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In this paper, we introduce two special classes of digraphs. A limited outdegree
grid (LOG) directed graph is a digraph derived from an n × n grid graph by
removing some edges and replacing some edges with arcs such that no vertex
has outdegree greater than 1. A greatest increase grid (GIG) directed graph is a
LOG digraph whose vertices can be labeled with distinct labels such that each
arc represents the direction of greatest increase in the underlying grid graph. We
enumerate both GIG and LOG digraphs for the 3×3 case.

1. Introduction

Some search algorithms, such as hill climbing [Russell and Norvig 2010], use local
information to seek a global maximum of a function of two variables, f (x, y). At
every point in an n×n lattice, the algorithm determines the direction of greatest
increase in f , and moves to the adjacent lattice point in that direction. We can
think of this algorithm as discrete gradient ascent. In what follows, we make the
simplifying assumptions that the function values are the integers 1, 2, . . . , n2 and
directions are restricted to horizontal and vertical on a square grid. For example,
consider the function values 1 through 9 on the 3×3 lattice shown in Figure 1(a).
The direction of greatest increase from each lattice point is shown in Figure 1(b) as
an arrow to the appropriate adjacent point. Note that there are no arrows originating
at local maxima on this lattice.
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2 9 4

6 7 5

3 1 8

(a) (b)

Figure 1. (a) A sample function f (x, y) mapping a 3×3 grid onto
1, 2, . . . , 9. (b) The direction of greatest increase in f (x, y) from
each grid point.

The lattice points and arrows in Figure 1 are easily described in the language of
graph theory [Tutte 2001]. In particular, Figure 1(b) is derived from a grid graph
by replacing some edges with a single arc, and eliminating other edges entirely, so
there is at most one arc originating at each vertex. We call these limited outdegree
grid (LOG) digraphs. If the vertices in a LOG digraph can be labeled with the
integers 1, 2, . . . , n2 such that each arc is in the direction of greatest increase from
that vertex, we call the graph a greatest increase grid (GIG) digraph. The directed
graph in Figure 1(b) is clearly a GIG digraph since it was derived from a labeling
of the vertices of a lattice. Other LOG digraphs, such as that shown in Figure 2,
are not GIG digraphs. Additionally, GIG digraphs can also be viewed as a type of
proximity graph [Bose et al. 2012].

Graph labeling problems, that is, questions that ask if integers can be assigned
to the vertices or edges (or both) of a graph subject to given conditions, have been
studied for over 50 years. Gallian [2015] has compiled a dynamic survey of the
known results of graph labeling problems, and many graph labeling problems are
accessible to undergraduate students, such as that in [Poet et al. 2005].

In this paper, we describe two approaches to enumerating the 3×3 GIG di-
graphs, and a method for enumerating 3×3 LOG digraphs. Finally, we suggest two
procedures for deciding if a given LOG digraph is a GIG digraph.

2. Enumerating LOG and GIG digraphs

In counting the number of distinct LOG and GIG digraphs, there are two complicat-
ing factors. First, a LOG digraph can be isomorphic to as many as 7 others: those
obtained by 90-, 180-, and 270-degree clockwise rotations, and those obtained by
reflecting each of these through a horizontal line. These motions are described
by the dihedral group on the square. However, a LOG digraph with reflexive or
rotational symmetry will have fewer than 8 LOG digraphs in its isomorphism class.
Figure 2 illustrates the 8 LOG digraphs in one isomorphism class.
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Figure 2. (a) A LOG digraph that is not also a GIG digraph, and
its (b) 90-degree, (c) 180-degree, and (d) 270-degree rotations. The
LOG digraphs in (e)–(h) are obtained by reflecting those in (a)–(d)
through a horizontal line.

The second complicating factor is that a particular GIG digraph can be labeled
in more than one way, and the number of ways is dependent upon the underlying
LOG digraph. For example, Figure 3 shows three labelings of one particular GIG
digraph. The variability described in these two observations prohibits us from being
able to find the number of nonisomorphic LOG or GIG digraphs by computing the
total number of directed graphs with a certain property and dividing by an easily
computable constant. Our research group of undergraduates was split across two
campuses, Missouri Western State University and Davidson College. Students from
the two campuses took different approaches to enumerating GIG digraphs.

