
inv lve
a journal of mathematics

msp

Generalizations of Pappus’ centroid theorem
via Stokes’ theorem

Cole Adams, Stephen Lovett and Matthew McMillan

2015 vol. 8, no. 5



msp
INVOLVE 8:5 (2015)

dx.doi.org/10.2140/involve.2015.8.771

Generalizations of Pappus’ centroid theorem
via Stokes’ theorem

Cole Adams, Stephen Lovett and Matthew McMillan

(Communicated by Kenneth S. Berenhaut)

This paper provides a novel proof of a generalization of Pappus’ centroid theorem
on n-dimensional tubes using Stokes’ theorem on manifolds.

1. Introduction

The (second) Pappus centroid theorem or the Pappus–Guldin theorem states that
the volume of a solid of revolution generated by rotating a plane region R with
piecewise-smooth boundary about an axis L is 2�r Area.R/, where r is the distance
from the centroid of R to L. This result generalizes considerably to the following
main theorem.

Theorem 1.1 (main theorem). Let C be a simple, regular, smooth curve in Rn. Let
R be a region in Rn�1 whose boundary is an embedding of the .n� 2/-dimensional
sphere Sn�2. Let W be a region in Rn whose boundary is a generalized tube
around C such that the cross-section normal to C of W at each point P of C is the
region R with centroid at P . Assuming the cross-section R rotates smoothly as it

“travels” along C , then

Voln.W/D length.C /Voln�1.R/:

The Pappus centroid theorem follows from this main theorem by taking nD 3, C

to be a circle in R3, and R to remain fixed with respect to the principal normal to C in
the normal plane. This theorem recently was proved by Gray, Miquel, and Domingo-
Juan in [Domingo-Juan and Miquel 2004] and [Gray and Miquel 2000] using parallel
transport. However, Goodman and Goodman [1969] proved this theorem in a special
case for R3 using elementary methods related to Stokes’ theorem. This article proves
the main theorem in full generality using Stokes’ theorem on manifolds. In this
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regard, we can consider the proof elementary compared to those in [Domingo-Juan
and Miquel 2004] and [Gray and Miquel 2000].

Before proving the main theorem in full generality, we sketch the proof of it
in R3 found in [Goodman and Goodman 1969], leaving the reader to consult that
work for details. The description of the generalized tube and the method involving
the divergence theorem motivate the situation for arbitrary n.

2. Generalized tubes in dimension 3

Definition 2.1. Let C be a simple, regular, smooth space curve and let R be a
compact planar region with one boundary component @R, a piecewise smooth
simple closed curve. Select a marked point P in R. C has a normal plane at each
point. Let W be a region in R3 such that the intersection of W with the normal
plane to C at any point is isometric to the region R, with the corresponding marked
point P lying on the curve C . We assume R rotates smoothly in the normal plane
to C as it travels along C . Such a region W is called a generalized tube along C

with cross-section R and center P .

This definition allows for rotational freedom of R around the marked point P

in the normal planes to C . However, this rotational varies smoothly. We may
also describe the generalized tube as a fiber-bundle over C with fiber R, that is a
subbundle of the normal bundle over C .

Figure 1 depicts two generalized tubes around a portion of a helix. More precisely,
the figure depicts the tube boundary excluding the “caps”, or cross-sections at the
end points of C . The planar curve shows its generating region R where the marked
point of R is the origin.

Let S be the boundary @W of a generalized tube excluding the caps. (If C

is a closed curve, then @W has no caps.) Suppose that ˛ W Œ0; `� ! R3 gives
a parametrization by arclength of C . Also suppose that Ě W Œ0; c� ! R2 is a
parametrization of @R placing the marked point P at the origin. We write Ě.u/D
.x.u/;y.u// for the coordinate functions. A parametrization for S is

EX .s;u/D Ę.s/C
�
cos.�.s//x.u/� sin.�.s//y.u/

�
EP .s/

C
�
sin.�.s//x.u/C cos.�.s//y.u/

�
EB.s/ (1)

for some function �.s/, where EP .s/ and EB.s/ are respectively the principal normal
and binormal vector functions to Ę.s/.

