1=
p

l dl D 2
p

l .
Thus, we satisfy the condition that m0j � 0.

To insure that, in the computation for m0, the Lagrange multipliers method
did in fact give us the m that maximized f .m/ under the constraint mj � 0 andPl

jD1mj D 1, we must check the boundary. We next provide a quick proof that
the maximum is not achieved at the boundary.

Consider the Lagrangian L.m/ D f .m/ � �g.m/ defined on .�1=n;1/l ,
where � is the constant in (4-2). Note that m0 is a critical point of L since m0

satisfies rLDrf ��rgD 0. It suffices to show that L is concave on .�1=n;1/l .
We first calculate the entries of the Lagrangian L:

@2L

@m2
j

D�
2n2

j

1

.1C nmj /3
< 0;

@2L

@mj@mk

D 0 for j ¤ k:

The Hessian of L is then negative definite and hence L is concave on .�1=n;1/l .
Therefore, m0 as computed in (4-3) is a point where L achieves a global maximum
on the open neighborhood .�1=n;1/l . In particular, L.m0/ is the maximum of L

on the region defined by mj � 0 and
Pl

jD1mj D 1, a subset of .�1=n;1/l . On
this region, g D 0, so LD f . Hence f , constrained to the aforementioned region,
achieves a global maximum at m0. �

We conclude the proof by calculating the value of

lX
jD1

mj n

.1C nmj /j

for mj as described in Lemma 4.4. Since this function evaluated at l D bn=2c is a
lower bound of j�n.1; d�/j, as proved in Lemma 4.2, this final lemma concludes
the proof of the theorem.

Lemma 4.6. For the mj described in Lemma 4.4 in (4-3),

lX
jD1

mj n

.1C nmj /j
D

1
�

log l C c;

where c is uniformly bounded.
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Proof. We simply evaluate f from (4-1) at the m0 given by (4-3):

f .m0 /D

lX
jD1

m0j

1C nm0j

n

j
D

lX
jD1

1
n

�
1p
j
.1C nm0

1
/� 1

�
1C n1

n

�
1p
j
.1C nm0

1
/� 1

� n

j

D

lX
jD1

1p
j
.1C nm0

1
/� 1

p
j .1C nm0

1
/
D

lX
jD1

1

j
�

1

1C nm0
1

˛.l/

D

lX
jD1

1

j
�

˛.l/2�
1C l

n

�
n

D

lX
jD1

1

j
�
˛.l/2

nC l
:

Now
Pl

jD1 1=j differs from log l by at most 1, and ˛.l/2=.nC l/ is bounded in n

and l since

0�
˛.l/2

nC l
<
.2
p

l/2

nC l
D

4l

nC l
�

4n

n
D 4:

Therefore, for the m0 given by (4-3), f .m0/D log lCdl , where dl is a constant
bounded uniformly in l . In light of Lemma 4.2, we have constructed a d� such that
j�n.1; d�/j � 1=� log nC c, where c is a bounded constant, completing the proof
of Theorem 4.1. �

5. Investigating higher degree polynomials

In the previous sections, we described the magnitude of monic polynomials of
degree less than or equal to n, where n is the number of discrete masses in the
measure, using Rahmanov’s formula in (1-4). However, we also want to describe
the higher degree monic polynomials, i.e., �n0.zI d�/, where n0 > n. Unfortunately,
we are not able to do this for all n0 > n, but we can partially describe �n0.zI d�/,
where n0 D kn; k 2 N.

Recall the definition of Verblunsky coefficients [Simon 2005]:

�nC1.z/D z�n.z/� N̨n�
�
n .z/; (5-1)

where
�n.z/D ˇnzn

C � � �Cˇ0; 0� j � n; ǰ 2 C;

��n .z/D
Ň
0zn
C � � �C Ňn:

In the n0D kn case, we are able to derive the corresponding Verblunsky coefficients,
and do so explicitly for a d� similar to that of Rahmanov’s in Section 2.
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Theorem 5.1. For a measure d� D d�=2� C
Pn

jD1mjı.� � �j /, with masses
located at �j D ei�j and �j D 2�j=nC �0 (cf. Lemma 2.1),