2.1. Counting approach 1: construct one candidate LOG digraph from each iso-
morphism class, and test each one to see if it can be labeled. On the Missouri
Western campus, we approached the problem by considering the list of nonisomor-
phic candidate LOG digraphs, and then asking if each of these could be labeled.

8 1 2

3 4 9

7 5 6

9 4 7

1 5 8

6 2 3

8 7 6

2 1 9

5 3 4

Figure 3. Three possible labelings of the same GIG digraph.
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Figure 4. Three possible locations (black vertex) of a complete
sink corresponding to the label 9, upper left corner, upper middle,
and center.

First, we observe that every GIG digraph must contain at least one vertex that
is a complete sink, that is, a vertex with indegree equal to the number of adjacent
vertices in the underlying grid graph, corresponding to the label 9. Furthermore,
because we want to consider only one candidate LOG digraph in each isomorphism
class, we need only consider the label 9 in one of three positions: the upper left
corner, the upper middle, and the center. Any valid candidate LOG digraph can be
put into correspondence with (at least) one of these three by an appropriate rotation.
Hence, the candidate LOG digraphs can be put into three piles (A, B, and C)
according to the location of the complete sink, labeled as 9, shown in Figure 4.

These three piles can further be subdivided according to the location of the
label 8. For example, if the label 9 is in the upper left, then there are five locations
(see Figure 5) that could be labeled with 8 since we want to account for a reflection
about the main diagonal. We refer to these configurations as A1, . . . ,A5. If the
label 9 is in the upper middle, then the label 8 can go in one of the five positions
shown in Figure 6 as B1, . . . ,B5, taking into account the possible reflection through

Figure 5. The five possible configurations, A1, . . . ,A5, for plac-
ing the label 8 (gold vertex), given that the label 9 (black vertex)
is in the top left corner.

Figure 6. The five possible configurations, B1, . . . ,B5, for placing
the label 8 (gold vertex), given that the label 9 (black vertex) is in
the upper middle.
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Figure 7. The two possible configurations, C1 and C2, for placing
the label 8 (gold vertex) in the upper left and upper center, given
that the label 9 (black vertex) is in the center.

the center vertical line. Finally, if the label 9 is in the center, there are only two
places (up to rotation) we need to consider for the label 8: the upper left (C1) and
the upper middle (C2) as shown in Figure 7. Observe that the digraphs A4 and B5
are isomorphic by a flip through the diagonal that runs from lower left to upper
right so we eliminate B5, leaving 11 subsets of candidate LOG digraphs.

With each of these “skeletons” in place, it is relatively straightforward to consider
all completions to a GIG digraph by exhaustion. As an example, for subset C1 in
Figure 7, we need only consider what arcs might originate from the other three
corner vertices. In each case, there are three possibilities: there could be a vertical
arc, a horizontal arc, or neither. This leads to a family of 27 candidate LOG
digraphs. However, by again taking symmetry into account, this number can further
be reduced to the 11 candidates in Figure 8.

Similar arguments can be made to construct the other subsets. While each of our
eleven subsets (A1, . . . ,A5,B1, . . . ,B4,C1,C2) was complete with regard to its

Figure 8. The 11 candidate configurations resulting from enumer-
ating possible completions of configuration C1 in Figure 7.
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construction, we knew there was the potential for overlap between sets. Through
extensive cross-checking, we were able to eliminate these redundancies. Finally, for
each of these potential GIG graphs, we either supplied a labeling of the vertices or
provided a justification for why such a labeling was not possible. Our final product
was a complete list of the 246 nonisomorphic GIG digraphs.

2.2. Counting approach 2: construct all LOG and GIG digraphs, and identify and
discard isomorphic copies. On the Davidson campus, we produced digraphs on a
3×3 grid using the open-source mathematical software Sage [Stein et al. 2012],
and filtered the results for the desired subsets of LOG and GIG digraphs. In this
approach, we first needed a convenient data structure for storing and manipulating
the graphs. Because a 3×3 grid graph has 12 edges (6 horizontal and 6 vertical), we
can represent a 3×3 LOG digraph with a 12×1 arc indicator vector Ea. Specifically,
we let ai =−1 if arc i points down or to the left, ai = 1 if arc i points up or to the
right, and ai = 0 if no arc is present at the i th location. The locations are ordered as
shown in Figure 9(a), numbering arcs clockwise around the perimeter of the grid,
and then clockwise around the interior of the grid. For example, the LOG digraph
in Figure 9(b) is represented by

Ea = [1,−1, 0,−1, 1, 0, 1, 0, 1, 0, 0, 1].