Recall that . ET .s/; EP .s/; EB.s//, where ET , EP , and EB are the usual tangent, princi-
pal normal, and binormal vectors to Ę.s/, is called the Frenet frame to Ę.s/. The
function �.s/ determines the rotation of the region R around the origin with respect
to the Frenet frame. The stipulation that R rotates smoothly as it moves along C

implies that �.s/ is a smooth function.
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Figure 1. A generalized tube with its generating region.

Figure 1, middle, depicts a generalized tube where the x-axis in the depiction of
R always lies along the principal normal vector of Ę.s/, and Figure 1, right, depicts
a generalized tube with the same cross-section region but having some rotation with
respect to the basis . EP ; EB/ in the normal plane. For brevity, we write

EX D Ę C .x cos � �y sin �/ EP C .x sin � Cy cos �/ EB;

where functional dependence is understood from (1).

Theorem 2.2 [Goodman and Goodman 1969, Corollary 2]. The volume of a gener-
alized tube as described in Definition 2.1 is V D length.C /Area.R/.

The Goodmans’ method to calculate the volume uses the fact that the position
vector field Er.x;y; z/D .x;y; z/ has divergence equal to 3 everywhere. So, using
the notation defined above, the volume of the generalized tube is

Vol.W/D
1

3

•
W

3 dV D
1

3

•
W
r � Er dV D

1

3

“
@W
Er � d EA;

where d EA is the outward pointing surface element. Note that @W consists of the
tube’s outward surface S, parametrized by EX , and the end caps (if C is not a closed
curve). Over S, d EA is given by d EAD . EXu �

EXs/ du ds with .u; v/ 2 Œ0; c�� Œ0; `�,
while on the end caps, d EA D � ET .0/ dA when s D 0 and d EA D ET .`/ dA when
s D `. The caps, like any cross-section at s, are parametrized by

EYs.p; q/D Ę.s/Cp EP .s/C q EB.s/ for .p; q/ 2Rs;

where Rs is the region R rotated about the origin (the marked point P ) by the
angle �.s/. Thus, since ET .s/ is perpendicular to both EP .s/ and EB.s/, we have
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3 Vol.W/

D

`Z
sD0

cZ
uD0

EX � . EXu�
EXs/ du dsC

“
R`

Ę.`/ � ET .`/ dp dqC

“
R0

�Ę.0/ � ET .0/ dp dq

D

`Z
sD0

cZ
uD0

EX � . EXu �
EXs/ du dsCArea.R/

�
Ę.`/ � ET .`/� Ę.0/ � ET .0/

�
: (2)

The problem of calculating the volume of W reduces to calculating the double
integral in (2).

Recall that vectors of the Frenet frame (parametrized by arclength) differentiate
according to

ET 0 D � EP ;

EP 0 D �� ET C� EB;

EB0 D �� EP ;

(3)

where �.s/ and �.s/ are the curvature and torsion functions of the space curve Ę.s/.
Then the tangent vectors to EX are given (after simplification) by

EXu D .x
0 cos � �y0 sin �/ EP C .x0 sin � Cy0 cos �/ EB;

EXs D .1� �x cos � C �y sin �/ ET � .� 0C �/.x sin � Cy cos �/ EP

C .� 0C �/.x cos � �y sin �/ EB:

So

EXu�
EXs D .�

0
C�/.xx0Cyy0/ ETC.1��x cos �C�y sin �/.x0 sin �Cy0 cos �/ EP

�.1��x cos �C�y sin �/.x0 cos ��y0 sin �/ EB:

