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In this paper, we consider the n×n matrix whose (i, j)-th entry is i j (mod n) and
compute its rank and a basis for its kernel (viewed as a matrix over the real num-
bers) when n is prime. We also give a conjecture on the rank of this matrix when n
is not prime and give a set of vectors in its kernel, which is a basis if the conjecture
is true. Finally, we include an application of this problem to number theory.

1. Introduction

When learning modular arithmetic, it is a natural exercise to consider the multipli-
cation table modulo an integer n. This table can be seen as an n× n matrix whose
entries are positive integers. A question in linear algebra, which is interesting by
itself, is to determine the rank or, even better, a basis for the kernel, of this matrix
over the real numbers.

In this paper, we denote by Cn the n× n matrix given by

Cn(i, j)= i j (mod n), i, j = 1, . . . , n, (1)

where Cn(i, j) denotes the (i, j)-th entry of Cn .
Using techniques from matrix analysis and analytic number theory, we find the

rank and a basis for the kernel of Cn when n is prime. When n is composite, we
give a conjecture on the rank of Cn and a set of vectors in the kernel of Cn that is a
basis of the kernel if the conjecture is true.

Since the last row and column of Cn are both zero, the matrix Hn , obtained
from Cn by deleting that row and that column, has the same rank as Cn . Moreover,
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it is easy to find a basis for the kernel of Cn from the kernel of Hn . Therefore, most
of the paper will be focused on studying the kernel of Hn .

As an example, for n = 5, we have

H5 =


1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

 .
The paper is organized as follows. In Section 2, we use a matrix theory approach

to study the (n− 1)× (n− 1) matrix Hn . In particular, we give a block-diagonal
matrix similar to Hn (Lemma 7) and use it to give a set of vectors in the kernel
of Hn . This result allows us to obtain nontrivial lower and upper bounds for the
rank of Hn for general n (Corollary 12). A conjecture for the exact value of this
rank is also presented (Conjecture 16). In Section 3, we obtain the main result of
the paper (Theorem 42) which describes the rank of the n× n matrix Cn when n is
prime and gives a basis for its kernel. The proof of the rank result is done using
techniques from character theory and analytic number theory. In Section 4, we
present an application to number theory that motivated our work.

2. The kernel of the matrix Hn

We now present some properties of the matrix Hn for general n and use them to
study the kernel of Hn . We first introduce some notation and recall some definitions.

We denote by Mn,m the set of n×m matrices with entries in R. We abbreviate
Mn,n to Mn .

We denote by R the exchange matrix (also called the flip-transpose of the identity
matrix I ) of appropriate size, that is,

R :=

0 . . . 1
... . . .

...

1 . . . 0

 .
Note that R2

= I .

Definition 1. Let A ∈ Mn .

• The matrix A is called symmetric if A = AT .

• The matrix A is called persymmetric if A = RAT R.

• The matrix A is called centrosymmetric if A = RAR.

• The matrix A is called bisymmetric (or symmetric centrosymmetric, or doubly
symmetric) if it is symmetric and centrosymmetric.
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Remark 2. If A ∈ Mn is persymmetric, then RA is symmetric. Also, if A is
symmetric and centrosymmetric (resp. persymmetric), then A is persymmetric
(resp. centrosymmetric).

Note that A ∈ Mn is bisymmetric if

A(i, j)= A( j, i) and A(i, j)= A(n+ 1− i, n+ 1− j), i, j = 1, . . . , n.

This means that being bisymmetric is equivalent to being symmetric with respect
to the main diagonal and being symmetric with respect to the antidiagonal. A look
at H5 shows that this matrix is bisymmetric.

Lemma 3. Let n ∈ N. The matrix Hn ∈ Mn−1 is bisymmetric.

Proof. The matrix Hn is symmetric since Hn(i, j)= i j (mod n)= Hn( j, i). Addi-
tionally, Hn is centrosymmetric since

(n− i)(n− j) (mod n)= i j (mod n),

which implies that Hn(i, j)= Hn(n− i, n− j). �

The following result follows from some well-known properties of bisymmetric
matrices [Cantoni and Butler 1976, Lemma 2].

Lemma 4. If n is odd, then Hn has the form

Hn =

[
A RBR
B RAR

]
(2)

for some symmetric A ∈ M(n−1)/2 and persymmetric B ∈ M(n−1)/2.
If n is even, then Hn has the form

Hn =

A x RBR
xT q xT R
B Rx RAR

 (3)

for some q ∈ C, x ∈ M(n−2)/2,1, symmetric A ∈ M(n−2)/2 and persymmetric
B ∈ M(n−2)/2.

Next we give an explicit expression for the number q and the vector x in the
block representation of Hn given in Lemma 4 when n is even.

Lemma 5. If n is even, then the number q in (3) is given by0 if n ≡ 0 (mod 4),
n
2

if n 6= 0 (mod 4).

Proof. We have

q = Hn

(n
2
,

n
2

)
=

n
2
·

n
2
(mod n).
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If n ≡ 0 (mod 4), then n = 4k for some positive integer k. Thus,
n
2
·

n
2
(mod n)= kn (mod n)= 0.