Using the arc indicator representation, we began by producing all 312
= 531, 441

possible arc indicator vectors, and discarding those that did not correspond to LOG
digraphs. Specifically, we removed those vectors that produce an outdegree greater
than 1 from any vertex. However, many of the remaining 36,250 LOG digraphs
were isomorphic to each other. The isomorphism class of a given LOG digraph
is easily obtained through multiplication by rotation and reflection matrices. For
example, the equation below illustrates a 90-degree clockwise rotation of the LOG
digraph in Figure 9(b):

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0





1
−1

0
−1

1
0
1
0
1
0
0
1



=



1
0
−1

1
0
−1
−1

0
−1

1
0
0



(1)
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Figure 9. (a) The order in which the arc indicator vector represents
arcs in a LOG digraph. (b) The LOG digraph from Figure 1(b).
(c) The result of applying a 90-degree clockwise rotation to the
LOG digraph in (b).

Note that although the ordering of arcs in the indicator vector was arbitrary, we
chose the order illustrated in Figure 9(a) because this ordering produces nice patterns
in the rotation and reflection matrices. Discarding isomorphic copies from the list
of 36,250 distinct LOG digraphs produced 4,616 isomorphism classes of LOG
digraphs. Note that this set includes not only the candidate LOG digraphs from the
first approach, but also many LOG digraphs that do not contain a complete sink.

We produced the set of all GIG digraphs, and a unique representative of each
isomorphism class, in a similar brute force manner. First, we considered all permuta-
tion of the integers 1 through 9, and removed those that were the reverse of another
permutation in the set. This reduction was an easy way to filter out those labelings
whose GIG digraphs were isomorphic under a 180-degree clockwise rotation. We
produced all possible GIG digraphs by mapping these 9!/2 permutations to the 3×3
grid, and drawing an arc in the direction of greatest increase from each vertex. We
obtained 1,853 distinct labeled GIG digraphs with varying numbers of labelings
corresponding to each one. Discarding isomorphic copies from the list of 1,853 GIG
digraphs produced 246 isomorphism classes of GIG digraphs, the same number
obtained through the first approach described in Section 2.1. One advantage of this
brute-force computational approach to enumerating LOG and GIG digraphs is that
we could easily collect various statistics about the graphs as they were produced.
For example, the number of LOG and GIG digraphs with each possible number of
arcs is summarized in Table 1.

number of arcs 0 1 2 3 4 5 6 7 8 9
GIG digraphs 0 0 0 0 6 23 86 98 33 0

LOG digraphs 1 4 36 174 570 1,128 1,378 949 335 41

Table 1. The number of GIG and LOG digraphs with each possible
number of arcs.
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Figure 10. (a) Forbidden subgraph with arcs in opposite directions.
(b) Forbidden subgraph with vertex of outdegree 0 and path of
length 2.

2.3. Determining whether a LOG digraph is a GIG digraph. As stated earlier,
there are 4,616 nonisomorphic LOG digraphs and 246 of these are GIG digraphs.
What follows is a classification of the 4,370 LOG digraphs that are not labelable
as GIG digraphs. To show the nonexistence of a labeling for these LOG digraphs,
we filter our results with four filters and handle the remaining nine exceptions with
ad hoc arguments.

First, observe that for a LOG digraph to be a GIG digraph, it must contain (at
least) one vertex that is a complete sink. That is, a 3×3 GIG digraph will contain
one of the following: a corner vertex of indegree 2, a side vertex of indegree 3, or
a central vertex of indegree 4. The necessity of such a vertex is clear when one
considers that the label 9 must appear as a label on a GIG digraph and will be
the direction of greatest increase from each of its adjacent vertices. Of the 4,370
unlabelable LOG digraphs, only 614 have a complete sink.

Second, in a GIG digraph, there cannot exist two adjacent vertices (in the
underlying grid graph) with outdegree 0. Any vertex of outdegree 0 has the greatest
label in its neighborhood, and two adjacent vertices are each in the neighborhood
of the other implying that A < B and B < A.

