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We consider frames in a finite-dimensional Hilbert space, where frames are
exactly the spanning sets of the vector space. A factor poset of a frame is defined
to be a collection of subsets of I , the index set of our vectors, ordered by inclusion
so that nonempty J ⊆ I is in the factor poset if and only if { fi }i∈J is a tight frame.
We first study when a poset P ⊆ 2I is a factor poset of a frame and then relate the
two topics by discussing the connections between the factor posets of frames and
their duals. Additionally we discuss duals with regard to `p-minimization.

1. Introduction

A frame for a finite-dimensional Hilbert space is a possibly redundant spanning set.
The concept of frames was introduced by Duffin and Schaeffer [1952]. Daubechies
[1992] popularized the use of frames. Many of the modern signal processing
algorithms used in mobile phones or digital televisions are developed using the
concept of frames. Redundancy in frames plays a pivotal role in the construction of
stable signal representations and in mitigating the effect of losses in transmission
of signals through communication channels [Goyal et al. 2001; 1998]. A tight
frame is a special case of a frame, which has a reconstruction formula similar to
that of an orthonormal basis. Because of this simple formulation of reconstruction,
tight frames are employed in a variety of applications such as sampling, signal
processing, filtering, smoothing, denoising, compression, and image processing.

A factor poset FF of a frame F = { fi }i∈I is the collection of subsets J ⊆ I such
that { f j } j∈J is a tight frame for a finite-dimensional Hilbert space Hn . We find
necessary conditions for a given poset to be a factor poset of a frame. We show
that a factor poset is determined entirely by its empty cover (the sets J ∈ FF that
have no proper subset in FF ). Moreover, we show that if P is the factor poset of
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a frame F ⊆ R2 then it is also the factor poset of another frame G ⊆ R2 whose
vectors are multiples of the standard orthonormal basis vectors e1 and e2.

We study the relationship among the factor posets of dual frame pairs. Also we
study when the dual frame could be tight and when a dual frame can be scaled
to be a tight frame. Finally we consider the group structure among all duals of a
frame. It is known that a dual is a canonical dual frame if and only if the `2-sum of
the frame coefficients is a minimizer among `2-sums of frame coefficients of all
dual frames. We find new inequalities among `p-sums of these frame coefficients
when p = 1 and p > 2.

2. Preliminaries

Throughout this paper Hn denotes either Rn or Cn . A sequence F = { fi }
k
i=1 ⊆Hn

is called a frame for Hn with frame bounds A, B > 0 if for any f ∈Hn ,

A‖ f ‖2 ≤
k∑

i=1

|〈 f, fi 〉|
2
≤ B‖ f ‖2. (1)

When A= B=λ, we say that F is a λ-tight frame. For a sequence F={ fi }
k
i=1⊆Hn ,

define the analysis operator θF from Hn to Hk by

θF x =
k∑

i=1

〈x, fi 〉ei ,

where {ei }
k
i=1 is an orthonormal basis for Hk . The adjoint of θF , denoted by

θ∗F :H
k
→Hn , is defined by θ∗F (ei )= fi and is called the synthesis operator. The

frame operator σF :Hn
→Hn associated to F is defined by σF = θ

∗

FθF , is a positive
definite, self-adjoint, invertible operator and all of its eigenvalues belong to the
interval [A, B].

Given a frame F , another frame G = {gi }
k
i=1 ⊆ Hn is said to be a dual frame

of F if the following reconstruction formula holds:

f =
k∑

i=1

〈 f, fi 〉gi for all f ∈Hn.

The canonical dual frame F̃ associated with F={ fi }
k
i=1 is given by F̃={σ−1

F fi }
k
i=1.

Definition 2.1. For any vector

f =

 f (1)
...

f (n)

 ∈ Rn,
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we define the diagram vector of f , denoted f̃ , by

f̃ =
1

√
n− 1


f 2(1)− f 2(2)

...
f 2(n− 1)− f 2(n)
√

2n f (1) f (2)
...√

2n f (n− 1) f (n)

 ∈ Rn(n−1),

where the difference of squares f 2(i)− f 2( j) and the product f (i) f ( j) occur
exactly once for i < j , with i = 1, . . . , n− 1.

Definition 2.2. For any vector f ∈ Cn , we define the diagram vector f̃ of f to be

f̃ =
1

√
n− 1



| f (1)|2− | f (2)|2
...

| f (n− 1)|2− | f (n)|2
√

n f (1) f (2)
√

n f (1) f (2)
...

