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A simplification of grid equivalence
Nancy Scherich

(Communicated by Kenneth S. Berenhaut)

In the work of Cromwell and Dynnikov, grid equivalence is given by the grid
moves commutation, (de-)stabilization and cyclic permutation. This paper gives a
proof that cyclic permutation is a sequence of (de-)stabilization and commutation
grid moves.

1. Introduction

A grid diagram is a two-dimensional square grid such that each square within the
grid is decorated with an ×, dor is left blank. This is done in a manner such that
every column and every row has exactly one × and one ddecoration. The grid
number of a grid diagram is the number of columns (or rows) in the grid. See
Figure 1 for an example. This paper follows the grid notation used by Manolescu,
Ozsváth, Szabó and Thurston [Manolescu et al. 2007] (see also [Manolescu et al.
2009]) with the convention that the rows and columns are numbered top to bottom
and left to right, respectively.

A grid diagram is associated with a knot, or link, by connecting the× and ddecor-
ations in each column and row by a straight line with the convention that vertical
lines cross over horizontal lines. These lines form strands of the knot, and removing
the grid leaves a projection of the knot. As a result, grid diagrams represent particular
planar projections of knots, or links. This process is illustrated in Figure 2. The
knot type of a grid is the knot type of the knot associated with the grid.

It is important to note that the × and ddecorations can specify an orientation
of the knot, but more importantly they mark the end points of the strands of the
knot in that column or row. So, if two grid diagrams are the same up to opposite
labeling of the × and ddecorations, then the grid diagrams are considered the
same even though the labeling might suggest opposite orientations. Also, because
grid diagrams are square, any result established for the columns of a grid is also
understood for the rows by rotating the grid by 90 degrees, and vice versa.

MSC2010: 57M27.
Keywords: knot theory, grid diagrams.
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Figure 1. Grid diagrams with grid numbers 3 (left) and 5 (right).

There are three grid moves used to relate grid diagrams: commutation, cyclic
permutation and (de-)stabilization. These play a role analogous to the Reidemeister
moves [1932] for knot diagrams. Following the notation from [Manolescu et al.
2007], the three grid moves are as follows:

(1) Commutation interchanges two consecutive rows or columns of a grid diagram.
This move preserves the grid number, as shown in Figure 3. Even though commuta-
tion may be defined for any two consecutive rows or columns, it is only permitted
if the commutation preserves the knot type of the grid; refer to Section 2 for details.
Throughout the introduction, it is assumed that all commutations preserve the
knot type.

(2) Cyclic permutation preserves the grid number and removes an outer row/column
and places it on the opposite side of the grid. See Figure 4.
(3) The third grid move has two different names depending on how the move is being
used. Stabilization is the addition of a kink while destabilization is the removal. It
is important to note that (de-)stabilization does not preserve the grid number. A
kink may be added to the right or left of a column, and above or below a row. To

Figure 2. The process of finding the knot associated to a given grid diagram.

Figure 3. An example of column commutation.
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Figure 4. An example of column permutation.

add a kink to column c, insert an empty row between the × and dmarkers of the
column c. Then insert an empty column to the right or left of column c. Move either
the× or ddecoration in column c into the adjacent grid square in the added column.
Complete the added row and column with × and ddecorations appropriately. See
Figure 5. To add a kink to a row, switch the notions of column and row. To remove
a kink, follow these instructions in reverse order. As shown, stabilization increases
the grid number by 1 while destabilization reduces the grid number by 1.

The following theorem explicates the relationship between grid diagrams, knots
and the three grid moves.

Theorem 1.1 [Cromwell 1995; Dynnikov 2006]. Let G1, G2 be a grid diagrams
representing knots K1, K2 respectively. Then K1 and K2 are equivalent knots if
and only if there exists a sequence of commutation, (de-)stabilization and cyclic
permutation grid moves to relate G1 to G2.

In other words, the three grid moves form an equivalence relation on the set of
grid diagrams, and two grid diagrams are equivalent if and only if they represent
the same knot. The three grid moves play a role similar to the Reidemeister moves
[1932] for knot diagrams.

Grid diagrams have become increasingly widespread since the use of grids to give
a combinatorial definition of knot Floer homology [Manolescu et al. 2007]. From the
approach of knot Floer homology, invariance under cyclic permutation is trivial when
viewed as diagrams on a torus. However, this paper will show that in any context,
cyclic permutation is an unnecessary hypothesis of Theorem 1.1. In other words,
the equivalence given by Theorem 1.1 can be strengthened so that two grid diagrams

Figure 5. An example of stabilization, or kink addition.
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are equivalent if there exists a sequence of commutation and (de-)stabilization grid
moves to relate the two grid diagrams. This implies that invariance for any object
defined using grids may be confirmed by checking invariance under only two moves:
commutation and (de-)stabilization. This strengthened equivalence of grid diagrams
is an immediate corollary to the following theorem.

Theorem 1.2. There exists a sequence of commutation and (de-)stabilization grid
moves that perform the cyclic permutation grid move.

Corollary 1.3. Let G1, G2 be grid diagrams representing knots K1, K2 respectively.
Then K1 and K2 are equivalent knots if and only if there exists a sequence of
commutation and (de-)stabilization grid moves to relate G1 to G2.

The result of Theorem 1.2 is well known to certain experts. For example, the
computer implementation of knot Floer homology available as part of KnotTheory`1,
due to Jean-Marie Droz, makes use of such a simplification. More concretely, after
completing this project the author learned that Theorem 1.2 is proved in the work
of Ozsváth, Szabó and Thurston [Ozsváth et al. 2008, Lemma 4.3]. However, since
Theorem 1.2 is an interesting result in combinatorial knot theory in its own right,
an independent proof is of value. Further, an illustrated proof of Theorem 1.2 may
serve as a useful introduction to grid diagrams. The main goal of this paper is to
provide a constructive proof of Theorem 1.2.

Organization of the paper. To prove Theorem 1.2, Section 2 addresses a subtlety
of the commutation grid move required to preserve grid equivalence. Section 3
introduces four intermediate grid moves that when applied sequentially perform
a cyclic permutation in terms of commutations and (de-)stabilizations. Lastly,
Section 4 formalizes the proof of Theorem 1.2.

Terminology. The word grid will be used synonymously with grid diagram through-
out the paper.

2. Commutation in detail

The commutation grid move is defined to interchange any two consecutive rows
or columns in a grid. However, in some instances, commutation does not preserve
the knot type of the grid. Since grids are useful as representations of knots with
an equivalence relation generated by the grid moves, it is important to identify
the exact conditions under which commutation preserves this equivalence relation.
These conditions will be established for column commutation.

Figure 6 shows the four possible relative positions of two consecutive columns,
up to different × and dlabeling and exact spacing. Denote these possibilities as
nonshared, total-shared, partial-shared and point-shared, see Figure 6.

1KnotTheory` is a Mathematica package and is available from www.katlas.org.



A SIMPLIFICATION OF GRID EQUIVALENCE 725

Figure 6. From left to right: nonshared, total-shared, partial-
shared, and point-shared columns.

Lemma 2.1. Commutation of nonshared, total-shared and point-shared columns
preserves the knot type of the grid diagram.

Proof. To prove these conditions preserve the knot type, consider the knot associated
with the grid. The following will show that the associated knot is only altered by
a Reidemeister I move, a Reidemeister II move or isotopy, thus preserving the knot
equivalence class.

For nonshared columns, there are three scenarios, all resulting in isotopy. See
Figure 7. For total-shared, there are three scenarios, two resulting in a Reidemeis-
ter II move and the other in isotopy. See Figure 8.

For point-shared there are four scenarios, two resulting in isotopy and two
resulting in a Reidemeister I move. See Figure 9. �

Corollary 2.2. Commutation of a column that has × and ddecorations in adjacent
grid squares will preserve the knot type of the grid.

Proof. This column will only be nonshared, point-shared or total-shared with a
consecutive column. �

Corollary 2.3. Commutation of a column that has × and ddecorations in the top
and bottom grid squares will preserve the knot type of the grid.

Proof. This column will always be total-shared with any consecutive column. �

Remark 2.4. Commutation of columns that are partial-shared may change the knot
type of the grid.

Figure 10 shows two scenarios of partial-shared columns that, when commuted,
change the crossings of the knot associated with the grid in a complicated way.
The left scenario shows two strands that are not linked but become linked after the
column commutation. The right shows how commutation changes an over-crossing
to an under-crossing. In both of these scenarios, more knowledge about the knot
would be needed to determine if the knot type was preserved.
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Figure 7. Three scenarios for nonshared columns.

Figure 8. Three scenarios for total-shared columns. The left and
middle result in a Reidemeister II move, and the right in isotopy.

Figure 9. Four scenarios for point-shared columns. From left
to right, the first two result in isotopy, and the second two in a
Reidemeister I move.

Figure 10. Partial-shared columns.
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Remark 2.5. Point-shared commutation is not considered a standard grid move.
In fact, it can be accomplished by a single destabilization followed by a single
stabilization. This paper considers point-shared commutation with the sole interests
of simplifying the proof of Corollary 2.2 and exhibiting a Reidemeister I move via
grid moves in Figure 9. Often in the literature, namely [Manolescu et al. 2007] and
[Ozsváth et al. 2008], point-shared commutation is not considered an allowable
grid move. Throughout the remainder of the paper, point-shared commutation will
not be used and the main result does not require this type of commutation.

3. Intermediate grid moves

The goal of the intermediate grid moves is to accomplish a column permutation from
left to right using only commutations and (de-)stabilizations. A column permutation
preserves the size of the grid and relative positions of the × and ddecorations in
the permuted column. So throughout the construction of the intermediate moves,
any change in grid size or relative positioning of the × and ddecorations in the
permuted column will be noted.

The intermediate grid moves are independent from each other, but to simplify the
proof of Theorem 1.2, each intermediate move will be described starting from the
ending position of the previous intermediate move. Thus, when applied sequentially,
it will be clear that a cyclic permutation is accomplished.

The first intermediate grid move I1.

Definition 3.1. The I1 move increases the grid number by 2 and moves the ×
and ddecorations in the first column to occupy the top and bottom grid squares of
the first column, as shown in Figure 11.

Proposition 3.2. The I1 move can be accomplished by a sequence of commutation
and (de-)stabilization moves that preserve the grid equivalence class.

Proof. Fix a grid diagram with grid number n. Assume that the row containing
the × in the first column is above the row containing the d. For alternate labeling,
switch the roles of the × and d. Let × be in row m and dbe in row k with standard

Figure 11. An illustration of the I1 move.
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top to bottom labeling. Let the din the m-th row be in column s and the × in the
k-th row be in column r .

(1) Start by adding a kink above the m-th column. This increases the grid size by 1,
resulting in a grid number of n+ 1.

1
1

r s n

n

k

m

1 2
1

r +1 s +1 n +1

n +1

k +1

m
m +1

(2) The × and din the first and second columns of row m are adjacent. By
Corollary 2.2, commutation of row m preserves the grid equivalence class. So
commute the row m upwards m− 1 times making the × in the first column occupy
the top row.

1 2 2
1

r +1 s +1 n +1 r +1 s +1 n +1

n +1

k +1

m m
m +1

1
1

n +1

k +1

m +1

(3) After adding the kink, the d in the first column has been shifted down one row
moving the dto the (k+1)-th row. Add a kink above the (k+1)-th row, moving
the d to the (k+2)-th row. This increases the grid number by 1, resulting in a grid
number of n+ 2.

2 3 r +2 s +2 n +21
1

n +2

k +1
k +2

m +1

2 r +1 s +1 n +1

m

1
1

n +1

k +1

m +1
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(4) The dand × in the (k+2)-th row are adjacent, so by Corollary 2.2, commut-
ing row k+2 preserves the knot type. Commute the (k+2)-th row downwards
(n+ 2)− (k+ 2) times until the din the first column is in the bottom row.

2 3 r +2 s +2 n +21
1

n +2

k +1

m +1

2 3 r +2 s +2 n +21
1

n +2

k +1
k +2

m +1

Now the grid number increased to n + 2 and the × and ddecorations in the
first column occupy the top and bottom grid squares of the first column. Since all
commutations preserved the knot type, the grid equivalence class was preserved. �

The second intermediate move I2.

Definition 3.3. Starting from the ending position of the I1 move, where the ×
and ddecorations in the first column occupy the top and bottom grid squares, the I2

move cyclically permutes the first column to become the last column of the grid.
(This is a special case of cyclic permutation). The I2 move preserves the grid
number. This is shown in Figure 12.

Proposition 3.4. The I2 move can be accomplished in a series of commutation grid
moves and preserves the grid equivalence class.

Proof. Since the × and ddecorations in the first column are in the top and bottom
grid squares, by Corollary 2.3, commutation of this column preserves the knot
type of the grid. So commute the first column to the right n−1 times until it

2 r +1 s +1 n +21
1

n +2

k +1

m +1

2 3 r +2 s +2 n +21
1

n +2

k +1

m +1

Figure 12. An illustration of the I2 move.
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r s n +11
1

n +1

k +1

m +1

2 r +1 s +1 n +21
1

n +2

k +1

m +1

Figure 13. An illustration of the I3 move.

becomes the outermost right column. This clearly preserves the grid number and
grid equivalence class. �

Third intermediate move I3.

Definition 3.5. Starting from the ending position of the I2 move, the move I3

reduces the grid number by 1 and simplifies the bottom portion of the grid as shown
in Figure 13.

Proposition 3.6. The I3 move can be accomplished by a sequence of commutation
and (de-)stabilization grid moves and preserves the grid equivalence class.

Proof. (1) Since the × and ddecorations in the (n+2)-th row occupy the first
and last grid squares, by Corollary 2.3 commuting this row preserves the knot
type. So, commute the (n+2)-th row upwards (n+2)−(k+1)−1 times, until the ×
and ddecorations in the (k+1)-th and (k+2)-th rows in the first column are adjacent.

r +1 s +1 n +21 2
1

n +2

k +1

m +1

r +1 s +1 n +21 2
1

n +2

k +1
k +2

m +1

(2) Since the× and ddecorations in the first column are in adjacent grid squares, by
Corollary 2.2 commuting this column preserves the knot type. So commute the first
column to the right r−1 times until the × and ddecorations in the (k+1)-th row
are adjacent.
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r +1r s +1 n +21 2
1

n +2

k +1
k +2

m +1

r +1 s +1 n +21 2
1

n +2

k +1
k +2

m +1

(3) Remove the kink in the r-th column and the (n+2)-th row, reducing the grid
number to n+1.

r s n +11 2
1

n +1

k +1

m +1

r +1r s +1 n +21 2
1

n +2

k +1
k +2

m +1

Since all commutations preserved the knot type, the grid equivalence class was
preserved and the grid number was reduced to n+ 1. �

Fourth intermediate move I4.

Definition 3.7. Starting from the ending position of the I3 move, the move I4

mirrors the move I3 and decreases the grid number to n as shown in Figure 14.

Proposition 3.8. The I4 move can be accomplished by a sequence of commutation
and (de-)stabilization grid moves that preserve the grid equivalence class.

r −1 s −1 n1
1

n

k 

m

r s n +11
1

n +1

k +1

m +1

Figure 14. An illustration of the I4 move.
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Proof. (1) Since the× and ddecorations in the first row occupy the first and last grid
squares, by Corollary 2.3 commuting this row preserves the knot type. So, commute
the top row down m−1 times, so that the× and the d in the first column are adjacent.

2 r s n +11
1

n +1

k +1

m +1

2 r s n +11
1

n +1

k +1

m +1
m

(2) Since the × and ddecorations in the first column are in adjacent grid squares,
by Corollary 2.2 commuting this column preserves the knot type. So, commute the
first column to the right s times until the × and ddecorations in the (m+1)-th row
are adjacent.

r −1 s −1 s n +11
1

n +1

k +1

m +1
m

2 r s n +11
1

n +1

k +1

m +1
m

(3) Lastly, remove the kink in the (s−1)-th column and (m+1)-th row reducing the
grid back to its original grid number n.

r −1 s −1 s n +11
1

n +1

k +1

m +1
m

r −1 s −1 n1
1

n

k

m

After the I4 move, the grid number returns to the original value n, and the ×
and the din the last column are in the same relative row positions as before the
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Figure 15. An illustration of the application of the intermediate
grid moves used to produce a cyclic permutation grid move.

intermediate grid moves were applied. Since all commutations preserved the knot
type, the grid equivalence class was preserved. �

4. Proof of Theorem 1.2

Theorem 1.2. There exists a sequence of commutation and (de-)stabilization grid
moves that perform the cyclic permutation grid move.

Proof. Given a grid diagram, apply the intermediate grid moves I1, I2, I3 and
I4 sequentially. As shown by construction, this sequence of intermediate moves
preserves the grid number and relative row position of the × and ddecorations in
the permuted column. Thus this sequence of intermediate moves performs a column
permutation with only commutations and (de-)stabilizations. Figure 15 is a stylized
diagram following the strand of the knot through the sequential application of the
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intermediate grid moves to explicate this construction. This process can be applied
with an appropriate change of orientation to accomplish a cyclic permutation for a
row or column in any direction. �

Acknowledgements

This paper formed part of a VIGRE funded undergraduate research project at UCLA
(summer 2010). I would like to thank faculty advisor Liam Watson for significant
guidance, inspiration, editing and choice of topic.

References

[Cromwell 1995] P. R. Cromwell, “Embedding knots and links in an open book, I: Basic properties”,
Topology Appl. 64:1 (1995), 37–58. MR 96g:57006 Zbl 0845.57004

[Dynnikov 2006] I. A. Dynnikov, “Arc-presentations of links: monotonic simplification”, Fund. Math.
190 (2006), 29–76. MR 2007e:57006 Zbl 1132.57006

[Manolescu et al. 2007] C. Manolescu, P. Ozsváth, Z. Szabó, and D. Thurston, “On combinatorial
link Floer homology”, Geom. Topol. 11 (2007), 2339–2412. MR 2009c:57053 Zbl 1155.57030

[Manolescu et al. 2009] C. Manolescu, P. Ozsváth, and S. Sarkar, “A combinatorial description of
knot Floer homology”, Ann. of Math. (2) 169:2 (2009), 633–660. MR 2009k:57047 Zbl 1179.57022

[Ozsváth et al. 2008] P. Ozsváth, Z. Szabó, and D. Thurston, “Legendrian knots, transverse knots
and combinatorial Floer homology”, Geom. Topol. 12:2 (2008), 941–980. MR 2009f:57051
Zbl 1144.57012

[Reidemeister 1932] K. Reidemeister, Knotentheorie, Ergebnisse der Mathematik und ihrer Grenzge-
biete 1, Springer, Berlin, 1932. Reprinted in 1974. MR 49 #9828 Zbl 0005.12001

Received: 2012-11-20 Revised: 2014-10-21 Accepted: 2015-01-16

nancy.scherich@gmail.com Department of Mathematics, University of California, Santa
Barbara, Santa Barbara, CA 93106, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/0166-8641(94)00087-J
http://msp.org/idx/mr/96g:57006
http://msp.org/idx/zbl/0845.57004
http://dx.doi.org/10.4064/fm190-0-3
http://msp.org/idx/mr/2007e:57006
http://msp.org/idx/zbl/1132.57006
http://dx.doi.org/10.2140/gt.2007.11.2339
http://dx.doi.org/10.2140/gt.2007.11.2339
http://msp.org/idx/mr/2009c:57053
http://msp.org/idx/zbl/1155.57030
http://dx.doi.org/10.4007/annals.2009.169.633
http://dx.doi.org/10.4007/annals.2009.169.633
http://msp.org/idx/mr/2009k:57047
http://msp.org/idx/zbl/1179.57022
http://dx.doi.org/10.2140/gt.2008.12.941
http://dx.doi.org/10.2140/gt.2008.12.941
http://msp.org/idx/mr/2009f:57051
http://msp.org/idx/zbl/1144.57012
http://dx.doi.org/10.1007/978-3-642-65616-3
http://msp.org/idx/mr/49:9828
http://msp.org/idx/zbl/0005.12001
mailto:nancy.scherich@gmail.com
http://msp.org


msp
INVOLVE 8:5 (2015)

dx.doi.org/10.2140/involve.2015.8.735

A permutation test for three-dimensional
rotation data

Daniel Bero and Melissa Bingham

(Communicated by Mary C. Meyer)

Statistical inference procedures that require no distributional assumptions make
up the area of nonparametric statistics. The permutation test is a common non-
parametric test that can be used to compare measures of center for two data sets,
but it is yet to be explored for three-dimensional rotation data. A permutation test
for such data is developed and the statistical power of this test is considered under
various scenarios. The test is then used in an application comparing movement
around joints in the foot and ankle for humans, chimpanzees, and baboons.

1. Introduction

Data in the form of three-dimensional rotations are common in the study of human
motion. As skeletal mammals move, the orientation of various joints can be tracked
by using infrared emitting diodes attached to bones on opposite ends of the joint.
Each joint orientation can be represented mathematically as a 3× 3 orthogonal
rotation matrix. Of interest here is comparing movement around various joints in
the ankle and foot for humans, chimpanzees, and baboons by comparing the central
rotation of each joint for the various species.

While other works have considered comparing sets of three-dimensional rotation
data, they rely on distributional assumptions [Rancourt et al. 2000; Hendriks and
Landsman 1998]. Further, existing work for studying three-dimensional rotations
is often in terms of manifold considerations. As such, it is often inaccessible
to practitioners outside the area. Our aim here is development of methodology
for comparing central rotations that is both nonparametric and does not rely on
special manifold theory, so that it can be used more broadly. The permutation
test is a commonly used nonparametric test, but it has yet to be implemented for
three-dimensional rotation data. We develop such a test in Section 2, explore the
statistical power of the test in Section 3, and apply the test to joint data in Section 4.
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2. Development of a three-dimensional permutation test

The permutation test is widely used in nonparametric statistics for determining if
two data sets are different in some way (e.g., comparing means, variances, shapes).
The most common example of a permutation test in one dimension is comparing
population means for data sets A and B by using the difference in sample means,
x̄A− x̄B , as a test statistic. To perform the permutation test, data sets A and B are
combined and permuted so that data points are randomly reassigned to either A
or B. The permuted test statistic is then calculated from this permuted data and this
process is repeated a large number of times. If the means of the populations from
which A and B come do in fact differ, then we expect the observed test statistic
x̄A− x̄B to be more extreme than the permuted test statistics. For this reason, the
p-value for a permutation test is defined to be the proportion of times that the
permuted test statistic is more extreme than the observed test statistic. See [Higgins
2004] for more details on permutation tests.

To translate the idea of the permutation test to three-dimensional rotation data,
we first need to define a sensible test statistic that could be used for comparing two
central rotations. For each set of three-dimensional rotations, we begin by finding a
measure of center as follows. Compute O = 1/n

∑n
i=1 Oi for O1, . . . , On ∈ SO(3),

where SO(3) represents the set of all 3× 3 orthogonal rotation matrices. Next, find
the matrix T = V W , where O = V6W is the singular value decomposition of O.
Using these components from the singular value decomposition is necessary since
O may not be an element of SO(3), but T is. This is a commonly used measure of
center [León et al. 2006; Bingham et al. 2009; Khatri and Mardia 1977], which we
refer to as the “mean” rotation.

Once we have found the mean rotation for each of our two data sets, a natural test
statistic is the difference between these mean rotations. One way of quantifying the
difference between two three-dimensional rotations is by using angles. A misorien-
tation angle is defined as the angle needed to rotate from one three-dimensional
rotation to another via a spin about some axis. For O, P ∈SO(3), the misorientation
angle between O and P is

mis(O, P)= arccos
(

tr(O ′P)− 1
2

)
, (1)

where tr is the trace of a matrix and O ′ is the transpose of O. We use the
misorientation angle between our two mean rotations as the test statistic for the
three-dimensional permutation test of Ho: There is no difference between the
population mean rotations versus Ha . There is a difference between the population
mean rotations. The steps of the permutation test are given below and R code for
implementing this test is provided in the Appendix.
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(a) (b)

Figure 1. Plots of two simulated three-dimensional rotation data
sets (each with n = 50) with mean rotations that (a) are not signifi-
cantly different and (b) are significantly different.

(1) Calculate the mean rotation for each data set and then find the misorientation
angle between these means. This serves as the observed test statistic, θobs.

(2) Permute the data a large number (say 10,000) of times, storing the misorienta-
tion angle between the permuted mean rotations, θperm, each time.

(3) Let the p-value be the fraction of times that the permuted misorientation angle
is greater than the observed misorientation angle; that is,

p-value=
# of times θperm > θobs

# of permutations
.

The three-dimensional permutation test outlined above is briefly illustrated in
two different examples. Figure 1 shows three-dimensional data sets plotted as
points on the sphere, with one observation represented by three points that would
correspond to three orthogonal axes. In Figure 1(a), the two simulated data sets (in
white and black, each of size 50) show considerable overlap. Under the permutation
test, these data sets resulted in a test statistic of 0.0546 and a p-value of 0.3101.
In Figure 1(b), the simulated data sets are more separated. These data sets gave a
test statistic of 0.6102 and a p-value of 0, indicating a significant difference in the
population mean rotations. These examples suggest that the p-value decreases as
expected when the data sets have mean rotations that increase in distance.

3. Power: a simulation study

To examine the effectiveness of the three-dimensional permutation test developed
in Section 2, we perform a simulation study to investigate statistical power. Power
is the probability of correctly rejecting a false null hypothesis. We simulate data
sets with centers that differ by a known misorientation angle, φ, (i.e., there is a
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Figure 2. Plots of power versus misorientation angle for the von
Mises version of the UARS distributions with κ = 5, 20, 50, 100.
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Figure 3. Plots of power versus misorientation angle for the sym-
metric matrix von Mises–Fisher distribution with κ=5,20,50,100.



A PERMUTATION TEST FOR THREE-DIMENSIONAL ROTATION DATA 739

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample Size

n = 10

n = 50

n = 100

po
w

er

angle

κ = 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample Size

n = 10

n = 50

n = 100

κ = 20

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample Size

n = 10

n = 50

n = 100

κ = 50

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sample Size

n = 10

n = 50

n = 100

κ = 100

Figure 4. Plots of power versus misorientation angle for the vM-F
distribution with solid lines representing the permutation test and
dashed lines representing the parametric approach for κ =
5, 20, 50, 100.

difference between the population mean rotations and the null is false) from both
the von Mises version of the uniform axis-random spin (vM-UARS) distribution
[Bingham et al. 2009] and the symmetric version of the matrix von Mises–Fisher
(vM-F) distribution [Khatri and Mardia 1977] . A vM-UARS or vM-F distribution
can be specified by a central rotation S ∈ SO(3) and a spread parameter κ ∈ (0,∞),
where κ is best termed as a concentration parameter since larger values of κ indicate
rotations that are less spread about the center at S. Two samples, each of size n,
are generated from vM-UARS(S1, κ) and vM-UARS(S2, κ) distributions, where
φ =mis(S1, S2) as in (1). We consider κ values of 5, 20, 50, and 100, set n at 10,
50, and 100, and let the misorientation angle, φ, vary between 0 and π/5. The same
is done for the vM-F distribution.

For each combination of κ , n, and φ, the permutation test was conducted 1,000
times with 1,000 permutations per test. The power was then found as the proportion
of times (out of 1,000) that the test correctly rejected the null hypothesis of equal
means. Plots of the power against the misorientation angle, φ, for the various choices
of n and κ are provided in Figure 2 for the vM-UARS distribution and in Figure 3
for the vM-F distribution. It can be seen from all plots that as sample size increases,
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Figure 5. Plots of power versus misorientation angle for the vM-
UARS distribution with solid lines representing the permutation
test and dashed lines representing the parametric approach for
κ = 5, 20, 50, 100.

the power of the test increases. In addition, as the concentration parameter, κ ,
increases (i.e., data sets become more clustered around their mean rotation), the
power increases. Finally, as the misorientation angle increases and the true centers
become farther apart, the power increases. This mimics properties of power for
traditional hypothesis tests for differences in means (for nonrotational data), giving
evidence that the three-dimensional permutation test performs as desired.

The power of the three-dimensional permutation test was also compared to that
of the parametric approach presented in [Rancourt et al. 2000], which requires the
observations be distributed according to the matrix von Mises–Fisher distribution.
The plots in Figure 4 show power versus misorientation angle for the various choices
of n and κ using the matrix von Mises–Fisher distribution. The solid lines represent
power for the permutation test, with the dashed lines representing power for the
parametric approach. We see that the power of the permutation test is comparable
to the power of parametric approach in all cases. The permutation test was also
compared to the parametric approach for the vM-UARS distribution, with power
plots given in Figure 5. We see that the permutation test outperforms the parametric
approach in terms of resulting in a larger power, with this fact more visible when
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middle phalange
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proximal 
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cuneiform

medial
cuneiform
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talus

cuboid

calcaneus

Figure 6. Bones in the ankle and foot (image taken from
http://www.ceuarmy.com/BSFAFpdf.pdf).

we have smaller sample sizes or data that is more spread (small κ). Thus, the
three-dimensional permutation test is comparable to the parametric approach when
the assumptions of the parametric test are met, and it performs better than the
parametric approach when the assumptions are not met.

4. Application to ankle joint rotation data

Now that we have verified that the three-dimensional permutation test performs as
expected with regard to power, we apply the test to ankle/foot joint rotation data
collected by Prof. Thomas Greiner of the Department of Physical Therapy at the
University of Wisconsin-La Crosse. Data was collected from humans, baboons, and
chimps during circumduction, which is the movement characterized by the foot being
placed flat on the floor and the leg rotating in a circular motion around it. Infrared
emitting diodes attached to bones on each side of a joint give the orientation of each
bone as the movement occurs. If the orientation of the first bone is represented as F
and the orientation of second bone is represented as G, then the resulting orientation
of the joint is defined as F′G. Because markers may not have been placed identically
on all subjects, the orientations of all joints under consideration were measured
with the tibia-talus joint as the reference to allow for comparison of species. Joints
considered were the cuboid-calcaneus, navicular-cuboid, navicular-talus, talus -
calcaneus, and fifth metatarsal-cuboid. (See Figure 6 for a diagram of the bones
in the foot and ankle region.) Orientations were collected for six human subjects,
four chimpanzee subjects, and seven baboon subjects, and the base alignment matrix

http://www.ceuarmy.com/BSFAFpdf.pdf
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corresponding to the primary rotational axis (see [Ball and Greiner 2012]) was used
in the three-dimensional permutation test to compare species.

Species were compared pairwise (human versus chimpanzee, human versus
baboon, and chimpanzee versus baboon) for each of the joints mentioned above,
and each test was done using 1,000 permutations. Out of all tests, there were four
significant differences found. There was significant evidence to suggest that the
orientation of the navicular-talus joint differs between the humans and chimpanzees
(p-value = 0.001) and humans and baboons (p-value ≈ 0). The orientation of
the talus-calcaneus joint was found to be significantly different between humans
and chimpanzees (p-value = 0.019) and humans and baboons (p-value = 0.001).
Therefore, it appears that movement for humans differs from baboons and chimps
when considering two specific joints.

5. Conclusion

The analysis of joint rotation data provided here is just one of many applications that
the three-dimensional permutation test could be used for. Given the abundance of
three-dimensional rotation data in the study of human motion, as well as in the other
fields like materials science, having methodology for comparing measures of center
for three-dimensional data is important. The three-dimensional permutation test
developed here provides that methodology without the need for any distributional
assumptions on where the data sets come from. It also does not require any theory on
special manifolds, making the three-dimensional permutation test an important addi-
tion to the field of statistics, as well as to practitioners who collect data in this form.

Appendix

The following gives an R function called PermTest for performing the three-
dimensional permutation test on data sets A (of size n A) and B (of size nB). The
argument A must be an array of dimension 3× 3× n A and B must be an array
of dimension 3 × 3 × nB . The argument nspec specifies the number of times
the data should be permuted. The function PermTest outputs the test statistic
(misorientation angle between the two sample mean rotations) and p-value.

PermTest=function(A,B,nspec){
##Loads functions needed for test
trace=function(M){sum(diag(M))}
Mis.Ang=function(C,D){acos((trace(t(C)%*%D)-1)/2)}

##Finds mean matrices for both sets of data
na=dim(A)[3]
Abar=matrix(rep(0,9),nrow=3)
for(i in 1:na){Abar=Abar+A[,,i]}
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Abar=Abar/na
M.A=svd(Abar)$u%*%t(svd(Abar)$v)
nb=dim(B)[3]
Bbar=matrix(rep(0,9),nrow=3)
for(i in 1:nb){Bbar=Bbar+B[,,i]}
Bbar=Bbar/nb
M.B=svd(Bbar)$u%*%t(svd(Bbar)$v)

##Finds the test statistic
Test.Stat=Mis.Ang(M.A,M.B)

##Puts data into one array
T=array(c(A,B),dim=c(3,3,(na+nb)))

##Performs the permutation test
nsim=nspec
ang=rep(0,nsim)
for(i in 1:nsim){

samp=sample(1:(na+nb))
O=T[,,samp[1:na]]
P=T[,,samp[(na+1):(na+nb)]]
Obar=matrix(rep(0,9),nrow=3)
for(j in 1:na){Obar=Obar+O[,,j]}
Obar=Obar/na
M.O=svd(Obar)$u%*%t(svd(Obar)$v)
Pbar=matrix(rep(0,9),nrow=3)
for(k in 1:nb){Pbar=Pbar+P[,,k]}
Pbar=Pbar/nb
M.P=svd(Pbar)$u%*%t(svd(Pbar)$v)
ang[i]=Mis.Ang(M.O,M.P)
}

p.value=sum(ang>Test.Stat)/nsim
list(Test.Statistic=Test.Stat,P.Value=p.value)

}
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Power values of the product of
the Euler function and the sum of divisors function

Luis Elesban Santos Cruz and Florian Luca

(Communicated by Filip Saidak)

We find examples of positive integers n such that φ(n3)σ (n3) is a perfect square.

1. Introduction

The Euler function φ(n) counts the number of positive integers m ≤ n which are
coprime to n, the sum of divisors function σ(n) is equal to the sum of the positive
proper divisors of n, and both of these functions have fascinated mathematicians
for centuries. A lot of effort has been spent trying to find positive integers n such
that φ(n) and σ(n) have nice arithmetic properties.

It is easy to make φ(n) a square. Just take n= 22k+1 for some k ≥ 0. Exactly half
of all integers m ≤ 22k+1 are odd, and hence, coprime to n. Thus, φ(22k+1)= 22k

is a perfect square. The situation for the sum of divisors function is harder. A nice
presentation of this problem is in [Beukers et al. 2012]. Following that reference,
we look at the factorizations

σ(2)= 3, σ (11)= 22
× 3,

σ (3)= 22, σ (13)= 2× 7,

σ (5)= 2× 3, σ (17)= 2× 32,

σ (7)= 23, σ (19)= 22
× 5.

There are many ways to multiply together some of the above numbers to get a
perfect square. First let us notice that 13 and 19 are useless because σ(13)= 2× 7
and σ(19)= 22

× 5, and neither 7 nor 5 ever appear again on the right-hand side
of the above equations. Throw out 13 and 19 and group squares on the right-hand
sides in the following way, where � represents a perfect square:

σ(2)= 3, σ (3)= � , σ (5)= 2×3, σ (7)= 2� , σ (11)= 3� , σ (17)= 2� .

MSC2010: 11B68, 11A25.
Keywords: sum of divisors, Euler function.
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Note that all six inputs are prime numbers and all outputs have prime factorizations
consisting of only 2 and 3. Let the primes 2, 3, 5, 7, 11, 17 correspond to the
vectors v1, v2, v3, v4, v5, v6 in the six-dimensional vector space F6

2, where vi has
i-th component equal to 1 and all others equal to 0 for i = 1, . . . , 6. In F2

2 we let w1

and w2 be the vectors (1, 0)> and (0, 1)> and think of them as corresponding to the
primes 2 and 3 respectively. We define a linear map from F6

2 7→ F2
2 whose matrix is

T =
(

0 0 1 1 0 1
1 0 1 0 1 0

)
.

This matrix has rank 2, so it has 24
= 16 vectors in its nullspace, and any of these

vectors gives us a solution. For example, the vector (1, 1, 1, 1, 0, 0)>, which is in
Null(T ), gives us the solution n = 2× 3× 5× 7, having σ(n)= 26

× 32.
In [Beukers et al. 2012], the equation σ(nk)= ml in positive integers n and m

was studied for some exponents k > 1 and l > 1. On page 377, they conjecture that
σ(nk)= ml has only finitely many solutions if k > 3 and l > 1 are given. Here, we
propose the following counterconjecture.

Conjecture 1. For every k > 1 and l > 1, there are infinitely many n such that
σ(nk)= ml for some positive integer m.

To give some evidence, we propose a different conjecture. Let P(n) denote the
largest prime factor of the integer n, with the convention that P(0)= P(±1)= 1.

Conjecture 2. Let f (x)∈Z[x] be a polynomial such that f (0) 6=0. For every ε>0,
there exists c := c(ε) and x0 := x0(ε) such that

#{p ≤ x : P( f (p)) < xε} > cx/ log x for all x > x0. (1)

The substance of the above conjecture is the following. It is well known that the
numbers n such that P(n)< nε form a positive-density subset of N. It is conjectured
that the primes p such that P(p− 1) < pε form a positive-density subset of all
primes. This is not known for small values of ε > 0. So, we venture even further
and replace p− 1 by any fixed polynomial f (p) such that f (0) 6= 0 (in order to
make sure that p does not show up as a natural divisor of f (p)) and conjecture
that, in fact, the set of primes p such that P( f (p)) < pε is of positive density. This
is known if all roots of f (x) are rational, with some ε < 1 (like ε = 1− 1/2d,
where d is the degree of f (x)), but it is not known for any ε < 1 once f (x) has an
irreducible factor of degree at least 2. The quantity x/ log x in the right-hand side
of (1) arises from the prime number theorem, which asserts that, asymptotically,
the function π(x)= #{p ≤ x} equals x/ log x as x→∞.