The dot product EX � . EXu �
EXs/ involves many terms. However, all of the additive

terms involved in the integrals are multiplicatively separable, which, by the usual
corollary to Fubini’s theorem, allows us to separate the double integral. Many of
the integrals involving u vanish or evaluate to a simple constant, namely the area of
the cross-section. Consider the following integrals. By substitution,Z c

uD0

xx0 duD x2
ˇ̌c
0
D 0

because .x.u/;y.u// with u 2 Œ0; c� parametrizes a closed curve @R. By similar
reasoning, the following integrals are all 0:Z c

uD0

x0 duD 0;

Z c

uD0

y0 duD 0;

Z c

uD0

xx0 duD 0;

Z c

uD0

yy0 duD 0: (4)
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By Green’s theorem for the area of the interior of a simple closed piecewise smooth
curve, Z c

uD0

xy0 duD�

Z c

uD0

yx0 duD

“
R

1 dAD Area.R/: (5)

Also by Green’s theorem,Z c

uD0

1
2
x2y0 duD

Z c

uD0

�xyx0 duD

“
R

x dAD 0 (6)

because this integral is the y-moment of Rs and by hypothesis, the centroid of Rs

is .0; 0/ for all s. By the same reasoning but for the x-moment, we also haveZ c

uD0

�
1
2
y2x0 duD

Z c

uD0

xyy0 duD

“
R

y dAD 0: (7)

Upon applying these integrals, only a few terms remain in (2). Setting A D

Area.R/, we get

3 Vol.W/D

Z `

sD0

.�Ę � ET 0AC 2A/ dsCA
�
Ę.`/ � ET .`/� Ę.0/ � ET .0/

�
:

Using integration by parts on the dot product, we obtain

3 Vol.W/

D�A. Ę � ET /
ˇ̌`
0
CA

Z `

sD0

Ę
0
� ET dsC2A`CA

�
Ę.`/� ET .`/�Ę.0/� ET .0/

�
D�A

�
Ę.`/� ET .`/�Ę.0/� ET .0/

�
CA

Z `

sD0

ET � ET dsC2A`CA
�
Ę.`/� ET .`/�Ę.0/� ET .0/

�
DA`C2A`D 3A`:

We conclude that Vol.W/D Area.R/ length.C /.
Theorem 2.2 establishes the main theorem of the paper for generalized tubes

in R3. In order to prove the main theorem in full generality, we will need to
use differential forms along with Stokes’ theorem on manifolds. However, a key
component to the main theorem is a set of integral formulas for the general case
similar to (4), (5), (6), and (7).

3. Volumes, moments, and zero integrals for solids in Rm

Recall that Stokes’ theorem on manifolds states that if M is an m-dimensional, ori-
ented manifold with boundary @M , and ! is a differential .m�1/-form on M , thenZ

@M

! D

Z
M

d!; (8)
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where @M has the boundary orientation inherited from the orientation on M .

Definition 3.1. We define a solid in Rm as a compact embedded m-dimensional
submanifold of Rm with boundary @M . We assume the pull-back orientation on M .

We define the .m� 1/-form �i in Rm by

�i
D .�1/iC1dy1

^ dy2
^ � � � ^bdyi ^ � � � ^ dym;

where .y1;y2; : : : ;ym/ is a coordinate system on Rm and b denotes removal of
that term.

Lemma 3.2. The m-dimensional volume of a solid M is

Volm.M /D

Z
@M

yi�i

for any i D 1; 2; : : : ;m.

Proof. The differential of yi�i is

d.yi�i/D .�1/iC1dyi
^dy1

^dy2
^� � �^bdyi^� � �^dym

Ddy1
^dy2

^� � �^dym:

This form is precisely the volume form on Rm, and thus on the solid M as well.
Hence, by Stokes’ theorem,Z

@M

yi�i
D

Z
M

dy1
^ dy2

^ � � � ^ dym
D Volm.M /: �

This lemma immediately implies the following corollary:

Corollary 3.3. Let � D 1

m

mP
iD1

yi�i . The m-dimensional volume of M is

Volm.M /D

Z
@M

�:

In this article, if F W M ! N is a differentiable map between differentiable
manifolds, we will denote by ŒdF � the matrix of functions of the differential dF

in reference to given coordinate systems on M and on N . Furthermore, when the
dimension of M is one less than the dimension of N and when coordinate systems
on neighborhoods of M and N are implied, we denote by jdj F j the determinant
of ŒdF � in which the j -th row is removed.

