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This paper examines invariants of the replacement product of two graphs in terms
of the properties of the component graphs. In particular, we present results on the
independence number, the domination number, and the total domination number
of these graphs. The replacement product is a noncommutative graph operation
that has been widely applied in many areas. One of its advantages over other
graph products is its ability to produce sparse graphs. The results in this paper
give insight into how to construct large, sparse graphs with optimal independence
or domination numbers.

1. Introduction

It is natural to construct graphs from smaller component graphs, and as such,
products of graphs have long been studied for both their theoretical interest and
practical applicability. Standard products include the cartesian product, direct
product, and strong product [Imrich and Klavžar 2000; Hammack et al. 2011].
As many modern applications require sparse graphs, newer products have been
introduced. In particular, the replacement product is a noncommutative graph
product of two regular component graphs that produces a regular graph whose
degree depends only on the degree of the second component graph. Thus, the
replacement product can be easily used to generate large, sparse graphs. In addition,
it was shown that the expansion of the replacement product graph inherits the
expansion properties of both component graphs [Reingold et al. 2002; Hoory et al.
2006]. The replacement product has been widely used in many areas including
group theory, expander graphs, and graph-based coding schemes [Reingold et al.
2002; Hoory et al. 2006; Gamburd and Pak 2006; Kelley et al. 2008].

Invariants of graphs, including the independence and domination numbers of a
graph, have also been widely studied. Many applications in computer science and
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engineering require graphs with large independence numbers or small domination
numbers. For example, in [Shannon 1956] it is shown that the independence number
characterizes the largest number of bits that can be communicated without error in a
particular communication problem. Studying the invariants of product graphs based
on the invariants of the component graphs is an interesting problem, and in fact
has led to many long-standing open problems in graph theory. Notable examples
include Vizing’s conjecture on the domination number of cartesian product graphs
and Hedetniemi’s conjecture on the chromatic number of direct product graphs
(see, e.g., [Bres̆ar et al. 2012; Hammack et al. 2011]). In [Alon and Orlitsky
1995], the independence numbers of graphs constructed using the n-fold AND
product and the n-fold OR product are determined with respect to communicating
multiple bits per channel use in a repeated communication model, generalizing
the result in [Shannon 1956]. Similar applications that studied large independence
number and large chromatic number in graph products are given in [Alon and
Lubetzky 2006; Witsenhausen 1976]. Domination numbers have also been heavily
studied and generalized (see, e.g., [Haynes et al. 1998a; 1998b; Chelvam and
Chellathurai 2011]). The importance of the independence and domination numbers
in applications and the advantages of the replacement product provide the motivation
to study these invariants in replacement product graphs.

In this paper, we investigate the independence number, the domination number,
and the total domination number of replacement product graphs in terms of their
component graphs. One of our main results, Theorem 3.4, expresses the indepen-
dence number of the replacement product of G and H in terms of the independence
number of the second component graph, H . We also derive lower and upper bounds
on the domination and total domination numbers for replacement product graphs.
Another main result, Theorem 4.14, gives an upper bound on the total domination
number for the replacement product of G and H in terms of the number of edges
in a certain spanning subgraph of G.

The paper is organized as follows. We introduce some preliminary definitions
and notation in Section 2. In Section 3, we determine the independence number of
replacement product graphs. In Section 4, we present lower and upper bounds on
the domination number and the total domination number of replacement product
graphs. In addition, we include examples of families of graphs that meet the bounds.

2. Preliminaries

This paper studies properties of the replacement product G R© H of two graphs
G and H . We will assume in this work that G and H are finite simple connected
graphs. We first recall some basic terminology and notation that will be used in
this paper. We will use V (G) and E(G) to denote the vertex set and edge set of a
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Figure 1. Rotation map.

graph G, respectively. Moreover, the minimum degree and the maximum degree
of a vertex in G will be denoted by δ(G) and 1(G), respectively. A walk is an
alternating sequence of vertices and edges, beginning and ending with a vertex,
where each vertex is incident to both the edge that precedes it and the edge that
follows it in the sequence. The length of a walk is the number of edges in the walk.
A trail is a walk where all edges are distinct. An Eulerian trail in G is a trail that
contains each edge from G exactly once. A closed Eulerian trail is an Eulerian
trail that begins and ends at the same vertex. A path is a walk where each vertex in
the walk is distinct. A Hamiltonian path in G is a path that contains each vertex
from G exactly once. The distance between vertices u, v ∈ G, denoted d(u, v), is
the length of the shortest path between vertices u and v. Finally, we will use [n] to
denote the set of integers {1, . . . , n}.