Let us see how Conjecture 1 would follow from Conjecture 2. Let k ≥ 2,
f (x)= (xk+1

−1)/(x−1) and suppose first that l = 2. Let x be large, put ε = 1/2
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and let p1, . . . , pt be such that P( f (pi ))< x1/2. Let s=π(x1/2). Then we can write

f (pi )= wi � , i = 1, . . . , t,

where thewi are square-free numbers with P(wi )≤ x1/2. As before, we can identify
the wi with vectors in Fs

2 obtained by putting 1 or 0 in the j -th component according
to whether the j -th prime divides wi or not. In this way, we get a linear application
from Ft

2 to Fs
2 whose nullspace has dimension at least t − s, where

t − s > c
x

log x
−π(x1/2) > c

x
log x

− x1/2,

and this last function certainly tends to infinity with x . This is when l = 2. Assume
now that l > 2. Then we write

f (pi )= wi u
l
i for all i = 1, . . . , t,

where the wi are l-th power free and P(wi ) ≤ x1/2. We attach to each wi an
element wi in the group (Z/ lZ)s where in the j -th component we put the exponent
of the j-th prime number in the factorization of wi . Note that Z/ lZ is not a field
unless l is a prime, and even if l is a prime, we only can multiply distinct primes pi

in attempts to create n such that σ(nk)=ml . Thus, we are only allowed to take sums
of distinct wi and get 0. There is a theorem (see [van Emde Boas and Kruyswijk
1967] and [Olson 1969, Theorem 1]) that says that if we have at least s(l − 1) such
distinct elements wi , we can find some of them whose sum is 0. Thus, we can
create at least bt/(s(l − 1))c distinct (in fact, even disjoint) subsets of the wi for
i = 1, . . . , t simply by finding some 0-sum among the first s(l−1) of them, another
0-sum among the next s(l − 1) of them and so on. Since

t
s(l − 1)

>
c

(l − 1)

√
x

log x
,

and the right-hand side is a function that tends to infinity with x , we get Conjecture 1.
We can ask similar questions simultaneously for φ(n) and σ(n), like making them

simultaneously squares, or cubes, etc. This has already been treated in [Freiberg
2012]. There it is shown that the number of n ≤ x such that both φ(n) and σ(n) are
perfect powers of an exponent l is less than c1lx1/ l/(log x)l+2, where c1> 0 is some
positive constant. Square values of the product φ(n)σ (n) have been investigated
in [Broughan et al. 2013]. In the next section, we present some computational
examples of n such that φ(n3)σ (n3)= � .

2. Computational examples

We wanted to find a positive integer n such that φ(n3)σ (n3) = � . For a prime p,
we have φ(p3)σ (p3) = p2(p4

− 1). So, we wrote p4
− 1 = wp � , where wp is

square-free for all p ≤ 1000. Then we searched for a subset S of cardinality t such
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that the set of prime factors appearing in the factorizations of wp for p ∈ S has
cardinality s < t . We found the subset

{2, 3, 5, 7, 13, 17, 23, 31, 41, 43, 47, 73, 83, 191, 239, 307, 443, 499, 829},

with t = 21 and s = 17. Thus, this set gives us 221−17
= 16 solutions. We wrote

down the {0, 1} matrix with 17 rows and 21 columns, which ends up having rank 17
over F2. The largest solution in the nullspace of this matrix is

n = 3× 7× 11× 13××17× 23× 43× 47× 83× 239× 443× 499× 829,

for which φ(n3)σ (n3)= m2, where

m = 230
×37
×510

×72
×11×134

×173
×23×29×37×41×53×61×83×157.

Despite our efforts, we could not find an integer n > 1 such that σ(n5)= � , and we
leave finding such an example as a challenge to the reader.
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On the cardinality of infinite symmetric groups
Matt Getzen

(Communicated by Kenneth S. Berenhaut)

A new proof is given that the symmetric group of any set X with three or more
elements, finite or infinite, has cardinality strictly greater than that of X . Use of
the axiom of choice is avoided throughout.

John Dawson and Paul Howard [1976] proved that the symmetric group of any
set X with three or more elements, finite or infinite, has cardinality strictly greater
than that of X . Significantly, their proof does not rely upon the axiom of choice.
However, it does rely upon Cantor’s theorem that the power set of any set X , finite
or infinite, has cardinality strictly greater than that of X . We give a new proof
of Dawson and Howard’s result that relies upon neither the axiom of choice nor
Cantor’s theorem.

Recall that Sym(X) is the symmetric group of X , that is the set of all bijections
between a set X and itself under function composition. More specifically, we call
each bijection between a set and itself a permutation, each element that is mapped
to itself by a permutation a fixed point, each pair of elements that are mapped to
one another by a permutation a transposition, and each permutation that is its own
inverse an involution.

The following results can easily be obtained and are listed without proof: (i)
every fixed point in a permutation is also a fixed point in that permutation’s inverse;
(ii) every transposition in a permutation is also a transposition in that permutation’s
inverse; (iii) every permutation is an involution if and only if it is made up entirely
of fixed points and transpositions; (iv) for all sets X , there exists an injection from X
into Sym(X); and (v) in the case of all sets X with three or more elements, Sym(X)
contains at least three involutions.

Theorem. For any set X with three or more elements, finite or infinite, Sym(X)
has cardinality strictly greater than that of X.

Proof. We proceed by contradiction. Assume that there does exist a bijection F
from X to Sym(X), and construct the permutation ? in Sym(X) as follows:

MSC2010: primary 03E99; secondary 20B30, 03E25.
Keywords: set theory, infinite symmetric groups, axiom of choice.
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(1) Let a, b, and c be three elements of X such that F(a), F(b), and F(c) are all
involutions in Sym(X) with

?(a)= b,

?(b)= c,

?(c)= a.

(2) For every other element i of X such that F(i) is an involution in Sym(X), but
i is not equal to a, b, or c, we have

?(i)= i.

(3) For each pair of permutations σ and µ in Sym(X) that are one another’s
inverses, and for each pair of elements s and m of X such that F(s)= σ and
F(m)=µ, if σ transposes s and m then we have ?(s)= s and ?(m)=m, but if σ
does not transpose s and m then we have ?(s)=m and ?(m)= s. In other words,

?(s)=
{

s if σ(s)= m and σ(m)= s,
m if σ(s) 6= m or σ(m) 6= s,

?(m)=
{

m if σ(s)= m and σ(m)= s,
s if σ(s) 6= m or σ(m) 6= s.

Note that ? is a permutation of X and therefore an element in Sym(X). Note also
that ? is not an involution and therefore must have a distinct inverse, call it ?−1.
Thus, some element of X must be the preimage of ? under F . Let n denote just
such an element of X . Additionally, some element of X other than n must be
the preimage of ?−1 under F . Let w denote just such an element of X . That is,
F(n)= ? and F(w)= ?−1. As ? and ?−1 are of the same general form as σ and µ
above, it now follows that

?(n)=
{

n if ?(n)= w and ?(w)= n,
w if ?(n) 6= w or ?(w) 6= n,

?(w)=

{
w if ?(n)= w and ?(w)= n,
n if ?(n) 6= w or ?(w) 6= n.

In other words, assuming that the bijection F does in fact exist, n and w will be
transposed with one another in ? if and only if n and w are not transposed with one
another in ?, a contradiction! Therefore no such bijection exists between X and
Sym(X). Conversely, as we already know that there does exist an injection from X
into Sym(X), we conclude that Sym(X) must have cardinality strictly greater than
that of X . �
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Through showing that the power set of any set X , finite or infinite, has cardinality
strictly greater than that of X , Georg Cantor revolutionized mathematics and inspired
the field of set theory. It is interesting to wonder how different the world might
have been if mathematicians’ first forays into the higher realms of the infinite had
been inspired not by power sets, but by symmetric groups.
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Adjacency matrices of zero-divisor graphs of
integers modulo n

Matthew Young

(Communicated by Kenneth S. Berenhaut)

We study adjacency matrices of zero-divisor graphs of Zn for various n. We find
their determinant and rank for all n, develop a method for finding nonzero eigen-
values, and use it to find all eigenvalues for the case nD p3, where p is a prime
number. We also find upper and lower bounds for the largest eigenvalue for all n.

1. Introduction

Let R be a commutative ring with a unity. The notion of a zero-divisor graph of R

was pioneered by Beck [1988]. It was later modified by Anderson and Livingston
[1999] to be the following.

Definition 1.1. The zero-divisor graph �.R/ of the ring R is a graph with the set
of vertices V .R/ being the set of zero-divisors of R and edges connecting two
vertices x;y 2R if and only if x �y D 0.

To each (finite) graph � , one can associate the adjacency matrix A.�/ that is a
square jV .�/j � jV .�/j matrix with entries aij D 1, if vi is connected with vj , and
zero otherwise. In this paper we study the adjacency matrices of zero-divisor graphs
�n D �.Zn/ of rings Zn of integers modulo n, where n is not prime. We note that
the adjacency matrices of zero-divisor graphs of Zp �Zp , Zp Œi �, and Zp Œi ��Zp Œi �,
where p is a prime number and i2 D�1, were studied in [Sharma et al. 2011].

2. Properties of adjacency matrices of �n

Let nD p
t1

1
� � �p

ts
s , where p1; : : : ;ps are distinct primes. For any divisor d of n,

we define S.d/D fk 2 Zn j gcd.k; n/D dg. If d D p
a1

1
� � �p

as
s , we will also write

S.d/D S.a1; : : : ; as/. We can easily compute the size of the sets S.d/.

Proposition 2.1. For a divisor d of n, the cardinality of the set S.d/ is equal to
jS.d/j D �.n=d/, where � denotes Euler’s totient function.