�nk.z; d�/D znk
� �nk

0

nX
jD1

mj

1Cmj nk
Knk�1.z; �j /;

and

˛nk�1 D �
nk
0

nX
jD1

mj

1Cmj nk
;

where ˛nk�1 is a Verblunsky coefficient. Furthermore, under Rahmanov’s scheme,
where �j D 2�j=n and

d�D
d�

2�
C

nX
jD1

ı.� � �j /

n
;

the Verblunsky coefficients are

˛nk�1 D
1

1C k
:

Proof. Note that, since �n.zI d�/ is a monic polynomial, ˇn from the above
definition of the Verblunsky coefficients is 1, so

��n .0I d�/D 1;

which by (5-1) implies

�nC1.0I d�/D� N̨n: (5-2)

Having set out these preliminaries, we can simply apply Rahmanov’s formula
[1979] from (1-4) to find a formula for �nk.zI d�/ under a measure d� as described
in the statement of Theorem 5.1:

�nk.zI d�/D znk
�

nX
jD1

mj �nk.�j I d�/

1Cmj Knk�1.�j ; �j /
Knk�1.z; �j / (5-3)

D znk
� �nk

0

nX
jD1

mj

1Cmj nk
Knk�1.z; �j /: (5-4)

Remark 5.2. The simplification of the numerator from (5-3) to (5-4) depends upon
the �j being roots of unity times a constant (as in Lemma 2.1). Such a simplification
is only possible in the �nk case, which is why the description of other higher-degree
monic polynomials is considerably more complicated.
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Now consider z D 0 to find the Verblunsky coefficients:

�nk.0; d�/D��
nk
0

nX
jD1

mj

1Cmj nk
Knk�1.0; �j /D��

nk
0

nX
jD1

mj

1Cmj nk
;

and, applying (5-2), we obtain

� N̨nk�1 D �nk.0; d�/D��
nk
0

nX
jD1

mj

1Cmj nk
;

˛nk�1 D �
nk
0

nX
jD1

mj

1Cmj nk
:

(5-5)

If we now take �0 D 0, as Rahmanov does, and

d�D
d�

2�
C

nX
jD1

ı.� � �j /

n
;

then (5-5) simplifies to

˛nk�1 D
1

1C k
: (5-6)

�
Remark 5.3. It is noteworthy that, as k grows, the ˛nk�1 decay at the rate of
1=.1C k/. In light of the fact that

P1
jD1˛

2
j <1 [Simon 2005], this suggests that

the j̨ are small for j 2 .n.k � 1/; nk/, where k 2 N, and increase rapidly near
j D kn. However, as mentioned above, describing �j .zI d�/ for j ¤ kn is much
more complicated.

Appendix: Numerical appendix

In order to help visualize the results of this paper, the graphs of the magnitudes
of four orthogonal monic polynomials induced by four respective measures have
been included at the end of this section. Each measure has a continuous portion
of d�=2� as well as masses placed at �j D �=n.2j � 1/, where 1 � j � n=2 (cf.
Lemma 2.1). For simplicity, throughout this section, we will consider only even n.
For the first two polynomials (displayed in Figure 1), masses of uniform size 2=n

are used as suggested by Rahmanov (see Section 2). For the second two (Figure 2),
the masses are given their weights according to (4-3).

These graphs have several key features in common, including the presence of
two peaks that grow in n: one at � D 0 and another at � D � . Also, both have
much lower minimums in the range 0� � � � than in �� � � � 0. Upon closer
inspection, it can be seen that the two peaks in Figure 1 are equal; in contrast, in
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4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 1. Left: j�10.�/j for �j D �
10
.2j � 1/ and mj D

1
5

, where
1 � j � 5. Right: j�100.�/j for �j D �

100
.2j � 1/ and mj D

1
50

,
where 1� j � 50.

Figure 2, the peak at � D 0 is larger than the peak at � D � . Additionally, the peak
at � D 0 in the latter case is higher than in the former, as predicted by Theorem 4.1.