Proposition 3.4. Let M be an m-dimensional solid such that the boundary @M
is the embedding of a continuous map H W Sm�1 ! Rm that is smooth except
on a subset of measure 0 in Sm�1. Suppose also that H induces an orientation
on @M that is compatible with the boundary orientation induced from M . Let �
be the .m� 1/-form as in Corollary 3.3 and let ! be the .m� 1/-form on Sm�1
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given by ! D dx1 ^ dx2 ^ � � � ^ dxm�1 for coordinates .x1;x2; : : : ;xm�1/. The
m-dimensional volume of M is

Volm.M /D

Z
H .Sm�1/

� D

Z
Sm�1

H�� D
1

m

Z
Sm�1

det.H; ŒdH �/!; (9)

where in det.H; ŒdH �/ we write the components of H as a column vector. If H

induces the opposite orientation, the second two integrals change sign.

Proof. The equality

Volm.M /D

Z
H .Sm�1/

�

follows immediately from Corollary 3.3. Let .x1;x2; : : : ;xm�1/ be coordinates
on Sm�1 and .y1;y2; : : : ;ym/ on Rm. Notice that the pullback of � by H is

H�� D
1

m

mX
iD1

H i.�1/iC1dH 1
^ dH 2

^ � � � ^bdH i ^ � � � ^ dH m:

Or, writing in xi coordinates, and using the fact that

dH i
D
@H i

@xj
dxj

(assuming the Einstein summation convention), we find

H�� D
1

m

mX
iD1

H i.�1/iC1

�
@H 1

@xj1
dxj1

�
^

�
@H 2

@xj2
dxj2

�
^ � � �

^

� 3@H i

@xji
dxji

�
^ � � � ^

�
@H m

@xjm
dxjm

�
:

By Theorem C.5.22 in [Lovett 2010], this is equivalent to

H�� D
1

m

mX
iD1

H i.�1/iC1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

@H 1

@x1
@H 1

@x2 : : : @H 1

@xm�1

@H 2

@x1
@H 2

@x2 : : : @H 2

@xm�1

:::
:::

: : :
:::d@H i

@x1

d@H i

@x2 : : :
d@H i

@xm�1

:::
:::

: : :
:::

@H m

@x1
@H m

@x2 : : : @H m

@xm�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

dx1
^ dx2

^ � � � ^ dxm�1:
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Taking the summation and recognizing the Laplace expansion of a determinant
down the first column, we see that

H�� D
1

m
det.H; ŒdH �/ dx1

^ dx2
^ � � � ^ dxm�1:

Then (9) follows. Note that the second integral changes sign if H induces the
opposite orientation on @M , so the third integral changes sign as well. �

Lemma 3.2, Corollary 3.3, and Proposition 3.4 are generalizations to higher
dimensions of Green’s theorem for area. For example, suppose that S is a solid in R3

such that the boundary @S is parametrized by EX .u; v/D .x.u; v/;y.u; v/; z.u; v//
with .u; v/ 2 D such that EXu �

EXv is outward-pointing. Then by Proposition 3.4,
the volume of S is

Vol.S/D 1

3

“
D

ˇ̌̌̌
ˇ
x xu xv

y yu yv

z zu zv

ˇ̌̌̌
ˇ du dv:

Because of the flexibility in Stokes’ theorem, as in Green’s area theorem, this
formula still applies when @S is piecewise smooth. In that case, we interpret the
above integral as a sum of integrals taken over domains D1;D2; : : : ;Dr such that
the parametrizations for the smooth pieces of @S have domains Di . The same
principle applies in (9).

We will encounter other integrals that cancel. We list them here.