MSC2010: 05C50, 13M99.
Keywords: adjacency matrix, zero-divisor graph.
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Proof. A positive integer m less than n is contained in the set S.d/ if and only
if gcd.n;m/ D d , which happens if and only if m D Omd and gcd.n=d; Om/ D 1.
Thus, there is a one-to-one correspondence between the element m of S.d/ and
integers Om, where 0< Om< n=d and gcd.n=d; Om/D 1. �
Example 2.2. We illustrate Proposition 2.1 with the zero-divisor graph �6 and its
adjacency matrix:

```````̀

   
   

  rr
r

2

4

3

A.�6/D

240 1 0

1 0 1

0 1 0

35 ; S.2/D f2; 4g; jS.2/j D �.6=2/D 2:

Theorem 2.3. If n> 4, then det A.�n/D 0.

Proof. Write n D p
t1

1
p

t2

2
� � �p

ts
s as above. For i D 1; : : : ; s, if pi > 2, then

jS.n=pi/j D pi � 1 > 1. If a vertex v of �n corresponding to some divisor d

of n is adjacent to one of the elements of S.n=pi/, then d � .n=pi/D 0 .mod n/.
Thus the product of d with any multiple of n=pi is also zero, and v is adjacent to
every element of S.n=pi/. So A.�n/ will have repeated rows corresponding to
each element of S.n=pi/. Since jS.n=pi/j> 1, we conclude that det A.�n/D 0.

If nD2t , we must have t > 2. Then 6 2 S.2/, and jS.2/j> 1. So A.�n/ will
have repeated rows corresponding to 2 and 6, and det A.�n/D 0. �

The sets S.d/ for all divisors d of a given integer n are an equitable partition of
the set of vertices V .�n/. That is, any two vertices in S.di/ have the same number of
neighbors in S.dj / for all divisors di ; dj of n. This allows us to define a projection
graph ��n as a graph with vertices S.d/ for all d jn and edges connecting S.di/

with S.dj / if every element in S.di/ is connected with every element in S.dj / in �n.

Example 2.4. The projection graph ��15: rrS.3/ S.5/

Proposition 2.5. The number of vertices in the graph ��n, where nD
sQ

iD1

p
t1

i , is

jV .��n/j D
sQ

iD1

.ti C 1/� 2:

Proof. The vertices of ��n are the sets S.d/ that are in one-to-one correspondence
with the divisors d of n. If the prime decomposition for n is nD

Qs
iD1 p

ti

i and the
prime decomposition for a divisor d of n is d D

Qs
iD1 p

ai

i , then we have ti C 1
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choices for the exponent ai of pi in d . The choice of all ai D 0 leads to d D 1, and
the choice of each ai D ti leads to d D n, neither of which are proper divisors of n.
So the number of proper divisors d is

Qs
iD1.ti C 1/� 2. �

Let A.�.�n// denote the adjacency matrix of �.�n/. We will also consider
the weighted adjacency matrix A.�.�n//, where aij D jS.dj /j whenever S.di/ is
connected with S.dj /. In the above example,

A.�.�15//D

�
0 1

1 0

�
; A.�.�15//D

�
0 2

4 0

�
:

The following theorem relates the ranks of the various adjacency matrices.

Theorem 2.6. Let nD
Qs

iD1 p
ti

i . Then,

rank A.�n/D rank A.��n/D rankA.��n/D

sY
iD1

.ti C 1/� 2:

Proof. Recall that vertices in V .��n/ correspond to sets S.d/, where d jn. Since
each element of S.d/ contributes exactly the same row to the adjacency matrix
A.�n/, it follows that rank A.�n/� jV .��n/j. On the other hand, rank A.��n/�

rank A.�n/ since we just remove repeated rows and columns to get A.��n/

from A.�n/. Obviously, rank A.��n/ D rankA.��n/. So it is enough to show
rank A.��n/D jV .��n/j.

Let nD p
t1

1
p

t2

2
� � �p

ts
s . Since the rank of the matrix does not change with permu-

tations of rows, assume that the rows of A.��n/ correspond to the S.d/, with d jn,
in the following order: S.p1/, S.n=p1/, S.p2/, S.n=p2/, : : : , S.ps/, S.n=ps/,
S.pipj / with i and j not necessarily distinct, S.n=.pipj // for all possible pairs
of i and j , S.pipj pk/, S.n=.pipj pk// for all possible triples i; j ; k with i; j ; k

not necessarily distinct, etc.
We will compute the determinant of A.��n/ and, by showing that it is not zero,

will prove that jV .��n/j rows of A.��n/ are linearly independent.
The first row corresponding to S.p1/ has 1 in the second column corresponding

to S.n=p1/ and the rest of the entries are 0. Expand the determinant of A.��n/

along the first row to get

det A.��n/D� det A1;2;

where � det A1;2 is the cofactor of the .1; 2/ entry of A.��n/. Note that the first
column of A1;2 has 1 in the first row and the rest of the entries are 0. Expand
det A1;2 along the first column to get det A1;2 D det A.2/, where A.2/ is a matrix
obtained from A.��n/ by deleting the first two rows and columns. So, we can
conclude that det A.��n/D� det A.2/.
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We repeat this procedure for all S.pi/ and S.n=pi/ to get

det A.��n/D .�1/s det A.2s/;

where A.2s/ is obtained from A.��n/ by deleting the first 2s rows and columns.
Now consider S.pipj /. In ��n, the vertex corresponding to S.pipj / is adjacent

to vertices of S.n=pi/, S.n=pj / and S.n=.pipj //. However, in the matrix A.2s/,
the row corresponding to S.pipj / will have only one 1 in the column corresponding
to S.n=.pipj // since the columns corresponding to S.n=pi/ and S.n=pj / were
deleted. So we can repeat the procedure of expanding the determinant along the
rows and columns corresponding to S.pi/ to expand the determinant along the
rows and then the columns corresponding to S.n=.pipj //.

Then continue to S.n=.pipj pk// in a similar fashion. In the end we will be left
either with a 2� 2 matrix of determinant �1, or a 1� 1 matrix of determinant 1.
So det A.��n/D .�1/m, where m is the number of distinct divisors d of n such
that d <

p
n. It follows that rank A.��n/ D jV .��n/j. The result follows from

Proposition 2.5. �

Corollary 2.7. We have det A.��n/D .�1/m, where mD b.rank A/=2c.

Proof. This follows from the proof of Theorem 2.6. �

Corollary 2.8. We have detA.��n/D.�1/m
Q

d jn jS.d/j, where mDb.rankA/=2c.

Proof. This result follows from the previous corollary and the fact that A.��n/ is
obtained from A.��n/ by multiplying the j -th column by jS.dj /j. �

Corollary 2.9. The multiplicity of the eigenvalue 0 of A.�n/ is

n��.n/�

sY
iD1

.ti C 1/C 2:

Proof. The multiplicity of the eigenvalue 0 of A.�n/ is jV .�n/j� jV .�.�n//j. The
number of vertices of �n is the number of positive integers less than n and not
relatively prime to n, which is n��.n/. The number of vertices of ��n is

sY
iD1

.ti C 1/� 2: �

Part of the following result is known, but we will include it for the convenience
of the reader.

Proposition 2.10. A nonzero � 2 R is an eigenvalue of A.�n/ if and only if it is an
eigenvalue of A.�.�n//.
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Thus, to find all the nonzero eigenvalues of A.�n/, it is enough to find all
the eigenvalues of A.�.�n//. The proposition makes it especially easy when n

has few factors. When n D pq is a product of distinct primes, �n is a bipartite
graph. It is known (and easy to see) that the nonzero eigenvalues of A.�pq/

are ˙
p
.p� 1/.q� 1/ with multiplicity 1. When nD p2, the matrix A.�n/ is a

1� 1 matrix with p� 1 as a sole entry and hence the eigenvalue. So we consider
the following two examples.

Example 2.11. Consider �p3 . The matrix A.�p3/ takes the form

AD
�

0 p� 1

p.p� 1/ p� 1

�
:

Its characteristic polynomial is p.�/D�2�.p�1/��p.p�1/2, and the eigenvalues
are �1;2 D

1
2
.p� 1/.1˙

p
1C 4p/.

Example 2.12. Consider �p2q , where p and q are distinct primes. In this case,

A.�p2q/D

2664
0 p� 1 0 0

.p� 1/.q� 1/ p� 1 q� 1 0

0 p� 1 0 p2�p

0 0 q� 1 0

3775 :
The characteristic polynomial of this matrix is

p.�/D�4
�.p�1/�3

�2p.p�1/.q�1/�2
Cp2.p�1/.q�1/�Cp.p�1/2.q�1/3:

The roots can be found by the formulas for the roots of the fourth degree polynomial,
but are too cumbersome to include here.

3. Estimates on eigenvalues

Since the increase in the number of factors of n leads to a rapid increase of the size
of the adjacency matrix and the degree of the characteristic polynomial, one can
use some known results to approximate the nonzero eigenvalues of A.�n/. Since
A.�n/ is symmetric, all its eigenvalues are real numbers. We will number them
from largest to smallest �1 � �2 � � � � � �k .

The degree of a vertex of a graph is the number of the edges incident to this
vertex. Given a (finite) graph � , let maxdeg.�/Dmaxfdeg v j v 2 V .�/g and

avedeg.�/D

P
v2V .�/ deg v

jV .�/j
:

It is known (see [Brouwer and Haemers 2012, Proposition 3.1.2]) that

avedeg.�/� �1 �maxdeg.�/:
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We next compute maxdeg.�n/ and avedeg.�n/.

Proposition 3.1. Let nD p
t1

1
� � �p

ts
s with p1 < p2 < � � �< ps . Then

maxdeg.�n/D n=p1� 1:

Proof. For a divisor d of n, denote the corresponding vertex in �n by vd . The
vertex vd is connected to a vertex vc corresponding to a divisor c of n by an edge
in �n if and only if dc � 0 .mod n/. This happens if and only if c is a multiple of
n=d (and is less than n). There are d � 1 such multiples, and so deg.vd /D d � 1.
Then the vertex with the largest degree will correspond to the largest divisor of n,
which is n=p1. Since for any d jn, the degrees of all vertices in S.d/ are the same
and the sets S.d/ partition V .�n/, maxdeg.�n/D n=p1� 1. �

Proposition 3.2. The average degree of the graph �n is

avedeg.�n/D

P
d jn;d¤n �.n=d/.d � 1/

n��.n/� 1
:

Proof. To compute the average degree, we take the degree d�1 of a vertex in S.d/,
multiply by the cardinality �.n=d/ of the set S.d/, sum these products over all
proper divisors d of n, and divide by the total number of vertices n��.n/� 1. �

The estimate of the eigenvalue �1 using the average degree of the graph is
inconvenient to use. So we use the results on interlacing and on bipartite subgraphs
of �n for alternative estimates that are easier to use. Let � be any graph and
� an induced subgraph, that is, a subgraph obtained from � by deleting some
vertices and all edges incident to the deleted vertices. The following result is known
(see [Brouwer and Haemers 2012, Proposition 3.2.1] or [Godsil and Royle 2001,
Theorem 9.1.1]). Let �1 � �2 � � � � � �k be eigenvalues of A.�/ and �1 � � � � � �l

be the eigenvalues of A.�/; then �i � �i � �k�lCi for i D 1; 2; : : : ; l . With the
interlacing result in mind, we prove the following proposition.

Proposition 3.3. Let �1 be the largest eigenvalue of A.�n/:

(1) If n is a product containing two or more distinct primes, then �1 �
p
�.n/.

(2) If nD pt , then �1 � pdt=2e� 1.

Proof. Let n D p
t1

1
p

t2

2
� � �p

ts
s . Consider the bipartite subgraph of �n induced by

the vertices in the sets S.p
t1

1
/ and S.n=p

t1

1
/. The largest eigenvalue �1 of this

subgraph is

�1 D

s
jS.p

t1

1
/j

ˇ̌̌̌
S

�
n

p
t1

1

�ˇ̌̌̌
D

s
�

�
n

p
t1

1

�
�.p

t1

1
/D

p
�.n/:

The interlacing results give �1 � �1.



ADJACENCY MATRICES OF ZERO-DIVISOR GRAPHS OF INTEGERS MODULO n 759

To prove the second statement, notice that all vertices of S.pi/ are connected to
all the vertices of S.pj /whenever iCj � t , 1� i; j � t�1. In the case t is even, �n

contains a complete subgraph induced by vertices in the sets S.pt=2/, : : : , S.pt�1/.
The largest eigenvalue �1 of this complete subgraph equals the number of vertices in
the subgraph, which we compute next. By Proposition 2.1, jS.d/jD�.n=d/, so the
number of vertices in the complete subgraph will be �.p/C�.p2/C� � �C�.pt=2/.
This can be expressed as .p� 1/Cp.p� 1/Cp2.p� 1/C � � �Cpt=2�1.p� 1/,
which after summing the arithmetic progression becomes pt=2 � 1D �1. In the
case of t odd, �n contains a complete subgraph induced by vertices in the sets
S.pdt=2e/, : : : , S.pk�1/. Using Proposition 2.1 and summing up the number of
vertices as in case of t even gives pbt=2c D �1. �

We can use the above estimates on the largest eigenvalue �1 of A.�n/ to prove
that there are only finitely many graphs with small eigenvalues.

Theorem 3.4. For any positive integer k, there exists only a finite number of
integers n such that all the eigenvalues of A.�n/ are less or equal than k.

Proof. We will use the estimates �1 on �1 obtained in Proposition 3.3. If, for a given
k>0, we have �1�k, then�1�k. We will show�1�k is only possible for a finite
number of integers n. Suppose nD pt . Then pt=2� 1 must be less than or equal
to k. Thus t � 2 logp.kC1/, and there are only finitely many such positive integers.

Now suppose n is divisible by at least two distinct primes, say nD p
t1

1
� � �p

ts
s .

The Euler function on n can be computed as

�.n/D �.p
t1

1
/ � � ��.pts

s /D p
t1�1
1

.p1� 1/ � � �pts�1
s .ps � 1/:

Since there are only finitely many primes less than kC 1, and only a finite number
of possible exponents t1; : : : ; ts that satisfy 0< t1; : : : ; ts � 2 log2 k, there are only
finitely many positive integers n such that �.n/� k2. �

Example 3.5. We will find all positive integers n such that all the eigenvalues of
A.�n/ are less than or equal to k D 2. Suppose nD pt . If t is even, then we must
have pt=2�1� 2. The only such possibilities are pD 2, t D 2 and pD 3, t D 2. If t

is odd, we must have pbt=2c � 2. This happens only if pD 2, t D 3. If n is divisible
by at least two distinct primes, we must have �.n/� 4, and computations show that
this is satisfied only for n D 6; 10; 12. For n D 4; 6; 8; 9; 10; 12, we compute the
eigenvalues of A.�n/ and see that for all above n except nD 12, the eigenvalues
are less or equal than 2. Thus, the adjacency matrices of �4, �6, �8, �9 and �10

have all their eigenvalues less or equal than 2.

Example 3.6. For k D 3, the graphs all of whose eigenvalues are less than or equal
to 3, in addition to the graphs of Example 3.5, are �12, �14 and �15. For k D 4,
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the new graphs (in addition to the ones with eigenvalues less or equal to 3) are �16,
�21, �22, �25, �26 and �34.

As we were considering the above examples, we noticed that for adjacency
matrices of even rank, precisely half of the nonzero eigenvalues were positive and
half negative. For adjacency matrices of odd rank, we always had one more positive
eigenvalue than negative. We investigate this further.

The independence number ˛.�/ of a graph � is the size of the largest set of pair-
wise nonadjacent vertices. Let r denote the number of eigenvalues of a (weighted)
adjacency matrix A.�/ of a graph � , rC.A/ the number of positive eigenvalues,
and r�.A/ the number of negative eigenvalues. It is known (see [Brouwer and
Haemers 2012, Theorem 3.5.4]) that ˛.�/� r � rC.A/ and ˛.�/� r � r�.A/. We
use this fact to show the following result.

Theorem 3.7. Suppose the rank of A.�n/ is r . Then A.�n/ has dr=2e positive
eigenvalues and br=2c negative eigenvalues.

Proof. We first note that it is enough to prove the theorem for A.��n/ since
A.�n/ and A.��n/ have the same nonzero eigenvalues. We start by computing the
independence number of ��n. Recall that the vertices of ��n are the sets S.d/,
for all divisors d of n, and S.d1/ is connected to S.d2/ by an edge if n divides the
product d1d2. So for all d �

p
n, the vertices S.d/ are pairwise not connected. It

is easy to see that all the vertices of ��n can be split into pairs S.d/ and S.n=d/,
with S.

p
n/ without a pair if

p
n is a divisor of n. So the set of S.d/ with d jn and

d <
p

n is the maximal nonadjacent set of cardinality br=2c, where r denotes the
number of vertices of ��n. The number of vertices of ��n is equal to the rank of
A.��n/ by Theorem 2.6. So the independence number ˛.��n/ is equal to br=2c.

For r even, we have r=2� r � rC.A/ and r=2� r � r�.A/, which implies the
statement of the theorem. For r odd, it remains to show that we have one more
positive eigenvalue than negative. By Corollary 2.8, we know that the sign of
detA.��n/ is given by .�1/br=2c. On the other hand, detA.��n/ is equal to the
product of eigenvalues. So the parity of the number of negative eigenvalues must
determine the sign of .�1/br=2c. Since br=2c � r � r�.A/ and br=2c � r � rC.A/,
we must have r�.A/D br=2c. �
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Expected maximum vertex valence
in pairs of polygonal triangulations

Timothy Chu and Sean Cleary

(Communicated by Kenneth S. Berenhaut)

Edge-flip distance between triangulations of polygons is equivalent to rotation
distance between rooted binary trees. Both distances measure the extent of
similarity of configurations. There are no known polynomial-time algorithms for
computing edge-flip distance. The best known exact universal upper bounds on
rotation distance arise from measuring the maximum total valence of a vertex in
the corresponding triangulation pair obtained by a duality construction. Here we
describe some properties of the distribution of maximum vertex valences of pairs
of triangulations related to such upper bounds.

1. Introduction

Binary trees are widely used in a broad spectrum of computational settings. Binary
search trees underlie many modern structures devoted to efficient searching, for
example. Shapes of binary trees affect the performance of searches, and there
have been a wide variety of approaches to ensure such efficiency. Natural dual
structures to rooted ordered binary trees are triangulations of polygons with a
marked edge or vertex. Rotations in binary trees correspond to edge-flip moves
in such triangulations of polygons, so the rotation distance between two rooted
ordered binary trees corresponds exactly to the edge-flip distance between the two
corresponding triangulations of marked polygons.

Properties of rotations have been widely studied; see Knuth [1973] for background
and fundamental algorithms. There is no known polynomial-time algorithm for
computing rotation (or equivalently, edge-flip) distance, though there are a variety
of efficient approximation algorithms [Baril and Pallo 2006; Cleary and St. John
2010; 2009]. A straightforward argument of Culik and Wood [1982] shows that for
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Keywords: random binary trees.
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N

A B
C

←→ N

A
B C

Figure 1. Rotation at a node N . Right rotation at N transforms
the left tree to the right one, and left rotation at N is the inverse
operation which transforms the right tree to the left one. A, B, and
C represent leaves or subtrees, and the node N could be at the root
or any other position in the tree.

any two trees with n internal nodes, there is always a path of length at most 2n− 2.
Sleator, Tarjan and Thurston [Sleator et al. 1988] showed that the distance is never
more than 2n−6 using an argument described below based upon maximum summed
vertex valence in the pair of triangulations, and furthermore that for all very large n,
that bound is achieved. Recently, Pournin [2014] showed that, in fact, the upper
bound is achieved for all n ≥ 11.

A rotation move in a rooted binary tree relative to a fixed node N is a promotion
of one grandchild node of N to a child node of N , a demotion of a child of N to a
grandchild of N , and a switch of parent node for one grandchild of N , preserving
order. This occurs in the vicinity of a single node, as pictured in Figure 1. The
corresponding edge-flip move in a triangulation occurs in a single quadrilateral
formed by two triangles which share an edge. The common edge between two
adjacent triangles is exchanged for the opposite diagonal in that quadrilateral, as
shown in Figure 2. If the edge-flip distance between two triangulations of a regular
polygon is k, that means that there is a sequence of k edge flips transforming the
first triangulation to the second and there is no shorter sequence accomplishing the
same transformation.

Q

Figure 2. An edge flip across a quadrilateral Q. The four peripheral
quadrilaterals denote (possibly empty) triangulated polygons whose
triangulations are unchanged by the edge flip in quadrilateral Q.
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Figure 3. A triangulation of the octagon and the corresponding
dual tree, with sides numbered to match the leaves. Pulling up on
the edge from the marked side of the octagon (marked as leaf 0)
gives the tree on the right.

2. Triangular subdivisions of polygons

Here, by a triangulation of size n, we mean a triangulation of n− 1 interior edges
subdividing a regular (n+2)-gon, where we choose to label vertices from 0 to n+1.
Such a triangulation is dual to a tree with n+ 1 leaves and n internal nodes, with
leaves labeled from 0 to n. See Figure 3.

The number of triangulations of size n is the n-th Catalan number, Cn , and since
Cn grows exponentially at rate of 4nn−3/2, the number of pairs of trees of size n
grows on the order of 16nn−3. Because of the rapid growth of the number of tree
pairs (or equivalently, triangulation pairs), computing these quantities exhaustively
via complete enumeration is not feasible beyond small n. To explore this expo-
nentially growing space, we use sampling techniques to characterize the expected
behavior of randomly selected triangulation pairs. We experiment computationally
by choosing pairs of triangulations of size n uniformly at random, computing the rel-
evant vertex sums and tabulating the results. As in [Chu and Cleary 2013], we use the
linear-time random tree-generation procedure of Rémy [1985] to generate efficiently
ordered trees uniformly at random, rather than considering the Yule distribution on
tree pairs studied by Cleary, Passaro and Toruno [Cleary et al. 2015]. The quantities
studied here are the maximum valence sums of vertices, described in the next section.

3. Vertex valence sums

Vertex valence sums play a role in the upper bounds for edge-flip distance. Given
a pair of triangulations S and T , we count the number of interior edges si and ti
incident to each vertex i in the polygon and form the vertex valence sum for vertex i
as si + ti . See Figure 4. The bound of 2n− 6 for n ≥ 11 from [Sleator et al. 1988]
is obtained by the following argument. There are a total of n − 1 edges in each
triangulation, each with 2 endpoints, giving 4n− 4 total endpoints of interior edges
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Figure 4. Two superimposed triangulations, one drawn in dashed
red and one in solid blue. The vertices are numbered and the
total valences are given in purple for each vertex. For example,
the total valence of vertex 0 is five, with 3 red edges and 2 blue
edges incident there. In this example, the summed vertex valences
range from a low of 0 (at vertex 2, indicating a common peripheral
triangle) to a high of 8, which occurs at vertex 3.

for the pair of triangulations. Each endpoint occurs at one of the n + 2 vertices,
so the average valence of a vertex is merely (4n − 4)/(n + 2) = 4− 12/(n + 2).
For n ≥ 11, this gives average valence larger than 3 (approaching 4 in the limit
of large n). Since the summed valences can only be integers, if the sum is more
than 3, there must be a vertex j of total valence 4 or more. We consider a path of
triangulations from S to T by way of a fan triangulation F j , which is the fan from
vertex j (that is, a triangulation of the polygon where every triangle has an edge
incident on vertex j). Transforming S to F j takes exactly n− 1− s j edge flips, as

0
1

2

3

4

5
6

7

8

9

10

11

Figure 5. Two superimposed zigzag triangulations, one drawn in
dotted blue and one in dashed red, with common segments in solid
purple. Each red dashed edge can be directly flipped to the corre-
sponding blue one, giving an edge-flip distance of 4 between the two
triangulations, despite the vertex valence sums commonly being 4.
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there is always an edge flip which increases the valence of vertex j by one and
there are exactly that many edges to flip. Similarly, from T to F j there is a path
of length n− 1− t j and such a path is minimal. So there is a path from S to F j

to T of length no more than 2n− 2− s j − t j , giving the 2n− 6 bound in the case
that the maximum vertex valence s j + t j is exactly 4. In cases where the maximal
vertex valence is higher, the upper bound is correspondingly decreased.

We note that for a triangulation pair, the vertex sums need to be quite evenly
distributed around the polygon to have a chance of being maximally distant for that
size. The average valence sum is between 3 and 4 for n ≥ 11 and no maximally dis-
tant pair of triangulations can have any vertex sums of 5 or larger. Note that having a
maximal vertex sum of 4 is necessary but not sufficient for being a maximally distant
triangulation pair, as can be easily seen by considering a zigzag triangulation of a
regular n-gon beginning at vertex 0 and a reflected zigzag triangulation beginning
at vertex 2, as shown in Figure 5. The maximal vertex sum is 4 but the edge-flip
distance between these two is less than n/2 (flipping the red edges to the blue edges
in the figure), far less than that of the maximum possible. There are many other
configurations with maximal vertex 4 which are not remotely close to the 2n− 6
upper bound as well. Nevertheless, if there is even a single vertex with summed
valence 5 or more, the two triangulations cannot be at the maximal 2n− 6 distance.

4. Discussion

There is an obviously increasing relationship between triangulation size and expected
maximum observed summed valence across the vertices. However, the growth rate
appears slow, as the relationship appears to be either straightening or slightly
convex downward in log-scaled Figure 6, where a straight line would indicate
logarithmic growth. The experimental evidence suggests that the relationship is at
most logarithmic. Figure 7 shows an example of a distribution of maximum summed
valence for a particular size, n = 950, showing the shape of typical distributions
that arise in these computations.

A combing triangulation with respect to v is a triangulation where every edge
is incident with the vertex v. Using the argument of [Sleator et al. 1988], an
upper bound on rotation distance from S to T comes from the path which first flips
successively edges in S to be incident with v, a vertex of maximum summed valence,
to obtain the combing triangulation for v. Then the path goes from that combing
triangulation to T , successively flipping to edges in T which are not incident on v.
At each step of the resulting path, there is at least one edge in S which can be
flipped to be incident to v or one edge incident to v which can be flipped to an edge
in T . The resulting length of the path is the number of edges in S and T which are
not incident on v. Combinatorial arguments give that there is always a vertex of
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50 100 500 1000 5000 1´ 10
4

5

10

15
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Figure 6. Maximum valence increases with triangulation size.
Here we show average maximum summed vertex valence ver-
tically, against the size of triangulations plotted horizontally on a
logarithmic scale. For each size, the number of triangulation pairs
sample to estimate the average maximum vertex valence ranges
from 100,000 to 10 million depending upon size.

summed degree 4, giving the universal (for n ≥ 11) bound of 2n− 6. For larger
summed valence k for a particular pair of trees, the same arguments show that an
upper bound for distance for that pair is 2n−k−2. The experimental data in Table 1
shows that though it is common for randomly selected tree pairs to have higher
summed valence than the minimum of 4, it is often not markedly higher than 4. In
the case of randomly selected tree pairs, we know from the asymptotic analysis of
Cleary, Rechnitzer and Wong [Cleary et al. 2013] that for large n, two randomly
selected triangulations of size n are likely to have about (16/π − 5)n ∼= 0.093n
common edges. Thus, the upper bounds for rotation distance arising from common
edges, edges which are a single rotation from a common edge, and from common
components of small size are generally much stronger than those upper bounds
arising from the path through a fan on a vertex of maximum summed valence.

15 20 25 30

50 000

100 000

150 000

200 000

Figure 7. An example of the distribution of maximum vertex va-
lence for one million triangulation pairs, for size 950, with average
17.8 and standard deviation 2.26.
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triangulation size average max vertex sum σ max vertex sum

15 8.03203 1.55756
20 8.96568 1.70762
30 10.1791 1.87928
40 10.9805 1.97628
50 11.5674 2.03815
75 12.5759 2.12531

100 13.2461 2.16791
200 14.7589 2.23289
500 16.5983 2.26295

1000 17.9277 2.27465
2000 19.184 2.24797
3000 19.9369 2.2556
5000 20.8352 2.24551
7500 21.5392 2.23559

10000 22.0527 2.2108
12000 22.3505 2.20521
15000 22.7512 2.20811

Table 1. Observed averages and standard deviations of maximum
vertex sums via experiments involving 10 million (n≤30), 1 million
(n < 1000) or 100,000 (for n ≥ 10000) runs depending upon the
triangulation sizes.

n fraction with max vertex sum 4

11 0.0050032
12 0.0015352
13 0.0004462
14 0.0001232
15 0.000035
16 8.1 · 10−6

17 2.4 · 10−6

18 5.0 · 10−7

19 1.0 · 10−7

20+ none observed

Table 2. Fractions of triangulations with maximum vertex sum
exactly 4. Hundreds of millions were considered for n≥ 20, finding
none selected at random.
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The work of Pournin [2014] constructs carefully very specific examples of
triangulations which are at maximal distance 2n− 6 for all n ≥ 11. One question
is how common such maximally distant pairs are. The experimental evidence
in Table 2 shows that examples with this extremal behavior are quite rare. In the
language of associahedra, used in [Pournin 2014], pairs of triangulations at maximal
2n− 6 distance correspond to antipodal points, which have many long geodesics
between them, with typically many of those passing through the distinguished
“fan” triangulations. But from the analysis here, it appears quite rare that a pair of
triangulations will have a geodesic which passes through a fan point, indicating
further the rarity of these extremal antipodal pairs.
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Generalizations of Pappus’ centroid theorem
via Stokes’ theorem

Cole Adams, Stephen Lovett and Matthew McMillan

(Communicated by Kenneth S. Berenhaut)

This paper provides a novel proof of a generalization of Pappus’ centroid theorem
on n-dimensional tubes using Stokes’ theorem on manifolds.

1. Introduction

The (second) Pappus centroid theorem or the Pappus–Guldin theorem states that
the volume of a solid of revolution generated by rotating a plane region R with
piecewise-smooth boundary about an axis L is 2�r Area.R/, where r is the distance
from the centroid of R to L. This result generalizes considerably to the following
main theorem.

Theorem 1.1 (main theorem). Let C be a simple, regular, smooth curve in Rn. Let
R be a region in Rn�1 whose boundary is an embedding of the .n� 2/-dimensional
sphere Sn�2. Let W be a region in Rn whose boundary is a generalized tube
around C such that the cross-section normal to C of W at each point P of C is the
region R with centroid at P . Assuming the cross-section R rotates smoothly as it

“travels” along C , then

Voln.W/D length.C /Voln�1.R/:

The Pappus centroid theorem follows from this main theorem by taking nD 3, C

to be a circle in R3, and R to remain fixed with respect to the principal normal to C in
the normal plane. This theorem recently was proved by Gray, Miquel, and Domingo-
Juan in [Domingo-Juan and Miquel 2004] and [Gray and Miquel 2000] using parallel
transport. However, Goodman and Goodman [1969] proved this theorem in a special
case for R3 using elementary methods related to Stokes’ theorem. This article proves
the main theorem in full generality using Stokes’ theorem on manifolds. In this

MSC2010: 53A07, 58C35.
Keywords: Stokes’ theorem on manifolds, volume, manifolds, tubes.
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regard, we can consider the proof elementary compared to those in [Domingo-Juan
and Miquel 2004] and [Gray and Miquel 2000].

Before proving the main theorem in full generality, we sketch the proof of it
in R3 found in [Goodman and Goodman 1969], leaving the reader to consult that
work for details. The description of the generalized tube and the method involving
the divergence theorem motivate the situation for arbitrary n.

2. Generalized tubes in dimension 3

Definition 2.1. Let C be a simple, regular, smooth space curve and let R be a
compact planar region with one boundary component @R, a piecewise smooth
simple closed curve. Select a marked point P in R. C has a normal plane at each
point. Let W be a region in R3 such that the intersection of W with the normal
plane to C at any point is isometric to the region R, with the corresponding marked
point P lying on the curve C . We assume R rotates smoothly in the normal plane
to C as it travels along C . Such a region W is called a generalized tube along C

with cross-section R and center P .

This definition allows for rotational freedom of R around the marked point P

in the normal planes to C . However, this rotational varies smoothly. We may
also describe the generalized tube as a fiber-bundle over C with fiber R, that is a
subbundle of the normal bundle over C .

Figure 1 depicts two generalized tubes around a portion of a helix. More precisely,
the figure depicts the tube boundary excluding the “caps”, or cross-sections at the
end points of C . The planar curve shows its generating region R where the marked
point of R is the origin.

Let S be the boundary @W of a generalized tube excluding the caps. (If C

is a closed curve, then @W has no caps.) Suppose that ˛ W Œ0; `� ! R3 gives
a parametrization by arclength of C . Also suppose that Ě W Œ0; c� ! R2 is a
parametrization of @R placing the marked point P at the origin. We write Ě.u/D
.x.u/;y.u// for the coordinate functions. A parametrization for S is

EX .s;u/D Ę.s/C
�
cos.�.s//x.u/� sin.�.s//y.u/

�
EP .s/

C
�
sin.�.s//x.u/C cos.�.s//y.u/

�
EB.s/ (1)

for some function �.s/, where EP .s/ and EB.s/ are respectively the principal normal
and binormal vector functions to Ę.s/.

Recall that . ET .s/; EP .s/; EB.s//, where ET , EP , and EB are the usual tangent, princi-
pal normal, and binormal vectors to Ę.s/, is called the Frenet frame to Ę.s/. The
function �.s/ determines the rotation of the region R around the origin with respect
to the Frenet frame. The stipulation that R rotates smoothly as it moves along C

implies that �.s/ is a smooth function.
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Figure 1. A generalized tube with its generating region.

Figure 1, middle, depicts a generalized tube where the x-axis in the depiction of
R always lies along the principal normal vector of Ę.s/, and Figure 1, right, depicts
a generalized tube with the same cross-section region but having some rotation with
respect to the basis . EP ; EB/ in the normal plane. For brevity, we write

EX D Ę C .x cos � �y sin �/ EP C .x sin � Cy cos �/ EB;

where functional dependence is understood from (1).

Theorem 2.2 [Goodman and Goodman 1969, Corollary 2]. The volume of a gener-
alized tube as described in Definition 2.1 is V D length.C /Area.R/.

The Goodmans’ method to calculate the volume uses the fact that the position
vector field Er.x;y; z/D .x;y; z/ has divergence equal to 3 everywhere. So, using
the notation defined above, the volume of the generalized tube is

Vol.W/D
1

3

•
W

3 dV D
1

3

•
W
r � Er dV D

1

3

“
@W
Er � d EA;

where d EA is the outward pointing surface element. Note that @W consists of the
tube’s outward surface S, parametrized by EX , and the end caps (if C is not a closed
curve). Over S, d EA is given by d EAD . EXu �

EXs/ du ds with .u; v/ 2 Œ0; c�� Œ0; `�,
while on the end caps, d EA D � ET .0/ dA when s D 0 and d EA D ET .`/ dA when
s D `. The caps, like any cross-section at s, are parametrized by

EYs.p; q/D Ę.s/Cp EP .s/C q EB.s/ for .p; q/ 2Rs;

where Rs is the region R rotated about the origin (the marked point P ) by the
angle �.s/. Thus, since ET .s/ is perpendicular to both EP .s/ and EB.s/, we have
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3 Vol.W/

D

`Z
sD0

cZ
uD0

EX � . EXu�
EXs/ du dsC

“
R`

Ę.`/ � ET .`/ dp dqC

“
R0

�Ę.0/ � ET .0/ dp dq

D

`Z
sD0

cZ
uD0

EX � . EXu �
EXs/ du dsCArea.R/

�
Ę.`/ � ET .`/� Ę.0/ � ET .0/

�
: (2)

The problem of calculating the volume of W reduces to calculating the double
integral in (2).

Recall that vectors of the Frenet frame (parametrized by arclength) differentiate
according to

ET 0 D � EP ;

EP 0 D �� ET C� EB;

EB0 D �� EP ;

(3)

where �.s/ and �.s/ are the curvature and torsion functions of the space curve Ę.s/.
Then the tangent vectors to EX are given (after simplification) by

EXu D .x
0 cos � �y0 sin �/ EP C .x0 sin � Cy0 cos �/ EB;

EXs D .1� �x cos � C �y sin �/ ET � .� 0C �/.x sin � Cy cos �/ EP

C .� 0C �/.x cos � �y sin �/ EB:

So

EXu�
EXs D .�

0
C�/.xx0Cyy0/ ETC.1��x cos �C�y sin �/.x0 sin �Cy0 cos �/ EP

�.1��x cos �C�y sin �/.x0 cos ��y0 sin �/ EB:

The dot product EX � . EXu �
EXs/ involves many terms. However, all of the additive

terms involved in the integrals are multiplicatively separable, which, by the usual
corollary to Fubini’s theorem, allows us to separate the double integral. Many of
the integrals involving u vanish or evaluate to a simple constant, namely the area of
the cross-section. Consider the following integrals. By substitution,Z c

uD0

xx0 duD x2
ˇ̌c
0
D 0

because .x.u/;y.u// with u 2 Œ0; c� parametrizes a closed curve @R. By similar
reasoning, the following integrals are all 0:Z c

uD0

x0 duD 0;

Z c

uD0

y0 duD 0;

Z c

uD0

xx0 duD 0;

Z c

uD0

yy0 duD 0: (4)
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By Green’s theorem for the area of the interior of a simple closed piecewise smooth
curve, Z c

uD0

xy0 duD�

Z c

uD0

yx0 duD

“
R

1 dAD Area.R/: (5)

Also by Green’s theorem,Z c

uD0

1
2
x2y0 duD

Z c

uD0

�xyx0 duD

“
R

x dAD 0 (6)

because this integral is the y-moment of Rs and by hypothesis, the centroid of Rs

is .0; 0/ for all s. By the same reasoning but for the x-moment, we also haveZ c

uD0

�
1
2
y2x0 duD

Z c

uD0

xyy0 duD

“
R

y dAD 0: (7)

Upon applying these integrals, only a few terms remain in (2). Setting A D

Area.R/, we get

3 Vol.W/D

Z `

sD0

.�Ę � ET 0AC 2A/ dsCA
�
Ę.`/ � ET .`/� Ę.0/ � ET .0/

�
:

Using integration by parts on the dot product, we obtain

3 Vol.W/

D�A. Ę � ET /
ˇ̌`
0
CA

Z `

sD0

Ę
0
� ET dsC2A`CA

�
Ę.`/� ET .`/�Ę.0/� ET .0/

�
D�A

�
Ę.`/� ET .`/�Ę.0/� ET .0/

�
CA

Z `

sD0

ET � ET dsC2A`CA
�
Ę.`/� ET .`/�Ę.0/� ET .0/

�
DA`C2A`D 3A`:

We conclude that Vol.W/D Area.R/ length.C /.
Theorem 2.2 establishes the main theorem of the paper for generalized tubes

in R3. In order to prove the main theorem in full generality, we will need to
use differential forms along with Stokes’ theorem on manifolds. However, a key
component to the main theorem is a set of integral formulas for the general case
similar to (4), (5), (6), and (7).

3. Volumes, moments, and zero integrals for solids in Rm

Recall that Stokes’ theorem on manifolds states that if M is an m-dimensional, ori-
ented manifold with boundary @M , and ! is a differential .m�1/-form on M , thenZ

@M

! D

Z
M

d!; (8)
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where @M has the boundary orientation inherited from the orientation on M .

Definition 3.1. We define a solid in Rm as a compact embedded m-dimensional
submanifold of Rm with boundary @M . We assume the pull-back orientation on M .

We define the .m� 1/-form �i in Rm by

�i
D .�1/iC1dy1

^ dy2
^ � � � ^bdyi ^ � � � ^ dym;

where .y1;y2; : : : ;ym/ is a coordinate system on Rm and b denotes removal of
that term.

Lemma 3.2. The m-dimensional volume of a solid M is

Volm.M /D

Z
@M

yi�i

for any i D 1; 2; : : : ;m.

Proof. The differential of yi�i is

d.yi�i/D .�1/iC1dyi
^dy1

^dy2
^� � �^bdyi^� � �^dym

Ddy1
^dy2

^� � �^dym:

This form is precisely the volume form on Rm, and thus on the solid M as well.
Hence, by Stokes’ theorem,Z

@M

yi�i
D

Z
M

dy1
^ dy2

^ � � � ^ dym
D Volm.M /: �

This lemma immediately implies the following corollary:

Corollary 3.3. Let � D 1

m

mP
iD1

yi�i . The m-dimensional volume of M is

Volm.M /D

Z
@M

�:

In this article, if F W M ! N is a differentiable map between differentiable
manifolds, we will denote by ŒdF � the matrix of functions of the differential dF

in reference to given coordinate systems on M and on N . Furthermore, when the
dimension of M is one less than the dimension of N and when coordinate systems
on neighborhoods of M and N are implied, we denote by jdj F j the determinant
of ŒdF � in which the j -th row is removed.

Proposition 3.4. Let M be an m-dimensional solid such that the boundary @M
is the embedding of a continuous map H W Sm�1 ! Rm that is smooth except
on a subset of measure 0 in Sm�1. Suppose also that H induces an orientation
on @M that is compatible with the boundary orientation induced from M . Let �
be the .m� 1/-form as in Corollary 3.3 and let ! be the .m� 1/-form on Sm�1
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given by ! D dx1 ^ dx2 ^ � � � ^ dxm�1 for coordinates .x1;x2; : : : ;xm�1/. The
m-dimensional volume of M is

Volm.M /D

Z
H .Sm�1/

� D

Z
Sm�1

H�� D
1

m

Z
Sm�1

det.H; ŒdH �/!; (9)

where in det.H; ŒdH �/ we write the components of H as a column vector. If H

induces the opposite orientation, the second two integrals change sign.

Proof. The equality

Volm.M /D

Z
H .Sm�1/

�

follows immediately from Corollary 3.3. Let .x1;x2; : : : ;xm�1/ be coordinates
on Sm�1 and .y1;y2; : : : ;ym/ on Rm. Notice that the pullback of � by H is

H�� D
1

m

mX
iD1

H i.�1/iC1dH 1
^ dH 2

^ � � � ^bdH i ^ � � � ^ dH m:

Or, writing in xi coordinates, and using the fact that

dH i
D
@H i

@xj
dxj

(assuming the Einstein summation convention), we find

H�� D
1

m

mX
iD1

H i.�1/iC1

�
@H 1

@xj1
dxj1

�
^

�
@H 2

@xj2
dxj2

�
^ � � �

^

� 3@H i

@xji
dxji

�
^ � � � ^

�
@H m

@xjm
dxjm

�
:

By Theorem C.5.22 in [Lovett 2010], this is equivalent to

H�� D
1

m

mX
iD1

H i.�1/iC1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

@H 1

@x1
@H 1

@x2 : : : @H 1

@xm�1

@H 2

@x1
@H 2

@x2 : : : @H 2

@xm�1

:::
:::

: : :
:::d@H i

@x1

d@H i

@x2 : : :
d@H i

@xm�1

:::
:::

: : :
:::

@H m

@x1
@H m

@x2 : : : @H m

@xm�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

dx1
^ dx2

^ � � � ^ dxm�1:
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Taking the summation and recognizing the Laplace expansion of a determinant
down the first column, we see that

H�� D
1

m
det.H; ŒdH �/ dx1

^ dx2
^ � � � ^ dxm�1:

Then (9) follows. Note that the second integral changes sign if H induces the
opposite orientation on @M , so the third integral changes sign as well. �

Lemma 3.2, Corollary 3.3, and Proposition 3.4 are generalizations to higher
dimensions of Green’s theorem for area. For example, suppose that S is a solid in R3

such that the boundary @S is parametrized by EX .u; v/D .x.u; v/;y.u; v/; z.u; v//
with .u; v/ 2 D such that EXu �

EXv is outward-pointing. Then by Proposition 3.4,
the volume of S is

Vol.S/D 1

3

“
D

ˇ̌̌̌
ˇ
x xu xv

y yu yv

z zu zv

ˇ̌̌̌
ˇ du dv:

Because of the flexibility in Stokes’ theorem, as in Green’s area theorem, this
formula still applies when @S is piecewise smooth. In that case, we interpret the
above integral as a sum of integrals taken over domains D1;D2; : : : ;Dr such that
the parametrizations for the smooth pieces of @S have domains Di . The same
principle applies in (9).

We will encounter other integrals that cancel. We list them here.

Proposition 3.5. Let M be a solid and let .y1;y2; : : : ;ym/ be a coordinate system
on M . Then for i and q in f1; 2; : : : ;mg,Z

@M

yq�i
D ı

q
i Volm.M /;

where ıq
i is the Dirac delta in which ıq

i D 1 if i D q and ıq
i D 0 if i ¤ q.

Proof. The case with i D q is Lemma 3.2. If i ¤ q, then

d.yq�i/D dyq
^ dy1

^ dy2
^ � � � ^bdyi ^ � � � ^ dym

D 0

because one differential is repeated. Then by Stokes’ theorem, we haveZ
@M

yq�i
D

Z
M

d.yq�i/D

Z
M

0D 0: �

Corollary 3.6. Let M , H , and ! be as in Proposition 3.4. ThenZ
Sm�1

.�1/iC1H q
jdiH j! D ı

q
i Volm.M /:

Proof. This follows immediately from the fact that

.�1/iC1H q
jdiH j! DH�.yq�i/: �
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Proposition 3.7. Let M , H , and! be as in Proposition 3.4. Let EaD.a1;a2; : : : ;am/

be a constant vector, listed as a column vector. ThenZ
Sm�1

det.Ea; ŒdH �/! D 0:

Proof. By the reasoning in the proof of (9), we see that

det.Ea; ŒdH �/! D

mX
iD1

.�1/iC1ai dH 1
^ dH 2

^ � � � ^bdH i ^ � � � ^ dH m

DH�
� mX

iD1

.�1/iC1ai dy1
^ dy2

^ � � � ^bdyi ^ � � � ^ dym

�
:

Hence, by a pull-back and then Stokes’ theorem,Z
Sm�1

det.Ea; ŒdH �/D

Z
H .Sm�1/

mX
iD1

.�1/iC1ai dy1
^dy2

^� � �^bdyi^� � �^dym

D

Z
M

d

� mX
iD1

.�1/iC1ai dy1
^dy2

^� � �^bdyi^� � �^dym

�
D

Z
M

0 D 0: �

In the proof of Theorem 2.2, certain integrals vanished by virtue of the cross-
section always having its centroid on the curve C , and the same thing occurs in higher
dimensions. The following proposition establishes the centroid generalizations
needed later:

Proposition 3.8. Let M be an m-dimensional solid as given in Definition 3.1. Let
.y1;y2; : : : ;ym/ be a coordinate system covering M . Let . Ny1; Ny2; : : : ; Nym/ be the
center of mass of M . Then

Z
@M

ypyq�i
D

8<:
0 if p ¤ i and q ¤ i ;

Nyp Volm.M / if p ¤ i and q D i ;

2 Nyi Volm.M / if p D q D i .

Proof. By Stokes’ theorem,Z
@M

ypyq�i
D

Z
M

d.ypyq�i/:

However,

d.ypyq�i/D .yqdyp
Cypdyq/^ �i

D yqdyp
^ �i
Cypdyq

^ �i :
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If neither pD i nor qD i , then dyp^�i D 0 and dyq^�i D 0. If qD i and p¤ i ,
then d.ypyq�i/D yp dy1 ^ dy2 ^ � � � ^ dym andZ

M

yp dy1
^ dy2

^ � � � ^ dym
D Nyp Volm.M /

by definition of the center of mass. Finally, if p D q D i , then d.ypyq�i/ D

2yi dy1 ^ dy2 ^ � � � ^ dym andZ
M

2yi dy1
^ dy2

^ � � � ^ dym
D 2 Nyi Volm.M /: �

4. Generalized tubes in higher dimensions

We are almost ready to prove Theorem 1.1. We must first set up a useful description
of a generalized tube. Let W be a generalized tube with guiding curve C and
cross-section R as described in the statement of the main theorem. A generalized
tube is a fiber-bundle over C with fiber R, that is, a subbundle of the normal bundle
over C . Suppose that C is parametrized by arclength by ˛ W Œ0; `�! Rn. Suppose
that the cross-section R is a solid in Rn�1 whose boundary @R is parametrized by
an orientation-preserving, differentiable map H W Sn�2! Rn�1. We also assume
that R rotates smoothly about the origin in the normal plane as it is transported
along C . For the purpose of the theorem, we also assume that the center of mass of
R is the origin in Rn�1. Define H W Sn�2! Rn by H .Ex/D .0;H.Ex//.

The boundary @W of the solid generalized tube consists of the caps at ˛.0/ and
˛.`/ as well as the side surface S, which we can parametrize by

˛.t/CM.t/H .Ex/ for .t; Ex/ 2 Œ0; `��Sn�2;

where M W Œ0; `�! SO.n/ is a differentiable curve of special orthogonal (rotation)
matrices in Rn such that for all t ,

M.t/

0BBB@
1

0
:::

0

1CCCADM.t/Ee1 D ˛
0.t/: (10)

Note that since M.t/ is a rotation matrix and the unit vector Ee1 in the y1 direction
is perpendicular to f.0;y2; : : : ;yn/ j yi 2 Rg, then for all t 2 Œ0; `�, the boundary
of the cross-section M.t/H .Ex/, for Ex 2 Sn�2, is in a plane perpendicular to the
tangent vector ˛0.t/. For simplicity later, we write F.t; Ex/DM.t/H .Ex/.

Recall that since M.t/ is a special orthogonal matrix for all t , then M.t/�1 D

M.t/>, det M.t/D 1, and M 0.t/DM.t/A.t/, where A.t/ is some antisymmetric
matrix for all t . Using the rotation matrix M.t/ provides the following useful fact.
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Ev1 Ev2

Ev3

Figure 2. Reversed orientation on a cylinder.

Lemma 4.1. The first component of the vector M.t/�1˛.t/ is equal to the dot
product ˛.t/ �˛0.t/.

Proof. By (10), the dot product ˛.t/ �˛0.t/ is

˛.t/ �˛0.t/D ˛.t/>M.t/Ee1:

Taking the transpose of the matrix expression on the right, and since the whole
expression is just a real number, we get

˛.t/ �˛0.t/D Ee>1 M.t/>˛.t/D .1 0 � � � 0/M.t/�1˛.t/;

and the lemma follows. �
Proof of Theorem 1.1. Case 1: Assume that the guiding curve C is not closed.
Let � be the .n� 1/-form � D 1

n

Pn
iD1 yi�i . By Corollary 3.3, the volume of the

generalized tube is

Voln.W/D

Z
@W

� D

Z
S
� C

Z
captD0

� C

Z
captD`

�: (11)

We parametrize S by ˛CF but we note that this parametrization is orientation-
reversing. This can be seen by applying our setup to the case of a circular cylinder
in R3 and generalizing to higher dimensions. In Figure 2, Ev1 is ˛0.t/, Ev2 is a tangent
vector to the cross-section boundary in positive orientation, and Ev3 is the outward
pointing normal vector to the solid M . These three vectors form a left-handed
system so the orientation induced from our parametrization is reversed from the
boundary orientation on @M induced by the standard orientation of Rn on M .

We can parametrize the caps by G0 and G` where, for each t 2 Œ0; `�, we define
Gt WR! Rn with

Gt .Ez /D ˛.t/CM.t/

�
0

Ez

�
:

Now G0 induces an orientation that is opposite the boundary orientation on @W ,
while Gt gives a compatible orientation. Hence, (11) becomes

Voln.W/D�

Z
I�Sn�2

.˛CF /�� �

Z
R

G�0�C

Z
R

G�` �: (12)
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We calculate the integrals on the caps first. By the same reasoning as in
Proposition 3.4, for each t 2 Œ0; `�,

G�t � D
1

n
det.Gt ; Œd.Gt /�/ dz1

^ dz2
^ � � � ^ dzn�1:

Now

det.Gt ; Œd.Gt /�/D det
�
˛.t/CM.t/

�
0

Ez

�
;M.t/

�
E0>

In�1

��
D det.M.t// det

�
M.t/�1˛.t/C

�
0

Ez

�
;

�
E0>

In�1

��
D det

�
M.t/�1˛.t/;

�
0

Ez

�
;

�
E0>

In�1

��
D ˛.t/ �˛0.t/;

where E0> D .0; : : : ; 0/, In�1 is the .n� 1/� .n� 1/ identity matrix and the last
equality holds by Lemma 4.1. Consequently,Z

R
G�` � �

Z
R

G�0� D
1

n
Voln�1.R/

�
˛.`/ �˛0.`/�˛.0/ �˛0.0/

�
: (13)

Now we must calculate
R

I�Sn�2.˛CF /��. Applying Proposition 3.4, over a
coordinate patch of Sn�2 with coordinate system .x1;x2; : : : ;xn�2/, we have

.˛CF /��D
1

n
det
�
˛.t/CF.Ex/; ˛0.t/CFt .t; Ex/;M.t/ŒdH �

�
dt^dx1

^� � �^dxn�2;

where here Ft D @F=@t . This can be broken down by multilinearity of the determi-
nant as follows:

.˛CF /��D
1

n

�
det
�
˛.t/;˛0.t/;M.t/ŒdH �

�
Cdet

�
F.Ex/;Ft .t; Ex/;M.t/ŒdH �

�
Cdet

�
F.Ex/;˛0.t/;M.t/ŒdH �

�
Cdet

�
˛.t/;Ft .t; Ex/;M.t/ŒdH �

��
dt^dx1

^� � �^dxn�2: (14)

We now consider the integration over Œ0; `��Sn�2 of the four forms in (14).
For the first determinant in (14),

det
�
˛.t/; ˛0.t/;M.t/ŒdH �

�
D det

�
˛.t/;M.t/Ee1;M.t/ŒdH �

�
D det.M.t// det

�
M.t/�1˛.t/; Ee1; ŒdH �

�
D� det

�
Ee1;M.t/�1˛.t/; ŒdH �

�
:
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Doing Laplace expansion down the first column, we obtain an integral of the form
in Proposition 3.7, with a vector Ea that depends on t . Hence, by Proposition 3.7,

Z
Sn�2

Z `

tD0

det
�
˛.t/; ˛0.t/;M.t/ŒdH �

�
dt ^ dx1

^ � � � ^ dxn�2

D .�1/n�2

Z `

tD0

Z
Sn�2

det
�
˛.t/; ˛0.t/;M.t/ŒdH �

�
dx1
^ � � � ^ dxn�2

^ dt D 0:

For the second determinant in (14),

det
�
F.t; Ex/;Ft .t; Ex/;M.t/ŒdH �

�
D det

�
M.t/H .Ex/;M.t/A.t/H .Ex/;M.t/ŒdH �

�
D det.M.t// det

�
H .Ex/;A.t/H .Ex/; ŒdH �

�
D det

�
H .Ex/;A.t/H .Ex/; ŒdH �

�
:

Performing a Laplace expansion of the determinant using the first two columns of
this last determinant produces terms similar to the forms described in Proposition 3.8.
Since the centroid of R is assumed to be at the origin, then for all t , integrating all
these terms over Sn�2 gives 0.

For the third determinant in (14), we have

det
�
F.t; Ex/; ˛0.t/;M.t/ŒdH �

�
D det

�
M.t/H .Ex/;M.t/Ee1;M.t/ŒdH �

�
D det.M.t// det

�
H .Ex/; Ee1; ŒdH �

�
D� det

�
Ee1;H .Ex/; ŒdH �

�
D� det.H.Ex/; ŒdH �/;

where the last equality follows by Laplace expansion of the determinant on the first
row .1 0 � � � 0/. By Proposition 3.4,

Z
Sn�2

Z `

tD0

det
�
F.Ex/; ˛0.t/; Œd.F /�

�
dt ^ dx1

^ � � � ^ dxn�2

D�`

Z
Sn�2

det
�
H.Ex/; Œd.H /�

�
dx1
^ � � � ^ dxn�2

D�.n� 1/`Voln�1.R/:

As with previous determinants, the fourth determinant becomes

det
�
˛.t/;Ft .t; Ex/;M.t/ŒdH �

�
D det

�
M.t/�1˛.t/;A.t/H .Ex/; ŒdH �

�
:
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Since there are zeros in the first rows of H and d.H /, and because M�1 DM>,
another Laplace expansion gives

det
�
M�1˛;AH ; ŒdH �

�
D ˛iM

i
1

nX
jD2

.�1/j Aj
qH q
jdj H j �˛i

nX
jD2

.�1/j M i
j A1

qH q
jdj H j

D

nX
jD2

˛iH
q
jdj H j.�1/j .M i

1Aj
q �M i

j A1
q/;

where we use the Einstein summation convention over the repeated indices appearing
in superscript and subscript, namely i and q. By Proposition 3.5, after integration
on Sn�2, all terms will reduce to 0 except those for which q D j , which will give
the volume of the cross-section, Voln�1.R/. Set I D Œ0; `�. So,Z

Sn�2

Z
I

det
�
M�1˛;AH ; Œd.H /�

�
dt^dx1

^� � �^dxn�2

D

Z
Sn�2

Z
I

nX
jD2

˛iH
q
jdj H j.�1/j .M i

1Aj
q�M i

j A1
q/ dt^dx1

^� � �^dxn�2

D

Z
Sn�2

Z
I

nX
jD2

˛iH
j
jdj H j.�1/j .M i

1A
j
j�M i

j A1
j / dt^dx1

^� � �^dxn�2

D

Z
Sn�2

Z
I

nX
jD2

˛iH
j�1
jdj H j.�1/j M i

j A
j
1

dt^dx1
^� � �^dxn�2

D

Z
I

˛i

nX
jD2

M i
j A

j
1

dt

Z
Sn�2

.�1/j H j�1
jdj�1H j dx1

^� � �^dxn�2:

But ˛0.t/DM.t/Ee1, so ˛00.t/DM 0.t/Ee1DM.t/A.t/Ee1. Hence M i
j A

j
1

are the com-
ponents of the covariant vector ˛00.t/>. Note that since A.t/ is an antisymmetric
matrix, A1

1
D 0. Thus ˛i

Pn
jD2 M i

j A
j
1
D ˛.t/ �˛00.t/. Hence, we getZ

Sn�2

Z
I

det
�
M�1˛;AH ; Œd.H /�

�
dt ^ dx1

^ � � � ^ dxn�2

D Voln�1.R/
Z

I

˛i˛
00
i dt

D Voln�1.R/
�
˛.t/ �˛0.t/

ˇ̌`
0
�

Z
I

˛0 �˛0 dt

�
D Voln�1.R/

�
˛.t/ �˛0.t/

ˇ̌`
0
� `
�
:
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Now putting into (12) the integrals of the four determinants in (14) and the
integrals for the caps (13), we get

n Voln.W/D .n� 1/Voln�1.R/`�Voln�1.R/
�
˛.t/ �˛0.t/j`0� `

�
CVoln�1.R/

�
˛.t/ �˛0.t/j`0

�
: (15)

Hence
Voln.W/D Voln�1.R/`;

which establishes the main theorem when the guiding curve of the generalized tube
is not closed.

Case 2: If C is a closed curve, then in (12) we do not have integrals for the caps.
Then (15) becomes

n Voln.W/D .n� 1/Voln�1.R/`�Voln�1.R/
�
˛.t/ �˛0.t/

ˇ̌`
0
� `
�
;

and since ˛.0/ �˛0.0/D ˛.`/ �˛0.`/, the result of the main theorem follows for this
case as well. �
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A numerical investigation of level sets
of extremal Sobolev functions

Stefan Juhnke and Jesse Ratzkin
(Communicated by Kenneth S. Berenhaut)

We investigate the level sets of extremal Sobolev functions. For � ⊂ Rn and
1≤ p< 2n/(n−2), these functions extremize the ratio ‖∇u‖L2(�)/‖u‖L p(�). We
conjecture that as p increases, the extremal functions become more “peaked” (see
the introduction below for a more precise statement), and present some numerical
evidence to support this conjecture.

1. Introduction

Let n ≥ 2 and let �⊂ Rn be a bounded domain with piecewise Lipschitz boundary,
satisfying a uniform cone condition. One can associate a large variety of geometric
and physical constants to �, such as volume, perimeter, diameter, inradius, the
principal frequency λ(�), and torsional rigidity P(�) (which is also the maximal
expected exit time of a standard Brownian particle). For more than a century, many
mathematicians have investigated how all these quantities relate to each other;
[Pólya and Szegő 1951] provides the best introduction to this topic, which remains
very active today, with many open questions.

In the present paper we investigate the quantity

Cp(�)= inf

{ ∫
�
|∇u|2 dµ(∫

�
|u|p dµ

)2/p : u ∈W 1,2
0 (�), u 6≡ 0

}
. (1)

The constant Cp(�) gives the best constant in the Sobolev embedding:

u ∈W 1,2
0 (�) ⇒ ‖u‖L p(�) ≤

1√
Cp(�)

‖∇u‖L2(�)
.

By Rellich compactness, the infimum in (1) is finite, positive, and realized by an
extremal function u∗p, which we can take to be positive inside � (see, for instance,

MSC2010: primary 65N30; secondary 35J20.
Keywords: extremal Sobolev functions, semilinear elliptic PDE, distribution function.
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[Gilbarg and Trudinger 2001; Sauvigny 2004; 2005]). The Euler–Lagrange equation
for critical points of the ratio in (1) is

1u+3u p−1
= 0, u|∂� = 0, (2)

where3 is the Lagrange multiplier. In the case that u=u∗p is an extremal function, a
quick integration by parts argument shows that the Lagrange multiplier3 is given by

3= Cp(�)

(∫
�

(u∗p)
p dµ

)(2−p)/p

.

It is worth remarking that in two cases the PDE (2) becomes linear: that of p= 1
and p= 2. In the case p= 1, we recover the torsional rigidity as P(�)= (C1(�))

−1,
and in the case p = 2, we recover the principal frequency as λ(�)= C2(�). These
linear problems are both very well-studied, from a variety of perspectives, and the
literature attached to each is huge. From this perspective, the second author and
Tom Carroll began a research project several years ago, studying the variational
problem (1) as it interpolates between torsional rigidity and principal frequency,
and beyond. (See, for instance, [Carroll and Ratzkin 2011; 2012].) Primarily, we
are interested in two central questions:

• Which of the properties of P(�) and λ(�) (and their extremal functions) also
hold for Cp(�) (and its extremal functions)?

• Can we track the behavior of Cp(�) and its extremal function u∗p as p varies?

Some of our investigations have led us conjecture the following.

Conjecture 1. Let n ≥ 2 and let �⊂ Rn be a bounded domain with piecewise Lip-
schitz boundary satisfying a uniform cone condition. Normalize the corresponding
(positive) extremal function u∗p so that

sup
x∈�

(u∗p(x))= 1,

and define the associated distribution function

µp(t)=
∣∣{x ∈� : u∗p(x) > t}

∣∣.
Then within the allowable range of exponents, we have

1≤ p < q ⇒ µp(t) > µq(t) for almost every t ∈ (0, 1). (3)

If n = 2, the allowable range of exponents is 1≤ p < q , and if n ≥ 3, the allowable
range of exponents is 1≤ p < q < 2n/(n− 2).

Below we will present some compelling numerical evidence in support of this
conjecture. The remainder of the paper is structured as follows. In Section 2 we
provide some context for our present investigation, and describe some of the related
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work present in the literature. In Section 3 we describe the numerical method we
use, as well as its theoretical background, and we present our numerical results
in Section 4. We conclude with a brief discussion of future work and unresolved
questions in Section 5.

2. Related results

In this section we will highlight some related theorems about principal frequency,
torsional rigidity, qualitative properties of extremal functions, and other quantities.
The following is by no means an exhaustive list.

The distribution function µp is closely related to a variety of rearrangements of
a generic test function u for (1). One can rearrange the function values of a positive
function in a variety of ways, and different rearrangements will yield different
results. One of the most well-used rearrangements is Schwarz symmetrization,
where one replaces a positive function u on � with a radially symmetric, decreasing
function u∗ on B∗, a ball with the same volume as �. The rearrangement is defined
to be equimeasurable with u:

|{u > t}| = |{u∗ > t}| for almost every function value t.

Krahn [1925] used Schwarz symmetrization to prove an inequality conjectured
by Rayleigh in the late 1880s:

λ(�)≥

(
|�|

ωn

)−2/n

λ(B), (4)

where B is the unit ball in Rn , and ωn its volume. Moreover, equality can only
occur in (4) if �= B apart from a set of measure zero. In fact, it is straightforward
to adapt Krahn’s proof to show

|�| = |B| ⇒ Cp(�)≥ Cp(B), (5)

with equality occurring if and only if �= B apart from a set of measure zero (see
[Carroll and Ratzkin 2011]). One can also use similar techniques to prove, for
instance, that the square has the greatest torsional rigidity among all rhombi of the
same area [Pólya 1948].

However, there is certainly a limit to the results one can prove using only Schwarz
(or Steiner) symmetrization, and to go further one must apply new techniques.
Among these, one can rearrange by weighted volume [Payne and Weinberger 1960;
Ratzkin 2011; Hasnaoui and Hermi 2014], which works well for wedge-shaped
domains. One can rearrange by powers of u, or (more generally) by some function
of the level sets of u [Payne and Rayner 1972; 1973; Talenti 1976; Chiti 1982].
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If one is combining domains using Minkowski addition, then the Minkowski sup-
convolution is a very useful tool [Colesanti et al. 2006].

All these techniques are successful, to varying degrees, when studying (1) for
a fixed value of p. However, we are presently at a loss with regards to applying
them when allowing p to vary. There are comparatively few results comparing the
behavior of Cp(�) and its extremals u∗p for different values of p.

It is well known [Trudinger 1968] that as p→ 2n/(n − 2), the solutions u∗p
become arbitrarily peaked, and the distribution function µp(t) approaches 0 on the
interval (ε, 1) for any ε > 0. This behavior is a reflection of the fact that the Sobolev
embedding is not compact for the critical exponent of 2n/(n− 2), and the loss of
compactness is due to the fact that the functional in (1) is invariant under conformal
transformation for this exponent. Thus, it is interesting to understand the asymptotics
as p→ 2n/(n−2). A partial list of such results includes an asymptotic expansion of
Cp(�) due to van den Berg [2012] and a theorem of Flucher and Wei [1997] (see also
[Bandle and Flucher 1996]) determining the asymptotic location of the maximum
of the extremal u∗p. Additionally, P. L. Lions [1984a; 1984b] started a program to
understand the loss of compactness, due to concentration of solutions, for a variety of
geometric problems in functional analysis and PDEs. R. Schoen and Y.-Y. Li (among
others) have exploited this concentration-compactness phenomenon to understand
the problem of prescribing the scalar curvature of a conformally flat metric.

We remark that until now we had scant evidence for Conjecture 1. Namely, we
knew in advance that the extremals become arbitrarily peaked as p approaches
the critical exponent, and we knew that in the very special case �= B, we have
µ1(t) > µ2(t).

3. Our numerical algorithm

Our numerical method is borrowed from foundational work of Choi and McKenna
[1993] and Li and Zhou [2001], and its theoretical underpinning is the famous
“mountain pass” method of Ambrosetti and Rabinowitz [1973]. Within our range of
allowable exponents, Rellich compactness exactly implies that the functional (1)
satisfies the Palais–Smale condition, and so the mountain pass theorem of [loc. cit.]
implies the existence of a minimax critical point. A later refinement of Ni [1989]
implies that in fact a minimax critical point lies on the Nehari manifold, defined by

M=
{

u ∈W 1,2
0 (�) : u 6≡ 0,

∫
�

|∇u|2− u p dµ= 0
}
. (6)

To find critical points, we project onto M, using the operator

PM(u)=
(∫

�
|∇u|2 dµ∫
�
|u|p dµ

)1/(p−2)

u. (7)
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Our goal will be to find mountain pass critical points of the associated functional

I(u)=
∫
�

1
2 |∇u|2− 1

p |u|
p dµ, (8)

which lie on the Nehari manifold defined in (6). Observe that the Fréchet derivative
of I is

I ′(u)(v)=
d
dε

∣∣∣∣
ε=0

I(u+ εv)

=

∫
�

〈∇u,∇v〉− u p−1v dµ,

so that, after integrating by parts, we can find the direction v of steepest descent by
solving the equation

2λ1v =−1u− u p−1. (9)

We are free to choose λ > 0 as a normalization constant, and choose it so that∫
�
|∇v|2 dµ= 1. (It is well known that by the Poincaré inequality this H 1-norm is

equivalent to the W 1,2-norm.) An expansion of the difference quotient (using our
normalization of v) shows

I(u+ εv)− I(u)
ε

=−2λ+O(ε),

so choosing λ > 0 does indeed correspond to the direction of steepest descent of I,
rather than the direction of largest increase.

At this point we remark on the importance of taking p > 2. In the superlinear
case, u0 ≡ 0 is a local minimum and, so long as u 6≡ 0, we have I(ku) < 0 for
k > 0 sufficiently large. Thus, for any path γ (t) joining u0 to kuguess, the function
hγ (t)=I(γ (t))will have a maximum at some value tγ . We can imagine varying the
path γ and finding the lowest such maximal value, which is exactly our mountain
pass critical point.

We will begin with an initial guess uguess which is positive inside � and 0 on ∂�,
and let u1 = PM(uguess). Thereafter we apply the following algorithm:

(1) Given uk , we compute the direction of steepest descent vk using (9).

(2) If ‖vk‖W 1,2(�) is sufficiently small, we stop the algorithm, and otherwise we
let uk+1 = PM(uk + vk)

(3) If I(uk+1) < I(uk) then we repeat the entire algorithm starting from the first
step. Otherwise we replace vk with 1

2vk and recompute uk+1.

(4) Upon the completion of this algorithm, we test our numerical solution to verify
that it does indeed solve the PDE (2) weakly.
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Several remarks are in order. The algorithm outlined above is exactly the one
proposed by Li and Zhou [2001]. They proved convergence of the algorithm under
a wide variety of hypotheses, which include the superlinear (p > 2) case of (1)
and (8). However, they do not claim convergence of the algorithm in the sublinear
case, and in this case the algorithm fails. On the other hand, we are able to verify
that in the superlinear case the algorithm converges to a positive (weak) solution of
the PDE (2), so we are confident we have reliable data in this case. We present this
data in the next section.

In this algorithm we must repeatedly solve the linear PDE (9), which we do
in the weak sense, using biquadratic (nine-noded) quadrilateral finite elements.
In each of these steps we replace the corresponding integrals with sums over the
corresponding elements. We outline this numerical step in the paragraphs below.

In this computation we take u as known at the mesh points (by an initial guess
or by the result of a previous iteration). Writing v̄ = 2λv+ u, the solution to (9) is
given by the solution to

1v̄ =−u p−1, (10)

from which we can recover the steepest descent direction v.
To solve for v̄ ∈W 1,2

0 (�), we will solve the weak form of (10), i.e.,∫
�

∇w(x) · ∇v̄(x) dx =
∫
�

w(x)u(x)p−1 dx (11)

for any test functionw∈W 1,2
0 (�). We will now derive the finite element formulation

based on the methods presented by Fish and Belytschko [2007]. We first notice that
we can split up our integral as a sum of the integrals over the individual element
domains �e:

nel∑
e=1

(∫
�e
∇we(x)∇v̄e(x) dx −

∫
�e
we(x)(v̄e(x))p−1 dx

)
= 0.

We now write our functions w and v̄ in terms of their finite element approxima-
tions as

w(x)≈ wh(x)= N(x)w, v̄(x)≈ v̄h(x)= N(x)d,

where N are quadratic shape functions with value 1 at their corresponding mesh
point and value 0 at all other mesh points, while w, d are vectors of nodal function
values. The gradients of w and v̄ can then be written as

∇w ≈ B(x)w, ∇v̄ ≈ B(x)d,
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where B are the gradients of the shape functions. We can rewrite the above
expressions for the element level as

we(x)≈ Ne(x)we, v̄e(x)≈ Ne(x)de, ∇we
≈ Be(x)we, ∇v̄e

≈ Be(x)de.

Rewriting the integral using these approximations leaves us with

nel∑
e=1

(∫
�e

weT
BeT
(x)Be(x)de dx −

∫
�e

weT
NeT

(x)(Ne(x)de)p−1 dx
)
= 0,

since (Be(x)we)T =weT BeT
(x) and (Ne(x)we)T =weT NeT

(x). We notice that we
can take the constants weT

and de outside of the integral to give

nel∑
e=1

weT
(∫

�e
BeT
(x)Be(x) dx de

−

∫
�e

NeT
(x)(Ne(x)de)p−1 dx

)
= 0.

Letting

K e
=

∫
�e

BeT
(x)Be(x) dx and f e

=

∫
�e

NeT
(x)(Ne(x)de)p−1 dx

and using the gather matrix to write

we
= Lew, de

= Led,

we get

wT
( nel∑

e=1

LeT
K e Led−

nel∑
e=1

LeT
f e
)
= 0.

Further letting

K =
nel∑

e=1

LeT
K e Led and f =

nel∑
e=1

LeT
f e,

we end up with

wT (K d− f )= 0, for all w.

Since we know that w ∈ W 1,2
0 is arbitrary, we therefore solve the discrete finite

element form

K d = f , (12)

with Nd the finite element approximation to v̄ from which we can recover the
steepest descent direction v.
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4. Numerical results

In this section we describe our numerical results. We implemented the algorithm
described in Section 3 using Matlab, and all the figures displayed below come from
this implementation.

We first implement our method on a unit ball of dimension four. In this case, the
solution is radially symmetric, so we only need to solve an ODE. We display plots
of these solutions and the corresponding distribution functions in Figure 1.

Observe that, as we expected, the distribution function appears to be monotone,
and that as p→ 4= 2n/(n− 2) the solution becomes arbitrarily concentrated at
the origin.

We can verify that we are indeed finding solutions to the correct PDE. For the
cases p= 1 and p= 2, we can compute the solutions analytically, and verify directly
that our numerical solutions agree quite well. These are (up to a constant multiple)

u∗1(r)= 1− r2, u∗2(r)= r (2−n)/2 J(n−2)/2( j(n−2)/2r),
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Figure 1. Extremal Sobolev functions (top) and their distributions
(bottom) for a four-dimensional unit ball.
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Figure 2. Extremal Sobolev functions for p = 4 (left) and p = 8
(right) on a unit square.

where Ja is the Bessel function of the first kind of index a and ja is its first positive
zero. For other values of p we can verify that we have found a weak solution of (2).
As the solution is a priori radial, we know that the weak form of the PDE is

W Tw(u) :=
∫ 1

0

(
−r1−n ∂w(r)

∂r

(
rn−1 ∂u(r)

∂r

)
+w(r)3u(r)p−1

)
rn−1 dr=0. (13)

The above lends itself well to testing via finite element approximation. A random
test function w(r) is created by randomly generating numbers at the mesh points
and W Tw(u) is evaluated by Gauss quadrature. For comparison purposes, the
functions u are normalized so that sup(u) = 1. This requires that 3 be rescaled (3
is set equal to 1 in the algorithm for simplicity), and the appropriate rescaling is
then given by a2−p, where a is the factor normalizing u. This rescaling is derived
from the fact that if u solves

1u+ u p−1
= 0, (14)
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Figure 3. Distributions of extremal Sobolev functions for a unit
square in the plane.
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Figure 4. Extremal Sobolev functions for p = 2 (top), p = 4
(middle), and p = 8 (bottom) on a 1× 4 rectangle.
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then au solves 1(au)+ a2−p(au)p−1
= 0, by simply multiplying (14) by a.

We generate values of W Tw(u) for a number of test functions w and examine the
average magnitude. As alluded to previously, the result of the test (13) is that for
solution candidate functions derived from our algorithm for 2≤ p< 2n/(n−2) and
for p = 1, we have W Tw(u) very close to zero, meaning that we can be confident
that we have found appropriate solutions.

Next we implemented our algorithm in a unit square in the plane. We display
plots of our numerical solutions for both p = 4 and p = 8 in Figure 2 and the
distribution functions for several values of p in Figure 3. Again we verify that our
numerical algorithm does find a weak solution of (2). This time we define

W Tw(u) :=
∫
�

(
−∇u(x)∇w(x)+w3u(x)p−1) dx (15)

and again compute W Tw(u) for our candidate solutions, with appropriate rescalings
as described previously. We have closely matched the result of Choi and McKenna
for the case p = 4, which means that we should be able to use the value W Tw(u∗4)
as a gauge for how close to zero W Tw(u) should be for appropriate solutions. Again
we find that for 2≤ p< 2n/(2−n) and p= 1, we get values of W Tw(u) very close
to zero and of the same magnitude as W Tw(u∗4).

Finally we implemented our algorithm on a rectangle of width 1 and length 4
in the plane. We display plots of our numerical solutions for p = 2, 4, and 8 in
Figure 4, as well as the distribution functions for several values of p in Figure 5.
We use the same test as we did in the case of the unit square to verify that in the
case of the 1×4 rectangle, we have indeed found (weak) numerical solutions of (2).

5. Outlook

The present paper is only the start of our numerical and theoretical investigations
into Conjecture 1. We would like to verify our results on some more planar domains,
such as triangles and parallelograms. Next we anticipate numerical computations
for higher dimensional objects, such as cubes and parallelepipeds, in the superlinear
case, as well as possibly some ring domains. We will also need to develop a new
numerical algorithm which yields reliable results for 1< p < 2. Finally, we hope
that our numerical data provides enough insight to rigorously prove our conjecture.
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The school choice problem (SCP) looks at assignment mechanisms matching
students in a public school district to seats in district schools. The Gale–Shapley
deferred acceptance mechanism applied to the SCP, known as the student optimal
stable matching (SOSM), is the most efficient among stable mechanisms yielding
a solution to the SCP. A more recent mechanism, the efficiency adjusted deferred
acceptance mechanism (EADAM), aims to address the well-documented tension
between efficiency and stability illustrated by SOSM. We introduce two alternative
efficiency adjustments to SOSM, both of which necessarily sacrifice stability. Our
discussion focuses on the mathematical novelty of new efficiency modifications
rather than any practical superiority of implementation or outcome. That is, our
contribution lies in process rather than outcome. Yet we argue that the demonstra-
tion of multiple processes yielding common outcomes is, in itself, a measure of
the quality of that outcome. More specifically the consistency of outcome from
different processes strengthens the argument that Pareto dominations of SOSM
can be supported as “fair” despite the resulting priority violations.

1. Introduction

Since the mid-eighties, in cities across the United States, public school assignment
policies have shifted towards providing students the opportunity to influence their
school assignment. The main objective of these school choice policies is to allow
all students to attend more desirable schools. A standard theoretical framework for
studying such policies is two-sided matching (see [Gale 2001; Roth and Sotomayor
1990]). Presented in this context, the practical goal of the school choice problem
(SCP) is to devise a matching mechanism (designed by or for the school district) that
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allocates available resources (seats in schools) among players (students or parents)
subject to district priorities and legal requirements. Mathematically, it is interesting
to consider ways in which the mechanisms might be modified that, while arguably
consistent with the societal objectives of the SCP, present novel approaches to the
underlying process.

In the economics literature, the SCP is viewed as a standard prototype for
priority-based allocation problems (see [Kesten 2006]) and many of the school
choice mechanisms in use or under investigation tolerate a large number of students
receiving low preference schools (inefficiency) in order to respect school priority
structures (stability). The ultimate purpose of these priorities is to benefit the
students, but in many practical situations they are also the direct cause of efficiency
losses, thus resulting in students receiving less desirable assignments than might
have been possible. This suggests that taking a stable solution as a starting point
and then making improvements for efficiency may be a reasonable compromise
resulting in more desirable matchings.1 Our discussion here will focus on the
mathematical nuances of different efficiency modifications rather than any practical
superiority of implementation or outcome. We will also suggest that stability loss
may be justified to key stakeholders by arguing that the mathematical modifications
are unbiased and incorporated as part of the overall process, and thus they do not
constitute a “breach of contract”.

Throughout, we employ the language and methods of mechanism design as
applied to the SCP following in the footsteps of, for example, [Abdulkadiroǧlu
and Sönmez 2003]. In this context the designer/principal is the school district
(or whoever is choosing the mechanism to be used), students are the players, and
schools are merely items to be consumed.

The Gale–Shapley deferred acceptance mechanism applied to the SCP, known
as the student optimal stable matching (SOSM), is the most efficient among stable
mechanisms yielding a solution to the SCP [loc. cit.]. In this article we examine
two concrete processes that modify the outcome of SOSM and improve efficiency
at the cost of stability. Our goal is to situate in a common framework a range of
ideas introduced recently by several different authors, so that the mathematical
connections between different outcomes and processes are more visible. More
specifically, we focus here on using multiple cooperation/collaboration methods
to obtain Pareto improvements of SOSM. We are interested in the process as well
as the outcome and, in particular, we argue that examining multiple pathways
strengthens the case for those outcomes both in theory and in practice.

1A relevant quote from [Abdulkadiroǧlu et al. 2009]: “Pareto efficiency for the students is the
primary welfare goal, but [: : : ] stability of the matching, and strategyproofness in the elicitation of
student preferences, are incentive constraints that likely have to be met for the system to produce
substantial welfare gains over the [current] system.”
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We begin in Section 1B by introducing two standard mechanisms used in this area
of investigation: SOSM and its close neighbor, the efficiency adjusted deferred ac-
ceptance mechanism (EADAM), a more recently introduced mechanism which aims
to address the well-documented tension between efficiency and stability illustrated
by SOSM. In Section 2 we introduce the first of our approaches by studying the use
of “coalitions” in order to modify SOSM school assignments. This section closely
follows [Huang 2006], where it is shown that while the Gale–Shapley deferred
acceptance algorithm (DA) disincentivizes strategic action by individuals, it is still
feasible for groups to beat the system by coming together and strategizing. We adapt
Huang’s methods to the SCP and describe a process which we call the coalition
improvement procedure in Section 2A. Using coalitions in the SCP allows us to
approach efficiency modifications to SOSM in a new way and offers an alternative
argument in support of previously known matching mechanisms. For example, this
approach can result in the EADAM outcome along with other Pareto improvements
of SOSM. We focus on properties of coalition improvements and comparisons to
EADAM in Section 2B.

Following up on the coalition/cooperation theme, in Section 3 we introduce
a second and related approach which focuses on groups of students who form
trading cycles (“cliques”) to improve their own assignments.2 We examine the
impact of these cliques as applied to the SOSM outcome. Once again, our approach
deploys mathematical tools in a new context to produce several Pareto improvements
on SOSM. We take the opportunity to show that the coalition improvements of
Section 2 can also be integrated into this new framework, which proves to be a
powerful construct to study cycle improvements of various kinds from a common
point of view.

1A. Notation and basic terms used. Let I denote a nonempty set of students, and
S a nonempty set of schools. A matching M W I ! S [ fnullg is a function that
associates every student i 2 I with exactly one school M.i/, or potentially no
school at all, in which case M.i/D null. Write M for the set of matchings. We
will also occasionally want to talk about school quotas, which we will encode in
a function q W S ! N; in other words, for s 2 S , q.s/ is the number of seats to be
filled at school s.

A preference profile Pi for student i 2 I is a tuple .S1; : : : ;Sn/ where the Sj

form a partition of S and every element of Sj is preferred to every element of Sk

if and only if j < k.3 Define the ranking function 'i W S ! N of a student i 2 I

2The term clique has a specific meaning in graph theory, unrelated to our work here.
3We will assume that student preference lists are complete, so it makes sense to define a preference

list as a partition of the set of all schools. This is not always realistic however. Some students may
wish to submit truncated lists, and this may or may not be allowed by school district policies. In fact,
complete preference profiles in this context are rare. Often families are only permitted to list 3 to 7
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by letting 'i.s/ denote i’s ranking of s 2 S . In other words, 'i.s/D j if s 2 Sj .
If i prefers sk to sl , we write sk �i sl , or simply sk � sl if i is unambiguous. Note
that the notation � denotes a strict preference order; if we want to describe a weak
order, we will write �. We denote a set consisting of preference profiles for each
student in I by P D fPi W i 2 Ig, and the space of all such sets is denoted by P.

A priority structure …s for school s 2 S is a tuple .I1; : : : ; In/ where the Ij

form a partition of I and every element of Ij is preferred to every element of Ik

if and only if j < k. If s prefers ik to il , we write ik �s il , or simply ik � il if s

is unambiguous. Once again, the notation � denotes a strict preference order; if
we want to describe a weak order, we will write �. We denote a set consisting of
priority structures for each school in S by …D f…s W s 2 Sg, and the space of all
such complete sets is denoted by

U

.
A matching M 0 (Pareto) dominates M if M 0.i/�i M.i/ for all i and M 0.j /�j

M.j / is strict for some j . A (Pareto) efficient matching is a matching that is not
(Pareto) dominated.

A matching mechanism M WP� U

!M is a function that takes an ordered pair
.P ;…/ of preferences and priorities and produces a matching.

Let …s be a priority structure for school s. A matching M violates the priority
of i 2 I for s if there exist some j 2 I and s0 2 S such that

(1) M.j / D s, M.i/ D s0: j gets assigned s under M and i gets assigned s0

under M ,

(2) s �i s0: i prefers attending s over s0, and

(3) i �s j : s prioritizes i over j .

We say that a matching M is stable if

(1) M does not violate any priorities,

(2) no student is matched to a lower-ranked school when a more preferred school
is unfilled, or more precisely, if M.i/ D s, then for any school s0 2 S with
s0 �i s, #fj 2 I jM.j /D s0g D q.s0/,

(3) no student remains unmatched when a school is unfilled; that is, if M.i/D null,
then for any school s 2 S , #fj 2 I jM.j /D sg D q.s/.4

A stable mechanism is one that always produces stable matchings.

schools, choosing among many more. Then the district “completes” the student’s profile, by first
adding any school in her walk zone (if not already listed), and then “padding” the list with the schools
that remain unlisted added to the end of the preference list, strictly below any listed by the student
herself. Here we shall assume that when incomplete lists are allowed or unavoidable, the student
preference lists are padded in this manner; our results will then work without modification.

4We assume that all students prefer being placed anywhere to being unassigned.
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1B. Background. In this section we describe two well-studied mechanisms in the
SCP: the student optimal stable matching (SOSM) and the efficiency adjusted
deferred acceptance mechanism (EADAM). All mechanisms presented in this
section use strict preference lists for students.

The first of these, SOSM, is based on the Gale–Shapley deferred acceptance algo-
rithm (DA) [1962]. See [Roth and Sotomayor 1990] for an extensive review of the
various applications of the DA algorithm and [Roth 2008] for a more recent historical
overview. Gale and Shapley first described their method in the context of the stable-
marriage problem (see [Knuth 1997]) and proposed applying it to the college ad-
missions problem, a problem that in some ways resembles the SCP. Abdulkadiroǧlu
and Sönmez [2003] adapted the DA algorithm to the SCP and called it the student
optimal stable mechanism (SOSM). Below is a brief description of this procedure.

Student optimal stable mechanism:

Round 1: Each student applies first to his or her first choice school. Each school
then tentatively accepts the student(s) highest on its preference list among those who
applied that round (such students are now waitlisted) and rejects the rest beyond
its quota. We remove each waitlisted student from the market. All unwaitlisted
students move on to the next round.

And in general:

Round k, k � 1: Each unassigned student applies to his or her next choice school.
Each school considers the new applicants together with the current waitlist and
repopulates the waitlist with those applicants who are highest on its priority list
and rejects the rest beyond its quota. We remove each waitlisted student from the
market. All unwaitlisted students move on to the next round. The algorithm runs
until all students have been assigned.

SOSM performs well when evaluated for Pareto efficiency5, stability, and strate-
gyproofness and is viewed as a practical mechanism for implementation. In fact,

5We should qualify this assertion about the efficiency performance of SOSM. In the school choice
problem as in many other matching markets, the preference and priority classes often are not singleton
sets [Irving 1994; Manlove 2002]. In other words, there are many students in the same priority level
for a given school, and it is conceivable that a student may wish to classify two or more schools in the
same level of preference. The way SOSM and similar mechanisms deal with ties in such scenarios
(often randomly and only on the school side, assuming students will submit strict preferences) creates
arbitrary rankings, introduces artificial conditions, and results in a sizable efficiency loss (see [Erdil
and Ergin 2008] for a study of tie-breaking in the school choice context and its efficiency cost). More
generally it is known that many desirable properties of stable matching mechanisms are automatic
only in the strict-preferences and strict-priorities scenario; once we allow indifferences, the problem
often gets much more complicated [Manlove et al. 2002] and one might need to devise new goals and
new extensions of the notion of stability (see [Chen 2012; Irving 1994]). We will say a bit more about
indifferences in the final section of this paper.



806 AKSOY, AZZAM, COPPERSMITH, GLASS, KARAALI, ZHAO AND ZHU

several large districts such as New York City and Boston [Abdulkadiroǧlu et al.
2009; 2006; 2005a; 2005b] have adopted SOSM as their mechanism of choice.
As we have mentioned, SOSM offers a stable strategyproof mechanism whose
outcomes Pareto dominate all other stable matchings.6

As motivation for investigating efficiency adjustments to the SOSM outcome
and for introducing a powerful and well-respected model mechanism (EADAM),
we give an example, due to Roth, that illustrates the problem of efficiency versus
stability in SOSM (see [Abdulkadiroǧlu et al. 2009; Kesten 2010]). This example
also suggests that one could consider alternative processes that maintain appropriate
respect for the (players’) input while allowing for viable algorithmic alternatives.

Assume there are three schools, s1; s2; s3 and three students i1; i2; i3. The
priorities of the schools and the preferences of the students are given by

i1 W s2 � s1 � s3; s1W i1 � i3 � i2;

SCP1 W i2 W s1 � s2 � s3; s2W i2 � i1 � i3;

i3 W s1 � s2 � s3; s3W i2 � i1 � i3;

where a� b stands for “a is preferable to b”. Here, the only stable matching is

M
SCP1

S
D

�
i1 i2 i3
s1 s2 s3

�
;

but this matching is (Pareto) dominated by

M
SCP1

E
D

�
i1 i2 i3
s2 s1 s3

�
:

We see that M
SCP1

E
(Pareto) dominates M

SCP1

S
because it assigns i1 and i2 schools

they prefer over their M
SCP1

S
assignment. Furthermore, M

SCP1

E
is (Pareto) efficient.

However, the matching is no longer stable because i2 is in the position of violating