Definition 2.1. A rotation map on a graph G is a labeling of the edges of G where
each edge gets two labels, one at each endpoint, and in addition, the edge labels
around each vertex v in G are distinct and numbered using 1, 2, . . . , deg(v).

For example, Figure 1 is an example of a rotation map on K4.
We now introduce the replacement product of two graphs. This product is non-

commutative and depends on the specific rotation map on the first component graph.

Definition 2.2. Let G be a b-regular graph with |V (G)| = n and H be a k-regular
graph with |V (H)| = b. Assign the vertices of G distinct labels in [n] and assign the
vertices of H distinct labels in [b]. Then given a rotation map on G, the replacement
product G R© H is a graph whose vertices are the ordered pairs (u, v) for u ∈ [n]
and v ∈ [b]. There is an edge between (u, v) and (w, l) in G R©H if either (i) u=w
and there is an edge between vertex v and vertex l in H , or (ii) u 6= w and there is
an edge between u and w in G having label v at u and label l at w assigned by the
rotation map on G.

The replacement product graph G R© H as described in Definition 2.2 is a
(k+1)-regular graph with nb vertices. Note that the degree of regularity of the prod-
uct graph depends only on the degree of regularity of the second component graph H .

The graph G R©H may be more easily seen in the following way. First, each vertex
of G is replaced by a copy of the graph H ; such a copy will be referred to as a cloud
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Figure 2. The replacement product K4 R© K3 with the specified
rotation map on K4.

and the cloud that replaces vertex i will be called the i-th cloud. Specifically, the i-th
cloud is the subgraph induced by the set of vertices {(i, w)∈G R©H |w∈ [b]}. Next,
given any pair of distinct i, j ∈ [n], there is exactly one edge between clouds i and j
in G R©H if and only if (i, j)∈ E(G). The vertices in the clouds that are connected
by such an edge are determined by the rotation map on G. We will refer to edges
that go between clouds as intercloud edges, and edges within clouds as cloud edges.

See Figure 2 for an example of the replacement graph product K4 R© K3.

3. Independence number of replacement product graphs

In this section we determine the independence number for replacement product
graphs based on the independence number of the second component graph.

Definition 3.1. Let G be a graph. An independent set of G is a subset S ⊆ V (G)
such that no pair of distinct elements in S is adjacent. The independence number
of G, denoted α(G), is the size of a largest independent set.

Due to the dependence of the replacement product on the rotation map, we
introduce the following definition.

Definition 3.2. For graphs G and H , the maximized independence number, denoted
α̂(G R© H), is defined as the maximum possible independence number of G R© H
over all rotation maps m on G. That is,

α̂(G R© H)=max
m
{α(G(m) R© H)} =max

m
{max

S
|S|},

where G(m) is the graph G with rotation map m and S is an independent set of
G(m) R© H .

Note that in practice, one can often choose the rotation map for the replacement
product graph. Indeed, this is typically done randomly. When the independence
number of the graph is of interest, Definition 3.2 characterizes the best possible
value one can obtain. The main result in this section shows explicitly how to design
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a rotation map that attains α̂(G R© H). We first state the following known result,
and include its proof for convenience.

Lemma 3.3 [Haynes et al. 1998b]. For a k-regular graph G,

α(G)≤
|V (G)|

2
.

Proof. Let S be an independent set of G with |S| = m. We now bound the total
number of edges incident with S in G. Each of the (|V (G)| − m) vertices in
V (G)− S may be adjacent to at most k members of S. So the total number of
edges in G from these vertices to S is at most (|V (G)|−m)k. Each vertex in S has
degree k, and by the independence of S, the m vertices in S are pairwise nonadjacent.
Thus, the total number of edges incident with S is mk. Therefore,

mk ≤ (|V (G)| −m)k,

from which we obtain
m ≤
|V (G)|

2
.

Since the statement holds for any independent set, it holds for a maximally sized
independent set. �

Next we present the main result of this section, which determines the maximized
independence number for a replacement product graph.