Third, a GIG digraph cannot contain a 2×2 subgrid with two arcs on opposite
sides of that subgrid pointing in opposite directions. In such a grid, if the vertices
are labeled clockwise as A, B, C , and D with arcs AB and CD (as shown in
Figure 10(a)), we observe that B and D are each in the neighborhood of A and the
arc AB implies that B> D. The vertices B and D are also each in the neighborhood
of C and the arc CD implies that D > B, a contradiction. Thus, such a subgraph
cannot occur in a GIG digraph.

These two forbidden conditions are easy to spot in LOG digraphs. Of the 614
unlabelable LOG digraphs with at least one complete sink, all but 74 are eliminated
by these two criteria. As our fourth and final filter, we next consider another
2×2 forbidden subgraph.

Suppose a GIG digraph contains a 2×2 subgrid with a vertex of outdegree 0,
which we label A, and a path of length 2 on the other three vertices which we label
to yield arcs BC and CD, as shown in Figure 10(b). Note that we can assume
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Figure 11. The nine unlabelable LOG digraphs that contain a
complete sink, but do not contain one of the two forbidden induced
subgraphs.

that D is not of outdegree 0 or the GIG digraph would have adjacent vertices with
outdegree 0, which is forbidden. Since A has outdegree 0 and D is adjacent to A
in the grid graph, A > D. Since A and C are both adjacent to B and the GIG
digraph contains arc BC , we have C > A. Along any directed path in a GIG
digraph, the labels must increase. Hence D>C . This gives a contradiction: A< D
and D > A.

Of the 74 remaining unlabelable GIG digraphs, 65 contain the forbidden subgraph
in Figure 10(b), leaving only the 9 graphs in Figure 11. Of these 9 exceptional
graphs, the first 7 can be eliminated from consideration as possible GIG digraphs
by observing that in addition to a GIG digraph having a complete sink (so that the
label 9 can be placed), it must also have either a second complete sink or a near
complete sink, so that the label 8 can be placed. A near complete sink is a vertex
that is (i) distance 2 from the complete sink in the underlying grid graph and (ii) all
vertices adjacent to this vertex in the underlying grid graph and not adjacent to the
complete sink terminate at this vertex.

Finally we consider the last two of our exceptional graphs, each of which have
one complete sink and one near complete sink, these must be labeled with 9 and 8,
respectively. It is easy to see that the label 7 cannot be placed on any of the remaining
vertices without creating a contradiction. The vertex of label 7 must be the terminal
vertex of an arc for every adjacent vertex that is not also adjacent to the complete sink
or the near complete sink, but this does not hold for any of the 7 remaining vertices.
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D E F

G H I

Figure 12. A LOG digraph that is not a GIG digraph.

We have, therefore, shown the nonexistence of a labeling scheme for 4,370
nonisomorphic LOG digraphs and have demonstrated a labeling (not shown here)
for each of the 246 nonisomorphic GIG digraphs.

The second approach for determining if a LOG digraph is a GIG digraph relies
on the properties of a GIG digraph, specifically the strict inequalities that each arc
(or lack thereof) confers on the labels of the vertices. For example, consider the
LOG digraph on vertices A–I shown in Figure 12. Suppose this is a GIG digraph.
Then arc ED implies D > F , arc IF implies F > I , arc HI implies I >G, and arc
DG implies G > D. Hence D > D, a contradiction. Therefore, this LOG digraph
cannot be labeled as a GIG digraph. Note that we could have used other criteria to
draw this conclusion, as this LOG digraph does not contain a complete sink. The
inequality consistency checking method works for every 3×3 LOG digraph, as we
confirmed with a SAGE program.

Many questions about LOG and GIG digraphs remain open. An obvious question
is how the numbers of each type of graph, and the numbers of isomorphism classes,
grow with increasing grid size. However, applying the techniques described here
make extensions of this problem, even to a 4×4 grid, a monumental (and tedious)
task, even for a computer. In future research, we hope to investigate new techniques
to generalize our results, with the ultimate goal of enumerating m × n LOG and
GIG digraphs. Another potential direction would be to search for efficient char-
acterizations of forbidden subgraphs as the size of the n × n grid increases. We
hope to prove such sets of forbidden subgraphs are both necessary and sufficient by
some nonexhaustive method.
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