i3’s priority for s1.

In part to address the weakness illustrated by the example above, Kesten [2010]
proposed a new mechanism, and called it the efficiency adjusted deferred acceptance
mechanism (EADAM). In order to understand EADAM, we must first define an
interrupter. Let student i be one who is tentatively placed in a school s at some
step t while running the SOSM, and rejected from it at some later step t 0. If there

6Note that a stable mechanism can never really be strategyproof in the complete sense. More
specifically, no stable matching mechanism exists for which stating the true preferences is always
a best response for every agent where all other agents state their true preferences (see for instance
[Roth and Sotomayor 1990, Corollary 4.5]). However the DA/SOSM is practically strategyproof
as we only view the students as strategic players and the student optimality implies that there is no
incentive for the students to misrepresent their preferences (see [Roth 1982]). This perspective does
not take into account manipulation by schools in capacity (see [Sönmez 1997]) or preferences, see
[Ehlers 2010] for recent work addressing these issues.



COALITIONS AND CLIQUES IN THE SCHOOL CHOICE PROBLEM 807

exists at least one other student who is rejected from school s after step t � 1 and
before step t 0, then we call student i an interrupter for school s and the pair .i; s/
is an interrupting pair of step t 0. An interrupter is consenting if she allows the
mechanism to violate her priorities at no expense to her, that is, if she allows the
mechanism to drop her from the running for schools she was an interruptor for,
thus ignoring her priority standing with such schools. Note that the student’s actual
assignment would remain the same if not improve, and the consent would cost her
nothing; by definition, she would not have been assigned to any school for which
she was an interrupter in the first place.

EADAM then runs as follows:

Efficiency adjusted deferred acceptance mechanism:

Round 0: Run SOSM.

Round 1: Find the last step (of SOSM run in Round 0) at which a consenting
interrupter is rejected from the school for which he/she is an interrupter. Identify
all interrupting pairs in that step which contain a consenting interrupter. If there
are no such pairs, then stop. Otherwise for each identified interrupting pair .i; s/,
remove school s from the preference list of student i without changing the relative
order of the remaining schools. Rerun SOSM with the new preference profile for
all such i until all students have been assigned.

And in general:

Round k, k � 1: Find the last step (of SOSM run in the previous round) at which a
consenting interrupter is rejected from the school for which he/she is an interrupter.
Identify all interrupting pairs in that step which contain a consenting interrupter.
If there is no such pair, stop. Otherwise for each identified interrupting pair .i; s/,
remove school s from the preference list of student i without changing the relative
order of the remaining schools. Rerun SOSM with the new preference profile until
all students have been assigned.

In SCP1, .i3; s1/ is an interrupting pair and EADAM with the consent of i3
outputs the Pareto efficient matching M

SCP1

E
. Note that this result improves the

assignments for i1 and i2 while leaving i3 with the same assignment. This mecha-
nism deploys a balanced approach to priorities and preferences and points towards
the possibility of introducing alternative pathways to these outcomes, which leads
us to our next section where we do just that.

2. Coalitions in the school choice problem

Huang [2006] discusses a weakness of the Gale–Shapley algorithm in the context
of the stable marriage problem and introduces the idea of coalition cheating in the
marriage problem. More specifically he shows that a coalition can be formed where
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some men, without forgoing their own Gale–Shapley stable matching assignment,
can cheat (misrepresent their preferences) so that some other men marry women
who are higher on their preference list.

In this section we apply these ideas to the school choice problem. In this way we
develop an alternative process for improving on the SOSM outcome. In Section 2A
we give some background and an example that will motivate Huang’s construction.
We then introduce the elements of what Huang calls cheating coalitions in the
context of the SCP, and discuss some implementation issues. From here onward,
we resist the use of the term “cheating” in this context because we believe that these
coalitions could be systematically incorporated into the design of a mechanism since
they improve outcomes for some with no adverse effects on others. If the goal is for
a “benevolent” district mechanism, then improving efficiency beyond that of a stable
matching (e.g., SOSM), might simply be a part of the process. In Section 2B we com-
pare the possible outcomes of coalitions to that of EADAM. Our presentation and
general approach here are consistent with our focus on process as the primary area
of interest while maintaining loyalty to the practical needs of the SCP framework.

2A. Huang’s construction, coalitions and school choice. The following theorem
establishes that in the stable marriage problem, there exists no coalition of men that
may falsify their preferences such that every member of the coalition receives a
strictly better assignment:

Theorem 2.1 [Dubins and Freedman 1981]. In the Gale–Shapley men-optimal algo-
rithm, no subset of men can improve their assignment by falsifying their preference
lists.

Translating the stable marriage problem to the context of the SCP, as done in
[Abdulkadiroǧlu and Sönmez 2003] by replacing men with s students, we get as an
immediate corollary:

Corollary 2.2. In the SOSM algorithm, no subset of students can improve their
assignment by falsifying their preference lists.7

In light of results of this nature, Huang [2006] introduces a nuanced notion of
coalitions that falsify preferences to improve assignments. In the following, we
carry over to the SCP setting this coalition model, which distinguishes between two
main groups of players: those who falsify their preferences, and those who benefit
from the falsifications.

Let I and S be the set of students and schools respectively in a given SCP. Let M

be the SOSM stable matching assignment for the case where all students submit their
true preferences. A coalition C is defined in terms of a pair .K;A/ of subsets of the

7One can nonetheless prove that SOSM (DA as applied to school choice) is not group-strategyproof.
We choose not to go further into strategy discussions here.
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set I of students. The first subset, the cabal K D .i1; i2; : : : ; ijK j/ of a coalition C ,
is a list of students such that each student ik , 1 � k � jKj, prefers M.ikC1/ to
M.ik/, indices taken modulo jKj. In other words, we have M.ikC1/ �ik

M.ik/

for 1� k � jKj, and a cabal loop, written .i1! i2! � � � ! ijK j! i1/, a closed
chain of students each of whom would prefer the stable assignment of the person
following him to his own stable assignment. The second subset, the accomplice set
ADA.K/ of cabal K D .i1; i2; : : : ; ijK j/, is a set of students A.K/� I such that
i 2 A.K/ if for some ik 2K, we have M.ikC1/ �i M.i/ and i �M.ikC1/ ik . In
other words, an accomplice is a student who in his truthful preference list ranks
the stable assignment of someone in the cabal (ikC1) higher than his own stable
assignment, while he himself is ranked higher by that school than another member
of the cabal (the one pointing toward ikC1) who would prefer it to his own school.
Note that K and A.K/ may or may not be disjoint.

For any student i 2 I , we can write the preference profile of i as a disjoint union
of three sets: .PLŒi �;M.i/;PR Œi �/. Here the set PLŒi � (respectively PR Œi �) is simply
the list of schools on i ’s preference profile to the left (respectively to the right) of his
stable assignment M.i/. Let �r denote a random permutation of S . We can now
prove the following (as an easy adaptation from the analogous result of Huang):

Theorem 2.3 (cf. [Huang 2006]). Let M be the SOSM matching for a given SCP
when students submit their true preferences. Consider a coalition C D .K;A.K//,
and suppose that each accomplice i 2 A.K/ submits a falsified list of the form
.�r .PLŒi ��X /;M.i/; �r .PR Œi �[X //, where

� if i 62K, then X D fs 2M.K/ j s DM.ik/; s �i M.i/; i �s ik�1g, and

� if i D ik 2A.K/\K, then

X D fs 2M.K/ j s DM.ij /; j ¤ k; s �ik
M.ik/; ik �s ij�1g:

Then in the resulting matching M 0, M 0.ik/DM.ikC1/ for ik 2K and M 0.i/D

M.i/ for i 62K.

We observe that accomplices modify their preference profiles by moving schools
on the left of their stable assignment to the right of their stable assignment if they
are desirable to other students in the cabal. In particular, if i is an accomplice, then
the set X of schools i moves to the right of his stable assignment will consist of
all the stable assignments of the members of the cabal that rank i higher than the
student following their stable assignment in the cabal loop. Note that the falsified
preference lists incorporate a random permutation �r of the preferences to the
left and the right of the stable partner. The coalition procedure is quite robust, in
that such a random permutation will not affect the outcome. In other words, the
resulting matching creates a cyclical reassignment of those within the cabal loop
while leaving all other assignments as they were.
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We call each outcome of the improvement process described in Theorem 2.3
a coalition improvement and formalize the concept in the coalition improvement
procedure (CIP).

Coalition improvement procedure for a given sequence of coalitions .C1;: : :;Ck/
8:

Round 0: Given a preference and priority profile, run the SOSM algorithm and
obtain a temporary matching M0.

Round t , 1 � t � k: Given Mt�1, apply Theorem 2.3 with the coalition Ct D

.Kt ;A.Kt //. Return the resulting matching M 0
t�1

as the outcome Mt .

Let us now consider an example, which we will label SCP2. This example
demonstrates what CIP might look like in practice and also points out which set
of consenting interruptors would result in EADAM having the same outcome. Let
I Dfi1; i2; i3; i4; i5g and S Dfs1; s2; s3; s4; s5g be the sets of students and schools,
respectively, and let their respective preference and priority profiles be given as
follows:

i1 W s2 � s5 � s4 � s3 � s1; s1W i3 � i2 � i4 � i1 � i5;

i2 W s2 � s5 � s4 � s1 � s3; s2W i4 � i5 � i1 � i2 � i3;

SCP2 W i3 W s5 � s2 � s1 � s3 � s4; s3W i2 � i3 � i4 � i5 � i1;

i4 W s4 � s1 � s2 � s3 � s5; s4W i1 � i2 � i3 � i5 � i4;

i5 W s5 � s4 � s2 � s3 � s1; s5W i1 � i2 � i5 � i3 � i4:

Note that the matching output by SOSM for SCP2 is

M
SCP2

S
D

�
i1 i2 i3 i4 i5
s5 s4 s1 s2 s3

�
:

We now consider the following coalition C D .K;A.K//: Let K D fi1; i2; i4g

with the cabal loop .i1! i4! i2! i1/. The accomplice set A.K/ is fi5g and the
set X for i5 is fs2; s4g. In other words, the only student who modifies his preference
profile is i5. We display his old and new profiles:

i5’s old profile W s5 � s4 � s2 � s3 � s1;

i5’s new profile W s5 � s3 � s1 � s2 � s4:

(We underlined i5’s stable assignment s3.) The outcome matching when we rerun
SOSM is

M
SCP2

C
D

�
i1 i2 i3 i4 i5
s2 s5 s1 s4 s3

�
;

8It should be apparent that there may be multiple outcomes of CIP for a given SCP depending on
the particular sequence of coalitions we input. For simplicity we will assume that the cabals in each
of the Ci are disjoint.
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which improves the outcome for all members of the cabal and does not affect the
remaining students. We note that this is also the EADAM outcome if i5 consents.
We will discuss this example further in Section 3A.

2B. Coalitions and EADAM. SOSM’s strict adherence to stability and the result-
ing inefficiency has already been mentioned here (and documented in [Abdulka-
diroǧlu et al. 2009; Kesten 2010] and elsewhere). In this section we compare
CIP (described in Section 2A) and EADAM from [Kesten 2010] (described in
Section 1B), both of which model efficiency adjustments to SOSM. Specifically,
we show that the common outcome of CIP and EADAM demonstrated by SCP2

holds more generally by proving that for any SCP, there exists a coalition so that
CIP yields the EADAM outcome with full consent. This fact may justify “fairness”
arguments despite the sacrifice of stability.

Here is our general statement:

Theorem 2.4. For any possible combination of consenters, the associated EADAM
outcome may be obtained by forming an appropriately designed coalition and
running CIP.

The intuition behind this is that accomplices can be viewed as interrupters who
consent to waive their priority so that they do not start a rejection chain. But
coalitions reframe the argument so that the players are given the power to improve
the outcome of the mechanism rather than being asked to waive their priority as
with consenters.

Proof of Theorem 2.4. Let I and S be the sets of students and schools, respectively.
Let .P ;…/ be a given school choice problem for the pair .I;S/, and let W be
the set of students who consent to waiving their priorities under EADAM. Denote
by MS and ME the SOSM and the EADAM outcome matchings of this problem,
respectively. We will now construct a coalition C which will result in the same
outcome ME . First define the cabal set K to be the set of all students whose
assignments are different under MS and ME :

K D fi 2 I jMS .i/¤ME.i/g:

These are the students who benefit from EADAM; they will also be the students who
will benefit from the coalition C . Since every student whose assignment changes
under EADAM is in K, we can partition K into cabal loops. This is equivalent to
the basic algebraic fact that any finite permutation can be written as the product of
disjoint cycles. Hence an elementary algorithm to decompose K into its individual
cabal loops can be described as follows:

Step 0: Define a permutation �K of K by setting �K .i
0/ D i (i 0 points to i) if

MS .i/DME.i
0/. In words, i 0 points to i if EADAM matches i 0 to the school to

which SOSM matches i .
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Step 1: Pick a student i 2K and label her i1;1. Then let i1;2 be the student �K .i1;1/

and more generally label i1;jC1D�K .i1;j /. This process will stop at some j1 with
�K .i1;j1

/D i1;1, as �K is a finite permutation. Then

K1 D .i1;1! i1;2! � � � ! i1;j1
! i1;1/

is a cabal loop.

And in general:

Step k, k � 1: Pick a student i 2K who has not yet been assigned to a cabal loop
and label her ik;1. If none exists then the algorithm stops. Otherwise, label �K .ik;1/

as ik;2 and more generally label ik;jC1 D �K .ik;j /. This process stops at some jk

with �K .ik;jk
/D ik;1 as �K is finite. Then KkD .ik;1! ik;2!� � �! ik;jk

! ik;1/

is a cabal loop.
Note that the algorithm has to stop because K is finite. Furthermore each student

in K shows up in exactly one round and hence in exactly one cabal loop, because �K

is invertible.
Next we describe how to form the accomplice set A.K/. A student i will be in

A.K/ if and only if the following two conditions are both satisfied:

� i 2W , or equivalently, i consents to waive her priorities in EADAM.

� There is a school s such that .i; s/ is a last interrupter pair at some round of
EADAM.

The new preference profile for an accomplice i 2A.K/ will be of the form

.PLŒi ��X ;MS .i/;PR Œi �[X /;

where

� if i 62K, then X D fs 2MS .K/ j s DMS .ik/; s �i MS .i/; i �s ikC1g, and

� if i D ik 2A.K/\K, then

X D fs 2MS .K/ j s DMS .ij /; j ¤ k; s �ik
MS .ik/; ik �s ijC1g:

Here we are using the notation of Section 2A where PLŒi � (respectively PR Œi �) is
the list of schools on i’s preference profile to the left (respectively to the right) of
his stable assignment MS .i/.

Finally Theorem 2.3 allows us to conclude that the outcome matching MC

of C D .K;A.K// will be as follows: MC .i/ D MS .i/ for all i 62 K, and
MC .ik/DMS .ikC1/ for ik ; ikC1 in some cabal loop Kj in K. But then MC DME

and we are done. �

It is interesting to observe that CIP can produce outcomes that cannot be obtained
via EADAM no matter which students consent. That is, the converse of Theorem 2.4
is not true. To see this we analyze a minor modification of SCP2 which we
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label SCP3. Let I D fi1; i2; i3; i4; i5g and S D fs1; s2; s3; s4; s5g be given with the
following preference and priority structures, respectively:

i1 W s1 � s2 � s5 � s4 � s3; s1 W i3 � i2 � i4 � i1 � i5;

i2 W s2 � s5 � s4 � s1 � s3; s2 W i4 � i5 � i1 � i2 � i3;

SCP3 W i3 W s5 � s2 � s1 � s3 � s4; s3 W i2 � i3 � i4 � i5 � i1;

i4 W s4 � s1 � s2 � s3 � s5; s4 W i1 � i2 � i3 � i5 � i4;

i5 W s5 � s4 � s2 � s3 � s1; s5 W i1 � i2 � i5 � i3 � i4:

The SOSM outcome is

M
SCP3

S
D

�
i1 i2 i3 i4 i5
s5 s4 s1 s2 s3

�
:

EADAM with full consent (in fact we only need i5’s consent) returns the matching

M
SCP3

E
D

�
i1 i2 i3 i4 i5
s1 s2 s5 s4 s3

�
:

This corresponds to a coalition with the cabal set fi1; i2; i3; i4g and the singleton
accomplice set fi5g. The set X for i5 will be X D fs2; s4; s5g. Note that there
are two cabal loops: .i1! i3! i1/ and .i2! i4! i2/. There are indeed other
coalitions that could be used for the same SCP. Take, for instance, the cabal to be
fi2; i4g and let fi5g be the singleton accomplice set. Then X D fs2; s4g and we get

M
SCP3

C
D

�
i1 i2 i3 i4 i5
s5 s2 s1 s4 s3

�
:

This outcome cannot be obtained via EADAM because once i5 consents to waive
his priorities, he has to consent fully, and all Pareto improvements involving the
interrupter pairs he was a part of will also be made.

3. Cliques for school choice

EADAM and CIP provide us with ways to systematically improve upon SOSM
matching. Both involve complicated procedures requiring the identification of
problematic preference profiles (of interruptors or possible coalition members)
and subsequent modification of preference profiles and/or priority violations. The
ultimate goal in either case is the same: to Pareto improve upon SOSM in a way
that justifies the resulting priority violation(s). In this section we propose another
way to improve efficiency starting from the SOSM outcome. There are, again
necessarily, priority violations in the final matching. The main idea is as follows:
We begin by applying SOSM to the given SCP. Next, with no further consideration
of priorities, we enter students into a trading market designed purely to improve
school assignments from the point of view of student preferences.
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In Section 3A, we describe in more detail our new theoretical approach, the
trading adjusted deferred acceptance procedure (TADAP). While doing so, we
explicitly associate a directed graph to a given matching to provide a visual tool
to describe possible efficiency improvements. We investigate basic properties
of TADAP and compare outcomes of TADAP with those of other methods in
Section 3B. In particular, in keeping with our focus on process and the relationship
between outcomes, we discuss how coalitions and cliques relate to one another
and to other mechanisms involving cycle improvements. We also comment on
implications for the school choice context.

3A. The trading adjusted deferred acceptance procedure. We now develop a sys-
tematic way to find all Pareto improvements upon a predetermined matching M in
a given SCP. We will of course be particularly interested in the case where M is
the outcome of SOSM.

We start by associating a directed weighted graph .V;E; w/ to M as follows:
Each student i is assigned a unique vertex vi in V . There is an edge from vertex vi

to vertex vj if student i desires student j ’s assignment under the given matching at
least as much as, if not more than, the school to which he himself was assigned.
An edge e from vertex vi to vertex vj has weight w.e/ D 0 if student i desires
student j ’s assignment under the given matching as much as, but not more than, the
school to which he himself was assigned, and w.e/D 1 if the preference is strict.

In the above we can identify V with the set of students. With this in mind we
now introduce the following:

Definition 3.1. Let I and S be a set of n students and a set of m schools, re-
spectively, with respective preference and priority structures .P ;…/. Let M

be a matching for the associated SCP. We say that the directed weighted graph
GM D .V;E; w/ is the (directed weighted) graph of the matching M if V D I ;
for any pair of students .i; j /, there is an edge eij from i to j if and only if
M.j / �i M.i/; and for each edge eij 2 E, w.eij / D 0 if M.i/ �i M.j /, and
w.eij /D 1 otherwise.

Using this terminology, we can make the following definition:

Definition 3.2 (cf. [Ergin 2002, Definition 1]). Let I , S , .P ;…/, M and GM be
given as in Definition 3.1 and let k 2N. A clique of length k consists of a sequence
.i1; i2; : : : ; ik/ of k distinct students such that for each s < k, there is an edge in E

from vis
to visC1

, there is an edge in E connecting vik
back to vi1

, and for some
s < k, we have w.eis ;isC1

/D 1 or w.eik ;i1
/D 1.9 A similar cycle where wD 0 on

9What we call a clique is occasionally called a trading cycle in some of the literature. We use the
former for brevity and also as a hint to the social context.
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all edges is called a null clique. A matching whose graph contains no cliques (null
or otherwise) is acyclical.

A straightforward result then follows:

Theorem 3.3. If there exists a matching M (Pareto) dominating a matching M 0,
then the directed graph GM 0 of M 0 admits a clique. Equivalently, if the directed
graph of M 0 is acyclical, then M 0 is Pareto efficient. Conversely, if M 0 admits a
clique, we can always find a matching M which Pareto dominates M 0 (equivalently,
the directed graph of a Pareto efficient matching is acyclical).10

Consider now the following procedure:

Trading adjusted deferred acceptance procedure:

Round 0: Given a preference and priority profile, run the SOSM algorithm and
obtain a temporary matching M0.

Round t , t � 1: Given Mt�1, consider the graph .Vt ;Et ; wt / of Mt�1. If there
exists a student with no path through him, remove that student from the graph; his
assignment under Mt will remain his assignment at the beginning of this round. If
there are any cliques in the graph .Vt ;Et /, pick one (note that different choices
here may yield different results). For each edge from i to j in this clique, let Mt be
the matching that assigns student i the school to which j was matched under Mt�1.
If there is no clique, return Mt�1 as the outcome Mt and stop.

It is apparent from the description above that there may be multiple outcomes of
TADAP for a given SCP. In particular, in cases with multiple cliques, the procedure
may output different matchings depending on which cycles are selected at rounds
t � 1. Because following a clique yields a Pareto improvement, all outcomes
of TADAP in which a nonempty clique exists will Pareto dominate the SOSM
matching. In fact, any final outcome of TADAP will be Pareto efficient Pareto
dominations of the initial SOSM matching. A district might choose to select cliques
in an arbitrary manner and/or select cliques that include certain student populations
over others (reinforcing their original priority structure) in order to define a trading
adjusted deferred mechanism.

We begin with an example where the preference and priority structures are strict.
(In such a situation, the weight function on the graph is uniformly 1 and can be
ignored.) Consider once again SCP2 (Section 2A) with five students and five schools

10In this theorem and in the rest of this section, we do not consider the case when there are some
unassigned students and/or some unfilled places at a given school. If, on the other hand, this happens,
some students can improve their assignment by taking a more preferred free place at a school without
harming others. This means that a matching M may be Pareto dominated even in the case when the
directed graph of M is acyclic; see [Abraham et al. 2005], where a necessary and sufficient condition
for a matching to be Pareto optimal is proved.
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each with one seat:

i1 W s2 � s5 � s4 � s3 � s1; s1W i3 � i2 � i4 � i1 � i5;

i2 W s2 � s5 � s4 � s1 � s3; s2W i4 � i5 � i1 � i2 � i3;

SCP2 W i3 W s5 � s2 � s1 � s3 � s4; s3W i2 � i3 � i4 � i5 � i1;

i4 W s4 � s1 � s2 � s3 � s5; s4W i1 � i2 � i3 � i5 � i4;

i5 W s5 � s4 � s2 � s3 � s1; s5W i1 � i2 � i5 � i3 � i4:

The matching under SOSM is

M
SCP2

S
D

�
i1 i2 i3 i4 i5
s5 s4 s1 s2 s3

�
:

SOSM does a poor job with student preferences here. One student gets his fourth
choice, three get their third choice and one gets his second choice.

For SCP2, the associated SOSM matching can thus be translated into the follow-
ing graph:

vi1

vi4





vi2

vi4

;;

{{

vi2

vi1 cc

vi3
vi4

//oo vi3

vi1
TT

vi5

vi1;;

vi5
vi2
//vi5

vi4

��

We see that if there is an arrow from il to ij then il would (weakly) prefer to be
assigned to M.ij /. Such a swap can only be allowed if another student, ik , prefers
M.il/ to his own assignment, that is, only if there is a directed edge from some vik

to vil
. In this manner, a group of students can form a “swap market” and they can

trade their SOSM assignments among themselves consistent with the directed graph.
Such a swap market would correspond to a cycle in the graph. Here are four different
cliques within the directed graph above (cliques denoted by unbroken arrows):

Cycle 1:

vi1

vi4





vi2

vi4

vi2

vi1

vi3

vi1
TT

vi4
vi3
//

vi5

vi1

vi5
vi2

vi5

vi4

Cycle 2:

vi1

vi4

vi2

vi4

vi2

vi1

vi3

vi1

vi4
vi3

oo //

vi5

vi1

vi5
vi2

vi5

vi4
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Cycle 3:

vi1

vi4

vi2

vi4

;;

{{

vi2

vi1

vi3
vi4

vi3

vi1

vi5

vi1

vi5
vi2

vi5

vi4

Cycle 4:

vi1

vi4





vi2

vi1 cc

vi3
vi4

vi3

vi1

vi4

vi2;;
vi5

vi1

vi5
vi2

vi5

vi4

We list the assignments corresponding to each of the four cliques (note that the
students’ assignments are underlined in each matching):

M1D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1;

M2D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1;

M3D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1;

M4D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

i1 W s2 � s5 � s4 � s3 � s1;

i2 W s2 � s5 � s4 � s1 � s3;

i3 W s5 � s2 � s1 � s3 � s4;

i4 W s4 � s1 � s2 � s3 � s5;

i5 W s5 � s4 � s2 � s3 � s1:

Observe that M1, M3, and M4 are Pareto efficient but M2 is not. In fact, if we
draw the directed graph of M2, we see that there is another cycle between i3 and i1.
Thus we could continue with another clique, which would result in M1. This raises
the question of what efficient matching should be chosen in case of multiple efficient
matchings. In this specific example, all three matchings give two students their top
choice, one student her second choice, one student her third choice, and one student
her fourth choice. Note that M4 is the one obtained earlier via EADAM with the
consent of i5 and, equivalently, via a coalition with the cabal K D fi1; i2; i4g (the
cabal loop is .i1! i4! i2! i1/), the accomplice set A.K/D fi5g, and the set
X D fs2; s4g for i5 (see Section 2A). One might argue that having multiple paths
to a given outcome is, in itself, a justification to select that outcome as “best”.

Note that in all these cases, i5’s assignment stays the same; in other words, i5
can be labeled a “hopeless student” analogous to the “hopeless man” in [Huang
2006]. Looking at the graph, we see that there is no path passing through i5; there
is no chance for his situation to be improved. We can simplify the graph by taking
out the vertex corresponding to i5.
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3B. Properties of TADAP. We begin this section with an analysis of the perfor-
mance of TADAP under strategic action. We first state a key result from Kesten:

Proposition 3.4 [Kesten 2010, Proposition 4]. No Pareto efficient mechanism that
can Pareto improve upon SOSM is fully immune to strategic action.

Since TADAP produces Pareto improvements of SOSM, it follows then that it is
not strategyproof. This is consistent with other improvements upon SOSM. However,
lack of strategyproofness does not imply easy manipulability. The feasibility of
manipulation decreases as the size of the market (school district) increases. This
is analogous to our earlier assertion that substantial coalitions are hard to form
naturally on their own in the context of the SCP. Students do not have complete
information about preference profiles of other students, so potential profitable
strategic behaviors are highly unlikely. Formulating an alternative ranked list which
yields a better assignment, even with complete information on all other students
will most likely not be feasible for individual students.

Making the above more precise in technical language, we first split the schools
into categories in terms of perceived quality. Then we can prove the following (cf.
[Kesten 2010, Theorem 2]):

Theorem 3.5. Let the set of schools S be partitioned into categories of perceived
quality

S D S1[S2[ � � � [Sm with Si \Sj D∅ if i ¤ j

such that for any k; l 2 f1; : : : ;mg with k < l , each student prefers any school
in Sk to any school in Sl . Let each student’s information be symmetric for any two
schools in the same perceived quality category. Then for any student, the strategy
of truth telling stochastically dominates any other strategy when other students
behave truthfully. Thus truth telling is an ordinal Bayesian Nash equilibrium of the
preference revelation game under TADAP.

A well-studied method of strategic action by students is truncation manipulation,
one of the few tools available in such a largely incomplete information matching
game [Ehlers 2008]. However it is easy to see that in TADAP, no student benefits
from truncating her preference list; any such truncation results in fewer cliques and
fewer opportunities for that student (and for others) to improve her lot.

Note also that there is no strategy that a group of students could employ resulting
in an outcome that is not among those produced by some choice of clique using
TADAP. This is because in considering all possible cliques, we obtain all possible
Pareto improvements.

Another prominent feature of TADAP is the efficiency of all its outcomes. Each
clique followed improves the efficiency of the outcome, neutralizing to an extent
the inefficiency caused by SOSM. As each such improvement creates a Pareto
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domination of the previous matching, at the end of the algorithm, we stop at a Pareto
efficient matching. In fact, TADAP produces all efficient matchings that Pareto
dominate SOSM. We can actually prove a slightly stronger result. A straightforward
proof yields the following:

Proposition 3.6. If matching M (Pareto) dominates the SOSM matching M �,
then M is realizable by TADAP up to null cliques.

Obviously, distinct Pareto efficient matchings are Pareto incomparable. At this
point we might resort to another evaluative criterion. For instance, we may wish
to then consider the matchings with minimal preference index, a criterion that
considers the sum of each player’s priority violation as a measure of “lost utility”;11

this can reduce our option size. And, if the mechanism itself includes a second
stage procedure such as TADAP or EADAM with full consent assumed, the overlap
of outcomes may be called upon to justify the subsequent modification of outcomes.
Since the overall process includes adjustments made in a standard manner to an
initial stable outcome, the “fairness” is built in. If the standard adjustments are
selected based upon criteria that include a “multiple pathway” argument, then the
EADAM or other identified outcome is strongly supported. That is, no priority
must be “waived” as that priority is part of the input, but needn’t be incorporated
into the final output matching.

The above proposition easily yields the following:

Corollary 3.7. All efficient outcomes of EADAM and CIP can be found by TADAP.

Recall that both EADAM and CIP provide us with efficiency improvements to
SOSM. However, TADAP can return all Pareto efficient matchings that dominate
SOSM so that we can compare all choices and pick the most desirable matching.

The absolute efficiency of TADAP may appeal to a utilitarian. However, this
efficiency is achieved at the expense of stability. By its very construction, TADAP is
not stable. Obviously we need to make an effort to coordinate the tradeoff between
stability and efficiency. In the school choice literature, “fairness”, “stability”,
“justified envy”, and “no priority violation” are often used interchangeably. Here
we propose a more nuanced notion of fairness (originally due to Kesten).

Since TADAP starts with the SOSM outcome as input, we are starting at a point
where student priorities are considered and respected. TADAP may then make
changes to the assignments which cause instability, manifesting itself in terms of
justified envy. However, if a student’s assigned school could not get any better under
any stable mechanism, we surmise that his “justified envy” for anybody’s assignment
should not be justified. To formalize this we make the following definition:

11See [Aksoy et al. 2013; Karaali et al. 2012] for more on the preference index. Readers interested
in other efficiency metrics might also refer to [Boudreau and Knoblauch 2010].
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Definition 3.8 (cf. [Kesten 2010]). A matching is reasonably fair if there is no
stable matching that can improve the assignment of any student. A mechanism is
reasonably fair if it always outputs reasonably fair matchings.

Then the following is a direct consequence:

Proposition 3.9. Matchings produced by TADAP are reasonably fair.

Finally we should note that cycle improvements are used in the literature in a
variety of ways. For instance Kesten [2010] describes such a model. In [Erdil and
Ergin 2008], a stable cycle improvement model is developed. In this sense, the
point of our work is to devise a scheme which incorporates any Pareto improvement
of the SOSM outcome in a cycle improvement model.12

4. Conclusion

In this paper, we introduce and investigate the properties of coalitions and cliques,
two notions that can be incorporated into a school choice mechanism to improve
the efficiency of SOSM. Our focus is on the examination of mathematical processes
for producing improvements. Both approaches we examine, coalitions and cliques,
allow us to consider opportunities for cooperation and collaboration among and
between the players and designers. We also hope that the mathematical tenor of
our approach amidst a crowded literature focusing on practical outcomes will be
aesthetically appealing and valuable for some readers.

The theoretical framework we are interested in might even have practical implica-
tions. We argue that the concerns about fairness that are prevalent in the literature of
practically implementable mechanisms for school choice may be alleviated by our
theoretical framework which demonstrates multiple pathways to produce outcomes
of mechanisms commonly in use.

Our work may also be viewed as a fresh examination of two well-known and
widely used school choice mechanisms (SOSM and EADAM). Our utilization of
the notion of “reasonably fair” (originally proposed, to the best of our knowledge,
by Kesten [2010]) captures our focus on cooperation and collaboration as a means
to address any perceived unfairness. The double meaning of reasonableness as
“somewhat” as well as “what a reasonable person would accept” is especially apropos.
The constructions here yield opportunities to improve upon SOSM while justifying
resulting priority violations in new ways.

Clearly our two modifications work by Pareto improving the baseline outcome
of SOSM. Considering a coalition or clique improvement to SOSM as part of the

12Alternatively, rather than starting with a stable outcome and then modifying, one can start
instead with an efficient outcome (such as one obtained via the top trading cycles mechanism) and
then modify it to reach a more stable matching. Just such a method is investigated in [Morrill 2013].
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overall mechanism with an established way of selecting the best overall outcome
would allow for implementation without the need to establish approval from certain
families. While it was not our goal here to develop a practical replacement for
the well-established mechanisms now in use, we argue that the improvements
presented here can have genuine practical implications. This is in part because of
their coincidental outcomes rather than despite them. We can justify the priority
violations that result from coalition improvement and cliques by showing that the
new assignments (Pareto) dominate the SOSM assignments and can be arrived at via
multiple paths. Because many of the current school priorities in place are meant to
create some certainty/security for families, once those have been taken into account
in the initial assignment, and since we can demonstrate that no families are made
worse off, neither schools nor families should have a reason to object.

We also note that indifferences in student preferences may be incorporated into
our model. Both collaborative approaches presented (coalitions and cliques) can
work when students submit lists with indifferences. Although a considerable amount
of research has been done regarding indifferences within school priority classes,
indifference in student preferences has not been studied in as much depth. As
far as we know, this characteristic of cycle improvement models has not been
investigated before, at least in the school choice context. This can be a good avenue
to pursue further.

As a final note, we once again emphasize the fact the two notions introduced
in this paper are related to one another as well as to SOSM and EADAM. More
specifically, given a coalition C D .K;A.K// in the notation of Section 2A, we can
always construct a sequence of cliques that under TADAP yields the same outcome.
In other words, coalitional outcomes can always be obtained via TADAP as well.
Going the other way is also doable in the case of strict preference profiles: any
clique in such a context corresponds to a cabal cycle and the accomplices may be
determined afterwards by looking at the resulting priority violations. It is precisely
these overlapping and interlocking relationships between disparate processes that
intrigues us and motivates this work.
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[Abdulkadiroǧlu et al. 2005b] A. Abdulkadiroǧlu, P. A. Pathak, A. E. Roth, and T. Sönmez, “The
Boston public school match”, Am. Econ. Rev. 95:2 (2005), 368–371.
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of signed Petersen graphs
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Zaslavsky proved in 2012 that, up to switching isomorphism, there are six dif-
ferent signed Petersen graphs and that they can be told apart by their chromatic
polynomials, by showing that the latter give distinct results when evaluated at 3.
He conjectured that the six different signed Petersen graphs also have distinct
zero-free chromatic polynomials, and that both types of chromatic polynomials
have distinct evaluations at any positive integer. We developed and executed a
computer program (running in SAGE) that efficiently determines the number of
proper k-colorings for a given signed graph; our computations for the signed
Petersen graphs confirm Zaslavsky’s conjecture. We also computed the chromatic
polynomials of all signed complete graphs with up to five vertices.

Graph coloring problems are ubiquitous in many areas within and outside of
mathematics. We are interested in certain enumerative questions about coloring
signed graphs. A signed graph 6 = (0, σ ) consists of a graph 0 = (V, E) and a
signature σ ∈ {±}E . The underlying graph 0 may have multiple edges and, besides
the usual links and loops, also half-edges (with only one endpoint) and loose edges
(no endpoints); the last are irrelevant for coloring questions, and so we assume in
this paper that 6 has no loose edges. An unsigned graph can be realized by a signed
graph all of whose edges are labeled with +. Signed graphs originated in the social
sciences and have found applications also in biology, physics, computer science,
and economics; see [Zaslavsky 1998–2012] for a comprehensive bibliography.
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The chromatic polynomial c6(2k+ 1) counts the proper k-colorings

x ∈ {0,±1, . . . ,±k}V ,

namely, those colorings that satisfy

xv 6= σvw xw

for any edge vw ∈ E and xv 6= 0 for any v ∈ V incident with some half-edge.
Zaslavsky [1982a] proved that c6(2k + 1) is indeed a polynomial in k. It comes
with a companion, the zero-free chromatic polynomial c∗6(2k), which counts all
proper k-colorings x ∈ {±1, . . . ,±k}V .

The Petersen graph has served as a reference point for many proposed results
in graph theory. Considering signed Petersen graphs, Zaslavsky [2012] showed
that, while there are 215 ways to assign a signature to the fifteen edges, only six of
these are different up to switching isomorphism (a notion that we will make precise
below), depicted in Figure 1. (In our figures we represent a positive edge with a
solid line and a negative edge with a dashed line.)

Zaslavsky [2012] proved that these six signed Petersen graphs have distinct
chromatic polynomials; thus they can be distinguished by this signed-graph invariant.
He did not compute the chromatic polynomials but showed that they evaluate to
distinct numbers at 3 [loc. cit., Table 9.2]. He conjectured that the six different
signed Petersen graphs also have distinct zero-free chromatic polynomials, and
that both types of chromatic polynomials have distinct evaluations at any positive
integer [loc. cit., Conjecture 9.1]. Our first result confirms this conjecture.

Theorem 1. The chromatic polynomials of the signed Petersen graphs (denoted by
P1, . . . , P6 in Figure 1) are

P1 P2 P3

P4 P5 P6

Figure 1. The six switching-distinct signed Petersen graphs.
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cP1(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 3712k6

− 1792k5
+ 160k4

+ 480k3
− 336k2

+ 72k,

cP2(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 3968k6

− 2560k5
+ 1184k4

− 352k3
+ 48k2,

cP3(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4096k6

− 2944k5
+ 1696k4

− 760k3
+ 236k2

− 40k,

cP4(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4224k6

− 3200k5
+ 1984k4

− 952k3
+ 308k2

− 52k,

cP5(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4096k6

− 3072k5
+ 1920k4

− 960k3
+ 320k2

− 48k,

cP6(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4480k6

− 3712k5
+ 2560k4

− 1320k3
+ 460k2

− 90k.

Their zero-free counterparts are

c∗P1
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86592k6

− 91552k5
+ 68400k4

− 34440k3
+ 10424k2

− 1408k,

c∗P2
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86848k6

− 93088k5
+ 72304k4

− 39880k3
+ 14792k2

− 3288k,

c∗P3
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86976k6

− 93856k5
+ 74256k4

− 42592k3
+ 16960k2

− 4222k,

c∗P4
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 87104k6

− 94496k5
+ 75664k4

− 44320k3
+ 18192k2

− 4698k,

c∗P5
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86976k6

− 93984k5
+ 74800k4

− 43560k3
+ 17840k2

− 4616k,

c∗P6
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 87360k6

− 95776k5
+ 78480k4

− 47760k3
+ 20640k2

− 5660k.

Consequently (as a quick computation with a computer algebra system shows), none
of the difference polynomials cPm (2k + 1)− cPn (2k + 1) and c∗Pm

(2k)− c∗Pn
(2k),

with m 6= n, have a positive integer root.

To compute the above polynomials, we developed and executed a computer
program (running in SAGE [Stein et al. 2012]) that efficiently determines the