Proposition 3.5. Let M be a solid and let .y1;y2; : : : ;ym/ be a coordinate system
on M . Then for i and q in f1; 2; : : : ;mg,Z

@M

yq�i
D ı

q
i Volm.M /;

where ıq
i is the Dirac delta in which ıq

i D 1 if i D q and ıq
i D 0 if i ¤ q.

Proof. The case with i D q is Lemma 3.2. If i ¤ q, then

d.yq�i/D dyq
^ dy1

^ dy2
^ � � � ^bdyi ^ � � � ^ dym

D 0

because one differential is repeated. Then by Stokes’ theorem, we haveZ
@M

yq�i
D

Z
M

d.yq�i/D

Z
M

0D 0: �

Corollary 3.6. Let M , H , and ! be as in Proposition 3.4. ThenZ
Sm�1

.�1/iC1H q
jdiH j! D ı

q
i Volm.M /:

Proof. This follows immediately from the fact that

.�1/iC1H q
jdiH j! DH�.yq�i/: �
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Proposition 3.7. Let M , H , and! be as in Proposition 3.4. Let EaD.a1;a2; : : : ;am/

be a constant vector, listed as a column vector. ThenZ
Sm�1

det.Ea; ŒdH �/! D 0:

Proof. By the reasoning in the proof of (9), we see that

det.Ea; ŒdH �/! D

mX
iD1

.�1/iC1ai dH 1
^ dH 2

^ � � � ^bdH i ^ � � � ^ dH m

DH�
� mX

iD1

.�1/iC1ai dy1
^ dy2

^ � � � ^bdyi ^ � � � ^ dym

�
:

Hence, by a pull-back and then Stokes’ theorem,Z
Sm�1

det.Ea; ŒdH �/D

Z
H .Sm�1/

mX
iD1

.�1/iC1ai dy1
^dy2

^� � �^bdyi^� � �^dym

D

Z
M

d

� mX
iD1

.�1/iC1ai dy1
^dy2

^� � �^bdyi^� � �^dym

�
D

Z
M

0 D 0: �

In the proof of Theorem 2.2, certain integrals vanished by virtue of the cross-
section always having its centroid on the curve C , and the same thing occurs in higher
dimensions. The following proposition establishes the centroid generalizations
needed later:

Proposition 3.8. Let M be an m-dimensional solid as given in Definition 3.1. Let
.y1;y2; : : : ;ym/ be a coordinate system covering M . Let . Ny1; Ny2; : : : ; Nym/ be the
center of mass of M . Then

Z
@M

ypyq�i
D

8<:
0 if p ¤ i and q ¤ i ;

Nyp Volm.M / if p ¤ i and q D i ;

2 Nyi Volm.M / if p D q D i .

Proof. By Stokes’ theorem,Z
@M

ypyq�i
D

Z
M

d.ypyq�i/:

However,

d.ypyq�i/D .yqdyp
Cypdyq/^ �i

D yqdyp
^ �i
Cypdyq

^ �i :
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If neither pD i nor qD i , then dyp^�i D 0 and dyq^�i D 0. If qD i and p¤ i ,
then d.ypyq�i/D yp dy1 ^ dy2 ^ � � � ^ dym andZ

M

yp dy1
^ dy2

^ � � � ^ dym
D Nyp Volm.M /

by definition of the center of mass. Finally, if p D q D i , then d.ypyq�i/ D

2yi dy1 ^ dy2 ^ � � � ^ dym andZ
M

2yi dy1
^ dy2

^ � � � ^ dym
D 2 Nyi Volm.M /: �

4. Generalized tubes in higher dimensions

We are almost ready to prove Theorem 1.1. We must first set up a useful description
of a generalized tube. Let W be a generalized tube with guiding curve C and
cross-section R as described in the statement of the main theorem. A generalized
tube is a fiber-bundle over C with fiber R, that is, a subbundle of the normal bundle
over C . Suppose that C is parametrized by arclength by ˛ W Œ0; `�! Rn. Suppose
that the cross-section R is a solid in Rn�1 whose boundary @R is parametrized by
an orientation-preserving, differentiable map H W Sn�2! Rn�1. We also assume
that R rotates smoothly about the origin in the normal plane as it is transported
along C . For the purpose of the theorem, we also assume that the center of mass of
R is the origin in Rn�1. Define H W Sn�2! Rn by H .Ex/D .0;H.Ex//.