Theorem 3.4. Let G be a b-regular graph with |V (G)| = n and H a k-regular
graph with |V (H)| = b. Then

α̂(G R© H)= α(H)|V (G)|.

Proof. First, it is easy to see that α̂(G R© H)≤ α(H)|V (G)|, since otherwise, for
some choice of a rotation map, there would exist a maximal independent set S of
G R© H such that some cloud contains more than α(H) members of S. Since each
cloud is an isomorphic copy of H , this gives a contradiction.

Now we show the reverse inequality by designing a specific rotation map that
meets the bound. Label the vertices of G using 1, 2, . . . , n. Let I ′ be an independent
set of H . By Lemma 3.3, |I ′| ≤ b/2. Label the vertices in each copy of H in
G R© H using the numbers {1, . . . , b} such that the vertices in I ′ receive the even
numbers 2, 4, . . . , 2|I ′|. Let (i, j) be the vertex in cloud i with label j .

We will show that there exists a rotation map on G with the property that for
every vertex (i, j) ∈ G R©H , if j is even and (i, j) is adjacent to some (k, l) where
i 6= k, then l must be odd. From this we will conclude that

I :=
{
(i, j) ∈ G R© H | j ∈ {2, 4, . . . , 2|I ′|}

}
is an independent set of size α(H)|V (G)|.
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We introduce the following algorithm which will be used to generate such a
rotation map.

(1) Assign to each vertex v ∈ V (G) a number Tv and a set Sv with initial values
Tv = 0 and Sv = [b]. Set V := V (G).

(2) Choose a vertex v ∈ V .

(3) Choose an unlabeled edge e incident with v. If there is an even number in Sv ,
then choose any such even number a ∈ Sv and label the endpoint of e at v
using a. Then set Tv := Tv+1 and Sv := Sv−a. Otherwise label the endpoint
of e at v using any odd number a ∈ Sv and set Tv := Tv − 1 and Sv := Sv − a.
Let u be the other vertex incident to e, and label the endpoint of e at u using
any odd number c ∈ Su . Then set Tu = Tu − 1 and Su := Su − c.

(4) If there is an unlabeled edge at u, set v := u and go to Step 3.

(5) Let U ={u ∈ V (G) | Su =∅}. Set V :=V−(U∩V). If V =∅, stop. Otherwise,
go to Step 2.

Observe that Tv counts the number of even-labeled edges at v minus the number
of odd-labeled edges at v. During the algorithm, Tv is never less than −1 because
in Step 3, whenever a vertex receives an odd label at an edge, either another edge
at that vertex receives an even label at the next step of the algorithm, or the vertex
has all its edges labeled from 1 to b. Moreover, note that each edge receives its two
endpoint labels consecutively. Thus, the vertex u in Step 3 always exists.

We now show that any rotation map generated by this algorithm satisfies the
desired property by considering the parity of b, the regularity of G.

Case 1: Suppose b is even. Then there exists a closed Eulerian trail T in G. Then
in Step 3 of the algorithm, instead of arbitrarily choosing the next edge to take after
reaching a vertex, we choose an edge in order according to T . When the algorithm
stops, Tv = 0 for all vertices v ∈ V (G). Thus, every edge has one even label and
one odd label at its endpoints, ensuring that the resulting rotation map on G has the
asserted property.

Case 2: Suppose b is odd. For any vertex v at any stage of the algorithm, Tv=−1 if
Sv=∅, and when Sv 6=∅, we have Tv=−1, 0 or 1. Therefore, since [b] contains one
more odd number than even number, when Su 6=∅, there is always an odd number
to select for the edge in Step 3, and as a result, no edge will receive two even labels
during the algorithm. Thus, the resulting rotation map on G has the asserted property.

Finally, let G R© H be the replacement product graph in which the rotation map
on G was obtained as described above. Then by construction, an edge from (i, j)
to (k, `) in G R© H for j even and i 6= k must have ` odd. Therefore

I :=
{
(i, j) ∈ G R© H | j ∈ {2, 4, . . . , 2|I ′|}

}



INDEPENDENCE AND DOMINATION NUMBERS OF REPLACEMENT PRODUCT GRAPHS 187

is an independent set and has size

|I | = |I ′||V (G)| = α(H)|V (G)|.