number of proper k-colorings for any signed graph. This code can be downloaded
from math.sfsu.edu/beck/papers/signedpetersen.sage or from the online supplement
to this paper. The procedure chrom is the main method; it takes an incidence matrix
and outputs the chromatic polynomial as an expression.

http://math.sfsu.edu/beck/papers/signedpetersen.sage
http://msp.berkeley.edu/involve/2015/8-5/involve-v8-n5-x10-code.txt


828 M. BECK, E. MEZA, B. NEVAREZ, A. SHINE AND M. YOUNG

We also used our program to compute the chromatic polynomials of all signed
complete graphs up to five vertices; up to switching isomorphism, there are two
signed K3s, three signed K4s, and seven signed K5s. As with the signed Petersen
graphs, the chromatic polynomials distinguish these signed complete graphs:

Theorem 2. The chromatic polynomials of the signed complete graphs (denoted
K (1)

3 , K (2)
3 , . . . , K (7)

5 in Figure 2) are

cK (1)
3
(2k+ 1)= 8k3

− 2k,

cK (2)
3
(2k+ 1)= 8k3,

cK (1)
4
(2k+ 1)= 16k4

− 16k3
− 4k2

+ 4k,

cK (2)
4
(2k+ 1)= 16k4

− 16k3
+ 4k2,

cK (3)
4
(2k+ 1)= 16k4

− 16k3
+ 12k2

− 2k,

cK (1)
5
(2k+ 1)= 32k5

− 80k4
+ 40k3

+ 20k2
− 12k,

cK (2)
5
(2k+ 1)= 32k5

− 80k4
+ 64k3

− 16k2,

cK (3)
5
(2k+ 1)= 32k5

− 80k4
+ 88k3

− 48k2
+ 10k,

cK (4)
5
(2k+ 1)= 32k5

− 80k4
+ 72k3

− 28k2
+ 4k.

cK (5)
5
(2k+ 1)= 32k5

− 80k4
+ 96k3

− 56k2
+ 12k,

cK (6)
5
(2k+ 1)= 32k5

− 80k4
+ 80k3

− 40k2
+ 8k,

cK (7)
5
(2k+ 1)= 32k5

− 80k4
+ 120k3

− 80k2
+ 20k.

The corresponding zero-free chromatic polynomials are

c∗
K (1)

3
(2k)= 8k3

− 12k2
+ 4k,

c∗
K (2)

3
(2k)= 8k3

− 12k2
+ 6k,

c∗
K (1)

4
(2k)= 16k4

− 48k3
+ 44k2

− 12k,

c∗
K (2)

4
(2k)= 16k4

− 48k3
+ 52k2

− 24k,

c∗
K (3)

4
(2k)= 16k4

− 48k3
+ 60k2

− 34k,

c∗
K (1)

5
(2k)= 32k5

− 160k4
+ 280k3

− 200k2
+ 48k,

c∗
K (2)

5
(2k)= 32k5

− 160k4
+ 304k3

− 272k2
+ 114k,

c∗
K (3)

5
(2k)= 32k5

− 160k4
+ 328k3

− 340k2
+ 174k,

c∗
K (4)

5
(2k)= 32k5

− 160k4
+ 312k3

− 296k2
+ 136k,

c∗
K (5)

5
(2k)= 32k5

− 160k4
+ 336k3

− 360k2
+ 190k,

c∗
K (6)

5
(2k)= 32k5

− 160k4
+ 320k3

− 320k2
+ 158k,

c∗
K (7)

5
(2k)= 32k5

− 160k4
+ 360k3

− 420k2
+ 240k.
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K (1)
3 K (2)

3 K (1)
4 K (2)

4 K (3)
4

K (1)
5 K (2)

5 K (3)
5 K (4)

5

K (5)
5 K (6)

5 K (7)
5

Figure 2. The switching classes of signed complete graphs.

We now review a few constructs on a signed graph 6 = (V, E, σ ) and describe
our implementation. The restriction of 6 to an edge set F ⊆ E is the signed graph
(V, F, σ |F ). For e ∈ E , we denote by 6− e (the deletion of e) the restriction of 6
to E −{e}. For v ∈ V , denote by 6− v the restriction of 6 to E − F , where F is
the set of all edges incident to v. A component of the signed graph 6 = (0, σ ) is
balanced if it contains no half-edges and each cycle has positive sign product.

Switching 6 by s ∈ {±}V results in the new signed graph (V, E, σ s), where
σ s
vw = sv σvw sw. Switching does not alter balance, and any balanced signed graph

can be obtained from switching an all-positive graph [Zaslavsky 1982b]. We also
note that there is a natural bijection of proper colorings of 6 and a switched version
of it, and this bijection preserves the number of proper k-colorings. Thus the
chromatic polynomials of 6 are invariant under switching.

The contraction of6 by F⊆ E , denoted by6/F , is defined as follows [Zaslavsky
1982b]: switch 6 so that every balanced component of F is all positive, coalesce
all nodes of each balanced component, and discard the remaining nodes and all
edges in F ; note that this may produce half-edges. If F = {e} for a link e, 6/e is
obtained by switching 6 so that σ(e) = + and then contracting e as in the case
of unsigned graphs; that is, disregard e and identify its two endpoints. If e is a
negative loop at v, then 6/e has vertex set V −{v} and edge set resulting from E
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by deleting e and converting all edges incident with v to half-edges. The chromatic
polynomial satisfies the deletion-contraction formula [Zaslavsky 1982a]

c6(2k+ 1)= c6−e(2k+ 1)− c6/e(2k+ 1). (1)

The zero-free chromatic polynomial c∗6(2k) satisfies the same identity provided that
e is not a half-edge or negative loop. We will use (1) repeatedly in our computations.

We encode a signed graph 6 by its incidence matrix as follows: first bidirect 6;
i.e., give each edge an independent orientation at each endpoint (which we think
of as an arrow pointing towards or away from the endpoint), such that a positive
edge has one arrow pointing towards one and away from the other endpoint, and a
negative edge has both arrows pointing either towards or away from the endpoints.
The incidence matrix has rows indexed by vertices, columns indexed by edges, and
entries equal to ±1 according to whether the edge points towards or away from the
vertex (and 0 otherwise). Since half-edges and negative loops have the same effect
on the chromatic polynomial of 6, we may assume that 6 has no half-edge. See
Figure 3 for an example.

Deletion-contraction can be easily managed by incidence matrices: deletion of an
edge simply means deletion of the corresponding column; contraction of a positive
edge vw means replacing the rows corresponding to v and w by their sum and then
deleting the column corresponding to the edge vw (it is sufficient to only consider
contraction of positive edges, since we can always switch one of its endpoints if
necessary, which means negating the corresponding row). Note that this process
works for both links and half-edges. Note also that we will constantly look for
multiple edges (with the same sign) and replace them with a single edge.

c

b

d

a

c

b

d

a

ab ac ad bc bd cd
a −1 −1 1 0 0 0
b −1 0 0 1 1 0
c 0 1 0 −1 0 −1
d 0 0 −1 0 −1 −1

Figure 3. K (3)
4 with one of its bidirections and corresponding

incidence matrix.
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Thus we can keep track of incidence matrices as we recursively apply deletion-
contraction, leading to empty signed graphs or signed graphs that only have half-
edges; both have easy chromatic polynomials.
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Domino tilings of Aztec diamonds,
Baxter permutations,

and snow leopard permutations
Benjamin Caffrey, Eric S. Egge, Gregory Michel,

Kailee Rubin and Jonathan Ver Steegh
(Communicated by Arthur T. Benjamin)

In 1992, Elkies, Kuperberg, Larsen, and Propp introduced a bijection between
domino tilings of Aztec diamonds and certain pairs of alternating-sign matrices
whose sizes differ by one. In this paper we first study those smaller permutations
which, when viewed as matrices, are paired with the matrices for doubly alternating
Baxter permutations. We call these permutations snow leopard permutations, and
we use a recursive decomposition to show they are counted by the Catalan numbers.
This decomposition induces a natural map from Catalan paths to snow leopard
permutations; we give a simple combinatorial description of the inverse of this map.
Finally, we also give a set of transpositions which generates these permutations.

1. Introduction and background

An Aztec diamond of order n is a two-dimensional array of unit squares with
2i squares in rows i ≤ n and 2(2n− i + 1) squares in rows n < i ≤ 2n, in which
the squares are centered in each row. In the figure below (left) we have the Aztec
diamond of order 3. We will be interested in the vertices of an Aztec diamond,
which we prefer to arrange in rows and columns, so we will orient all of our Aztec
diamonds as in the figure on the right.

MSC2010: 05A05, 05A15.
Keywords: domino tiling, Aztec diamond, Baxter permutation, alternating permutation,

alternating-sign matrix, Catalan number.
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Aztec diamonds can be tiled using 2× 1 domino rectangles, which is to say they
can be completely covered by disjoint dominoes whose union is the entire diamond.
We call a tiling of an Aztec diamond with dominoes a TOAD for short.

In [Elkies et al. 1992], Elkies, Kuperberg, Larsen, and Propp describe how to
construct, for each TOAD T of order n, a pair of matrices SASM(T ) and LASM(T )
of sizes n × n and (n + 1)× (n + 1), respectively. Each of these matrices is an
alternating-sign matrix (ASM), which is a matrix with entries in {0, 1,−1} whose
nonzero entries in each row and in each column alternate in sign and sum to 1.
(For an introduction to ASMs and a variety of related combinatorial objects, see
[Robbins 1991; Bressoud 1999; Propp 2001].) To carry out this construction, first
note that in Figure 1 the vertices that compose the tiled Aztec diamond fall naturally
into two matrices: the red vertices form an (n + 1)× (n + 1) matrix while the
blue vertices form an n× n matrix. We construct LASM(T ) on the red vertices by
labeling each vertex of degree 4 with a 1, labeling each vertex of degree 3 with
a 0, and labeling each vertex of degree 2 with a −1. We construct SASM(T ) on the
blue vertices in the same way, except the degree 4 and degree 2 rules are reversed.
Note that the TOAD T in Figure 1 has

LASM(T )=


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 and SASM(T )=

0 0 1
1 0 0
0 1 0

 .
Following [Elkies et al. 1992] and [Canary 2010], we say an (n+1)×(n+1) ASM

A and an n × n ASM B are compatible whenever there is a TOAD T such that
A=LASM(T ) and B=SASM(T ). Elkies et al. showed that an (n+1)×(n+1)ASM
with k entries equal to −1 is compatible with 2k n×n ASMs, while an n×n ASM
with j entries equal to 1 is compatible with 2 j (n+ 1)× (n+ 1) ASMs. In general,
then, the compatibility relation is not one-to-one. However, each (n+ 1)× (n+ 1)
ASM with no −1 entries (that is, each (n + 1)× (n + 1) permutation matrix) is

Figure 1. A domino tiling of the Aztec diamond of order 3.
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compatible with exactly one n × n ASM. In this case, Canary [2010] gives an
algorithm to construct the unique smaller ASM compatible with a given larger
permutation matrix. (Asinowski [2014] gives a different formulation of the same
algorithm, in which he first reconstructs the underlying TOAD.) To implement
Canary’s algorithm for an (n+1)× (n+1) permutation matrix A, first label the red
vertices in a diagram for an Aztec diamond of the appropriate size with the entries
of A. For each blue vertex, if the two red vertices immediately to the left, and all
of the red vertices left of those, are labeled with 0, then label the blue vertex 0.
Now repeat this process in each of the other three directions (up, right, and down).
Canary shows that each row and column of blue vertices will now contain an odd
number of unlabeled vertices, and there is a unique way to label these vertices with
1s and −1s to create an ASM.

Canary proves that the n× n ASM compatible with a given (n+ 1)× (n+ 1)
permutation matrix A will also be a permutation matrix if and only if A is the matrix
of a Baxter permutation. To understand the definition of a Baxter permutation,
first note that we can interpret each permutation matrix A as the permutation π in
one-line notation for which Ai j = δ jπ(i). That is, the 1 in the first row of A is in
position π(1), the 1 in the second row is in position π(2), and in general the 1 in
the j th row is in position π( j). For example, if T is the TOAD in Figure 1, then
the permutation for LASM(T ) is 4132 and the permutation for SASM(T ) is 312.
We will often identify a permutation matrix with its corresponding permutation in
one-line notation. With this convention, a Baxter permutation is a permutation that
avoids 2–41–3 and 3–14–2. In other words, π is a Baxter permutation whenever
there are no indices i < j < j+1< k such that π( j+1) < π(i) < π(k) < π( j) (for
2–41–3) or π( j)<π(k)<π(i)<π( j+1) (for 3–14–2). For example, 174962835
is not Baxter because the subsequence 4625 is an instance of 2–41–3. In contrast,
879164325 is Baxter because it contains no instances of 2–41–3 or 3–14–2. Note
that the compatibility relation is still not one-to-one when we restrict it to Baxter
permutations. For example, 12 is compatible with the Baxter permutations 123,
132, and 213. On the other hand, as suggested in [Asinowski et al. 2013], for every
permutation π of length n which is compatible with a Baxter permutation of length
n+1, the number of Baxter permutations of length n+1 compatible with π appears
to be a product of Fibonacci numbers.

Baxter permutations first arose in connection with the question of whether two
commuting continuous functions from the closed interval [0, 1] to itself must have
a common fixed point [Baxter 1964; Boyce 1967]. Since their introduction they
have been studied by many authors; some relevant references are [Chung et al.
1978; Mallows 1979; Cori et al. 1986; Dulucq and Guibert 1996; 1998; Guibert and
Linusson 2000; Ouchterlony 2006; Ackerman et al. 2006; Asinowski et al. 2013].

Our work involves a particular class of Baxter permutations, which are known
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as doubly alternating Baxter permutations. We call a permutation π alternating
whenever π(i) < π(i + 1) if i is odd and π(i) > π(i + 1) if i is even. That is, π is
alternating whenever it begins with an ascent, and its ascents and descents alternate.
A doubly alternating permutation is an alternating permutation whose inverse is
also alternating, and we call permutations that are both doubly alternating and
Baxter doubly alternating Baxter permutations (DABPs). Guibert and Linusson
[2000] show that the Catalan number Cn = 1/(n+1)

(2n
n

)
counts both the DABPs of

length 2n and the DABPs of length 2n+1. The Catalan numbers are known to count
many other combinatorial objects (see [Stanley 1999, Exercise 6.19] and [Stanley
2013]), including lattice paths from (0, 0) to (n, n) using only north (0, 1) and
east (1, 0) steps which do not pass below the line y= x ; we call these paths Catalan
paths. In addition to the explicit definition of Cn in terms of binomial coefficients,
the Catalan numbers also satisfy the recurrence relation Cn =

∑n
j=1 C j−1Cn− j

for n ≥ 0, with initial condition C0 = 1.
In this paper, we introduce the snow leopard permutations (SLPs), which are the

permutations that are compatible with the doubly alternating Baxter permutations.
More formally, we write Sn to denote the set of permutations of length n, and we
make the following definition.

Definition 1.1. We say a permutation π ∈ Sn is a snow leopard permutation when-
ever there is a TOAD T of order n such that LASM(T ) is a DABP and SASM(T )=π .

In Section 2, we characterize these permutations recursively, and we use this
recursive characterization to show that in this case the compatibility relation is
one-to-one. This implies that the snow leopard permutations of length 2n are also
counted by Cn , as are the snow leopard permutations of length 2n+ 1. Matching
our recursive description of the snow leopard permutations with the first-return
decomposition of a Catalan path gives us a recursively defined bijection from Catalan
paths from (0, 0) to (n, n) to snow leopard permutations of length 2n. In Section 3
we give a simple combinatorial description of the inverse of this map. Finally, in
Section 4 we describe how to generate all of the snow leopard permutations from
the decreasing permutation with a specific set of transpositions.

2. Recursive decompositions of DABPs, TOADs, and
snow leopard permutations

In this section we describe how to construct snow leopard permutations recursively,
and we use our recursive decomposition to show that there are Cn snow leopard
permutations of length 2n, as well as Cn snow leopard permutations of length 2n+1.
Our snow leopard permutation decomposition is induced by similar decompositions
of the associated TOADs and DABPs, so we first describe how to decompose these



DOMINO TILINGS OF AZTEC DIAMONDS 837

objects. We begin with a recursive decomposition of a DABP, for which it will be
helpful to use several common operations on permutations.

Permutation tools. Throughout we write Sn to denote the set of all permutations
of length n, and for any permutation π , we write |π | to denote the length of π . The
following four operations on permutations will be especially useful for us.

Definition 2.1. For any permutation π ∈ Sn , we write π c to denote the complement
of π , which is the permutation in Sn with

π c( j)= n+ 1−π( j)

for all j , 1 ≤ j ≤ n, and we write πr to denote the reverse of π , which is the
permutation in Sn with

πr ( j)= π(n+ 1− j)

for all j , 1≤ j ≤ n. For any permutations π ∈ Sn and σ ∈ Sk , we write π ⊕ σ to
denote the permutation in Sn+k with

(π ⊕ σ)( j)=
{
π( j) if 1≤ j ≤ n,
n+ σ( j − n) if n < j ≤ n+ k

for all j , 1≤ j ≤ n, and we write π 	 σ to denote the permutation in Sn+k with

(π 	 σ)( j)=
{

k+π( j) if 1≤ j ≤ n,
σ ( j − n) if n < j ≤ n+ k

for all j , 1≤ j ≤ n.

Note that on matrices the complement is a reflection over a vertical line, while
the reverse is a reflection over a horizontal line. In addition, one can also show that
for any permutations π and σ , we have (π⊕σ)−1

= π−1
⊕σ−1, (πr )−1

= (π−1)c,
and (π c)−1

= (π−1)r . We sometimes write i to denote the inverse map on Sn; with
this notation, our last two equations are equivalent to i ◦ r = c ◦ i and i ◦ c = r ◦ i ,
respectively.

Example 2.2. If π = 32154 and σ = 3124 then π c
= 34512, σ r

= 4213, π ⊕ σ =
321548679, and π 	 σ = 765983124.

In some situations our permutations will naturally have length 0 or −1. To
incorporate these cases into our results, we use the following notation.

Definition 2.3. We write ∅ to denote the empty permutation, which is the unique
permutation of length 0, and we write @ to denote the antipermutation, which
is the unique permutation of length −1. We have @c

= @r
= @−1

= @, and
1⊕@=@⊕ 1= 1	@=@	 1=∅.

As we show next, the set of Baxter permutations is closed under ⊕, 	, taking
complements, and taking the reverse of a permutation.
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Lemma 2.4. The following are equivalent for any permutation π .

(i) π is Baxter.

(ii) π c is Baxter.

(iii) πr is Baxter.

(iv) π−1 is Baxter.

Proof. (i) ⇒ (ii) If π c contains a subsequence of type 2–41–3, then the corre-
sponding subsequence of π will have type 3–14–2. Similarly, if π c contains a
subsequence of type 3–14–2 then the corresponding subsequence of π will have
type 2–41–3. If π is Baxter then π avoids 2–41–3 and 3–14–2, so π c avoids
3–14–2 and 2–41–3, which means π c is Baxter.

(ii)⇒ (i) This is immediate from (i)⇒ (ii), since (π c)c = π .

(i)⇔ (iii) This is similar to the proof of (i)⇔ (ii).

(i)⇔ (iv) Since (π−1)−1
=π , it’s sufficient to show that if π contains a subsequence

of type 2–41–3 or a subsequence of type 3–14–2 then π−1 does, as well. With this
in mind, suppose abcd is a subsequence of π of type 2–41–3 for which d − a is
minimal. If d = a+1 then the corresponding subsequence in π−1 has type 3–14–2.
Otherwise, a + 1 is either to the left of b or to the right of c, since b and c are
adjacent. If a+ 1 is to the left of b, then we can replace a with a+ 1, so d−a was
not minimal, which is a contradiction. On the other hand, if a+ 1 is to the right of
c then we can replace d with a+ 1, so d − a was not minimal in this case, either.

The proof that if π contains a subsequence of type 3–14–2 then π−1 contains
a subsequence of type 2–41–3 or 3–14–2 is similar. �

Lemma 2.5. The following are equivalent for permutations π and σ .

(i) π and σ are Baxter.

(ii) π ⊕ σ is Baxter.

(iii) π 	 σ is Baxter.

Proof. (i)⇒ (ii) Suppose to the contrary that π and σ are Baxter permutations but
π ⊕ σ is not Baxter. Call the first |π | entries of π ⊕ σ the front of π ⊕ σ , and call
the last |σ | entries the back. Note that every entry in the front is less than every
entry in the back.

If π ⊕ σ contains a subsequence α of type 2–41–3, then α cannot be entirely
contained in the front or in the back, since π and σ are Baxter. Therefore α(1)
is in the front and α(4) is in the back. Now α(2) must be in the back, since it is
greater than α(4), so α(3) must also be in the back. But this contradicts the fact
that α(1) > α(3).
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If π ⊕ σ contains a subsequence α of type 3–14–2, then α cannot be entirely
contained in the front or in the back, since π and σ are Baxter. But this contradicts
the fact that α(1) > α(4).

(ii)⇒ (i) If π or σ contains a subsequence of type 2–41–3 or 3–14–2 then so
does π ⊕ σ , and the result follows.

(i)⇔ (iii) This is similar to the proof of (i)⇔ (ii). �

Note that if π is alternating then π c is not alternating in general, and πr is
alternating if and only if π has odd length. Similarly, if π and σ are alternating,
then π ⊕ σ is not alternating in general, while π 	 σ is alternating if and only
if π has even length. As a result, the set of DABPs is not closed under ⊕, 	,
complements, or reverses.

The DABP decompositions. As we will see, snow leopard permutations inherit
their recursive structure from DABPs, so our first goal is to describe how to decom-
pose DABPs into smaller DABPs. Several of these results are not new, so we will
refer to the work of others, especially [Dulucq and Guibert 1998] and [Ouchterlony
2006], as needed.

Lemma 2.6 [Ouchterlony 2006, Lemma 4.1(i)]. If π is a DABP of odd length then
π(1)= 1.

Ouchterlony uses Lemma 2.6 to conclude that π is a DABP of length 2n + 1
if and only if π = 1⊕ (σ r )−1 for some DABP σ of length 2n [Ouchterlony 2006,
Corollary 4.2(i)], and that this correspondence is a bijection between the set of
DABPs of length 2n+ 1 and the set of DABPs of length 2n. However, as we show
next, more is true.

Proposition 2.7. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c on permu-
tations. For any nonnegative integer n and any π ∈ S2n+1, π is a DABP if and
only if there is a DABP σ ∈ S2n such that π = 1⊕ σ f . Moreover, for each f , this
correspondence is a bijection between the set of DABPs π of length 2n+ 1 and the
set of DABPs σ of length 2n.

Proof. By [Ouchterlony 2006, Corollary 4.2(i)], the result holds for f = i ◦ r .
To prove the result for f = c, first note that σ is a DABP if and only if σ−1 is a
DABP by Lemma 2.4. Now the result follows by replacing σ with σ−1 in [loc. cit.,
Corollary 4.2(i)] and using the fact that i ◦ r ◦ i = c.

The proofs when f = r and f = i ◦ c are similar. �

With Proposition 2.7 in mind, we will focus our attention on DABPs of even
length. In this case, Guibert and Linusson [2000] and Ouchterlony [2006] have
found the following DABP decomposition.
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Figure 2. The TOAD of order 0.

Proposition 2.8 [Ouchterlony 2006, Corollary 4.2(ii)] and [Guibert and Linusson
2000, proof of Theorem 3]. For any nonnegative integer n and any permutation
π ∈ S2n , π is a DABP if and only if there are DABPs π1 and π2 of even length
such that π = (1⊕ (πr

1 )
−1
⊕ 1)	π2. Moreover, this correspondence is a bijection

between the set of DABPs π of length 2n and the set of ordered pairs (π1, π2) of
DABPs of lengths 2k and 2l, where n = k+ l + 1.

As was the case for DABPs of odd length, more is true.

Proposition 2.9. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c on permuta-
tions. For any nonnegative integer n and any permutation π ∈ S2n , π is a DABP if
and only if there are DABPs π1 and π2 of even length such that π = (1⊕π f

1 ⊕1)	π2.
Moreover, for each f , this correspondence is a bijection between the set of DABPs π
of length 2n and the set of ordered pairs (π1, π2) of DABPs of lengths 2k and 2l,
where n = k+ l + 1.

Proof. This is similar to the proof of Proposition 2.7, using Proposition 2.8. �

The Aztec diamond decompositions. It is not difficult to show [Asinowski 2014;
Canary 2010] that each Baxter permutation π of length n+ 1 determines a unique
TOAD T (π) of order n, and that T and LASM are inverse bijections when LASM
is restricted to those TOADS whose LASM is a Baxter permutation. Computing
T (π) when π has length 2 or more is routine, but some care is required when π
has length 0 or 1. In particular, T (1) is the TOAD of order 0, which we show in
Figure 2. Going a bit smaller still, we write @ to denote the TOAD T (∅), which
has order −1. Since the Aztec diamond of order −1 has no edges at all, we can’t
even draw it, but it will still play a role in our snow leopard decomposition.

The fact that we have the maps T and LASM means our DABP decompositions
induce similar TOAD decompositions. To describe these TOAD decompositions,
it’s useful to introduce several ways of transforming and combining TOADs.

Definition 2.10. For any TOAD T , we write T c to denote the complement of T ,
which is the reflection of T over a vertical line, we write T r to denote the reverse
of T , which is the reflection of T over a horizontal line, and we write T−1 to denote
the inverse of T , which is the reflection of T over a diagonal line from upper left to
lower right.

As we did for permutations, we sometimes write i to denote the inverse map on
TOADs.
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Figure 3. The construction of T1 ⊕ T2 (left) and T1 	 T2 (right)
from T1 and T2.

Definition 2.11. For any TOADs T1 and T2, we write T1⊕ T2 to denote the TOAD
we obtain by identifying the lower right vertex of T1 with the upper left vertex of T2,
taking the smallest Aztec diamond D which contains both T1 and T2, and tiling the
part of D outside of T1 and T2 with dominoes whose long sides are oriented from
upper left to lower right. If T1 has order n and T2 has order k, then T1⊕ T2 has
order n+ k+ 1.

In Figure 3 (left) we see how TOADs T1 (in red) and T2 (in blue) are combined
to produce T1⊕ T2. Note that the only way to tile the areas outside of T1 and T2 is
to use dominoes whose long sides are oriented from upper left to lower right, as in
the construction of T1⊕ T2.

Definition 2.12. For any TOADs T1 and T2, we write T1	 T2 to denote the TOAD
we obtain by identifying the lower left vertex of T1 with the upper right vertex of T2,
taking the smallest Aztec diamond D which contains both T1 and T2, and tiling the
part of D outside of T1 and T2 with dominoes whose long sides are oriented from
upper right to lower left. If T1 has order n and T2 has order k, then T1	 T2 has
order n+ k+ 1.

In Figure 3 (right) we see how TOADs T1 (in red) and T2 (in blue) are combined
to produce T1	 T2. Note that the only way to tile the areas outside of T1 and T2 is
to use dominoes whose long sides are oriented from upper right to lower left, as in
the construction of T1	 T2.

Our next result, which follows immediately from our definitions, justifies our
multiple uses of the notations c, r , −1, ⊕, and 	.

Proposition 2.13. For any Baxter permutations π and σ , the following hold.

(i) T (π c)= T (π)c.

(ii) T (πr )= T (π)r .

(iii) T (π−1)= T (π)−1.
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1

Figure 4. The DAAD corresponding to the DABP 37564812 and
its compatible SLP 3654721.

(iv) T (π ⊕ σ)= T (π)⊕ T (σ ).
(v) T (π 	 σ)= T (π)	 T (σ ).

We now turn our attention to those TOADs which come from DABPs.

Definition 2.14. We call a TOAD T a doubly alternating Aztec diamond (DAAD)
whenever LASM(T ) is a DABP. Note that a TOAD T is a DAAD if and only if
there is a DABP π such that T (π)= T . Indeed, π = LASM(T ).

In Figure 4 we have a DAAD with its DABP and its corresponding snow leopard
permutation.

We saw in Proposition 2.7 that it’s easy to construct DABPs of odd length from
DABPs of even length. As we see next, this means it’s easy to construct DAADs of
even order from DAADs of odd order.

Proposition 2.15. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c on DAADs.
For any nonnegative integer n and any TOAD T of order 2n, T is a DAAD if and
only if there is a DAAD D of order 2n− 1 such that T = T (1)⊕ D f . Moreover,
for each f this correspondence is a bijection between the set of DAADs of order 2n
and the set of DAADs of order 2n− 1.

Proof. (⇒) Since T is a DAAD of order 2n, there is a DABP π of length 2n+ 1
with T (π) = T . By Proposition 2.7, there is a DABP σ of length 2n such that
π = 1⊕ σ f . If we apply T to our expression for π and use Proposition 2.13 to
simplify the result, we find T = T (1)⊕ T (σ ) f . Now the result follows, since
D = T (σ ) is a DAAD of order 2n− 1.

(⇐) Since D is a DAAD of order 2n−1, there is a DABP σ of length 2n such that
T (σ )= D. By Proposition 2.7, we have T (1⊕ σ f )= T , so T is a DAAD.

The fact that this correspondence is a bijection follows from the last statement
of Proposition 2.7 and the fact that T is a bijection. �



DOMINO TILINGS OF AZTEC DIAMONDS 843

Proposition 2.15 says that we can understand all DAADs if we understand
DAADs of odd order. With this in mind, we now describe how to decompose a
DAAD of odd order into a combination of two smaller DAADs of odd order.

Theorem 2.16. Suppose f is any of the functions r , c, i ◦ r , or i ◦ c on TOADs.
For any TOAD T of odd order, T is a DAAD if and only if there are DAADs T1

and T2 of odd order such that T = (T (1)⊕T f
1 ⊕T (1))	T2. Moreover, for each f ,

this correspondence is a bijection between the set of DAADs T of order 2n − 1
and the set of ordered pairs (T1, T2) of DAADs of orders 2k− 1 and 2l − 1, where
n = k+ l + 1.

Proof. (⇒) Since T is a DAAD or order 2n− 1, we know that π = LASM(T ) is
a DABP of length 2n with T = T (π). By Proposition 2.9, there are DABPs π1

and π2 of lengths 2k and 2l, respectively, such that π = (1⊕ π f
1 ⊕ 1)	 π2 and

n = k+ l + 1. If we apply T to our expression for π and use Proposition 2.13 to
simplify the result, we find

T = T (π)=
(
T (1)⊕ T (π1)

f
⊕ T (1)

)
	 T (π2).

Now the result follows, since T1= T (π1) and T2= T (π2) are DAADs by definition.

(⇐) Since T1 and T2 are DAADs, we know that π1=LASM(T1) and π2=LASM(T2)

are DABPs of lengths k and l respectively such that T (π1)= T1 and T (π2)= T2.
Moreover, n= k+l+1. By Proposition 2.9, the permutation (1⊕π f

1 ⊕1)	π2 is also
a DABP, so its image under T is a DAAD. But if we apply T to (1⊕π f

1 ⊕ 1)	π2

and use Proposition 2.13 to simplify the result, we find that

T ((1⊕π f
1 ⊕ 1)	π2)= (T (1)⊕ T f

1 ⊕ T (1))	 T2.

Therefore (T (1)⊕ T f
1 ⊕ T (1))	 T2 is a DAAD.

The fact that this correspondence is a bijection follows from the last statement
of Proposition 2.9 and the fact that T is a bijection. �

When we consider how our DAAD decomposition gives us a decomposition of
the associated snow leopard permutation, we will be especially interested in pairs
of dominoes that share a long side. With this in mind, we sometimes think of the
process of building T (1)⊕ T ⊕ T (1) from a TOAD T in terms of adding a “hat”
and pair of “shoes” to T . In Figure 5 we add a hat (in blue) and shoes (in Wizard of
Oz ruby red) to T (1324)c.

When we construct (T (1)⊕T1⊕T (1))	T2 from T (1)⊕T1⊕T (1) and T2, we
add one more pair of dominoes which are adjacent along long sides; we call this
pair the “connector”. In Figure 6(d) we outline the connector in red.

The snow leopard permutation decompositions. In the Introduction we described
the function SASM, which maps DAADs of order n to snow leopard permutations
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1

1

(a) T (1324). (b) T (1324)c.

1 1

(c) Making room for the hat and shoes. (d) A stylish blue hat and red shoes.

Figure 5. An illustration of the computation of T (1)⊕T (1324)c⊕
T (1), also known as the “hat and shoes” process.

of length n. In this section we use SASM and our DAAD decomposition to obtain
our snow leopard permutation decomposition. To make this easier, we first describe
a simple relationship between certain domino configurations in a DAAD T and the
1s in the matrix for SASM(T ).

Definition 2.17. A block in a TOAD T is a pair of two dominoes in T which are
adjacent along a long edge, forming a 2-by-2 box.

The DAAD shown in Figure 4 contains 7 blocks.

Lemma 2.18. The vertices in a DAAD T which correspond to the 1s in SASM(T )
are exactly those vertices in the center of a block. As a result, the blocks of a DAAD
are in bijection with the 1s in its SASM.

Proof. Let T be a DAAD of order n that contains a block B. By Canary’s algorithm,
this point may correspond to a 1 in SASM(T ) or a −1 in LASM(T ). However,
because LASM(T ) is a permutation, it cannot contain a −1. Thus, a block must
correspond to a 1 in SASM(T ).

Conversely, a 1 in SASM(T ) must label a vertex of degree 2, which creates a
block in T . �

Next we describe how the map SASM interacts with our operations on TOADs.
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1

(a) T1. (b) T2.

1 1

(c) T (1)⊕ T c
1 ⊕ T (1) and T2 in a (d) Putting the rest of the dominoes

a larger diamond. in, with the connector in red.

Figure 6. An illustration of the composition of DAADs T1 and T2,
using the complement map. We outline the connector in red.

Proposition 2.19. For any TOADs T1 and T2, the following hold:

(i) SASM(T c
1 )= SASM(T1)

c.

(ii) SASM(T r
1 )= SASM(T1)

r .

(iii) SASM(T−1
1 )= SASM(T1)

−1.

(iv) SASM(T1⊕ T2)= SASM(T1)⊕ 1⊕ SASM(T2).

(v) SASM(T1	 T2)= SASM(T1)	 1	 SASM(T2).

Proof. (i), (ii), (iii) These are clear from Lemma 2.18 and our construction of SASM,
since each of c, r , and i is a reflection over a particular line.

(iv) First observe that if T1 (resp. T2) is the TOAD of order−1 then T1⊕T2 is equal to
T1 (resp. T2). But in this case SASM(T1) (resp. SASM(T2)) is the antipermutation @,
and the result holds.

Now suppose T1 and T2 have nonnegative orders. Then in the construction of
T1⊕ T2 we create one block which is not in T1 or T2, where the lower right edge of
T1 meets the upper left edge of T2. Now the result follows from Lemma 2.18.

(v) This is similar to the proof of (iv). �

We can now describe our snow leopard permutation decomposition.
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Theorem 2.20. Suppose f is any of the functions r , c, i ◦r , or i ◦c on permutations.
For any permutation π of odd length, π is a snow leopard permutation if and
only if there are snow leopard permutations π1 and π2 of odd length such that
π = (1⊕π f

1 ⊕1)	1	π2. Moreover, for each f , this correspondence is a bijection
between the set of snow leopard permutations π of length 2n − 1 and the set of
ordered pairs (π1, π2) of snow leopard permutations of lengths 2k− 1 and 2l − 1,
where n = k+ l + 1.

Proof. (⇒) If π is a snow leopard permutation of length 2n− 1, then by definition
there is a DAAD T of order 2n− 1 such that SASM(T ) = π . By Theorem 2.16,
there are DAADs T1 and T2 of orders 2k− 1 and 2l − 1, where n = k+ l + 1, such
that T = (T (1)⊕ T f

1 ⊕ T (1))	 T2. Using Proposition 2.19, we find

π = SASM(T )

= SASM
(
(T (1)⊕ T f

1 ⊕ T (1))	 T2
)

=
(
SASM(T (1))⊕ 1⊕ SASM(T1)

f
⊕ 1⊕ SASM(T (1))

)
	 1	 SASM(T2)

= (1⊕ SASM(T1)
f
⊕ 1)	 1	 SASM(T2),

where the last step follows from the fact that SASM(T (1)) = ∅. Now the result
follows, since π1 = SASM(T1) is a snow leopard permutation of length 2k− 1 and
π2 = SASM(T2) is snow leopard permutation of length 2l− 1, where n = k+ l+ 1.

(⇐) If π1 and π2 are snow leopard permutations of lengths 2k − 1 and 2l − 1,
respectively, where n = k+ l+ 1, then by definition there are DAADs T1 and T2 of
orders 2k−1 and 2l−1, respectively, such that π1= SASM(T1) and π2= SASM(T2).
By Theorem 2.16, we know that (T (1)⊕ T f

1 ⊕ T (1))	 T2 is a DAAD of order
2n− 1. But if we apply SASM to this DAAD and use Proposition 2.19 as in the
proof of the other direction, we find (1⊕ π f

1 ⊕ 1)	 1	 π2 is a snow leopard
permutation of length 2n− 1.

To see that the map (π1, π2) 7→ (1⊕πr
1⊕1)	1	π2 is a bijection, first note that

it is onto the set of snow leopard permutations by the first part of the theorem. To
see it is one-to-one, suppose there are ordered pairs (π1, π2) and (σ1, σ2) of snow
leopard permutations such that (1⊕π f

1 ⊕1)	1	π2 = (1⊕σ
f

1 ⊕1)	1	σ2, and
let π denote this common permutation. Then the hat (the second 1 in 1⊕π f

1 ⊕ 1
and 1⊕σ f

1 ⊕1) corresponds to the largest entry in π . Therefore π f
1 is a shift of the

entries between the first entry of π and the largest entry of π , as is σ f
1 , so π f

1 = σ
f

1 .
But f is invertible, so π1 = σ1. Similarly, π2 and σ2 are both equal to the sequence
of entries of π to the right of the largest entry of π , so π2 = σ2. �

It’s worth noting that in small cases the permutation (1⊕ π f
1 ⊕ 1)	 1	 π2

is not as long as it looks. For example, the antipermutation @ of length −1 is a
snow leopard permutation corresponding to the TOAD of order −1. As a result,
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the snow leopard permutation 1 corresponds to the ordered pair (@,@), since
1= (1⊕@⊕ 1)	 1	@. Similarly, for any snow leopard permutation π of odd
length, 1⊕π ⊕ 1 and 1	 1	π are also snow leopard permutations of odd length,
corresponding to the ordered pairs (π,@) and (@, π), respectively.

We can now use Theorem 2.20 to count the snow leopard permutations of each
length.

Corollary 2.21. For each n ≥ 0, the number of snow leopard permutations of
length 2n− 1 is Cn .

Proof. For each n ≥ 0, let an be the number of snow leopard permutations of
length 2n − 1. There is just one snow leopard permutation of length −1, so
a0= 1=C0 and the result holds for n= 0. Now fix n ≥ 1 and suppose by induction
that a j =C j for all j , 0≤ j ≤ n−1. By Theorem 2.20 and our induction hypothesis,
we have

an =

n−1∑
j=0

a j an−1− j=

n−1∑
j=0

C j Cn−1− j =

n∑
j=1

C j−1Cn− j= Cn. �

We can also use Theorem 2.20 and Proposition 2.7 to count the snow leopard
permutations of even length.

Proposition 2.22. Suppose f is any of the functions r , c, i ◦ r , or i ◦ c on permuta-
tions. Then for any n≥ 0, the map π 7→ 1⊕π f is a bijection between the set of snow
leopard permutations of length 2n− 1 and the set of snow leopard permutations of
length 2n.

Proof. We first show that π is a snow leopard permutation of length 2n− 1 if and
only if 1⊕π f is a snow leopard permutation of length 2n.

If π is a snow leopard permutation of length 2n − 1, then by definition there
is a DAAD T of order 2n− 1 such that SASM(T )= π . By Proposition 2.15, the
TOAD T (1)⊕ D f is a DAAD of order 2n. Now by Proposition 2.19, we have
SASM(T (1)⊕D f )= 1⊕π f , since SASM(T (1))=∅. Therefore 1⊕π f is a snow
leopard permutation of length 2n.

Conversely, if 1 ⊕ π f is a snow leopard permutation of length 2n, then by
definition there is a DAAD T of order 2n such that SASM(T )= 1⊕π f . Now by
Proposition 2.15, there is a DAAD D of order 2n− 1 such that T = T (1)⊕ D f ,
and by Proposition 2.19, we have SASM(T ) = 1⊕ SASM(D) f . Since π f can be
obtained from 1⊕π f and f is invertible, we must have π = SASM(D), so π is a
snow leopard permutation.

Finally, it is routine to check that the map π 7→1⊕π f is a bijection between S2n−1

and the set of permutations in S2n whose first entry is 1, so the restriction of this map
to the set of snow leopard permutations of length 2n−1 must also be a bijection. �
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Corollary 2.23. For each n ≥ 0, the compatibility correspondence is a bijection
between the set of DABPs of length n and the set of snow leopard permutations of
length n− 1.

Proof. By definition the compatibility correspondence maps DABPs of length n
onto snow leopard permutations of length n− 1. Since each of these sets has the
same number of elements, this correspondence must be a bijection. �

Theorem 2.20 also gives us useful structural information about snow leopard
permutations. For instance, we have the following result concerning the parities of
the entries of a snow leopard permutation.

Corollary 2.24. Snow leopard permutations preserve parity. That is, if π is a snow
leopard permutation of length n, then for all j with 1 ≤ j ≤ n, the entry π( j) is
even if and only if j is even.

Proof. We first consider the case in which n is odd.
The result is vacuously true for π =@, and trivial for π = 1, so suppose by

induction that n ≥ 0 is odd and the result holds for all snow leopard permutations
of odd length less than n.

In general, if σ is a permutation of odd length which preserves parity, then σ c,
1⊕ σ , and 1⊕ σ ⊕ 1 also preserve parity. Similarly, if σ is a parity-preserving
permutation of odd length then 1	 σ is a parity-reversing permutation. Finally,
if σ1 is a parity-preserving permutation of odd length and σ2 is a parity-reversing
permutation of even length, then σ1	 σ2 is a parity-preserving permutation.

By Theorem 2.20, if π is a snow leopard permutation of odd length then there are
snow leopard permutations π1 and π2 of odd length such that π = (1⊕π c

1 ⊕ 1)	
1	π2. By induction and our observations above, 1⊕π c

1 ⊕ 1 is a parity-preserving
permutation of odd length and 1	 π2 is a parity-reversing permutation of even
length, so π preserves parity.

Now suppose π is a snow leopard permutation of even length. By Proposition 2.22,
we have π = 1⊕ σ c for some snow leopard permutation σ of odd length. By our
observations above, σ c preserves parity, so π = 1⊕ σ c also preserves parity. �

Theorem 2.20 also gives us pattern-avoidance properties of snow leopard per-
mutations. In particular, we can use it to show that snow leopard permutations are
anti-Baxter, which means they avoid 2–14–3 and 3–41–2.

Corollary 2.25. If π is a snow leopard permutation then π avoids 2–14–3 and
3–41–2.

Proof. We first consider the case in which |π | = n is odd.
The result is clear for π =@, π = 1, π = 123, and π = 321, so suppose by

induction that n ≥ 0 is odd and the result holds for all snow leopard permutations of
odd length less than n. By Theorem 2.20, if π is a snow leopard permutation of odd
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length then there are snow leopard permutations π1 and π2 of odd length such that
π = (1⊕π c

1 ⊕1)	1	π2. For convenience, we call the entries of π corresponding
to 1⊕π c

1 ⊕ 1 the front of π , and we call the remaining entries of π the back of π .
Note that every entry in the front of π is greater than every entry in the back of π .

Now suppose π contains a subsequence abcd of type 2–14–3. If a is in the
front of π , then d is also in the front of π , since d > a. Moreover, a cannot be the
first entry of the front of π and d cannot be the last, since the first and last entries
are the smallest and largest entries of the front of π , and we have b < a and c > d .
Therefore our subsequence is entirely contained in the entries of π corresponding
to π c

1 , and the corresponding subsequence of π1 has type 3–41–2. This contradicts
our induction hypothesis.

On the other hand, if a is not in the front of π then every entry of our subsequence
is in the back of π . The first entry of the back of π is the largest, but c > a, so in
fact our subsequence is contained in π2, which contradicts our induction hypothesis.

The proof that π has no subsequence of type 3–41–2 is similar.
Now suppose π is a snow leopard permutation of even length. By Proposition 2.22,

we have π = 1⊕ σ c for some snow leopard permutation σ of odd length. Arguing
as above, if π has a subsequence of type 2–14–3 (resp. 3–41–2) then σ has a
subsequence of type 3–41–2 (resp. 2–14–3), so the result follows by induction. �

One can show that this result holds more generally: if π is a Baxter permutation
of length n+1 and σ is a compatible permutation of length n, then σ is anti-Baxter
[Asinowski et al. 2013].

3. A bijection from snow leopard permutations to Catalan paths

Like the snow leopard permutations, Catalan paths have a natural recursive decom-
position. In particular, every nonempty Catalan path with 2n steps has the form
N p1 Ep2, where p1 and p2 are Catalan paths with 2k and 2l steps, respectively, and
n= k+l−1. In fact, this decomposition gives a bijection between the set of Catalan
paths p with 2n steps and ordered pairs (p1, p2) of Catalan paths with 2k and 2l
steps, where n = k + l − 1. Matching this decomposition with our snow leopard
permutation decomposition gives us a natural bijection from the set of Catalan paths
with 2n steps to the set of snow leopard permutations of length 2n− 1.

Proposition 3.1. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c. Then for
each nonnegative integer n, there is a unique bijection 0f from the set of Catalan
paths with 2n steps to the set of snow leopard permutations of length 2n− 1 such
that 0f (∅)=@ and

0f (N p1 Ep2)=