√
n f (n− 1) f (n)
√

n f (n− 1) f (n)


∈ C3n(n−1)/2,

where the difference of the form | f (i)|2− | f ( j)|2 occurs exactly once for i < j ,
with i = 1, 2, . . . , n−1, and the product of the form f (i) f ( j) occurs exactly once
for i 6= j .

Using these definitions, a characterization of tight frames in Hn is given in
[Copenhaver et al. 2014].

Theorem 2.3 [Copenhaver et al. 2014]. Let { fi }i∈I be a sequence of vectors in Hn ,
not all of which are zero. Then { fi }i∈I is a tight frame if and only if

∑
i∈I f̃i = 0.

Moreover, for any f, g ∈Hn , we have (n− 1)〈 f̃ , g̃〉 = n|〈 f, g〉|2−‖ f ‖2‖g‖2.

3. Factor posets

In [Lemvig et al. 2014], a tight frame F = { fi }i∈I in Hn is said to be prime if no
proper subset of F is a tight frame for Hn . One of the main results in [loc. cit.] is
that for k ≥ n, every tight frame of k vectors in Hn is a finite union of prime tight
frames called prime factors of F . Thus to study the structure of prime factors, we
use a well-known combinatorial object, the poset. A nonempty set P with a partial
ordering is called a partially ordered set, or poset. A poset can be represented by a
Hasse diagram. We define a poset related to frames as follows:

Definition 3.1. Let F = { fi }i∈I ⊆Hn
\ {0} be a finite frame, where I = {1, . . . , k}.

The factor poset of F , denoted FF , is defined to be a collection of subsets of I
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ordered by set inclusion so that nonempty J ⊆ I is in FF if and only if { f j } j∈J is a
tight frame for Hn . We always assume ∅ ∈ FF .

Example 3.2. Let F={e1,e2,e2}⊆R2 and I={1,2,3}. Then FF={∅, {1,2}, {1,3}}
and the Hasse diagram is

{1, 2} {1, 3}

{}

Example 3.3. Let F ={e1, e2,−e1,−e2}⊆R2 and I ={1, 2, 3, 4}. Then the Hasse
diagram of FF is

{1, 2, 3, 4}

{2, 3}{1, 2} {3, 4} {4, 1}

{}

The next lemma gives us three equivalent conditions for when the union of
elements of FF is an element of FF .

Proposition 3.4. Let F = { fi }i∈I ⊆ Hn
\ {0} be a tight frame. Suppose FF is the

factor poset and let C, D ∈ FF . Then the following are equivalent:

(i) C ∪ D ∈ FF .

(ii) C ∩ D ∈ FF .

(iii) C4D ∈ FF .

(iv) C \ D ∈ FF .

Proof. By the inclusion-exclusion principle, it is easy to verify that for diagram
vectors of F , the following hold:

(a)
∑

`∈C∪D f̃` =
∑

`∈C f̃`+
∑

`∈D f̃`−
∑

`∈C∩D f̃`.

(b)
∑

`∈C∪D f̃` =
∑

`∈C\D f̃`+
∑

`∈D\C f̃`+
∑

`∈C∩D f̃`.

(c)
∑

`∈C f̃` =
∑

`∈C\D f̃`+
∑

`∈C∩D f̃`.

Since C, D ∈ FF , using Theorem 2.3 we have
∑

`∈C f̃` =
∑

`∈D f̃` = 0. Hence,
from (a) we see that (i)⇐⇒ (ii). By the definition of symmetric difference C4D,
the implication (i)⇐⇒ (ii) and (b) above, it follows that (i)=⇒ (iii). Conversely, if
(iii) holds, then from (b) we have

∑
`∈C∪D f̃` =

∑
`∈C∩D f̃`. But from (a), when

C, D ∈ FF we have
∑

`∈C∪D f̃`=−
∑

`∈C∩D f̃`. Hence (iii)=⇒ (ii). Thus (i)–(iii)
are equivalent. Using (c) above, we conclude that (iv)⇐⇒ (ii). �

The above proposition gives some necessary conditions for a given poset to be a
factor poset of a frame.



FACTOR POSETS OF FRAMES AND DUAL FRAMES IN FINITE DIMENSIONS 241

Proposition 3.5. Let F = { fi }i∈I ⊆Hn
\ {0} be a finite frame with corresponding

factor poset FF . Then for any m ∈N with m ≥ |I | = k, there exists a frame sequence
G = {g j } j∈J ⊆Hn

\ {0}, where J = {1, . . . ,m}, such that FF = FG .