To explain some of these features, first note that with the above choice of
placement of the masses, Rahmanov’s formula (1-4) [1979] reduces to

Re.�n.e
i� //

D .1Ccos.n�//
�

1C
1

2

n
2X

jD1

mj

1Cnmj

�
�1�1

2
sin.n�/

n=2X
jD1

mj

1Cnmj

sin.���j /
1�cos.���j /

;

Im.�n.e
i� //

D sin.n�/
�

1C
1

2

n=2X
jD1

mj

1Cnmj

�
C

1
2
.1Ccos.n�//

n=2X
jD1

mj

1Cnmj

sin.���j /
1�cos.���j /

:

4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4 3 2 1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

Figure 2. Left: j�10.�/j for �j D �
10
.2j � 1/ and mj chosen

optimally, where 1� j � 5. Right: j�100.�/j for �j D �
100
.2j �1/

and mj chosen optimally, where 1� j � 50.
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Analysis of the minima. Due to its prominent role in each term, let us evaluate
both the real and imaginary parts at the extrema of 1C cos.n�/, that is, � D �k D

.�=n/.2k�1/ and �D��
k
D2�k=n. For �D�k , sin.n�k/ and 1Ccos.n�k/ are each

zero. However, we must be careful, because for 1� k � n=2, one of the terms in the
sum will have a denominator of zero. Thus, using L’Hôpital’s rule, we take the limits

lim
�!�k

sin.n�/ sin.� � �k/

1� cos.� � �k/
D�2n;

lim
�!�k

.1C cos.n�// sin.� � �k/

1� cos.� � �k/
D 0:

Substituting these values into our formulae, we then have that

j�n.e
i�k /j D

(
1� nmk=.1C nmk/ if 1� k � n=2;

1 otherwise:

Thus, the minima will be lower in the region where the masses are placed than
outside that region. Also, we can now see the reason for the minima increasing
as � increases in the cases where the choice of mj is optimal, as in Figure 2.

Analysis of peaks at � D 0; �. Now, let us examine the values of the polynomials
at � D ��

k
. In this case, sin.n��

k
/ is still zero, but 1C cos.n��

k
/ is instead 2, so we

need not worry about zero denominators. Immediately, we have that our previous
formulae reduce to

Re
�
�n.e

i��
k /
�
D 1C

n=2X
jD1

mj

1C nmj
;

Im
�
�n.e

i��
k /
�
D

n=2X
jD1

mj

1C nmj

sin.��
k
� �j /

1� cos.��
k
� �j /

:

(A-1)

The real part is constant in ��
k

and can be ignored. For k D 0, we have precisely
the sum that was analyzed in Section 4. For k D n=2, we obtain the sum

Im
�
�n.e

i��
n=2/

�
D

n=2X
jD1

mj

1C nmj

sin.� � �j /
1� cos.� � �j /

D

n=2X
jD1

mj

1C nmj

sin �j
1C cos �j

:

It can easily be seen that, if mj is constant, this sum will be identical to the sum
for k D 0, and so the result will be two peaks of equal amplitude as we observed
before in Figure 1. If mj decreases proportionally to 1=

p
j , however, this sum
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will be very different from the sum for k D 0, since the largest terms of the sum
will now be those �j close to � rather than zero. The mj with corresponding �j
close to � will all be of the order 1=n, and so we would expect that the value of the
polynomial here will behave something more similarly to the peaks of the uniform
mass case than to those of the optimal m case.

Analysis of peaks away from � D 0; �. However, we have not yet explained why
the peaks away from � D 0 and � D � are all smaller, so now we consider the case
where � D ��

k
for 0< k < n=2. First, note that

��k � �j D
�

n
.2.k � j /C 1/;

and consider the terms in the sum (A-1), where j D k and j D kC 1. These terms
will be

mk

1C nmk

sin �
n

1� cos �
n

and

�
mkC1

1C nmkC1

sin �
n

1� cos �
n

:

In the case that all the masses have equal weight, these terms will cancel out
completely, and, even in the case of the optimal choice of mj , they still mostly
cancel out since the difference of mkC1 and mk will be small. In general, for the
j D k � l and j D kC l C 1 terms, as long as k � l � 1 and kC l C 1� n=2 are
satisfied, similar cancellations will occur. Thus, the values at these peaks will be
less than those at � D 0 and � D � .
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