On the cardinality of infinite symmetric groups

Matt Getzen
On the cardinality of infinite symmetric groups

Matt Getzen
(Communicated by Kenneth S. Berenhaut)

A new proof is given that the symmetric group of any set X with three or more elements, finite or infinite, has cardinality strictly greater than that of X. Use of the axiom of choice is avoided throughout.

John Dawson and Paul Howard [1976] proved that the symmetric group of any set X with three or more elements, finite or infinite, has cardinality strictly greater than that of X. Significantly, their proof does not rely upon the axiom of choice. However, it does rely upon Cantor's theorem that the power set of any set X, finite or infinite, has cardinality strictly greater than that of X. We give a new proof of Dawson and Howard's result that relies upon neither the axiom of choice nor Cantor's theorem.

Recall that $\text{Sym}(X)$ is the symmetric group of X, that is the set of all bijections between a set X and itself under function composition. More specifically, we call each bijection between a set and itself a permutation, each element that is mapped to itself by a permutation a fixed point, each pair of elements that are mapped to one another by a permutation a transposition, and each permutation that is its own inverse an involution.

The following results can easily be obtained and are listed without proof: (i) every fixed point in a permutation is also a fixed point in that permutation’s inverse; (ii) every transposition in a permutation is also a transposition in that permutation’s inverse; (iii) every permutation is an involution if and only if it is made up entirely of fixed points and transpositions; (iv) for all sets X, there exists an injection from X into $\text{Sym}(X)$; and (v) in the case of all sets X with three or more elements, $\text{Sym}(X)$ contains at least three involutions.

Theorem. For any set X with three or more elements, finite or infinite, $\text{Sym}(X)$ has cardinality strictly greater than that of X.

Proof. We proceed by contradiction. Assume that there does exist a bijection F from X to $\text{Sym}(X)$, and construct the permutation \star in $\text{Sym}(X)$ as follows:

MSC2010: primary 03E99; secondary 20B30, 03E25.

Keywords: set theory, infinite symmetric groups, axiom of choice.
Let a, b, and c be three elements of X such that $\mathcal{F}(a)$, $\mathcal{F}(b)$, and $\mathcal{F}(c)$ are all involutions in $\text{Sym}(X)$ with

$$
\star(a) = b, \\
\star(b) = c, \\
\star(c) = a.
$$

For every other element i of X such that $\mathcal{F}(i)$ is an involution in $\text{Sym}(X)$, but i is not equal to a, b, or c, we have

$$
\star(i) = i.
$$

For each pair of permutations σ and μ in $\text{Sym}(X)$ that are one another’s inverses, and for each pair of elements s and m of X such that $\mathcal{F}(s) = \sigma$ and $\mathcal{F}(m) = \mu$, if σ transposes s and m then we have $\star(s) = s$ and $\star(m) = m$, but if σ does not transpose s and m then we have $\star(s) = m$ and $\star(m) = s$. In other words,

$$
\star(s) = \begin{cases}
 s & \text{if } \sigma(s) = m \text{ and } \sigma(m) = s, \\
 m & \text{if } \sigma(s) \neq m \text{ or } \sigma(m) \neq s,
\end{cases}
$$

$$
\star(m) = \begin{cases}
 m & \text{if } \sigma(s) = m \text{ and } \sigma(m) = s, \\
 s & \text{if } \sigma(s) \neq m \text{ or } \sigma(m) \neq s.
\end{cases}
$$

Note that \star is a permutation of X and therefore an element in $\text{Sym}(X)$. Note also that \star is not an involution and therefore must have a distinct inverse, call it \star^{-1}. Thus, some element of X must be the preimage of \star under \mathcal{F}. Let n denote just such an element of X. Additionally, some element of X other than n must be the preimage of \star^{-1} under \mathcal{F}. Let w denote just such an element of X. That is, $\mathcal{F}(n) = \star$ and $\mathcal{F}(w) = \star^{-1}$. As \star and \star^{-1} are of the same general form as σ and μ above, it now follows that

$$
\star(n) = \begin{cases}
 n & \text{if } \star(n) = w \text{ and } \star(w) = n, \\
 w & \text{if } \star(n) \neq w \text{ or } \star(w) \neq n,
\end{cases}
$$

$$
\star(w) = \begin{cases}
 w & \text{if } \star(n) = w \text{ and } \star(w) = n, \\
 n & \text{if } \star(n) \neq w \text{ or } \star(w) \neq n.
\end{cases}
$$

In other words, assuming that the bijection \mathcal{F} does in fact exist, n and w will be transposed with one another in \star if and only if n and w are not transposed with one another in \star, a contradiction! Therefore no such bijection exists between X and $\text{Sym}(X)$. Conversely, as we already know that there does exist an injection from X into $\text{Sym}(X)$, we conclude that $\text{Sym}(X)$ must have cardinality strictly greater than that of X. □
Through showing that the power set of any set X, finite or infinite, has cardinality strictly greater than that of X, Georg Cantor revolutionized mathematics and inspired the field of set theory. It is interesting to wonder how different the world might have been if mathematicians’ first forays into the higher realms of the infinite had been inspired not by power sets, but by symmetric groups.

Acknowledgements

The author would like to thank John Dawson and Paul Howard for commenting on an earlier draft of this paper, and Rommy Marquez, Xizhong Zheng, Louis Friedler, Ned Wolff, and especially Carlos Ortiz for all their help and encouragement.

References

Received: 2014-01-07 Accepted: 2014-07-12

mgetzen@arcadia.edu
Department of Mathematics & Computer Science,
Arcadia University, 450 South Easton Road,
Glenside, PA 19038, United States
A simplification of grid equivalence
Nancy Scherich

A permutation test for three-dimensional rotation data
Daniel Bero and Melissa Bingham

Power values of the product of the Euler function and the sum of divisors function
Luis Elesban Santos Cruz and Florian Luca

On the cardinality of infinite symmetric groups
Matt Getzen

Adjacency matrices of zero-divisor graphs of integers modulo n
Matthew Young

Expected maximum vertex valence in pairs of polygonal triangulations
Timothy Chu and Sean Cleary

Generalizations of Pappus’ centroid theorem via Stokes’ theorem
Cole Adams, Stephen Lovett and Matthew McMillan

A numerical investigation of level sets of extremal Sobolev functions
Stefan Juhnke and Jesse Ratzkin

Coalitions and cliques in the school choice problem
Sinan Aksoy, Adam Azzam, Chaya COPPERSMITH, Julie Glass, Gizem Karaali, Xueying Zhao and Xinjing Zhu

The chromatic polynomials of signed Petersen graphs
Matthias Beck, Erika Meza, Bryan Nevarez, Alana SHINE and Michael Young

Domino tilings of Aztec diamonds, Baxter permutations, and snow leopard permutations
Benjamin Caffrey, Eric S. Egge, Gregory Michel, Kailee Rubin and Jonathan Ver Steegh

The Weibull distribution and Benford’s law
Victoria Cuff, Allison Lewis and Steven J. Miller

Differentiation properties of the perimeter-to-area ratio for finitely many overlapped unit squares
Paul D. Humke, Cameron Marcott, Bjorn Mellem and Cole Stiegler

On the Levi graph of point-line configurations
Jessica Hauschild, Jazmin Ortiz and Oscar Vega