The boundary @W of the solid generalized tube consists of the caps at ˛.0/ and
˛.`/ as well as the side surface S, which we can parametrize by

˛.t/CM.t/H .Ex/ for .t; Ex/ 2 Œ0; `��Sn�2;

where M W Œ0; `�! SO.n/ is a differentiable curve of special orthogonal (rotation)
matrices in Rn such that for all t ,

M.t/

0BBB@
1

0
:::

0

1CCCADM.t/Ee1 D ˛
0.t/: (10)

Note that since M.t/ is a rotation matrix and the unit vector Ee1 in the y1 direction
is perpendicular to f.0;y2; : : : ;yn/ j yi 2 Rg, then for all t 2 Œ0; `�, the boundary
of the cross-section M.t/H .Ex/, for Ex 2 Sn�2, is in a plane perpendicular to the
tangent vector ˛0.t/. For simplicity later, we write F.t; Ex/DM.t/H .Ex/.

Recall that since M.t/ is a special orthogonal matrix for all t , then M.t/�1 D

M.t/>, det M.t/D 1, and M 0.t/DM.t/A.t/, where A.t/ is some antisymmetric
matrix for all t . Using the rotation matrix M.t/ provides the following useful fact.



GENERALIZATIONS OF PAPPUS’ CENTROID THEOREM VIA STOKES’ THEOREM 781

Ev1 Ev2

Ev3

Figure 2. Reversed orientation on a cylinder.

Lemma 4.1. The first component of the vector M.t/�1˛.t/ is equal to the dot
product ˛.t/ �˛0.t/.

Proof. By (10), the dot product ˛.t/ �˛0.t/ is

˛.t/ �˛0.t/D ˛.t/>M.t/Ee1:

Taking the transpose of the matrix expression on the right, and since the whole
expression is just a real number, we get

˛.t/ �˛0.t/D Ee>1 M.t/>˛.t/D .1 0 � � � 0/M.t/�1˛.t/;

and the lemma follows. �
Proof of Theorem 1.1. Case 1: Assume that the guiding curve C is not closed.
Let � be the .n� 1/-form � D 1

n

Pn
iD1 yi�i . By Corollary 3.3, the volume of the

generalized tube is

Voln.W/D

Z
@W

� D

Z
S
� C

Z
captD0

� C

Z
captD`

�: (11)

We parametrize S by ˛CF but we note that this parametrization is orientation-
reversing. This can be seen by applying our setup to the case of a circular cylinder
in R3 and generalizing to higher dimensions. In Figure 2, Ev1 is ˛0.t/, Ev2 is a tangent
vector to the cross-section boundary in positive orientation, and Ev3 is the outward
pointing normal vector to the solid M . These three vectors form a left-handed
system so the orientation induced from our parametrization is reversed from the
boundary orientation on @M induced by the standard orientation of Rn on M .

We can parametrize the caps by G0 and G` where, for each t 2 Œ0; `�, we define
Gt WR! Rn with

Gt .Ez /D ˛.t/CM.t/

�
0

Ez

�
:

Now G0 induces an orientation that is opposite the boundary orientation on @W ,
while Gt gives a compatible orientation. Hence, (11) becomes

Voln.W/D�

Z
I�Sn�2

.˛CF /�� �

Z
R

G�0�C

Z
R

G�` �: (12)
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We calculate the integrals on the caps first. By the same reasoning as in
Proposition 3.4, for each t 2 Œ0; `�,

G�t � D
1

n
det.Gt ; Œd.Gt /�/ dz1

^ dz2
^ � � � ^ dzn�1:

Now

det.Gt ; Œd.Gt /�/D det
�
˛.t/CM.t/

�
0

Ez

�
;M.t/

�
E0>

In�1

��
D det.M.t// det

�
M.t/�1˛.t/C

�
0

Ez

�
;

�
E0>

In�1

��
D det

�
M.t/�1˛.t/;

�
0

Ez

�
;

�
E0>

In�1

��
D ˛.t/ �˛0.t/;

where E0> D .0; : : : ; 0/, In�1 is the .n� 1/� .n� 1/ identity matrix and the last
equality holds by Lemma 4.1. Consequently,Z

R
G�` � �

Z
R

G�0� D
1

n
Voln�1.R/

�
˛.`/ �˛0.`/�˛.0/ �˛0.0/

�
: (13)

Now we must calculate
R

I�Sn�2.˛CF /��. Applying Proposition 3.4, over a
coordinate patch of Sn�2 with coordinate system .x1;x2; : : : ;xn�2/, we have

.˛CF /��D
1

n
det
�
˛.t/CF.Ex/; ˛0.t/CFt .t; Ex/;M.t/ŒdH �

�
dt^dx1

^� � �^dxn�2;

where here Ft D @F=@t . This can be broken down by multilinearity of the determi-
nant as follows:

.˛CF /��D
1

n

�
det
�
˛.t/;˛0.t/;M.t/ŒdH �

�
Cdet

�
F.Ex/;Ft .t; Ex/;M.t/ŒdH �

�
Cdet

�
F.Ex/;˛0.t/;M.t/ŒdH �

�
Cdet

�
˛.t/;Ft .t; Ex/;M.t/ŒdH �

��
dt^dx1

^� � �^dxn�2: (14)

We now consider the integration over Œ0; `��Sn�2 of the four forms in (14).
For the first determinant in (14),

det
�
˛.t/; ˛0.t/;M.t/ŒdH �

�
D det

�
˛.t/;M.t/Ee1;M.t/ŒdH �

�
D det.M.t// det

�
M.t/�1˛.t/; Ee1; ŒdH �

�
D� det

�
Ee1;M.t/�1˛.t/; ŒdH �

�
:
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Doing Laplace expansion down the first column, we obtain an integral of the form
in Proposition 3.7, with a vector Ea that depends on t . Hence, by Proposition 3.7,

Z
Sn�2

Z `

tD0

det
�
˛.t/; ˛0.t/;M.t/ŒdH �

�
dt ^ dx1

^ � � � ^ dxn�2

D .�1/n�2

Z `

tD0

Z
Sn�2

det
�
˛.t/; ˛0.t/;M.t/ŒdH �

�
dx1
^ � � � ^ dxn�2

^ dt D 0:

For the second determinant in (14),

det
�
F.t; Ex/;Ft .t; Ex/;M.t/ŒdH �

�
D det

�
M.t/H .Ex/;M.t/A.t/H .Ex/;M.t/ŒdH �

�
D det.M.t// det

�
H .Ex/;A.t/H .Ex/; ŒdH �

�
D det

�
H .Ex/;A.t/H .Ex/; ŒdH �

�
:

Performing a Laplace expansion of the determinant using the first two columns of
this last determinant produces terms similar to the forms described in Proposition 3.8.
Since the centroid of R is assumed to be at the origin, then for all t , integrating all
these terms over Sn�2 gives 0.