Proof. We show that there exists some gk+1 ∈ Hn
\ {0} so that G = F ∪ {gk+1}

satisfies FF = FG . Consider

T =
{
−

∑
`∈L

f̃` :∅( L ⊆ I
}
.

This is a finite collection of vectors in Rn(n−1) or C3n(n−1)/2. Now select gk+1 ∈

Hn
\ {0} so that g̃k+1 /∈ T . This completes the proof. �

Definition 3.6. For a frame F ={ fi }i∈I ⊆Hn and its factor poset FF , we define the
empty cover of FF , denoted EC(FF ), to be the set of J ∈ FF which cover ∅ ∈ FF ;
that is,

EC(FF )=
{

J ∈ FF : J 6=∅ and 6 ∃J ′ ∈ FF with ∅( J ′ ( J
}
.

Example 3.7. Let F = {e1, e2,−e1,−e2} ⊆ R2. As seen from Example 3.3,

EC(FF )=
{
{1, 2}, {2, 3}, {3, 4}, {4, 1}

}
.

We now show that a factor poset is entirely determined by its empty cover.

Proposition 3.8. Let F = { fi }i∈I ⊆Hn be a finite frame. If FF is the factor poset
of F , then for any nonempty J in FF \EC(FF ), there exists J1, J2 ∈ FF with J1 ( J
and J2 ( J so that J1 ∩ J2 =∅ and J1 t J2 = J .

Proof. Let J ∈ FF \EC(FF ) be a nonempty set. There must exist some nonempty
J1 ∈ FF so that J1 ( J , otherwise J ∈ EC(FF ). Using Proposition 3.4, it is easy
to see that J2 := J \ J1 ∈ FF . By the assumption on J and J1, we see that J2 is
nonempty. Hence J = J1 t J2. �

Corollary 3.9. Let F = { fi }i∈I ,G = {gi }i∈I be finite frames in Hn with factor
posets FF and FG , respectively. Then EC(FF )= EC(FG) if and only if FF = FG .

Proof. It is obvious that if FF = FG then the empty covers are equal, so we restrict
our attention to the other direction. It suffices to show that the factor poset of
the frame is entirely determined by its empty cover. Let T = EC(FF )∪ {∅} for
a frame F = { fi }i∈I ⊆ Hn with FF as its factor poset. For every J1, J2 ∈ T , if
J1∩ J2 ∈ T then append J1∪ J2 to T . Repeat this process until no more unions can
be added. This process must terminate after finitely many iterations since I is finite.
Clearly the new collection of sets, which we again denote by T , is contained in FF .
From Proposition 3.8, the reverse inclusion holds. Therefore the factor poset FF is
determined by EC(FF )∪ {∅}. The desired result follows. �
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As a consequence of Corollary 3.9, we get an alternate proof of the following
result from [Lemvig et al. 2014].

Corollary 3.10. Every tight frame F = { fi }i∈I ⊆Hn
\{0} can be written as a union

of prime tight frames.

The proof of Corollary 3.10 follows from observing that if J ∈ EC(FF ) then
{ f j } j∈J is a prime tight frame. An important case of factor posets occurs when we
consider a tight frame F = { fi }i∈I ⊆Hn

\ {0}. Note that when F is tight, we have
that ∅, I ∈ FF .

Definition 3.11. Suppose F = { fi }i∈I ⊆Hn
\ {0} is a frame. Let χ(F) denote the

sequence indexed by I , where χ(F)(i) is the number of times i occurs in EC(FF )

for each i ∈ I . We call χ(F) the characteristic of F . If χ(F)(i)= m for all i ∈ I
then F is said to have uniform characteristic.

Example 3.12. Let F = {e1, e1, e2} ⊆ R2. Then EC(FF ) = {{1, 3}, {2, 3}} and
χ(F)= (1, 1, 2). Hence χ(F) need not be uniform.

Proposition 3.13. If F = { fi }i∈I ⊆ Hn
\ {0} has positive uniform characteristic,

then F is a tight frame.

Proof. Suppose that F has uniform characteristic m > 0. Let T1, . . . , Th be the
elements of EC(FF ). Then

∑
i∈Tq

f̃i = 0 for q = 1, . . . , h. So
∑h

q=1
∑

i∈Tq
f̃i = 0.

Since j ∈ I occurs in EC(FF ) m times, it follows that f̃ j occurs m times in the sum∑
q
∑

i∈Tq
f̃i = 0. Hence ∑

j∈I

f̃ j =
1
m

(∑
q

∑
i∈Tq

f̃i

)
= 0.