(
1⊕0f (p1)

f
⊕ 1

)
	 1	0f (p2)

for any Catalan paths p1 and p2.
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p 0c(p)

∅ @

NE 1

NNEE 123
NENE 321

NNNEEE 14325
NNENEE 12345
NNEENE 34521
NENNEE 54123
NENENE 54321

p 0c(p)

NNNNEEEE 1634527
NNNENEEE 1654327
NNNEENEE 1432567
NNNEEENE 3654721
NNENNEEE 1236547
NNENENEE 1234567
NNENEENE 3456721
NNEENENE 5674321
NNEENNEE 5674123
NENNNEEE 7614325
NENNENEE 7612345
NENNEENE 7634521
NENENNEE 7654123
NENENENE 7654321

Table 1. Values of 0c(p) for short Catalan paths p.

Proof. Since each nonempty Catalan path can be written uniquely in the form
N p1 Ep2, where p1 and p2 are Catalan paths, 0f is well-defined and unique.

To show that 0f (p) is a snow leopard permutation for every Catalan path p, first
note that this is true for p =∅ and p = NE . Now suppose by induction that p is a
Catalan path with at least 4 steps, and that the result holds for all Catalan paths with
fewer steps. Then there are unique Catalan paths p1 and p2 such that p= N p1 Ep2,
and by definition we have 0f (p)=

(
1⊕0f (p1)

f
⊕ 1

)
	 1	0f (p2). By induction

0f (p1) and 0f (p2) are snow leopard permutations, so by Theorem 2.20 we see that
0f (p) is also a snow leopard permutation.

To show that 0f is onto, first note that this is true for n = 0 and n = 1, so
fix n ≥ 2 and suppose by induction that the result holds for all smaller values
of n. If π is a snow leopard permutation of length 2n− 1, then by Theorem 2.20
there are shorter snow leopard permutations π1 and π2 of odd length such that
π = (1 ⊕ π f

1 ⊕ 1) 	 1 	 π2. By induction there are Catalan paths p1 and p2

such that 0f (p1) = π1 and 0f (p2) = π2, and by the definition of 0f , we have
0f (N p1 Ep2)= π .

Since the set of Catalan paths with 2n steps and the set of snow leopard permu-
tations of length 2n− 1 are equinumerous by Corollary 2.21, the map 0f must be a
bijection. �

Although all four maps 0f are bijections, we will be particularly interested in 0c.
In Table 1 we have the values of 0c for all Catalan paths with 8 or fewer steps.
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π κ(π)

@ ∅

1 NE

123 NNEE
321 NENE

14325 NNNEEE
12345 NNENEE
34521 NNEENE
54123 NENNEE
54321 NENENE

π κ(π)

1634527 NNNNEEEE
1654327 NNNENEEE
1432567 NNNEENEE
3654721 NNNEEENE
1236547 NNENNEEE
1234567 NNENENEE
3456721 NNENEENE
5674321 NNEENENE
5674123 NNEENNEE
7614325 NENNNEEE
7612345 NENNENEE
7634521 NENNEENE
7654123 NENENNEE
7654321 NENENENE

Table 2. Values of κ(π) for short snow leopard permutations π .

While it is not obvious from these data, it turns out that 0−1
c has a simple, direct

description in terms of ascents and descents.

Definition 3.2. For any snow leopard permutation π of length 2n−1, we write κ(π)
to denote the lattice path with 2n steps whose i-th step κ(π)i is given by

κ(π)i =



π(i) < π(i + 1) and i is odd
N or

π(i) > π(i + 1) and i is even,

π(i) < π(i + 1) and i is even
E or

π(i) > π(i + 1) and i is odd

for 0≤ i ≤ 2n− 1. By convention, we treat the empty entries π(0) and π(2n) as
2n and 0, respectively.

Example 3.3. Consider the permutation π = 789634521, which has ascent/descent
sequence DAADDAADDD. Thus we have κ(π)= NNEENNEENE .

In Table 2 we have the values of κ(π) for all snow leopard permutations π of
length 7 or less.

It is not immediately obvious that κ maps every snow leopard permutation to a
Catalan path, so we prove this next.

Proposition 3.4. Suppose π is a snow leopard permutation of length 2n− 1. Then
κ(π) is a Catalan path of length 2n.
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Proof. It is routine to check this when π has length 3 or less, since κ(@) = ∅,
κ(1)= NE , κ(123)= NNEE , and κ(321)= NENE . Now suppose the result holds
for all snow leopard permutations of odd length less than 2n−1, where 2n−1≥ 5,
and that π is a snow leopard permutation of length 2n− 1. By Theorem 2.20, there
are snow leopard permutations π1 and π2 of lengths 2k−1 and 2l−1, respectively,
such that n= k+ l+1 and π = (1⊕π c

1⊕1)	1	π2. We now consider three cases.

Case One: If π1=@ then π = 1	1	π2. In this case the ascent/descent sequence
for π consists of two descents, followed by the ascent/descent sequence for π2. By
the definition of κ , this means κ(π)= NEκ(π2). Since κ(π2) is a Catalan path by
induction, so is κ(π).

Case Two: If π2=@ then π=1⊕π c
1⊕1. Since the complement operation on permu-

tations turns ascents into descents and vice versa, the ascent/descent sequence for π
consists of a descent, followed by the complement of the ascent/descent sequence
for π1, followed by a descent. By the definition of κ , this means κ(π)= Nκ(π1)E .
Since κ(π1) is a Catalan path by induction, so is κ(π).

Case Three: Suppose π1 6=@ and π2 6=@. Reasoning as in the previous cases, we
find that the ascent/descent sequence for π consists of a descent, followed by the
complement of the ascent/descent sequence for π1, followed by an E , followed by
the ascent/descent sequence for π2. By the definition of κ , κ(π)= Nκ(π1)Eκ(π2).
Since κ(π1) and κ(π2) are Catalan paths by induction, so is κ(π). �

The data in Tables 1 and 2, along with a close examination of the proof of
Proposition 3.4, suggest that 0c and κ are inverses of one another; we prove this next.

Theorem 3.5. 0c and κ are inverse functions.

Proof. By Proposition 3.1 we know that 0c maps Catalan paths with 2n steps to
snow leopard permutations of length 2n− 1, and by Proposition 3.4, the function κ
maps snow leopard permutations of length 2n− 1 to Catalan paths with 2n steps.
Since 0c is invertible, it’s sufficient to show that 0c(κ(π)) = π for every snow
leopard permutation π .

The result is routine to check for π =@ and π = 1, so suppose π has length
2n − 1 > 1 and the result holds for all shorter snow leopard permutations. By
Theorem 2.20, there are snow leopard permutations π1 and π2 such that π =
(1⊕π c

1⊕1)	1	π2. Reasoning as in the proof of Proposition 3.4, we see that κ(π)=
Nκ(π1)Eκ(π2). Now by the definition of 0c and our induction hypothesis, we have

0c(κ(π))= 0c(Nκ(π1)Eκ(π2))

= N (0c(κ(π1)))
c E0c(κ(π2))

= Nπ c
1 Eπ2

= π. �
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4. Using transpositions to generate snow leopard permutations

It is well known that every permutation is a product of adjacent transpositions, so
the adjacent transpositions generate Sn . In this section we introduce a simple set of
transpositions, and we show that the snow leopard permutations of odd length are
exactly the permutations one can construct from the decreasing permutation using
sequences of our transpositions. We begin with the transpositions themselves.

Definition 4.1. Suppose that π is a permutation with consecutive entries π(i),
π(i + 1), . . . , π( j).

(1) If π(i) and π( j) are odd and either π(i − 1), π(i), . . . , π( j), π( j + 1) or
π(i − 1), π( j), . . . , π(i), π( j + 1) is a decreasing sequence of consecutive
integers, and σ is the permutation we obtain from π by interchanging π(i)
and π( j), then we say π and σ are related by τ1.

(2) If π(i) and π( j) are even and either π(i − 1), π(i), . . . , π( j), π( j + 1) or
π(i − 1), π( j), . . . , π(i), π( j + 1) is an increasing sequence of consecutive
integers, and σ is the permutation we obtain from π by interchanging π(i)
and π( j), then we say π and σ are related by τ2.

By convention, if π(i) or π( j) occurs at either end of π , then we waive any
requirement for the behavior of π beyond that point.

Example 4.2. The permutations π = 983654721 and σ = 983456721 are related
by τ2, since 36547 can be replaced with 34567.

Example 4.3. The permutations π = 567894321 and σ = 567894123 are related
by τ1, since 4321 can be replaced with 4123.

In Figure 7 we have graphs showing how the snow leopard permutations of
lengths 3, 5, and 7 are related to one another by τ1 and τ2.

Although we don’t do it here, one can study the parity of the number of inver-
sions in a snow leopard permutation of odd length to show that these graphs are
always bipartite.

As we show next, snow leopard permutations are only related to other snow
leopard permutations by τ1 and τ2. We begin with a lemma concerning snow leopard
permutations which begin with a decreasing sequence of consecutive integers.

Lemma 4.4. If π is a snow leopard permutation of odd length, and there is a
permutation σ of odd length with π = 1	1	· · ·	1	σ , then σ is a snow leopard
permutation.

Proof. We argue by induction on |π | − |σ |.
If |π | = |σ | then π = σ , and the result is clear. If |π | − |σ | = 2 then π =

1	 1	 σ = (1⊕@⊕ 1)	 1	 σ must be the snow leopard decomposition of π
guaranteed by Theorem 2.20, so σ is a snow leopard permutation.
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τ1

τ1
τ1

τ1

τ1 τ1

τ1 τ1 τ1

τ1
τ1

τ1

τ1

τ2

τ2 τ2

τ2

τ2 τ2

Figure 7. Graphs showing how the snow leopard permutations of
lengths 3, 5, and 7 are related by τ1 and τ2.

Now suppose |π | − |σ | ≥ 4. By Theorem 2.20, there are snow leopard permuta-
tions π1 and π2 such that π = (1⊕π c

1 ⊕ 1)	 1	π2. But π begins with its largest
element, so we must have π1=@ and π=1	1	π2. Therefore π2 has the same form
as π , but with two fewer 1s, so by induction σ is a snow leopard permutation. �

Theorem 4.5. Suppose π is a snow leopard permutation of odd length and σ is a
permutation.

(i) If π and σ are related by τ1, then σ is a snow leopard permutation.

(ii) If π and σ are related by τ2, then σ is a snow leopard permutation.

Proof. It turns out that (i) and (ii) depend on each other, so we prove them together.
It’s routine to check that (i) and (ii) hold when π and σ have lengths −1, 1, or 3,

so suppose |π | = |σ | ≥ 5; we argue by induction on |π |.

Case One: π and σ are related by τ1. By Theorem 2.20, there are snow leopard
permutations π1 and π2 such that π = (1⊕π c

1 ⊕ 1)	 1	π2.
First suppose π1 =@, so that π = 1	 1	 π2. In this case, if i ≥ 3 then our

swap takes place inside π2, so there is a permutation σ2 which is related to π2 by τ1

such that σ = 1	 1	 σ2. By induction, σ2 is a snow leopard permutation, so σ is
also a snow leopard permutation by Theorem 2.20. On the other hand, if i ≤ 2 then
i = 1, since the first entry of π is odd and the second is even. In this case there is a
permutation β of odd length such that π = 1	 1	 · · · 	 1	 β, and β is a snow
leopard permutation by Lemma 4.4. Now σ = (1⊕αc

⊕ 1)	 1	β, where α is an
identity permutation of odd length. Since α and β are snow leopard permutations,
σ is also a snow leopard permutation by Theorem 2.20.
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Now suppose π1 6=@. In this case our decreasing sequence must be entirely
contained in either π c

1 or 1	π2. Since the 1	π2 part of π begins with an even
number, any decreasing sequence beginning with an odd number in this part of π
must be contained in π2. Therefore there is a permutation σ2 which is related to
π2 by τ1 such that σ = (1⊕π c

1 ⊕ 1)	 1	 σ2. By induction, σ2 is a snow leopard
permutation, so σ is a snow leopard permutation by Theorem 2.20.

On the other hand, if our decreasing sequence is contained in π c
1 , then it cor-

responds to an increasing sequence in π1 which begins with an even number.
Therefore, there is a permutation σ1 which is related to π1 by τ2, for which
σ = (1 ⊕ σ c

1 ⊕ 1) 	 1 	 π2. By induction, σ1 is a snow leopard permutation,
so σ is also a snow leopard permutation by Theorem 2.20.

Case Two: π and σ are related by τ2. By Theorem 2.20, there are snow leopard
permutations π1 and π2 such that π = (1⊕ π c

1 ⊕ 1)	 1	 π2. In addition, any
increasing sequence in π must be entirely contained in the 1⊕π c

1⊕1 part of π , or in
the π2 part of π . If our increasing sequence is contained in the π2 part of π , then there
is a permutation σ2 which is related to π2 by τ2, such that σ = (1⊕π c

1⊕1)	1	σ2.
By induction, σ2 is a snow leopard permutation, so σ is also a snow leopard
permutation by Theorem 2.20.

On the other hand, if our increasing sequence is contained in the 1⊕ π c
1 ⊕ 1

part of π , then we must have i ≥ 2 and i ≤ |π1| + 1, since this part of π begins
and ends with odd numbers. That is, our increasing sequence must be entirely
contained in π c

1 . Therefore, this increasing sequence corresponds to a decreasing
sequence in π1, all of whose entries have opposite parity with the corresponding
entries in π . This means there is a permutation σ1 which is related to π1 by τ1 such
that σ = (1⊕ σ c

1 ⊕ 1)	 1	π2. By induction, σ1 is a snow leopard permutation,
so σ is also a snow leopard permutation by Theorem 2.20. �

We are interested in permutations which are connected by chains of permutations
in which consecutive permutations are related by τ1 or τ2, so we make the following
definition.

Definition 4.6. We say permutations π and σ are τ -related whenever there is a
sequence α1, . . . , αn of permutations such that π = α1, σ = αn , and for each j , the
permutations α j and α j−1 are related by τ1 or related by τ2.

We can now show that the snow leopard permutations of odd length are exactly
those permutations that are τ -related to the reverse identity.

Theorem 4.7. A permutation π of length 2n− 1 is a snow leopard permutation if
and only if it is τ -related to the decreasing permutation of length 2n− 1.

Proof. (⇒) It is routine to verify this result when π has length −1, 1, or 3, so
suppose |π | ≥ 5; we argue by induction on |π |. By Theorem 2.20, there are snow
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length 1 3 5 7 9

SLP-like permutations 1 2 7 32 175
SLPs 1 2 5 14 42

Table 3. The number of SLPs compared with the number of per-
mutations with some properties of SLPs.

leopard permutations π1 and π2 of odd length such that π = (1⊕π c
1 ⊕ 1)	 1	π2.

By induction, there is a sequence s1 (resp. s2) of moves of types τ1 and τ2 which,
when applied to the decreasing permutation of the appropriate length, produces π1

(resp. π2). To obtain π from the decreasing permutation of length 2n−1, first apply
a move of type τ1 to swap the entries in positions 1 and |π1| + 2. Now apply the
sequence s2 of moves to the entries to the right of position |π1|+3. Finally, for each
move in s1 of type τ1, apply the corresponding move of type τ2 to the subsequence
in positions 2 through |π1| + 1, and vice versa. Since we have constructed each of
the pieces of π individually, the resulting permutation is π itself.

(⇐) It is routine to check that the decreasing permutation of length 2n−1 is a snow
leopard permutation, so this part is immediate from Theorem 4.5. �

Corollary 4.8. Suppose π and σ are τ -related permutations of odd length. Then π
is a snow leopard permutation if and only if σ is a snow leopard permutation.

Proof. This is immediate from Theorem 4.7, since π and σ are snow leopard
permutations if and only if they are τ -related to the decreasing permutation of
length |π |, and this relationship is transitive. �

5. Questions and open problems

It should be possible to build on this work in a variety of directions. For example,
it may be fruitful to study the distributions of various permutation statistics on
snow leopard permutations, and to look for connections between these statistics
and statistics on Catalan paths, or on other Catalan objects. In addition, both κ and
the compatibility relation deserve more attention. Finally, we have the following
more specific questions.

(1) Can we characterize the snow leopard permutations nonrecursively?
We have given a recursive decomposition of the snow leopard permutations, so

in principle we can recognize these permutations in the wild using this decomposi-
tion. Similarly, we have also characterized the snow leopard permutations as the
permutations generated by a particular set of transpositions. While these points of
view are useful, we would also like to have a short list of simple conditions we can
check to determine whether a given permutation is an SLP. For example, we know
that if π is a snow leopard permutation of odd length then π preserves parity, π
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avoids 2–14–3 and 3–41–2, and κ(π) is a Catalan path. These conditions rule
out many permutations, but there are still permutations with all of these properties
which are not SLPs. In fact, in Table 3 we see how the number of permutations
with these three properties compares with the number of snow leopard permutations
for small lengths.

(2) What permutations of length n are compatible with alternating Baxter permuta-
tions of length n+ 1?

Cori, Dulucq, and Viennot [Cori et al. 1986] have used bijections with binary
trees to prove that the alternating Baxter permutations of lengths 2n and 2n + 1
are counted by the products C2

n and CnCn+1 of Catalan numbers, respectively. We
conjecture that the smaller permutations which are compatible with the alternating
Baxter permutations are counted by the same products of Catalan numbers. Our
preliminary explorations suggest that we can extend either the work of Cori, Dulucq,
and Viennot or the work of Dulucq and Guibert [1998] to prove this conjecture, but
it might also be possible to extend or modify κ to give a proof.
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The Weibull distribution and Benford’s law
Victoria Cuff, Allison Lewis and Steven J. Miller

(Communicated by John C. Wierman)

Benford’s law states that many data sets have a bias towards lower leading digits
(about 30% are 1s). It has numerous applications, from designing efficient
computers to detecting tax, voter and image fraud. It’s important to know which
common probability distributions are almost Benford. We show that the Weibull
distribution, for many values of its parameters, is close to Benford’s law, quantify-
ing the deviations. As the Weibull distribution arises in many problems, especially
survival analysis, our results provide additional arguments for the prevalence of
Benford behavior. The proof is by Poisson summation, a powerful technique to
attack such problems.

1. Introduction to and applications of Benford’s law

For any positive number x and base B, we can represent x in scientific notation as
x D SB.x/ �B

k.x/, where SB.x/ 2 Œ1;B/ is called the significand1 of x and the
integer k.x/ represents the exponent. Benford’s law of leading digits proposes a
distribution for the significands which holds for many data sets, and states that the
proportion of values beginning with digit d is approximately

Prob.first digit is d base B/D logB

�
d C 1

d

�
: (1-1)

More generally, the proportion with significand at most s base B is

Prob.1� SB � s/D logB s: (1-2)

MSC2010: primary 60F05, 11K06; secondary 60E10, 42A16, 62E15, 62P99.
Keywords: Benford’s law, Weibull distribution, digit bias, Poisson summation.
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REU at Williams College, and a summary of it will appear in Chapter Three of The Theory and
Applications of Benford’s Law, to be published by Princeton University Press and edited by Miller.
Since this work was written many of these results have been independently derived and applied to
Internet traffic; see the work of Arshadi and Jahangir [2014].

1The significand is sometimes called the mantissa; however, such usage is discouraged by the
IEEE and others, as mantissa is used for the fractional part of the logarithm, a quantity which is also
important in studying Benford’s law.
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In particular, in base 10 the probability that the first digit is a 1 is about 30.1% (and
not the 11% one would expect if each digit from 1 to 9 were equally likely).

This leading digit irregularity was first discovered by Newcomb [1881], who
noticed that the earlier pages in the logarithmic books were more worn than other
pages. Fifty years later, Benford [1938] observed the same digit bias in a variety of
data sets. Benford studied the distribution of the first digits of 20 sets of data with
over 20,000 total observations, including river lengths, populations, and mathemat-
ical sequences. For a full history and description of the law, see [Hill 1998; Raimi
1976], or go to [Berger and Hill 2012] or [Miller 2015] for additional reading.

One of the most fascinating aspects of Benford’s law is the large and diverse list
of fields studying it (auditing, computer science, dynamical systems, engineering,
number theory, and statistics, to list a few). There are numerous applications, espe-
cially in fraud and data integrity. Two of the more famous are detecting tax and voter
fraud [Cho and Gaines 2007; Mebane 2006; Nigrini 1996; 1997], but there are also
applications in many other fields, ranging from round-off errors in computer science
[Knuth 1997] to detecting image fraud and compression in engineering [Abdallah
et al. 2015]. Already Benford’s law has led to a variety of tests, either to detect fraud
(in everything from corporate returns to medical studies) or to test data integrity; see,
for example, [Judge and Schechter 2009; Nigrini 1997; Miller and Nigrini 2009].

In the next section we discuss attempts to explain the prevalence of Benford’s law;
unfortunately, some of these approaches are flawed, and have been incorrectly used
for decades. Our purpose in this article is to highlight techniques from Fourier analy-
sis that may not be widely known to the diverse group of researchers and aficionados
in the field, emphasizing how Poisson summation provides a clean and correct way
to quantify deviations from Benford’s law for a variety of phenomena. Our main
result is to quantify how close Weibull distributions are to Benford (we state these in
Theorem 4.1 in Section 4, after first reviewing the needed prerequisites in Section 3;
the proof is given in Section 5). For certain values of the scale and shape parameter,
these distributions are almost Benford; this is quite important, as many survival distri-
butions are modeled by Weibull distributions, and thus Benford tests are applicable.

2. Explanations of Benford’s law

There have been numerous attempts to pass from observing the prevalence of
Benford’s law to explaining its occurrence in different and diverse systems. Such
knowledge gives us a deeper understanding of which natural data sets should
follow Benford’s law. One of the earliest and most popular is due to Feller [1966],
and has been the subject of many articles and papers since (a very good, recent
description of this approach is given in [Fewster 2009]). It suggests that Benford
behavior arises when a probability distribution is spread out over several orders of
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magnitude. Unfortunately, while some distributions satisfying this condition are
close to Benford, others are not, and the method is sadly fundamentally flawed.
See [Berger and Hill 2010; 2011b; Hill 2011] for detailed critiques of this method.
The first rigorous explanation of Benford’s law is due to Hill [1995] through scale
invariance and measure theory (essentially, the distribution of leading digits should
be invariant if we change scale); see also [Berger and Hill 2011a].

Rather than trying to prove why so many different phenomena are almost Benford,
another approach is to study specific, important instances. In particular, there is
an extensive literature on the leading digits of random variables and products of
random variables of specific distributions (see for example [Miller and Nigrini
2008a]). While these arguments cannot be as general, the systems described arise
in many important applications, making the importance of these researches clear.

The starting point of this work is the paper by Leemis, Schmeiser, and Evans
[Leemis et al. 2000], who champion this viewpoint. They ran numerical simulations
on a variety of parametric survival distributions to examine conformity to Benford’s
law. Among these distributions was the Weibull distribution, whose density is

f .xI˛; 
 /D

�
.
=˛/.x=˛/.
�1/ exp.�.x=˛/
 / if x � 0;

0 otherwise;
(2-1)

where ˛; 
 > 0. Note that ˛ adjusts the scale of the data and only 
 affects the shape
of the distribution.2 Special cases of the Weibull distribution include the exponential
distribution (
 D 1) and the Rayleigh distribution (
 D 2). The most common
use of the Weibull distribution is in survival analysis, where a random variable X

modeled by the Weibull distribution represents the “time-to-failure”, resulting in
a distribution where the failure rate is modeled relative to a power of time.

The Weibull distribution arises in problems in such diverse fields as food contents,
engineering, medical data, politics, pollution and sabermetrics, along with many
others; see [Carroll 2003; Corzo and Bracho 2008; Fry 2004; McShane et al. 2008;
Mikolaj 1972; Miller 2007; Terawaki et al. 2006; Weibull 1951; Yiannoutsos 2009;
Zhao et al. 2011] to name just a few. As the extensiveness of this list indicates, many
data sets follow a Weibull distribution, and thus if we are going test for fraud or
data integrity, it is essential to quantify how close these distributions are to Benford.
Our goal in this work is to provide proofs of the observations of Leemis, Schmeiser,
and Evans [Leemis et al. 2000] that Weibull distributions are often close to Benford,
emphasizing the ideas behind the method, as these are applicable to a variety of
other problems (see, for example, [Jang et al. 2009; Kontorovich and Miller 2005;
Miller and Nigrini 2008b]).

2One could introduce another parameter, ˇ, which would represent a translation of the data. Doing
so replaces x with x�ˇ, and the condition x � 0 becomes x � ˇ. In this paper we concentrate on
the case ˇ D 0.
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3. Mathematical preliminaries

Our analysis generalizes the work of [Miller and Nigrini 2008b], where the expo-
nential case was studied in detail (see also [Dümbgen and Leuenberger 2008] for
another approach to analyzing exponential random variables). The main ingredients
come from Fourier analysis, in particular, applying Poisson summation to the
derivative of the cumulative distribution function of the logarithms modulo 1, FB .
We first review some needed definitions, then describe why it is so useful to study
the logarithms modulo 1, and conclude with a quick review of Poisson summation.

(1) The gamma function�.s/ generalizes the factorial function; for n a nonnegative
integer, we have �.nC 1/D n!, and for <.s/ > 0, we have

�.s/D

Z 1
0

e�xxs�1 dx

(we will need to evaluate the gamma function at complex arguments in our
analysis); here <.z/ denotes the real part of z. See [Whittaker and Watson
1996] for an introduction and proofs of needed properties.

(2) We say a is congruent to b modulo 1 if a� b is an integer; we denote this by
aD b mod 1.

(3) A sequence fang
1
nD1
� Œ0; 1� is equidistributed if

lim
N!1

#fn W n�N; an 2 Œa; b�g

N
D b� a

for all Œa; b�� Œ0; 1�. Similarly a continuous random variable on Œ0;1/ whose
probability density function is p is equidistributed modulo 1 if

lim
T!1

R T
0 �a;b.x/p.x/ dxR T

0 p.x/ dx
D b� a

for any Œa; b�� Œ0; 1�, where �a;b.x/D 1 for x mod 1 2 Œa; b� and 0 otherwise.

(4) If f is an integrable function (so
R1
�1
jf .x/j dx <1) then its Fourier trans-

form, denoted Of , is given by

Of .y/D

Z 1
�1

f .x/e�2�ixy dx; where eiu
D cos uC i sin u:

Note if X is a random variable with density f then this is a rescaled version
of its characteristic function, E ŒeitX �.

(5) Let � > 0. We say f decays like x�.1C�/ if there are constants x0;C� > 0

such that jf .x/j � C�jxj
�.1C�/ for all jxj> x0.
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One of the most common ways to prove a system is Benford is to show that
its logarithms modulo 1 are equidistributed. We quickly sketch the proof of this
equivalence; see [Diaconis 1977; Miller and Nigrini 2008b; Miller and Takloo-
Bighash 2006] for details. If yn D logB xn mod 1 (thus yn is the fractional part
of the logarithm of xn), then the significands of Byn and xn D BlogB xn are equal,
as these two numbers differ by a factor of Bk for some integer k. If now fyng

is equidistributed modulo 1, then by definition for any Œa; b� � Œ0; 1�, we have
limN!1 #fn � N W yn 2 Œa; b�g=N D b � a. Taking Œa; b� D Œ0; logB s� implies
that as N ! 1, the probability that yn 2 Œ0; logB s� tends to logB s, which by
exponentiating implies that the probability that the significand of xn is in Œ1; s� tends
to logB s, the Benford probability.

Given a random variable X , let FB denote the cumulative distribution function
of logB X mod 1. The above discussion shows that Benford’s law is equivalent to
FB.z/Dz, or our original random variable X is Benford if F 0

B
.z/D1. This suggests

that a natural way to investigate deviations from Benford behavior is to compare
the deviation of F 0

B
.z/ from 1, which would represent a uniform distribution.

Fourier analysis is ideally suited for these computations. The reason is that
in general one cannot throw away part of a mathematical expression and still
maintain equality. For example, note

p
.x mod 1/C .y mod 1/ is neither equal to

nor congruent modulo 1 to
p

xCy; however, e2� ix does equal e2� i.x mod 1/. By
using the complex exponentials, it is harmless to drop modulo 1 restrictions. As
these restrictions naturally arise in investigating the first digit, it is natural to attack
the problem with Fourier techniques.

The last ingredient we need is Poisson summation. We don’t state it in its
most general form, as the following weak version typically suffices for Benford
investigations due to the smoothness of the underlying densities. See [Miller and
Takloo-Bighash 2006] or [Stein and Shakarchi 2003] for a proof.

Theorem 3.1 (Poisson summation). Let f; f 0 and f 00 be continuous functions
which decay like x�.1C�/ for some � > 0. Then

1X
nD�1

f .n/D

1X
nD�1

Of .n/:

Our assumptions about f imply that Of decays rapidly. The power of Poisson
summation is that it typically allows us to exchange a slowly converging sum with
a rapidly converging sum. In many applications only the nD 0 term matters; if f
is a probability density then it integrates to 1, and hence Of .0/D 1. For us, this is
important as it implies a sum over nonzero n can measure a deviation.

For example, consider the density of a normal random variable Y with mean 0
and variance N=2� ; this example is very important in showing Brownian motions
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and many products of independent random variables become Benford (see [Miller
and Takloo-Bighash 2006; Miller and Nigrini 2008a]). If we want to see how often
Y mod 1 is in an interval Œa; b�� Œ0; 1�, we need to study Prob.Y mod 12 Œa; b�/DP1

nD�1 Prob.Y 2 ŒaC n; bC n�/. We sketch how Poisson summation enters, and
provide full details when we prove our main result. The latter probabilities are
integrals of the density over the intervals ŒaC n; b C n�, and if N is large each
of these is approximately b � a times the density at n. By Poisson summation,
summing the density over n is the same as summing the Fourier transform at n:

1X
nD�1

1
p

N
e��n2=N

D

1X
nD�1

e��n2N :

Note the sharp contrast between the two sums. For the first sum, all n with jnj�
p

N

contribute the same order of magnitude, while for the second sum, the nD 0 term
contributes 1 and the next term is immensely smaller (by a factor of e��N ). This
example illustrates how Poisson summation allows us to replace a slowly decaying
sum of a density with a rapidly decaying one.

4. Main results

Our main result is the following extension of results for the exponential distribution,
which measures the deviation of the logarithm modulo 1 of the Weibull distribution
and the uniform distribution. It’s thus not surprising that for 
 close to 1, the digits
are close to Benford, as 
 D 1 corresponds to the exponential distribution. The main
contribution below is quantifying how the fit worsens as 
 grows. The larger 
 is, the
worse the fit. The effect of ˛ is easier to explain. As the result of replacing ˛ by ˛B is
simply to rescale our random variable by a factor of B, the significand is unaffected.
Thus it suffices to study ˛ in the window Œ1;B/, but 
 may be any real value.

Theorem 4.1. Let Z˛;
 be a random variable whose density is Weibull with pa-
rameters ˛; 
 > 0 arbitrary. For z 2 Œ0; 1�, let FB.z/ be the cumulative distribution
function of logB Z˛;
 mod 1; thus FB.z/ WD Prob.logB Z˛;
 mod 12 Œ0; z�/. Then
the density of logB Z˛;
 mod 1, F 0

B
.z/, is given by

F 0B.z/D 1C 2

1X
mD1

<

�
e�2�im.z�log˛=log B/�

�
1C

2� im


 log B

��
: (4-1)

In particular, the densities of logB Z˛;
 mod 1 and logB Z˛B;
 mod 1 are equal,
and thus it suffices to consider only ˛ in an interval of the form Œa; aB/ for any a> 0.

From the fundamental equivalence, a straightforward integration immediately
translates (4-1) into quantifying differences in the distribution of leading digits of
Weibull random variables and Benford’s law. Specifically, the probability of a first



THE WEIBULL DISTRIBUTION AND BENFORD’S LAW 865

digit of d is obtained by integrating F 0
B
.z/ from logB d to logB.d C 1/. The main

term comes from the constant 1, and is logB..d C 1/=d/, the Benford probability;
we discuss the size of the error in Theorem 4.2.

The above theorem is proved in the next section. As in [Miller and Nigrini
2008b], the proof involves applying Poisson summation to the derivative of the
cumulative distribution function of the logarithms modulo 1, which as discussed
in the previous section is a natural way to compare deviations from the resulting
distribution and the uniform distribution. The key idea is that if a data set satisfies
Benford’s law, then the distribution of its logarithms will be uniform. Our series
expansions are obtained by applying properties of the gamma function.

As the deviations of F 0
B
.z/ from being identically 1 measure the deviations

from Benford behavior, it is important to have good estimates for the sum over m

in (4-1). The bounds below have not been optimized, but instead have been chosen
to simplify the algebra in the proofs (given in the Appendix). Thus we assume k

below is at least 6, which is essentially equivalent to only investigating the case
where the error � is required to be of at most modest size (which is reasonable, as a
series expansion with a large error is useless).

Theorem 4.2. Let F 0
B
.z/ be as in (4-1).

(1) For M � .
 log B log 2/=4�2, the error from dropping the m �M terms in
F 0

B
.z/ is at most

2
p

2.�2C 
 log B/
p

 log B

�3
Me��

2M=.
 log B/:

(2) In order to have an error of at most � in evaluating F 0
B
.z/, it suffices to take the

first M terms, where M D .kC ln kC1=2/=a, with k Dmax.6;� ln.a�=C //,
aD �2=.
 log B/, and

C D
2
p

2.�2C 
 log B/
p

 log B

�3
:

For further analysis, we compared our series expansion for the derivative to
the uniform distribution through a Kolmogorov–Smirnov test; see Figure 1 for a
contour plot of the discrepancy. This statistic measures the absolute value of the
greatest difference in cumulative distribution functions of two densities. Thus the
larger the value, the further apart they are. Note the good fit observed between the
two distributions when 
 D 1 (representing the exponential distribution), which has
already been proven to be a close fit to the Benford distribution ([Dümbgen and
Leuenberger 2008; Leemis et al. 2000; Miller and Nigrini 2008b]).

The Kolmogorov–Smirnov metric gives a good comparison because it allows us
to compare the distributions in terms of both parameters, 
 and ˛. We also look
at two other measures of closeness, the L1-norm and the L2-norm, both of which



866 VICTORIA CUFF, ALLISON LEWIS AND STEVEN J. MILLER

0.1

0.2

0.3

0.4

0.5

0.5

0.5

0.6

0.6

0.7

0.7
0.8

0.8

2 4 6 8 10 12 14

2

4

6

8

10

˛




0.025

0.05

0.075

0.1

0.125

0.15

0.15

0.175

0.175

0.2

0.2

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

2

4

6

8

10




Figure 1. Kolmogorov–Smirnov test. Left: 
 2 Œ0; 15�. Right:

 2 Œ:5; 2�. As 
 (the shape parameter on the horizontal axis)
increases, the Weibull distribution is no longer a good fit compared
to the uniform. Note that ˛ (the scale parameter on the vertical
axis) has less of an effect on the overall conformance.

also test the differences between (4-1) and the uniform distribution; see Figure 2.
The L1-norm of f �g is

R 1
0 jf .t/�g.t/j dt , which puts equal weights on the all

deviations, while the L2-norm is given by
R 1

0 jf .t/�g.t/j2 dt , which unlike the
L1-norm puts more weight on larger differences. The closer 
 is to zero the better
the fit. As 
 increases, the cumulative Weibull distribution is no longer a good fit
compared to 1. The L1- and L2-norms are independent of ˛.

The combination of the Kolmogorov–Smirnov tests and the L1- and L2-norms
show us that the Weibull distribution almost exhibits Benford behavior when 

is modest; as 
 increases, the Weibull distribution no longer conforms to the
expected leading digit probabilities. The scale parameter ˛ does have a small
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Figure 2. Left: L1-norm of F 0
B
.z/� 1 for 
 2 Œ0:5; 10�. Right:

L2-norm of F 0
B
.z/� 1 for 
 2 Œ0:5; 10�.
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effect on the conformance as well, but not nearly to the same extreme as the shape
parameter 
 . Fortunately in many applications the scale parameter 
 is not too large
(it is frequently less than 2 in the Weibull distribution references cited earlier), and
thus our work provides additional support for the prevalence of Benford behavior.

5. Proof of main result

To prove Theorem 4.1, we study the distribution of logB Z˛;
 mod 1 when Z˛;


has the Weibull distribution with parameters ˛ and 
 . The analysis is aided by the
fact that the cumulative distribution function for a Weibull random variable has
a nice closed form expression; for Z˛;
 , the cumulative distribution function is
F˛;
 .x/D 1� exp.�.x=a/
 /. Let Œa; b�� Œ0; 1�. Then

Prob
�
logB Z˛;
 mod 12 Œa;b�

�
D

1X
kD�1

Prob
�
logB Z˛;
 mod 12 ŒaCk;bCk�

�
D

1X
kD�1

Prob
�
Z˛;
 2 ŒB

aCk ;BbCk �
�

D

1X
kD�1

exp
�
�

�
BaCk

˛

�
 �
�exp

�
�

�
BbCk

˛

�
 �
:

(5-1)

Proof of Theorem 4.1. It suffices to investigate (5-1) in the special case when aD 0

and b D z, since for any other interval Œa; b�, we may determine its probability
by subtracting the probability of Œ0; a� from Œ0; b�. Thus, we study the cumulative
distribution function of logB Z˛;
 mod 1 for z 2 Œ0; 1�, which we denote by FB.z/:

FB.z/ WD Prob
�
logB Z˛;
 mod 1 2 Œ0; z�

�
D

1X
kD�1

exp
�
�

�
Bk

˛

�
 �
� exp

�
�

�
BzCk

˛

�
 �
: (5-2)

This series expansion is rapidly converging, and the closeness of Z˛;
 to the Benford
distribution is equivalent to the rapidly converging series in (5-2) for FB.z/ being
close to z for all z.

A natural way to investigate the closeness of FB.z/ to z is to compare F 0.z/ to 1.
As in [Miller and Nigrini 2008b], studying the derivative F 0

B
.z/ is an easier way

to approach this problem because we obtain a simpler Fourier transform than the
Fourier transform of e�.B

k=˛/
 � e�.B
zCk=˛/
 . We then can analyze the obtained

Fourier transform by applying Poisson summation (Theorem 3.1).
We use the fact that the derivative of the infinite sum FB.z/ is the sum of the

derivatives of the individual summands. This is justified by the rapid decay of
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summands, yielding

F 0B.z/D

1X
kD�1

1

˛
exp

�
�

�
BzCk

˛

�
 �
BzCk

�
BzCk

˛

�
�1


 log B

D

1X
kD�1

1

˛
exp

�
�

�
�Bk

˛

�
 �
�Bk

�
�Bk

˛

�
�1


 log B; (5-3)

where for z 2 Œ0; 1�, we use the change of variables � D Bz .
We introduce

H.t/D
1

˛
exp

�
�

�
�Bt

˛

�
 �
�Bt

�
�Bt

˛

�
�1


 log B;

where � � 1 as � D Bz with z � 0. Since H.t/ is decaying rapidly we may apply
Poisson summation; thus

1X
kD�1

H.k/D

1X
kD�1

yH .k/; (5-4)

where yH is the Fourier Transform of H W yH .u/D
R1
�1

H.t/e�2�itu dt . Therefore

F 0B.z/D

1X
kD�1

H.k/D

1X
kD�1

yH .k/

D

1X
kD�1

Z 1
�1

1

˛
exp

�
�

�
�Bt

˛

�
 �
�Bt

�
�Bt

˛

�
�1


 e�2�itk log B dt:

(5-5)
We change variables again, setting w D .�Bt=˛/
 , which implies

t D logB

�
˛w1=


�

�
and dw D

1

˛

�
�Bt

˛

�
�1

�Bt
 log B dt; (5-6)

so that

F 0B.z/D

1X
kD�1

Z 1
0

e�w exp
�
�2� ik logB

�
˛w1=


�

��
dw

D

1X
kD�1

�
˛

�

��2�ik= log B Z 1
0

e�ww�2� ik=.
 log B/ dw

D

1X
kD�1

�
˛

�

��2�ik= log B

�

�
1�

2� ik

.
 log B/

�
; (5-7)
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where we used the definition of the gamma function in the last line. As �.1/D 1,
we have

F 0B.z/D1C

1X
mD1

�
�

˛

�2�im=logB

�

�
1�

2� im


 logB

�
C

�
�

˛

��2�im=logB

�

�
1C

2� im


 logB

�
:

(5-8)
As in [Miller and Nigrini 2008b], the above series expansion is rapidly convergent.
As � D Bz , we have�
�

˛

�2� im= log B

D cos
�

2�mz�2�m

� log˛
log B

��
C i sin

�
2�mz�2�m

� log˛
log B

��
;

(5-9)
which gives a Fourier series expansion for F 0

B
.z/ with coefficients arising from

special values of the gamma function.
Using properties of the gamma function, we are able to improve (5-8). If y 2 R

then �.1� iy/D�.1C iy/ (where the bar denotes complex conjugation). Thus the
m-th summand in (5-8) is the sum of a number and its complex conjugate, which
is simply twice the real part. We use the following standard relationship (see, for
example, [Abramowitz and Stegun 1964]):ˇ̌

�.1C ix/
ˇ̌2
D

�x

sinh.�x/
D

2�x

e�x � e��x
: (5-10)

Writing the summands in (5-8) as

2<

�
e�2� im.z�log˛=log B/�

�
1C

2� im


 log B

��
;

(5-8) becomes

F 0B.z/D 1C 2

1X
mD1

<

�
e�2� im.z�log˛=log B/�

�
1C

2� im


 log B

��
: (5-11)

Finally, in the exponential argument above, there is no change in replacing ˛
with ˛B, as this changes the argument by 2� i . Thus it suffices to consider
˛ 2 Œa; aB/ for any a> 0. �

This proof demonstrates the power of using Poisson summation in Benford’s
law problems, as it allows us to convert a slowly convergent series expansion into a
rapidly converging one, with the main term corresponding to Benford behavior and
the other terms measuring the deviation.

Appendix: Proofs of bounding estimates

We first estimate the contribution to F 0
B
.z/ from the tail, say from the terms with

m � M . We do not attempt to derive the sharpest bounds possible, but rather
highlight the method in a general enough case to provide useful estimates.
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Proof of Theorem 4.2(1). We must bound the truncation error

EB.z/ WD <

1X
mDM

e�2� im.z�log˛=log B/�

�
1C

2� im


 log B

�
; (A-1)

where �.1C iu/ D
R1

0 e�xxiu dx D
R1

0 e�xeiu log x dx. Note that in our case,
uD 2�m=.
 log B/. As u increases there is more oscillation and therefore more
cancellation, resulting in a smaller value for our integral. Since jei� j D 1, if we
take absolute values inside the sum, we have je�2�im.z�log˛=log B/j D 1, and thus
we may ignore this term in computing an upper bound.

Using standard properties of the gamma function, we haveˇ̌
�.1C ix/

ˇ̌2
D

�x

sinh.�x/
D

2�x

e�x � e��x
; where x D

2�m


 log B
: (A-2)

This yields

jEB.z/j �

1X
mDM

1

�
4�2m


 log B

1

e2�2m=.
 log B/� e�2�2m=.
 log B/

�1=2

: (A-3)

Let uD e2�2m=.
 log B/. We overestimate our error term by removing the differ-
ence of the exponentials in the denominator. Simple algebra shows that for

1

u� 1
u

�
2

u
;

we need u�
p

2. For us this means e2�2m=.
 log B/ �
p

2, allowing us to simplify
the denominator if m� .
 log B log 2/=4�2, which we may do as we assumed M

exceeds this value and m�M . We substitute this bound into (A-2), and replace
p

m with m to simplify the resulting integral:

jEB.z/j�

1X
mDM

�
4�2m


 logB

�1=2
p

2

e�
2m=.
 logB/

�
2
p

2�p

 logB

Z 1
M

me��
2m=.
 logB/dm:

(A-4)
Letting aD �2=.
 log B/, integrating by parts gives

jEB.z/j �
2
p

2�p

 log B

1

a2
.aMe�aM

C e�aM /�
2
p

2�p

 log B

aC 1

a2
Me�aM (A-5)

(since M � 1, aM C 1� .aC 1/M ), which after some algebra simplifies to

jEB.z/j �
2
p

2.�2C 
 log B/
p

 log B

�3
Me��

2M=.
 log B/; (A-6)

which is the error listed in Theorem 4.2(1). �
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Proof of Theorem 4.2(2). Given the estimation of the error term from above, we
now ask the related question: given an � > 0, how large must M be so that the first
M terms give F 0

B
.z/ accurately to within � of the true value? Let

C D
2
p

2.�2C 
 log B/
p

 log B