Thus, α̂(G R© H)≥ α(H)|V (G)|, proving the equality. �

4. Domination numbers of replacement product graphs

In this section we present lower and upper bounds on two main types of domination
numbers: the domination number and the total domination number. For more
background on these parameters, see [Haynes et al. 1998a; 1998a].

Domination number.

Definition 4.1. A dominating set of a graph G is a subset D ⊆ V (G) such that
for every v ∈ G \ D, v is adjacent to some v′ ∈ D. The domination number of G,
denoted γ (G), is the size of a smallest dominating set.

The domination number of a graph has been a parameter of great interest in
applications such as communication and transportation networks. Again, due to
the dependence of the replacement product on the rotation map, we introduce the
following definition.

Definition 4.2. For graphs G and H , the minimized domination number, denoted
γ̂ (G R©H), is defined as the minimum possible domination number of G R©H over
all rotation maps m on G. That is,

γ̂ (G R© H)=min
m
{γ (G(m) R© H)} =min

m
{min

S
|S|},

where G(m) is the graph G with rotation map m and S is a dominating set of
G(m) R© H .

We now give a lower bound on the domination number of a replacement product
graph G R©H in terms of the domination number of the second component graph, H .

Proposition 4.3. Let G be a b-regular graph with |V (G)| = n and H a k-regular
graph with |V (H)| = b. Then

nγ (H)
2
≤ γ̂ (G R© H).

Moreover, if (i) k = b− 2, (ii) n is even, and (iii) G contains a Hamiltonian cycle,
then the bound is tight.

Proof. Let G have any rotation map and let D be a dominating set of G R©H . Every
vertex (i, j) in G R© H is in one cloud (namely, the i-th cloud) and is adjacent to
exactly one vertex in a different cloud. Note that there are at least γ (H) elements
of D in the vertex set of each cloud and its neighborhood, since otherwise there is a
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copy of H dominated by a vertex set of size strictly smaller than γ (H). Thus, there
are at least γ (H) vertices in D dominating each cloud. Since there are n clouds
and each vertex dominates vertices in two clouds, there must be at least nγ (H)/2
vertices in D. Thus, for any rotation map on G, we have γ (G R© H)≥ nγ (H)/2.

Now assume that the three additional properties (i)–(iii) hold as well. We will
design a specific rotation map on G so that the lower bound is met. First, label the
vertices of G in order from 1 to n according to a chosen Hamiltonian cycle C. Then
choose two nonadjacent vertices in H and label them 1 and 2, and label the rest of
V (H) using 3, . . . , b. Since k=b−2, each vertex is nonadjacent to exactly one other
vertex, and the pair form a smallest dominating set in H . In particular, γ (H)= 2.

Now we construct our rotation map on G. For each i ∈ [n− 1], label the edge
(i, i+1)∈ E(G)with a 1 at vertex i and a 2 at vertex i+1, and label edge (n, 1)with
a 1 at vertex n and a 2 at vertex 1. Then complete the rotation map in any way. Note
that in C, every edge is labeled by a 1 at one endpoint and a 2 at the other endpoint.

Now consider the product G R© H . We claim the set

D = {(i, 1) ∈ V (G R© H) | i ∈ [n]}

forms a dominating set of G R© H . For each i , every vertex in cloud i except
vertex (i, 2) is dominated by vertex (i, 1), and vertex (i, 2) is dominated by vertex
(i + 1, 1). So D is a dominating set with size |D| = n. Therefore,

γ̂ (G R© H)≥ n =
nγ (H)

2
. �

The next example gives a sequence of replacement product graphs that meet the
bound in Proposition 4.3.

Example 4.4. Let m be any even integer and let Kn denote the complete graph on
n vertices. Define Hm := Km −M1 and Gm := Km+2−M2, where M1 and M2

are perfect matchings of Km and Km+2, respectively. Then k = m − 2 = b− 2,
n = m+ 2 is even, and G contains a Hamiltonian cycle. So

{Gm R© Hm}m∈2Z

is a sequence of replacement product graphs meeting the bound in Proposition 4.3.
More generally, in order to have a pair of graphs G, H that satisfy the three
conditions, H must be isomorphic to Hm for some m, since no other regular graph
has the property that k= b−2. However, G can be any graph of the form Cm+2k∪F ,
where k ∈ N, Cn denotes a cycle on n vertices, and F is an (m−2)-regular graph
with V (F)= V (Cm+2k) and E(F)∩ E(Cm+2k)=∅. �

We have shown a lower bound on the minimized domination number of replace-
ment product graphs, and a sequence of graphs that meet that bound. We now focus
on deriving an upper bound on this parameter. For this, we will use the notion of
the k-independence number of a graph, defined next.
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Definition 4.5. For k ∈ [|V (G)| − 1], a k-independent set of a graph G is a subset
S ⊆ V (G) such that S is an independent set and for every v ∈ V (G)− S, we have v
is adjacent to at most k members from S. The largest cardinality of a k-independent
set will be called the k-independence number and will be denoted αk(G).

This parameter is related to the more familiar 2-packing number of a graph as
defined below.

Definition 4.6. A 2-packing set of a graph G is a subset S ⊆ V (G) such that S is
an independent set and for any pair of distinct u, v ∈ S, we have d(u, v)≥ 3, i.e.,
u and v have disjoint neighborhoods. Define the 2-packing number of G, denoted
P2(G), to be the largest cardinality of a 2-packing set of G.

The 2-packing number of G was introduced in [Meir and Moon 1975] and is
a generalization of the independence number of G. Note that from the above
definitions, the (|V (G)|−1)-independence number of a graph G is simply the
independence number of G, and the 1-independence number of G is the 2-packing
number of G.

We are now ready to present the upper bound on the minimized domination
number.

Proposition 4.7. Let G be a b-regular graph with |V (G)| = n and H a k-regular
graph with |V (H)| = b. Then

γ̂ (G R© H)≤ (n−αγ (H)(G))γ (H).

Proof. There exist αγ (H)(G) vertices in G that form a γ (H)-independent set S.
Choose such a set and label these vertices 1, 2, . . . , αγ (H)(G). Label the rest of
the vertices of G using αγ (H)(G)+ 1, . . . , n. Choose a dominating set D′ of H of
size γ (H) and label these vertices 1, 2, . . . , γ (H). Label the rest of the vertices
in H using γ (H)+ 1, . . . , b.

We now create a rotation map on G. Pick any i ∈ [n] − [αγ (H)(G)] and let vi

be the vertex in G with label i . Label the edges at vi by starting with the edges
adjacent to members of S. Since S is a γ (H)-independent set, we can ensure that
these edges get labels from the set [γ (H)]. Once this labeling has been done for
every vertex from V (G)− S, complete the rotation map on G in any way.

We will show that the set

D :=
{
(i, j)∈ V (G R©H)

∣∣ i ∈ {αγ (H)(G)+1, αγ (H)(G)+2, . . . , n}, j ∈ [γ (H)]
}
.

is a dominating set in G R© H with this rotation map.
Note that for each i ∈ [n] − [αγ (H)(G)], cloud i is dominated by D, since

every such cloud contains a copy of the dominating set D′. Furthermore, for each
i ∈ [αγ (H)(G)], every vertex in cloud i is adjacent via its intercloud edges to some
cloud with label j ∈ [n] − [αγ (H)(G)].
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Moreover, by construction of the rotation map on G, we see that each vertex
in cloud j , for j ∈ [n] − [αγ (H)(G)], is adjacent to a vertex (a, b), for some
a∈[αγ (H)(G)] and b∈[γ (H)], and hence an element of D. Thus, D is a dominating
set and has size

|D| =
(
|V (G)| −αγ (H)(G)

)
γ (H),

giving the desired bound. �

The next example gives a sequence of graphs meeting the upper bound in
Proposition 4.7.

Example 4.8. Let G = Kn+1 and H = Kn for any n ∈ N. Then γ (H) = 1 and
α1(G) = 1. Then, given any rotation map on G, let D be the set of n vertices
adjacent to a vertex in cloud 1 via an intercloud edge. Then D is a dominating set
with size

|D|= n= ((n+1)−1)·1=
(
|V (G)|−αγ (H)(G)

)
γ (H). �

Total domination number. In this subsection we consider a related parameter, the
total domination number of a graph, that has also been heavily studied in similar
applications.