Hence F is a tight frame. �

Remark 3.14. The condition in Proposition 3.13 is sufficient but not necessary.
Consider the frame F = {e1, e1, e2, e2, e1+ e2, e1− e2}, which is a tight frame, but
χ(F)= (2, 2, 2, 2, 1, 1).

The following theorem states that given a factor poset P of a frame in R2, we
can find another frame with vectors parallel to e1 and e2 (the standard orthonormal
basis vectors) whose factor poset is also P .

Theorem 3.15. Let F = { fi }i∈I ⊆ R2
\ {0} be a finite frame with I = {1, . . . , k}.

Then there exists a frame G = {gi }i∈I whose vectors are scaled multiples of the
standard orthonormal basis vectors e1 and e2 such that FF = FG .

Proof. Let {J` : 1≤ `≤ 2k
} be an enumeration of 2I and let

2I
\ FF =

{
J`r :

∑
i∈J`r

f̃i 6= 0
}
.
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Consider a projection P of rank 1 on R2 such that range(P) 6=
(
span

{∑
i∈J` f̃i

})⊥
for any J`. Let Ṽ = {P( f̃i ) : 1≤ i ≤ k} and V be the set of vectors of cardinality k
in R2 whose diagram vectors are equal to the set Ṽ .

We now claim that
∑

i∈J` f̃i = 0 if and only if
∑

i∈J` P( f̃i ) = 0. The forward
implication is clear. Now assume

∑
i∈J` P( f̃i )= 0. Then

∑
i∈J` f̃i ∈ ker(P). By

the choice of P , we have that ker(P) ∩
(
span

{∑
i∈J` f̃i

})
= {0} for all J` ∈ 2I .

Therefore,
∑

i∈J` f̃i ∈ ker(P) if and only if
∑

i∈J` f̃i = 0. This proves the claim.
Now assume that FF contains something other than the empty set. Then F has a

tight subframe. Hence there exists some J ′∈2I such that
∑

i∈J ′ f̃i =0. This implies∑
i∈J ′ P( f̃i )= 0. Because f̃i 6= 0 for each i ∈ J ′, we know P( f̃i ) 6= 0. By assump-

tion, range(P)= span{v}, where v is a unit vector. Then there exist nonzero scalars
{αi }i∈J ′ such that αiv = f̃i for each i ∈ J ′. Since 0=

∑
j∈J ′ P( f̃ j )=

∑
j∈J α jv

and α j 6= 0, we have s, t ∈ J ′ such that sgn(αs)=− sgn(αt). Since f̃s = αsv and
f̃t = αtv, we must have corresponding vectors in V that are nonzero and orthogonal.
Since any two nonzero orthogonal vectors span R2, the vectors in V must span R2

and hence form a frame.
Suppose J` ∈ FF . Then

∑
i∈J` f̃i = 0. From the claim,

∑
i∈J` f̃i = 0 if and only if∑

i∈J` P( f̃i )= 0. Hence J` ∈FV . The reverse direction is similar, and thus FF =FV .
Since rank(P)= 1, there exists a unitary operator U such that Uv = e1. Hence

UP( f̃i )=

[
λi

0

]
for some λi ∈ R. Define g as

gi :=

{
[
√
λi 0]T λi ≥ 0,

[0
√
−λi ]

T λi < 0.

Let G = {gi }i∈I . It easily follows that UP( f̃i )= g̃i . Moreover
∑

i∈J` P( f̃i )= 0 if
and only if

∑
i∈J` UP( f̃i )= 0. Therefore FG = FV = FF . �

Remark 3.16. Based on the above Theorem 3.15, we propose the following inverse
factor poset problem: given a poset P ⊆ 2I , does there exist a frame F ⊆ Rn such
that FF = P?

4. Dual frames

For a given frame F , we define the set WF as

WF :=

{
W =

[
← w1 →...
← wn →

]
: w̄i ∈ ker(θ∗F )

}
.

Then, by the result in [Li 1995; Christensen et al. 2012], we have the following
observation.
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Observation 4.1. Let F be a frame for Hn . Then any dual frame to a frame F can
be expressed as columns of the matrix

σ−1
F θ∗F +W (2)

for some W ∈WF .

For a given frame F , let G = {σ−1
F θ∗F +W :W ∈WF } be the set of all matrices

whose columns form duals of F . Define the operation ⊕ : G×G→ G by

(σ−1
F θ∗F +W1)⊕ (σ

−1
F θ∗F +W2) := σ

−1
F θ∗F +W1+W2.