For the third determinant in (14), we have

det
�
F.t; Ex/; ˛0.t/;M.t/ŒdH �

�
D det

�
M.t/H .Ex/;M.t/Ee1;M.t/ŒdH �

�
D det.M.t// det

�
H .Ex/; Ee1; ŒdH �

�
D� det

�
Ee1;H .Ex/; ŒdH �

�
D� det.H.Ex/; ŒdH �/;

where the last equality follows by Laplace expansion of the determinant on the first
row .1 0 � � � 0/. By Proposition 3.4,

Z
Sn�2

Z `

tD0

det
�
F.Ex/; ˛0.t/; Œd.F /�

�
dt ^ dx1

^ � � � ^ dxn�2

D�`

Z
Sn�2

det
�
H.Ex/; Œd.H /�

�
dx1
^ � � � ^ dxn�2

D�.n� 1/`Voln�1.R/:

As with previous determinants, the fourth determinant becomes

det
�
˛.t/;Ft .t; Ex/;M.t/ŒdH �

�
D det

�
M.t/�1˛.t/;A.t/H .Ex/; ŒdH �

�
:
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Since there are zeros in the first rows of H and d.H /, and because M�1 DM>,
another Laplace expansion gives

det
�
M�1˛;AH ; ŒdH �

�
D ˛iM

i
1

nX
jD2

.�1/j Aj
qH q
jdj H j �˛i

nX
jD2

.�1/j M i
j A1

qH q
jdj H j

D

nX
jD2

˛iH
q
jdj H j.�1/j .M i

1Aj
q �M i

j A1
q/;

where we use the Einstein summation convention over the repeated indices appearing
in superscript and subscript, namely i and q. By Proposition 3.5, after integration
on Sn�2, all terms will reduce to 0 except those for which q D j , which will give
the volume of the cross-section, Voln�1.R/. Set I D Œ0; `�. So,Z

Sn�2

Z
I

det
�
M�1˛;AH ; Œd.H /�

�
dt^dx1

^� � �^dxn�2

D

Z
Sn�2

Z
I

nX
jD2

˛iH
q
jdj H j.�1/j .M i

1Aj
q�M i

j A1
q/ dt^dx1

^� � �^dxn�2

D

Z
Sn�2

Z
I

nX
jD2

˛iH
j
jdj H j.�1/j .M i

1A
j
j�M i

j A1
j / dt^dx1

^� � �^dxn�2

D

Z
Sn�2

Z
I

nX
jD2

˛iH
j�1
jdj H j.�1/j M i

j A
j
1

dt^dx1
^� � �^dxn�2

D

Z
I

˛i

nX
jD2

M i
j A

j
1

dt

Z
Sn�2

.�1/j H j�1
jdj�1H j dx1

^� � �^dxn�2:

But ˛0.t/DM.t/Ee1, so ˛00.t/DM 0.t/Ee1DM.t/A.t/Ee1. Hence M i
j A

j
1

are the com-
ponents of the covariant vector ˛00.t/>. Note that since A.t/ is an antisymmetric
matrix, A1

1
D 0. Thus ˛i

Pn
jD2 M i

j A
j
1
D ˛.t/ �˛00.t/. Hence, we getZ

Sn�2

Z
I

det
�
M�1˛;AH ; Œd.H /�

�
dt ^ dx1

^ � � � ^ dxn�2

D Voln�1.R/
Z

I

˛i˛
00
i dt

D Voln�1.R/
�
˛.t/ �˛0.t/

ˇ̌`
0
�

Z
I

˛0 �˛0 dt

�
D Voln�1.R/

�
˛.t/ �˛0.t/

ˇ̌`
0
� `
�
:
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Now putting into (12) the integrals of the four determinants in (14) and the
integrals for the caps (13), we get

n Voln.W/D .n� 1/Voln�1.R/`�Voln�1.R/
�
˛.t/ �˛0.t/j`0� `

�
CVoln�1.R/

�
˛.t/ �˛0.t/j`0

�
: (15)

Hence
Voln.W/D Voln�1.R/`;

which establishes the main theorem when the guiding curve of the generalized tube
is not closed.

Case 2: If C is a closed curve, then in (12) we do not have integrals for the caps.
Then (15) becomes

n Voln.W/D .n� 1/Voln�1.R/`�Voln�1.R/
�
˛.t/ �˛0.t/

ˇ̌`
0
� `
�
;

and since ˛.0/ �˛0.0/D ˛.`/ �˛0.`/, the result of the main theorem follows for this
case as well. �
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