Definition 4.9. A total dominating set of a graph G is a subset D ⊆ V (G) such
that for every v ∈ G, v is adjacent to some v′ ∈ D. The total domination number
of G, denoted γt(G), is the size of a smallest total dominating set.

Note that unlike in a dominating set of G, in a total dominating set of G a vertex
does not dominate itself. Again, due to the dependence of the replacement product
on the rotation map, we introduce the following definition.

Definition 4.10. For graphs G and H , the minimized total domination number,
denoted γ̂t(G R© H), is defined as the minimum possible total domination number
of G R© H over all rotation maps m on G. That is,

γ̂t(G R© H)=min
m
{γt(G(m) R© H)} =min

m
{min

S
|S|},

where G(m) is the graph G with rotation map m and S is a total dominating set of
G(m) R© H .

In the rest of this section, we obtain lower and upper bounds on the total domi-
nation number of replacement product graphs. First, we state the following known
result whose proof is straightforward.

Lemma 4.11 [Haynes et al. 1998b]. If G is a k-regular graph then

γt(G)≥
|V (G)|

k
.
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We next present a lower bound on the minimized total domination number of a
replacement product graph, and the proof uses the notion of a k-factor. Recall that
a k-factor of a graph G is a k-regular spanning subgraph of G.

Proposition 4.12. Let G be a b-regular graph with |V (G)| = n and H a k-regular
graph with |V (H)| = b. Then,

γ̂t(G R© H)≥
|V (G R© H)|

k+ 1
=
|V (G)||V (H)|

k+ 1
.

Moreover, when G and H have the additional properties that (i) b = γ (H)(k+ 1)
and (ii) G contains a γ (H)-factor, equality holds.

Proof. The first statement follows from the (k+1)-regularity of G R© H and
Lemma 4.11. Assume that the additional properties (i) and (ii) hold for G and H .
Let D′ be a smallest dominating set in H , and let D be the set

D = {(i, j) ∈ V (G R© H) | i ∈ [n], j ∈ D′}.

Let G ′ be a γ (H)-factor of G. Design a rotation map on G by first labeling the
edges of the subgraph G ′ at each vertex of G using the numbers 1, 2, . . . , γ (H),
and label the remaining edges at each vertex using γ (H)+ 1, . . . , b. Label the
vertices in H by using the numbers 1, 2, . . . , γ (H) for those in D′ and the numbers
γ (H)+ 1, . . . , b for those not in D′.

Now consider the replacement product G R© H with this rotation map, and as
before let (i, j) denote the vertex in cloud i with label j . Consider an arbitrary
intercloud edge, say from (i, j) to (m, l), where i 6= m. Then we see that, by
construction, j ∈ {1, 2, . . . , γ (H)} if and only if l ∈ {1, 2, . . . , γ (H)}. Moreover,
since (i, j) ∈ D if and only if j ∈ {1, 2, . . . , γ (H)}, and every vertex is incident
to exactly one intercloud edge, this also implies that every v ∈ D is adjacent via
an intercloud edge to some other v′ ∈ D. This guarantees that D is not only a
dominating set, but is in fact a total dominating set. Finally,

|D| = |V (G)|γ (H)= |V (G)|
b

k+ 1
=
|V (G)||V (H)|

k+ 1
. �

In the next example, we construct a sequence of pairs G, H such that G R© H
meets the bound in Proposition 4.12 by showing that G and H satisfy the additional
properties in the proposition.

Example 4.13. Let G = K4m+1, the complete graph on n = 4m + 1 vertices. It
is a known result from the theory of degree sequences that for any positive even
integer m, the graph K4m+1 contains an m-factor [Chen 1988], and therefore G
satisfies condition (ii). We now design H to be a 3-regular graph with b = 4m
vertices. Begin with m disjoint copies of K4− e, where e is any edge of K4. Give
each copy a distinct label from [m]. For each i , label the two vertices in the i-th
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copy that have degree two (i, 1) and (i, 2). Then connect vertices (i, 1) to (i+1, 2)
for each i ∈ [m−1] and connect (m, 1) to (1, 2). This yields the graph H . Since H
is 3-regular,

γ (H)≥
b

k+ 1
=

4m
4
= m.

Observe that each of the m copies of K4 − e can be dominated by exactly
one vertex. Hence, γ (H)= m, satisfying the additional condition (i). Therefore,
γ̂t(G R© H) meets the bound. �

Our final result gives an upper bound on the minimized total domination number
of replacement product graphs.