Proposition 4.2. Let F be a frame and let G = {σ−1
F θ∗F +W : W ∈ WF }. Then

(G,⊕) defines an abelian group.

Proof. For any W1,W2 ∈ W , since ker(θ∗F ) is a vector space, W1 + W2 ∈ W ,
which implies that G is closed under ⊕. Associativity and commutativity follow
from associativity and commutativity of matrix addition, and the identity is given
by σ−1

F θ∗F . Each element σ−1
F θ∗F +W ∈ G has an inverse σ−1

F θ∗F −W . �

Proposition 4.3. Let F be a tight frame. Suppose that G ∈ {σ−1
F θ∗F+W :W ∈WF }

is a matrix whose columns form a tight frame. Then the subgroup generated by G is
contained in the set of matrices whose columns form tight duals of F.

Proof. Let σF = λIn . Then G = 1
λ
θ∗F +W for some W ∈WF , where W W ∗ = α In

for some α ∈ R. If H = 1
λ
θ∗F +mW for some m ∈ N, then H∗H =

( 1
λ
+m2α

)
In ,

which completes the proof. �

The following example shows that in general, it is not true that the set of matrices
in G whose columns form a tight frame is a subgroup of (G,⊕).
Example 4.4. Let F be the frame where the synthesis operator θ∗F is given by

θ∗F =

[
1 0 0 0
0 1 0 0

]
.

Then the set of all matrices whose columns form a dual of F is

G =
{[

1 0 a b
0 1 c d

]
: a, b, c, d ∈ R

}
.

We consider the two matrices

A =
[

1 0 0 1
0 1 1 0

]
, B =

[
1 0 1 0
0 1 0 1

]
.

Then A, B ∈ G, and the columns of A and B form a tight dual of F . However, the
columns of

A⊕ B =
[

1 0 1 1
0 1 1 1

]
do not form a tight dual of F .
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We study the relationship between the factor posets for a tight frame and its
canonical dual. Recall that an isomorphism on posets (P1,≤1), (P2,≤2) is a
bijection φ : P1→ P2 so that φ(a)≤2 φ(b) if and only if a ≤1 b for all a, b ∈ P1.
We define a stronger notion of order isomorphism. We let Sm denote the symmetric
group on m elements.

Definition 4.5. We say that two factor posets FF and FG corresponding to frames
F = { fi }i∈I and G = {g j } j∈J are strongly isomorphic if there exists some m ∈N

and some η ∈ Sm such that η(FF )= η(FG), where η(FF )= {η(J ′) : J ′ ∈ FF } and
η(J ′)= {η( j) : j ∈ J ′}.

If FJ is a tight subframe of a λ-tight frame F = { fi }i∈I for some J ⊆ I , then∑
i∈J f̃i = 0 so that we have∑

i∈J

σ−1
F f̃i =

∑
i∈J

1
λ2 f̃i = 0.

This implies that {σ−1
F fi }i∈J is a tight frame. Thus we have the following result.

Proposition 4.6. A tight frame F and its associated canonical dual frame {σ−1
F fi }

k
i=1

have the same factor posets.

This result does not hold true for nontight frames and their canonical duals. For
example, the factor poset of the following frame F and its canonical dual are not
strongly isomorphic:

F =

{[
1
0

]
,

[
0
1

]
,

[
3989
√

15912321
100

0

]
,

[
0

3989
10

]}
.

Proposition 4.7. There exist a frame F such that no dual G of F has a factor poset
structure that is strongly isomorphic to FF .

Proof. Let F = {e1, e1, e2} be a frame for R2, where {e1, e2} is the standard
orthonormal basis of R2. Let G be an arbitrary dual of F ; then by Observation 4.1,

θ∗G =

[ 1
2 + a 1

2 − a 0
b −b 1

]
for some a, b ∈ R. We consider the poset FF = {∅, {1, 3}, {2, 3}}. We know that
two vectors in R2 form a tight frame if and only the vectors are orthogonal and are
of equal norm. If F and G have strongly isomorphic poset structures, then two of
the vectors of G must be orthogonal to the remaining vector in G, and all three
vectors have equal norms. This is impossible. �

From the dual expression given in (2), we obtain a characterization of tight duals
of a tight frame. The following result is remarked in [Krahmer et al. 2013]; the
proof given here is different.
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Theorem 4.8. Let F be a λ-tight frame with k frame elements for Hn . If k < 2n,
then the canonical dual is the only tight dual of F. If k ≥ 2n then F has an alternate
dual that is tight.