�3

and aD �2=.
 log B/. We must choose M so that CMe�aM � �, or equivalently

C

a
aMe�aM

� �: (A-7)

As this is a transcendental equation in M , we do not expect a nice closed form
solution, but we can obtain a closed form expression for a bound on M ; for any
specific choices of C and a, we can easily numerically approximate M . We let
uD aM , giving

ue�u
� a�=C: (A-8)

With a further change of variables, we let k D� ln.a�=C / and then expand u as
uD kCx (as the solution should be close to k). We find

ue�u
� e�k is equivalent to

kCx

ex
� 1: (A-9)

We try x D ln kC 1
2

and see

kCx

ex
� 1 is equivalent to

kC ln kC 1
2

ke1=2
� 1: (A-10)

From here, we want to determine the value of k such that ln k � 1
2
k, as this

ensures the needed inequality above holds. Exponentiating, we need k2 � ek . As
ek � k3=3! for k positive, it suffices to choose k so that k2 � k3=6, or k � 6; this
holds for � sufficiently small. For k � 6, we have

kC ln kC 1
2
� kC 1

2
kC 1

12
k D 19

12
k � 1:5833k; (A-11)

but
ke1=2

� 1:64872k: (A-12)

Therefore a correct cutoff value for M , in order to have an error of at most �, is

M D
kC ln kC 1

2

a
; (A-13)

where

k Dmax
�

k;� ln
a�

C

�
; aD

�2


 log B
; C D

2
p

2.�2C 
 log B/
p

 log B

�3
:

(A-14)
�
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Differentiation properties
of the perimeter-to-area ratio for

finitely many overlapped unit squares
Paul D. Humke, Cameron Marcott, Bjorn Mellem and Cole Stiegler

(Communicated by Frank Morgan)

In this paper we examine finite unions of unit squares in same plane and consider
the ratio of perimeter to area of these unions. In 1998, T. Keleti published
the conjecture that this ratio never exceeds 4. Here we study the continuity
and differentiability of functions derived from the geometry of the union of
those squares. Specifically we show that if there is a counterexample to Keleti’s
conjecture, there is also one where the associated ratio function is differentiable.

1. Introduction

The purpose of this paper is to introduce several functions associated with the
perimeter-to-area conjecture (PAC) of Tamás Keleti [1998] and to investigate the
smoothness properties of those functions.

Keleti’s perimeter-to-area conjecture (PAC). The perimeter-to-area ratio of the
union of finitely many unit squares in a plane does not exceed 4.

The problem of showing such a ratio is bounded first seems to have appeared
as Problem 6 in the 1998 edition of the famous Miklós Schweitzer Competition in
Hungary [Competition 1998]. Later that same year, Keleti published his perimeter-
to-area conjecture that this bound is actually 4. To date, the best known bound is
slightly less than 5.6. This bound was achieved by Keleti’s student Zoltán Gyenes
[2005] in his master’s thesis. A special case of the theorem, where all of the squares
are axis oriented, is known to be true; Gyenes also presents a proof of this case
in the above work, and the authors present two additional proofs in [Humke et al.
2015]. The PAC is particularly intriguing as some of its obvious generalizations are
false. Gyenes [2005] showed that the corresponding ratio for unions of congruent
convex sets need not be bounded by the ratio for a single copy of the set.
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Figure 1. A convex set counterexample to the PAC for general
convex sets.

Gyenes’s example. There exist congruent convex sets E1 ∼= E2 ⊂ R2 such that the
perimeter-to-area ratio for E1 ∪ E2 exceeds the perimeter-to-area ratio for either
one of them.

The Gyenes example is disarmingly straightforward. The convex set template is
an origin-centered unit square with one judiciously chosen isosceles corner triangle
removed. That corner triangle is chosen so that the perimeter-to-area ratio of the re-
sulting figure is less than 4. But the union of this template with a rotated copy is sim-
ply the original unit square whose perimeter-to-area ratio is exactly 4. See Figure 1.

In this paper, we build machinery for analyzing the PAC, showing that for almost
all finite unions of squares, the perimeter to area ratio is differentiable in the usual
Euclidean sense. If a counterexample exists, then there exists a counterexample
where the derivative exists. These results provide inroads toward understanding the
PAC by potentially relating it to large body of discrete geometric work, including the
Kneser–Poulsen theorem and results by Ho-Lun Cheng and Herbert Edelsbrunner
[2003] on derivatives when translating circles in the plane.

2. Notation and setting

Let H =
⋃n

i=1 Hi be the finite union of unit squares Hi in R2. Let the perimeter
and area functions, p( · ) and α( · ) respectively, take a closed, bounded polygonal
figure in the plane as input and return that figure’s perimeter and area respectively.
If S is a set, we denote the boundary of S by bd S. Throughout we will be interested
in the boundary of polygonal regions, and one focus of our attention will be the
(maximal) segments comprising that boundary. We refer to these maximal segments
as component segments of the boundary. The ε-ball about a set S will be denoted by
Bε(S) and the convex hull of a set of points {pi : i = 1, 2, . . . , k} ⊂ R2 is denoted
by [p1, p2, . . . , pk].

Any point (si , ti , φi )
n
i=1 ∈ R3n may be mapped to an ordered union of n squares

by taking (si , ti ) to be the rectangular coordinates of the center of the i-th square Hi

and φi to be the smallest angle between the horizontal and a side of Hi . For
notational convenience, we will also denote a single component square Hi by its



DIFFERENTIATION PROPERTIES OF THE PERIMETER-TO-AREA RATIO 877

coordinates, i.e., Hi = (si , ti , φi ). This correspondence between R3n and ordered
unions of n squares is surjective and throughout this paper will serve as the domain
for corresponding perimeter and area functions. As a general convention, when we
refer to a figure H ⊂R3n , we shall mean that H is the ordered union of n unit squares
determined according to the correspondence described above. Define the function

r : R3n
→ R, r(H)=

p(H)
α(H)

.

That is, r takes an ordered 3n-tuple of identifiers as input and returns the ratio
we’ve been examining for the figure identified by H . We’ll refer to the vector
(φ1, φ2, . . . , φn)∈Rn as the rotational displacement of H . A figure H ⊂R2 is said
to have distinct rotational displacement if φi 6=φ j when i 6= j , is vertex-free if no ver-
tex of Hi lies on the boundary of H j whenever i 6= j , and is triple-free if no point lies
on the boundaries of three distinct Hi . H is said to be in standard position provided:

(1) H has distinct rotational displacement,

(2) H is vertex-free, and

(3) H is triple-free.

The set of points in R3n that do not have distinct rotational displacement lie on
finitely many linear curves of the form φi = φ j+kπ/2, where i 6= j and k = 1, 2, 3.
Points which are not vertex-free lie on finitely many curves that are quadratic in the
variables {si , ti , sinφi , cosφi : i = 1, 2, . . . , n}, and points which are not triple-free
lie on finitely many quartic curves in the same variables. It follows that the set of
points which are in standard position is the complement of a sparse set in the sense
that they are the complement of a countable union of monotonic curves and so are
both residual and of full measure in R3n .

3. Continuity of perimeter and area

Here we give elementary geometric proofs that both the perimeter and area functions
as we’ve defined them are continuous at configurations that are in standard position.

Lemma 1. The perimeter function p is continuous at every point H ∈ R3n which is
in standard position.

Proof. To show that perimeter is continuous, let [a, b] ⊂ bd H be a segment
of maximal length on bd H . As H has distinct rotational displacement there
is a unique component square, say Hio , such that [a, b] ⊂ bd Hio . To simplify
notation, we assume φio = sio = tio = 0, a = (x1,−1/2) and b= (x2,−1/2), where
−1/2≤ x1 < x2 ≤ 1/2. We’ll examine in some detail the case where neither a nor
b are vertices of Hio ; the other cases are similar.
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a

Hio

H j
Hk

b

φa φb

Figure 2. Since H is in standard position, a and b are uniquely
determined by two additional component squares H j and Hk .

Since H is in standard position, a and b are uniquely determined by two additional
component squares H j and Hk in the sense that a = bd Hio ∩ bd H j and b =
bd Hio ∩ bd Hk . Let φa denote the angle determined by the intersection of the
boundaries of Hio and H j at a measured counterclockwise from the boundary of
Hio to that of H j ; the angle φb is defined analogously. See Figure 2.

As φio = 0, either φ j = φa or φ j = φa −π/2. Also, φk = φb or φk = φb−π/2.
For definiteness we’ve supposed that φ j = φa and φk = φb−π/2 so that a is the
intersection of the line ` given by y=−1/2 and `a given by y= tanφa(x−x1)+1/2.
Similarly, b is the intersection of ` with the line `b given by y= tanφb(x−x2)+1/2.
Using the fact that H is in standard position, there is an ε > 0 such that Bε([a, b])
intersects no component square of H except Hio , H j , and Hk .

Our immediate aim is to show that small perturbations of H result in small
local perturbations of bd H . To this end, suppose δ > 0 and d = (ui , vi , wi )

n
i=1

is a unit vector in R3n . Let H∗ = H + δ · d and denote its component squares by
H∗i = Hi + δ · (ui , vi , wi ). Then, for δ sufficiently small, Bε([a, b])∩ H∗i 6= ∅ if
and only if i = io, j or k. Let

(1) `∗ denote the line ` rotated bywio about the center of Hio , (0, 0), then translated
by (ui0, vi0),

(2) `∗a denote the line `a rotated by w j about the center of H j , (s j , t j ), then
translated by (u j , v j ),

(3) `∗b denote the line `b rotated by wk about the center of Hk , (sk, tk), then
translated by (uk, vk).

Finally, let a∗ = `∗ ∩ `∗a and b∗ = `∗ ∩ `∗b. Then [a∗, b∗] is a maximal segment
on bd H∗ and is the sole portion of bd H∗ in Bε([a, b]). An elementary estimate
shows that

∣∣|[a∗, b∗]| − |[a, b]|
∣∣< 6δ.

As there are only finitely many such segments [a, b] ⊂ bd Hi comprising the
boundary of H , and for δ sufficiently small, there is a one-to-one correspondence
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between these segments and those comprising the boundary of H∗, it follows that p
is continuous at each point of standard position. �

The actual situation is that the perimeter function is continuous at a much
larger set of points than those in standard position. The proof given above can
be easily adapted to show that p is continuous at points having distinct rotational
displacement; however, p is also continuous at most points that do not have distinct
rotational displacement. Typical of points at which p is discontinuous is the point
H = (0, 0, 0, 1, .5, 0), where the perimeter is 7. If Hn = (0, 0, 0, 1+ 1/n, .5, 1/n),
then for every n ∈ N, p(Hn)= 8 and yet {Hn} → H .

A bit more can be said about the continuity of p at all points whether in standard
position or not.

Proposition 2. The function p : R3n
→ R is lower semicontinuous.

Proof. To see this, suppose H =
⋃n

i=1 Hi is an arbitrary configuration with compo-
nent squares Hi . A segment [a, b] ⊂ bd H is called proper if [a, b] is of maximal
length under the restriction that no vertex of a component square of H lies on
[a, b]\{a, b}. The fact that H is the finite union of squares means that the boundary
of H can be uniquely written as the nonoverlapping union of proper boundary
segments. Suppose now that .1> ε > 0 is given and that S = [a, b] is any proper
segment on the boundary of H . Let a∗, b∗ ∈ S such that both |a− a∗| = ε|b− a|
and |b− b∗| = ε|b− a| and set S∗ = [a∗, b∗]. Let U be a ball about S∗ such that
U ∩bd H ⊂ S and the radius of the ball is less than ε/2. For small 1H , we wish to
use p(H) to estimate p(H +1H). First note that if S lies on a unique component
square, then S∗+1H ⊂ (S+1H)∩U ⊂ bd(H+1H), and if all proper boundary
segments have this property, we obtain an easy estimate of p(H +1H). However,
should S be common to several component squares of H , then S+1H is the union of
several segments and bd(H+1H)∩U is a piecewise linear selection from S+1H .
We handle this situation as follows. Let Na∗ denote the line segment in U that con-
tains a∗ and is normal to S; Nb∗ is defined analogously for b∗. Let a∗∗= (a+a∗)/2,
b∗∗ = (b+b∗)/2 and S∗∗ = [a∗∗, b∗∗]. We may take 1H sufficiently small so that:

(1) S∗∗+1H ⊂U ,

(2) (S∗∗+1H)∩ Na∗ 6=∅ 6= (S∗∗+1H)∩ Nb∗ , and

(3) if T ∗∗ is analogous to S∗∗, but derived from another proper boundary segment,
then (T ∗∗+1H)∩U =∅.

These conditions imply that a proper boundary segment for H yields a portion,
but not necessarily a segment, of the boundary of H +1H that extends from Na∗

to Nb∗ . As such, its length is at least (1− 2ε)|b− a|. Moreover, it follows from (3)
above that distinct proper boundary segments of H yield disjoint boundary portions
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of H +1H . Hence,

p(bd H +1H)≥ p(bd H)(1− 2ε).

Since ε is arbitrary, it follows that

lim inf
1H→0

p(bd H +1H)≥ p(bd H),

or that p : R3n
→ R is lower semicontinuous. �

The minimizer for p is 4, occurring when all component squares of H coincide.
The fact that p is lower semicontinuous, coupled with the continuity of the area func-
tion α, implies that the ratio p/α is lower semicontinuous and so has a minimizer. Es-
tablishing the minimizer for the ratio p/α and minimizers of similar configurations
is interesting, but uses completely different methods from those of the current paper
and is the topic of a separate study. It is not known if a maximizer of p/α exists.

We turn now to consider the area function.

Lemma 3. The area function α is continuous at every point in R3n .

Proof. As the area of each component square Hi is 1, it follows that the area function
α : R3

→ R is Lipschitz in each coordinate with a Lipschitz constant of 1. Hence,
α itself is Lipschitz with Lipschitz constant

√
3n. �

The following theorem now follows immediately from Lemmas 1 and 3.

Theorem 4. The function r is continuous at every point H ∈ R3n which is in
standard position.

4. A derivative computation for perimeter

Next, we investigate the differentiability of the perimeter and area functions. Our
goal is to prove the following theorem.

Theorem 5. The perimeter function p : R3n
→ R+ is differentiable at every point

H ∈ R3n in standard position.

Proof. We show the partial derivatives of p exist and are continuous at each point of
standard position. Fix 0≤ io ≤ n and consider the three partial derivatives ∂p/∂sio ,
∂p/∂tio and, initially, ∂p/∂φio .

Part 1: ∂p/∂φio . As in Lemma 1, we take a particular component segment [a, b]
on the boundary of H and again note that [a, b] must lie on the boundary of a
single H j . There are two cases depending on whether H j = Hio .

Case 1a: [a, b] lies on the boundary of Hio . We adopt the notation of Lemma 1 in
its entirety so that φio = sio = tio = 0, a = (x1,−1/2) and b = (x2,−1/2), where
−1/2≤ x1 < x2 ≤ 1/2. The lines `, `a and `b are also as before. However, the unit
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Hio

Hio + (0, 0, δ)

a
ba∗

b∗

Figure 3. [a, b] and [a∗, b∗] in the case that [a, b] lies on the
boundary of Hio .

vector we consider is more specific in this case; d ∈ R3n is the vector with wio = 1
and all remaining components 0. The set H∗ = H + δ · d is comprised of precisely
the same component squares as H with the exception of Hio , which is replaced by
Hio + (0, 0, δ), a rotation of Hio about its center by an angle of δ. The segment on
bd H∗ corresponding to [a, b] is [a∗, b∗], where a∗ = `∗ ∩ `a and b∗ = `∗ ∩ `b∗

since `a = `
∗
a and `b = `

∗

b. See Figure 3.
A computation yields

a∗ =
(

x1 tanφa

tanφa − tan δ
,

x1 tanφa tan δ
tanφa − tan δ

−
1
2

)
,

b∗ =
(

x2 tanφb

tanφb+ tan δ
,

x2 tanφb tan δ
tanφb+ tan δ

−
1
2

)
.

(1)

Consequently, the x-coordinate of b∗− a∗ is

x(b∗− a∗)=
(x2− x1) tanφa tanφb− tan δ(x2 tanφb+ x1 tanφa)

(tanφa − tan δ)(tanφb+ tan δ)
.

However, x(b∗− a∗)/|b∗− a∗| = cos δ and so

|b∗− a∗| =
(x2− x1) tanφa tanφb− tan δ(x2 tanφb+ x1 tanφa)

(tanφa − tan δ)(tanφb+ tan δ) cos δ
. (2)

We’re now in a position to complete the computation of the contribution of [a, b]
to ∂p/∂φio at Hio :

lim
δ→0

|b∗− a∗| − |b− a|
δ

= (x2− x1)(cotφb− cotφa). (3)

Case 1b: [a, b] lies on the boundary of H j with io 6= j . If [a, b] ∩ Hio =∅, then
the partial derivative of that portion of p with respect to φio is 0. Hence, we may
assume that [a, b] ∩ Hio 6=∅. As [a, b] ⊂ bd H is maximal, it follows that either
[a, b] ∩ Hio = {a} or [a, b] ∩ Hio = {b}. We suppose the former and for purposes
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Hio

H j

φa

a

b

Figure 4. [a, b] 6⊂ bd Hio .

of computation, we again adopt some of the notation of Lemma 1. Specifically we
suppose that Hio = (0, 0, 0), a = (x1,−1/2), φa , `a , ` and `∗ are as before. Then
the segment [a, b] lies on the line `a . See Figure 4 where a lies to the right of the
center of Hio (or 0≤ x1 ≤ 1/2).

In this case, the change in perimeter due to [a, b] is
∣∣|[a∗, b∗]|−|[a, b]|

∣∣=|a∗−a|.
Then according to the law of sines,

|a∗− a| =
|c− a| sin δ

sin(φδ)
=

|c− a| sin δ
sinφa cos δ− cosφa sin δ

,

where c = `∩ `∗. See Figure 5.
Hence, in this case, the contribution of [a, b] to ∂p/∂φio at Hio is

lim
δ→0

|a∗− a|
δ
= lim
δ→0

|c− a|(sin δ)/δ
sinφa cos δ− cosφa sin δ

=
x1

sinφa
.

Since H is in standard position, this is well-defined and continuous. The case
in which a lies to the left of the center of Hio is the same, but is negative since
−1/2≤ x1 < 0 in that case.

To summarize, we have shown that the rate of change of each component segment
of bd H with respect to φio is continuous. As bd H is comprised of finitely many

`

`a

a∗
`∗

δ
c

π −φa

φa − δ

a

Figure 5.
∣∣|[a∗, b∗]| − |[a, b]|

∣∣= |a∗− a| in the case that [a, b] 6⊂ bd Hio .
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Hio

1s φio

Hio + (0,1s, 0)

φb

b

a

1p a∗

Figure 6. Translating Hio by (0,1s, 0).

such segments, it follows that ∂p/∂φio exists and is continuous at each point in
standard position.

Part 2: ∂p/∂si . For notational convenience, we denote 1sio simply by 1s. As in
the previous case, we take a particular segment [a, b] on the boundary of H and
consider three cases:

(a) [a, b] does not lie on bd Hio ,

(b) [a, b] lies on bd Hio and contains a vertex of Hio , and

(c) [a, b] lies on bd Hio and neither a nor b are vertices of Hio .

Case 2a: Suppose that [a, b] 6⊂ bd Hio . If [a, b] ∩ Hio = ∅, a sufficiently small
translation of Hio will leave [a, b] unchanged. Suppose then that [a, b]∩Hio 6=∅. As
H is in standard position, it follows that either [a, b]∩Hio ={a} or [a, b]∩Hio ={b}.
Suppose bd Hi∩[a, b]={a}. If1s is sufficiently small, the point b remains on bd H
when translating Hio by 1s. Because a lies on the intersection of two component
squares and H is in standard position, a is not the vertex of any square. Hence,
bd(Hio + (0,1s, 0)) ∩ [a, b] 6= ∅. Let bd(Hio + (0,1s, 0)) ∩ [a, b] = a∗. The
segments [a∗, b] and [a, b] differ by a length of 1p and it is this distance we wish
to compute. See Figure 6.

We consider two cases depending on if φio < φb or φio > φb. Supposing that
φio < φb, the relevant triangle is illustrated in Figure 7.

Using the law of sines, we compute 1p/1s = sinφio/sin(φb−φio). If φio > φb,
a similar computation yields1p/1s=− sinφio/sin(φb−φio). As H is in standard
position, φio 6= φb, so these are the only cases.

Case 2b: Suppose that [a, b] ⊂ bd Hio and that a is a vertex of Hio . If b is also a
vertex of Hio , then as H is in standard position, neither a nor b lie on the boundary
of another component square. Consequently, [a+1s, b+1s]⊂bd(H+(0,1s, 0)),
given a sufficiently small translation 1s.
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1s

a

1p

φio π −φb a∗

Figure 7. The relevant triangle in the case that φio < φb.

Suppose then that b is not a vertex of Hio . Then, given a sufficiently small
translation 1s, the segment [a+1s, b+1s] will intersect bd H at point b∗ and
[b, b∗] ⊂ bd H . See Figure 8.

At this point the geometry and subsequent computation of 1p/1s are anal-
ogous to that found in Figure 7. In the case illustrated in Figure 8, 1p/1s =
cosφio − sinφio tanφb.

Case 2c: Finally, suppose that [a, b] lies on bd Hio and neither a nor b are vertices
of Hio . Then the endpoints a and b of this boundary segment lie on uniquely
determined segments on bd H that lie on the boundaries of component squares other
than Hio . This is similar to the analysis done in Case 1a above. As H is in standard
position, if 1s is sufficiently small, then as Hio is translated to Hio + (0,1s, 0),
the boundary segment [a, b] is translated to a new boundary segment [a∗, b∗].
Moreover, a∗ lies on the same boundary segment of H as does a, and b∗ lies on
the same boundary segment of H as does b. See Figure 9.

In order to facilitate the required computation, we establish the notation found
in Figure 10.

Hio Hio + (0,1s, 0)

a a∗

b

b∗

1s

Figure 8. The case in which b is not a vertex of Hio .
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Hio Hio + (0,1s, 0)

a

a∗

b

b∗

1s

Figure 9. The case in which [a, b] lies on bd Hio and neither a
nor b are vertices of Hio .

Applying the law of sines to triangles [a, a∗, c] and [a, a∗, d], we find

|a− a∗|
sinφ

=
1s

sin(π −φ−φio)
,

|a− a∗|
sin(φ+φb)

=
1p

sin(φio −φb)
.

Hence,
1p
1s
=

sinφ sin(φio −φb)

sin(φ+φio) sin(φ+φb)
.

In the case illustrated in Figure 10, φ = π/2−φio . As H is in standard position,
this quantity is well-defined and indeed constant.

To obtain ∂p/∂si , sum 1p/1s for every component segment [a, b] ⊂ bd H .
Since there are finitely many partitioning segments and 1p/1s is continuous for
each of them, ∂p/∂si exists and is continuous at every point in standard position.

Part 3: ∂p/∂ yi . Rotating the whole figure by 90◦, this case becomes exactly the
same as the previous one.

a

a∗

b

b∗

c1p

φio φb a

a∗ 1p

1s

c

dφφb

Figure 10. The same case with added detail and notation.
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a
ba∗

b∗

γ

c

Figure 11. When the segment [a, b] contains the vertex of a new
square, the derivative of perimeter changes discontinuously.

Finally, because all of the partial derivatives exist and are continuous at each
point in standard position, the perimeter function is differentiable at every point
H ∈ R3n of standard position, as desired. �

The situation for points that are not in standard position is mixed. For example,
at some of these points the perimeter is differentiable; if the configuration H is not
vertex-free, but the vertices that lie on edges of remote squares are all interior to H ,
then the fact that H is not vertex-free has no bearing on the differentiability of perime-
ter at H . However, if a segment on the boundary of H contains a vertex, then p is not
differentiable at H . Figure 11 is a portion of Figure 3 with an additional square added
in such a way that a new vertex, c resides on the segment [a, b]. The angle this new
square makes with the segment [a, b] is important and labeled γ . Also important is
the distance |c−a| this vertex is from the endpoint a. In the next paragraph, we adopt
the notation established earlier in Lemma 1 and Part 1 in the proof of Theorem 5.

In such a case, several of the partial derivatives do not exist. In particular, both one-
sided partial derivatives, ∂p/∂φ+io

and ∂p/∂φ−io
exist, but differ. The latter, ∂p/∂φ−io

is as computed in Part 1 of the proof of Theorem 5. However, a computation similar
to this shows that ∂p/∂φ+io

differs from ∂p/∂φ−io
by |c− a| tan(γ ). See Figure 11.

To summarize,

∂p
∂s−io

= (x2− x1)(cotφb− cotφa),

∂p
∂s+io

= (x2− x1)(cotφb− cotφa)+ |c− a| tanα.

5. A derivative computation for area

To show r is differentiable at every point in standard position, it remains to show
that the area function is differentiable at every point in standard position and to
show how that derivative can be computed.
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Hio

Figure 12. The change in area after rotating Hio .

Theorem 6. The area function α :R3n
→R+ is differentiable at every point H ∈R3n

in standard position.

Proof. Again we show the partial derivatives of α exist and are continuous at each
point of standard position. Fix 0 ≤ io ≤ n. If Hio ⊂ int(H), then ∂a/∂sio(H) =
∂a/∂tio(H) = ∂a/∂φio(H) = 0, so we may assume that a portion of bd Hio is
contained in bd H ; since H is in standard position, bd Hio ∩ bd H is the union of
closed nonoverlapping intervals.

Part 1: ∂α/∂φio . There may be several segments common to bd Hio and bd H , and
for a fixed δ =1φio , each such segment contributes to a corresponding 1α. See
Figure 12 where those segments common to both bd Hio and bd H are darkened and
the components of 1α are hatched, northeast for gain and northwest for loss. The
gray regions are portions of the other component squares of H that intersect Hio .

The area change,1α is simply the sum total of the signed area changes at each of
the line segment components of bd Hio ∩ bd H . There are several cases to consider
depending on the relative location of a boundary segment of bd Hio ∩ bd H , but in
any case, for purposes of this computation, we may assume Hio =

[
−

1
2 ,

1
2

]2 and
that the boundary segment [a, b] lies on the line y =− 1

2 .

Case 1a: a =
(
x1,−

1
2

)
and b =

(
x2,−

1
2

)
with − 1

2 < x1 < x2 ≤ 0. Then the
additional area determined by [a, b] is a net gain (or +) and is the area of the
quadrilateral [a, p, q, b]. See Figure 13 where the notation is the same as in the
Lemma 1 except for a new value of d = (0, . . . , 0,1φio, 0, . . . , 0). Using the
coordinates of a∗ and b∗ computed in (1), we find the area of the quadrilateral
[a, a∗, b∗, b] to be

1α([a, b])=
(x2

1 − x2
2) tanφa tanφb tan δ+ tan2 δ(x2

2 tanφb+ x2
1 tanφa)

2(tanφa − tan δ)(tanφb+ tan δ)
. (4)
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`a `b

`

`∗

a b

a∗
b∗

Figure 13. 1α at [a, b] in Case 1a.

To find the contribution to ∂α/φio at [a, b], we divide the quantity found in (4)
by δ and take the limit as δ→ 0 to obtain

∂α

φio

∣∣∣∣
[a,b]
= lim
δ→0

1α([a, b])
δ

=
x2

1 − x2
2

2
.

Case 1b: a =
(
x1,−

1
2

)
and b =

(
x2,−

1
2

)
with 0 ≤ x1 < x2 ≤

1
2 . This case is

symmetric to Case 1a, but since 0≤ x1 < x2, the contribution to ∂α/φio is negative:

∂α

φio

∣∣∣∣
[a,b]
=

x2
1 − x2

2

2
.

Case 1c: a =
(
x1,−

1
2

)
and b =

(
x2,−

1
2

)
with − 1

2 ≤ x1 ≤ 0≤ x2 ≤
1
2 . Once again

∂α

φio

∣∣∣∣
[a,b]
=

x2
1 − x2

2

2
.

To see this, introduce x3 = 0 and add the corresponding amounts computed using
the formula from Cases 1a and 1b.

Part 2: ∂α/∂sio . The analysis of this case is much the same as Part 1. Again there
may be several segments common to bd Hio and bd H , and for a fixed δ = 1sio ,
each such segment contributes to a corresponding 1α. See Figure 14 where those
segments common to both bd Hio and bd H are darkened and the components of
1α are hatched, northeast for gain and northwest for loss. The gray regions are
portions of the other component squares of H that intersect Hio .

There are two basic cases to consider here. The first concerns a component
segment [a, b] ⊂ bd Hio ∩ bd H that lies on either the bottom or top of Hio and the
second is when that segment lies on one of the other two sides. In both cases we
let 1sio =1s be sufficiently small.

Case 2a: [a, b] lies on the bottom of Hio . For definiteness, we again suppose that
neither a nor b is a vertex of Hio , as the cases when they are vertices can be handled
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Hio

Figure 14. The change in area after translating Hio .

in much the same manner. As before, there are uniquely defined H j and Hk such
that a ∈ bd H j ∩bd Hio and b ∈ bd Hk∩bd Hio . Also let ` denote the line containing
[a, b], so that the segment [a, b] is that portion of ` between H j and Hk . Similarly,
let `∗ be the line `+(0,1s, 0), and let [a∗, b∗] denote that segment on `∗ extending
between H j and Hk . See Figure 15 where the trapezoidal region whose area is 1α
at [a, b] is shaded and the rotation displacement φio as well as 1s are labeled.

Then

1α|[a,b] =
|b− a| + |b∗− a∗|

2
sinφio ·1s.

From this it follows that
∂α

∂sio

∣∣∣∣
[a,b]
= lim
1s→0

|b− a| + |b∗− a∗|
2

sinφio = |b− a| sinφio .

The case in which [a, b] lies on the top of Hio is identical with the exception that
the sign is negative.

`a `b

`

`∗

a

b

a∗

b∗

1s

φio

Figure 15. 1α at [a, b] in Case 2a.
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Case 2b: [a, b] lies on the right (or left) side of Hio . The right side case is much the
same as described in Case 2a above, but with the angle φio replaced by φio +π/2.
The resulting derivative formula becomes

∂α

∂sio

∣∣∣∣
[a,b]
= lim
1s→0

|b− a| + |b∗− a∗|
2

cosφio = |b− a| cosφio .

As above, the left side case is identical with the exception that the sign is negative.

Part 3: ∂α/∂tio . As with the analysis of perimeter, the translation cases are com-
pletely analogous.

As each of the partial derivatives is defined and continuous at each point H in
standard position, the proof of Theorem 6 is complete. �

Because the perimeter and area functions are differentiable at every point in
standard position (and a 6= 0), their ratio r : R3n

→ R+ is differentiable and our
main result now follows immediately.

Theorem 7. The function r : R3n
→ R+ is differentiable at every point H ∈ R3n in

standard position.

The idea of studying the variation of p(H)/a(H) allows us to consider a vast
body of discrete geometric literature to help study the problem. However, nearly all
of this literature concerns itself with studying disks in the plane, rather than squares
or arbitrary shapes. An example is the famous Kneser–Poulsen theorem concerning
disks in the plane. See [Bezdek and Connelly 2002] and [Bollobás 1968] for details.

Kneser–Poulsen theorem. If a set of disks in the plane are rearranged so that the
distance between the centers of any pair of discs decreases, then the area and the
perimeter of the union of the discs also decreases.
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On the Levi graph of point-line configurations
Jessica Hauschild, Jazmin Ortiz and Oscar Vega

(Communicated by Joseph A. Gallian)

We prove that the well-covered dimension of the Levi graph of a point-line
configuration with v points, b lines, r lines incident with each point, and every
line containing k points is equal to 0, whenever r > 2.

1. Introduction

The concept of the well-covered space of a graph was first introduced by Caro,
Ellingham, Ramey, and Yuster [Caro et al. 1998; Caro and Yuster 1999] as an
effort to generalize the study of well-covered graphs. Brown and Nowakowski
[2005] continued the study of this object and, among other things, provided several
examples of graphs featuring odd behaviors regarding their well-covered spaces.
One of these special situations occurs when the well-covered space of the graph
is trivial, i.e., when the graph is anti-well-covered. In this work, we prove that
almost all Levi graphs of configurations in the family of the so-called (vr , bk)-
configurations (see Definition 3) are anti-well-covered.

We start our exposition by providing the following definitions and previously
known results. Any introductory concepts we do not present here may be found in
the books by Bondy and Murty [1976] and Grünbaum [2009].

We consider only simple and undirected graphs. A graph will be denoted by
G = (V (G), E(G)), as is customary, where V (G) is the set of vertices of the graph
and E(G) is the set of edges of the graph. We think of E(G) as an irreflexive
symmetric relation on V (G). Two vertices of a graph are said to be adjacent if they
are connected by an edge. An independent set of vertices is one in which no two
vertices in the set are adjacent. If an independent set, M , of a graph G is not a proper
subset of any other independent set of G, then M is a maximal independent set of G.

Definition 1. Let G be a graph and F a field.

(1) A function f : V (G)→ F is said to be a weighting of G. If the sum of all
weights is constant for all maximal independent sets of G, then the weighting
is a well-covered weighting of G.

MSC2010: primary 05B30; secondary 51E05, 51E30.
Keywords: Levi graph, maximal independent sets, configurations.
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(2) The F-vector space consisting of all well-covered weightings of G is called
the well-covered space of G (relative to F).

(3) The dimension of this vector space is called the well-covered dimension of G,
denoted wcdim(G, F).

Remark 1. For some graphs, the characteristic of the field F makes a difference
when calculating the well-covered dimension (see [Birnbaum et al. 2014] and
[Brown and Nowakowski 2005]). If char(F) does not cause a change in the well-
covered dimension, then the well-covered dimension is denoted as wcdim(G).

In order to calculate the well-covered dimension of a graph, G, one would
generally need to find all possible maximal independent sets of G. However,
finding all maximal independent sets is not always an easy task, as this is a known
NP-complete problem.

Despite the NP-complete nature of this problem, let us assume that we have
found all possible maximal independent sets of G. We will denote these maximal
independent sets as Mi for i = 0, 1, . . . , k− 1. The well-covered weightings of G
are determined by solving a system of linear equations that arise from considering
all equations of the form M0=Mi for i = 1, . . . , k−1. We replace this system with
the equivalent homogeneous one via standard operations and create an associated
matrix AG . Observe that the dimension of the nullspace of AG is equal to the
dimension of the well-covered space of G. Thus,

wcdim(G, F)= |V (G)| − rank(AG).

We now move onto another component of our work: configurations.

Definition 2. A (point-line) configuration is a triple (P,L, I ), where P is set of
points, L is a set of lines, and I is an incidence relation between P and L, that has
the following properties:

(1) Any two points are incident with at most one line.

(2) Any two lines are incident with at most one point.

Next, there is some notation for configurations that needs to be set, as well as
specific parameters that need to be established for the main result of this work.

Definition 3. We define a (vr , bk)-configuration as a configuration such that

(1) |P| = v, and v ≥ 4.

(2) |L| = b, and b ≥ 4.

(3) There are exactly k points incident with each line, and k ≥ 2.

(4) There are exactly r lines incident with each point, and r ≥ 2.

When v = b and r = k, the configuration will be denoted by (vr ).
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Figure 1. (134)= PG(2, 3) and Levi(134).

Example 1. Several well-known geometric structures fall into the category of
(vr , bk)-configurations. For instance:

(1) A projective plane of order q is a (q2
+ q + 1(q+1))-configuration, where q is

the power of a prime. See Figure 1 for a representation of PG(2, 3)= (134).

(2) The Pappus configuration is a (93)-configuration, and the Desargues configu-
ration is a (103)-configuration.

(3) PG(n, q) is a(
qn+1
− 1

q − 1 (q+1)
,
(qn+1

− 1)(qn
− 1)

(q2− 1)(q − 1) (q2+q+1)

)
-configuration,

where q is the power of a prime.

(4) A generalized quadrangle G(s, t) is a ((1+s)(st+1)(1+s), (1+t)(st+1)(1+t))-
configuration.

The reader is referred to the book by Batten [1997] for more information about
these important geometric objects.

Finally, we define Levi graphs, which will connect configurations and graphs.

Definition 4. The Levi graph of a (vr , bk)-configuration (P,L, I ) is the bipartite
graph G with V (G)= P ∪L and E(G)= I. That is, p ∈ P is adjacent to ` ∈ L if
and only if pI `. We will denote this graph Levi(vr ,bk).
Note that P and L are independent sets — the partite sets — in G.

Our main result, which will be proven in the following section, combines all of
these objects as follows:

Theorem 1. If r is a positive integer greater than 2, then wcdim(Levi(vr ,bk))= 0.

We would like to remark that Theorem 1 says is that almost all Levi graphs of
(vr , bk)-configurations are anti-well-covered.
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Figure 2. A maximal independent set MP in Levi(134).

2. The well-covered dimension of Levi(vr ,bk)

We will prove Theorem 1 by first proving a technical lemma that introduces a family
of maximal independent sets that will prove to be useful later on.

Lemma 1. A Levi graph of a configuration (vr , bk), where r > 2, has at least
v+ b+ 2 maximal independent sets.

Proof. Let P be a fixed point in (vr , bk). We consider the set, MP , of vertices of
Levi(vr ,bk) given by P and all the lines not incident to P . This is an independent set
of Levi(vr ,bk) because there is no incidence between vertices in the set. Moreover,
note that if we included another point-vertex to MP , then that vertex would be
adjacent to one of the line-vertices in MP (because of condition (2) in Definition 2,
and the fact that r > 2). Also, if another line-vertex were to be added to MP ,
then this line would have to be incident with P . It follows that MP is a maximal
independent set of Levi(vr ,bk). See Figure 2 for an example.

Repeating this construction for all v points in (vr , bk), we get v distinct maximal
independent sets of Levi(vr ,bk).

We will now construct another b distinct maximal independent sets of Levi(vr ,bk).
We start by fixing a line ` in (vr , bk) and then any two distinct points P1, P2 ∈ `

(recall that k ≥ 2). We consider the set, MP1,P2 of vertices of Levi(vr ,bk) given by
P1, P2 and all the lines not incident to either of these points. Note that this forms
an independent set since adjacency in Levi(vr ,bk) only occurs if incidence occurs
in (vr , bk). If we try to add in another vertex-point to MP1,P2 , since r > 2, this
point will be incident to one of the lines not through P1 or P2 and will therefore be
adjacent to the vertex-lines in MP1,P2 . If we try to add another vertex-line to MP1,P2 ,
then this line will be incident to one or both of P1 and P2. Therefore, MP1,P2 is a
maximal independent set of Levi(vr ,bk). See Figure 3 for an example.

Repeating this construction for all b lines in (vr , bk) (it does not matter what
pair of points one picks on any given line), we get b distinct maximal independent
sets of Levi(vr ,bk).



ON THE LEVI GRAPH OF POINT-LINE CONFIGURATIONS 897

Figure 3. A maximal independent set MP1,P2 in Levi(134).

Finally, note that the set of all point-vertices in Levi(vr ,bk) is a maximal inde-
pendent set and the set of all line-vertices in Levi(vr ,bk) is as well. Hence, we have
constructed v+ b+ 2 distinct maximal independent sets in Levi(vr ,bk). �

Next, we proceed to prove our main result.

Proof of Theorem 1. We denote by F the field of scalars of the well-covered space
of G = Levi(vr ,bk), where r > 2. Let AG be the associated matrix of G, and note
that AG has v+b columns. In order to prove that AG has v+b linearly independent
rows we will consider the v+ b+ 2 maximal independent sets in Lemma 1.

We create the first v rows of AG by equating the weight of each of the maximal
independent sets MP to the weight of the maximal independent set consisting of all
the lines of G. After subtracting, we obtain v equations of the form

f (P)− f (`1)− f (`2)− · · ·− f (`r )= 0, (1)

where each `i is incident with P . It follows that, after organizing the columns of
AG by putting point-vertices first and then line-vertices, the “first” v rows of AG are[

Iv −C
]
,

where C is the incidence matrix of Levi(vr ,bk).
In order to obtain the next b rows of AG , we will consider maximal independent

sets of the form MP,Q . For any given line ` of (vr , bk), we choose (any) two
points on it. We will denote these two points as P1 and P2. We then consider the
maximal independent set MP1,P2 and equate its weight to the weight of the maximal
independent set MP1 . After subtracting, we obtain an equation of the form

f (P2)− f (`1)− f (`2)− · · ·− f (`r )+ f (`)= 0, (2)

where each `i is incident with P2.
Note that subtracting (1) (with P = P2) from (2) yields f (`)= 0. Since ` was

arbitrary, we get f (`)= 0 for every line in (vr , bk). It follows that since subtracting
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equations is just a different way to describe row operations in AG , we get that the
“first” v+ b rows of AG (after a few row operations) are[

Iv −C
0 Ib

]
.

Note that addition and subtraction were the only two (row) operations needed to
obtain the matrix above. Hence, the first v+b rows of AG do not change depending
on the characteristic of F .

Since the determinant of the matrix above is nonzero, the rank of AG is maximal,
and thus wcdim(Levi(vr ,bk))= 0. �

3. Possible generalizations

In this section, we study possible generalizations of Theorem 1. This will be done
by providing a few results and by introducing objects to which this theorem could be
extended. We begin by proving that Theorem 1 cannot be extended to configurations
having exactly two lines being incident with every point. This will be done by an
example that considers (v2)-configurations.

We first notice that a (v2)-configuration is a disjoint union of polygons/cycles.
This is convenient because disjoint unions of graphs behave well with respect to the
well-covered dimension. In fact, Lemma 5 in [Brown and Nowakowski 2005] says

wcdim(G ∪ H)= wcdim(G)+wcdim(H),

where ∪ stands for disjoint union.
Since we know that LeviCn = C2n , we get the following lemma.

Lemma 2. Let C be a (v2)-configuration. Then,

C =
t⋃

i=1

Cni ,

where ni > 2, for all 1≤ i ≤ t . Moreover,

wcdim(LeviC)=
t∑

i=1

wcdim(C2ni ).

Finally, we notice that Theorem 5 in [Birnbaum et al. 2014] implies

wcdim(C2n)=

{
2 if n = 3,
0 if n ≥ 4.

Next is an immediate corollary of that same theorem, together with our Lemma 2.
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Corollary 1. The well-covered dimension of LeviC is even for all (v2)-configura-
tions C. Moreover, for every n ∈ N, there is a (v2)-configuration, Cn , such that

wcdim(LeviCn )= 2n.

In particular, the sequence {wcdim(LeviCn )}
∞

n=1 is unbounded.

We conclude that Theorem 1 cannot be expanded to the case r = 2. However, it
is still an open problem to find the well-covered dimension of all Levi graphs of
(v2, bk)-configurations.

Of course, the study of the well-covered dimension of Levi graphs of configura-
tions not of the form (vr , bk) is also an interesting open problem.

Block designs are another family of objects that could be studied to attempt a
generalization of Theorem 1. These objects can be much less “geometric” than
(vr , bk)-configurations, given that they are obtained after relaxing items (3) and (4)
in Definition 2. In order to be more precise, we provide the following definition.

Definition 5. Let λ, t ≥ 1. A t-(v, k, λ)-design (or t-design), is an incidence
structure of points and blocks with the following properties:

(1) There are v points.

(2) Each block is incident with k points.

(3) Any t points are incident with λ common blocks.

It is easy to see that a 1-(v, k, λ)-design is a (vλ, bk)-configuration, where
b = vλ/k. Moreover, a 2-(v, k, 1)-design is a configuration in which every pair of
points are “collinear”. For t > 1 and λ > 1, the obvious definition of the Levi graph
of a t-design would yield a multigraph. This apparent setback is not so much of a
problem since having one edge or multiple edges between two vertices would mean
the same thing when looking for maximal independent sets. We claim that the ideas
used to prove Theorem 1 can be generalized to be applicable to block designs.

Finally, in this work, we studied the well-covered space of the Levi graph of
a (vr , bk)-configuration. We propose, as an interesting open problem, the study
of configurations via understanding the well-covered spaces of their collinearity
graphs (in which points in a configuration are defined as vertices, and adjacency
occurs if and only if the points are collinear). The third author is currently working
on a particular case of this problem: generalized quadrangles.
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