Theorem 4.14. Let G be a b-regular graph with |V (G)| = n and H a k-regular
graph with |V (H)| = b. Let G ′ be a spanning subgraph of G for which |E(G ′)| is
minimal given that δ(G ′)≥ γ (H). Then

γ̂t(G R© H)≤ 2|E(G ′)|.

Proof. First note that G ′ always exists since

δ(G)= |V (H)| ≥ γ (H).

This also shows that |E(G)| is an upper bound for |E(G ′)|. Now let D′ be a smallest
dominating set in H and let D be the set

D = {(i, j) ∈ V (G R© H) | i ∈ [n], j ∈ D′}

in G R©H . Design a rotation map on G by first labeling the edges of the subgraph G ′

at each vertex v of G using the numbers 1, 2, . . . , degG ′(v), and label the remaining
edges at each vertex v using degG ′(v)+ 1, . . . , b. Label the vertices in H by using
the numbers 1, 2, . . . , γ (H) for those in D′ and the numbers γ (H)+ 1, . . . , b for
those not in D′. Last, for each v ∈ V (G), if degG ′(v) > γ (H), then add the vertices
(Lv, γ (H)+ 1), (Lv, γ (H)+ 2), . . . , (Lv, degG ′(v)) to D, where Lv denotes the
vertex label of v in G.

Now consider the product G R© H with this rotation map on G. By construction
of the rotation map, every v ∈ D is adjacent to a vertex v′ ∈ D via an intercloud
edge. This shows that D is a total dominating set. Finally,

|D| = γ (H)|V (G)| +
∑

v∈V (G ′)

(degG ′(v)− γ (H))

= γ (H)|V (G)| + 2|E(G ′)| − |V (G ′)|γ (H)

= γ (H)
(
|V (G)| − |V (G ′)|

)
+ 2|E(G ′)|

= 2|E(G ′)|.
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Therefore with the specified rotation map,

γt(G R© H)≤ 2|E(G ′)|,

which implies that
γ̂t(G R© H)≤ 2|E(G ′)|. �

The following example illustrates that the bound in Theorem 4.14 is sharp.

Example 4.15. Let G be a b-regular graph on n vertices that contains a 1-factor, and
let H = Kb, where b≥2. Let G ′ be a 1-factor of G. Note that δ(G ′)=1≥1=γ (H).
Since a 1-factor has the fewest number of edges of any spanning subgraph of G,
the graph G ′ satisfies the condition in Theorem 4.14. Fix a rotation map on G and
let S be the set of all vertices in G R© H that are incident to the intercloud edges
corresponding to E(G ′). Then each v ∈ S is adjacent to some other vertex v′ ∈ S,
where v′ 6= v. Moreover, since E(G ′) is a 1-factor of G, there exists exactly one
vertex from S in each cloud of G R©H . Since each cloud is a complete graph, every
vertex in G R© H is dominated by S. Therefore, S is a total dominating set and has
size |S| = 2|E(G ′)|.

We now show that this is the smallest such total dominating set of G R© H .
Assume that D is a smallest total dominating set of G R© H for some arbitrary
rotation map on G. Assume further that there exists a cloud C that does not contain
a member of D. Then C must be dominated by b vertices in D, say s1, . . . , sb, via
intercloud edges. Moreover, each si is contained in a different cloud, say si is from
cloud Ci . Since each si must be adjacent to some other vertex in D using a cloud
edge, there must be other members of D, say t1, . . . , tb such that ti ∈ Ci for each i .

Thus, with the assumption that there exists such a cloud C, we can deduce that
at least b clouds must contain at least two vertices in D. Moreover, the vertices
t1, . . . , tb from D collectively only dominate b additional vertices from G R© H
which were not already dominated by s1, . . . , sb. So for each cloud that does not
contain a member of D, b additional vertices are needed and at most one additional
cloud can be dominated. Further note that if a cloud is not completely dominated
via intercloud edges then there must exist a member of D within that cloud. Thus,
since b ≥ 2, we see that for D to be minimally sized, there cannot be a cloud that
does not have a member of D contained within it. Therefore |D| ≥ n = 2|E(G ′)|,
which implies our conclusion. �
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