Proof. Let G be a dual frame of F . Since θ∗G =
1
λ
θ∗F+W for some W ∈W , we have

that θ∗GθG =
1
λ

In +W W ∗. This implies that G is tight if and only if W W ∗ = α In

for some α ∈ R. If k < 2n, since dim(ker(θ∗F )) < n, we have α = 0. This implies
that if k < 2n, then the canonical dual is the only tight dual of F . Let k ≥ 2n and let
{w̄ j }

k−n
j=1 be an orthonormal basis for ker(θ∗). Then for any α ∈H\{0}, we consider

W = α

[
← w1 →...
← wn →

]
.

Since W ∈W , we have
( 1
λ
θ∗F +W

)( 1
λ
θ∗F +W

)∗
=
( 1
λ
+|α|2

)
In , which implies that

the columns of 1
λ
θ∗F +W form a tight dual frame of F . �

Remark 4.9. We close this section with a simple and well-known construction for
dual frames. Suppose F = { fi }i∈I is a frame for Hn and H = { fi } j∈J is a subframe
of F . If K = {gi }i∈J is a dual of H , then G = {gi }i∈I , where

gi =

{
gi if i ∈ J,
0 if i ∈ I\J

is a dual of F . Because any frame has a basis subframe, we have that if F = { fi }
k
i=1

is a frame for Hn , then there exists a dual of F consisting of n basis vectors for Hn

and (k− n) zero vectors. Likewise, if a frame in Hn has a tight subframe, then it
has a tight dual.

5. ` p-norm of the frame coefficients

It is well known that the `2-norm of the frame coefficients with respect to the canoni-
cal dual is smaller that the `2-norm of the frame coefficients with respect to any other
dual. Moreover, this `2-minimization characterizes the canonical dual of a frame.

Proposition 5.1 [Han et al. 2007]. Let { fi }
k
i=1 be a frame for Hn and let {gi }

k
i=1 be

a dual frame of { fi }
k
i=1. Then {gi }

k
i=1 is the canonical dual if and only if

k∑
i=1

|〈 f, gi 〉|
2
≤

k∑
i=1

|〈 f, hi 〉|
2 for all f ∈Hn

for all frames {hi }
k
i=1 which are duals of { fi }

k
i=1.

Using Newton’s generalized binomial theorem and Hölder’s inequality, for any
two sequences x = {xi }

k
i=1 and y = {yi }

k
i=1 and p ∈ (1,∞), we have

‖x‖p ≤ ‖x‖1 ≤ k1−1/p
‖x‖p, (3)
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where ‖x‖p =
(∑k

i=1 |xi |
p
)1/p. The right-side inequality in (3) with p = 2 and

Proposition 5.1 gives us the following result:

Proposition 5.2. Let { fi }
k
i=1 be a frame for Hn and let {hi }

k
i=1 be a dual frame

of { fi }
k
i=1. If {gi }

k
i=1 is the canonical dual, then

k∑
i=1

|〈 f, gi 〉| ≤
√

k
k∑

i=1

|〈 f, hi 〉| for all f ∈Hn.

From the inequalities (3) and Proposition 5.2, for any p ∈ (1,∞), we obtain

k∑
i=1

|〈 f, gi 〉|
p
≤ k3p/2−1

k∑
i=1

|〈 f, hi 〉|
p for all f ∈Hn.

If p > 2, we have a better estimation.

Theorem 5.3. Let { fi }
k
i=1 be a frame for Hn and let {hi }

k
i=1 be a dual frame

of { fi }
k
i=1. If {gi }

k
i=1 is the canonical dual, then for any p ∈ (2,∞), we have

k∑
i=1

|〈 f, gi 〉|
p
≤ k p/2−1

k∑
i=1

|〈 f, hi 〉|
p for all f ∈Hn.

Proof. First observe that the right-side inequality with p/2 implies that

k∑
i=1

|〈 f, hi 〉|
p
=

k∑
i=1

(|〈 f, hi 〉|
2)p/2

≥ k1−p/2
( k∑

i=1

|〈 f, hi 〉|
2
)p/2

.

By Proposition 5.1 and the left-side inequality with p/2, we have that

k∑
i=1

|〈 f, hi 〉|
p
≥ k1−p/2

( k∑
i=1

|〈 f, gi 〉|
2
)p/2

≥ k1−p/2
k∑

i=1

|〈 f, gi 〉|
p. �
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