If n 6= 0 (mod 4), then, since n is even, we know that n = 4k+ 2 for some positive
integer k, and

n
2
·

n
2
(mod n)= kn+ 2k+ 1 (mod n)= 2k+ 1= n

2
. �

Lemma 6. If n is even, then the column vector x in (3) is given by

x(i)=


n
2

if i is odd,

0 if i is even,
i = 1, 2, . . . , n−2

2
,

where x(i) denotes the i-th component of x.

Proof. Note that x is located in the (n/2)-th column of Hn . Thus, x(i)= Hn(i, n/2)
for i = 1, 2, . . . , (n− 2)/2. If i = 2k for some positive integer k, then

Hn

(
i, n

2

)
= kn (mod n)= 0.

Now, if i = 2k+ 1 for some positive integer k, then

Hn

(
i, n

2

)
= kn+ n

2
(mod n)= n

2
. �

Taking into account Lemma 4, we next obtain a symmetric block-diagonal matrix
similar to Hn for all n. This result also follows from [Cantoni and Butler 1976,
Lemma 3]. Observe that A− RB and A+ RB, where A and B are as in Lemma 4,
are symmetric matrices since RB is symmetric by Remark 2.

Lemma 7. (1) Suppose that n is odd and let Hn be expressed as in (2). Then,

K Hn K−1
=

[
A− RB 0

0 A+ RB

]
, where K =

[
I −R
I R

]
.

(2) Suppose that n is even and let Hn be expressed as in (3). Then,

K Hn K−1
=

A− RB 0 0
0 A+ RB

√
2x

0
√

2xT q

 , where K =

I 0 −R
I 0 R
0
√

2 0

 .
As a consequence of the previous result, the study of the kernel of the bisymmetric

matrix Hn can be reduced to the study of the kernel of the diagonal blocks of the
block-diagonal matrix similar to Hn given in Lemma 7. In fact, when n is odd, if
{u1, . . . , u j } is a basis for the kernel of A− RB and {u j+1, . . . , u j+k} is a basis for
the kernel of A+ RB, then {K−1w1, . . . , K−1w j+k} is a basis for the kernel of Hn,

where wi = [ui 0]T ∈ Mn−1,1 for i ≤ j , and wi = [0 ui ]
T
∈ Mn−1,1 for i > j .
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Analogously, when n is even, if {u1, . . . , u j } is a basis for the kernel of A− RB
and {u j+1, . . . , u j+k} is a basis for the kernel of[

A+ RB
√

2x
√

2xT q

]
, (4)

then {K−1w1, . . . , K−1w j+k} is a basis for the kernel of Hn, where each wi is
defined as before. Note that, if n = 2, the matrix A− RB is empty.

In what follows, we denote by A+RB the symmetric matrix A+ RB if n is
odd and [

A+ RB 2x
2xT 2q

]
(5)

if n is even. Clearly, A+RB ∈ Mbn/2c. Note that v is in the kernel of the matrix (4)
if and only if [

I(n−2)/2 0
0

√
2/2

]
v

is in the kernel of the matrix (5). In particular, the matrices (4) and (5) have the
same rank.

Next we give an explicit expression for the symmetric matrix A+RB.

Lemma 8. The matrix A+RB ∈ Mbn/2c is given by

(A+RB)(i, j)=
{

0 if n divides i j ,
n otherwise,

i, j = 1, . . . ,
⌊n

2

⌋
.

Proof. Recall that A, B ∈ Mb(n−1)/2c. Suppose that 1≤ i, j ≤ b(n−1)/2c. We have

A(i, j)= Hn(i, j)

and
RB(i, j)= B

(⌊n+1
2

⌋
− i, j

)
= Hn(n− i, j).

Thus, for 1≤ i, j ≤ b(n− 1)/2c,

(A+RB)(i, j)= Hn(i, j)+ Hn(n− i, j)

= i j (mod n)+ (n− i) j (mod n)

= i j (mod n)+ (−i j) (mod n),

which implies the claim for the entry in position (i, j). If n is odd, the proof is
complete. Now suppose that n is even. By Lemma 5,

(A+RB)
(n

2
,

n
2

)
= 2q =

{
0 if n ≡ 0 (mod 4),
n if n 6= 0 (mod 4).
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Since n divides (n/2)2 if and only if n ≡ 0 (mod 4), the result follows for (i, j)=
(n/2, n/2).

Now we consider the case j = n/2, where 1≤ i ≤ n/2− 1. By Lemma 6,

(A+RB)
(

i, n
2

)
= 2x(i)=

{
n if i is odd,
0 if i is even.

Since n divides in/2 if and only if i is even, the result follows for the entries in
positions (i, n/2). Taking into account that A+RB is symmetric, the result also
follows for the entries in positions (n/2, j), where 1≤ j ≤ n/2− 1. �

Next we compute the rank of A+RB in terms of the proper divisors of n. We
call a proper divisor of n, where n is a positive integer, a positive divisor of n
different from n. Note that any proper divisor of n is less than or equal to bn/2c.

Lemma 9. Let n be a positive integer and k be the number of proper divisors of n.
Then, rank(A+RB)= k.

Proof. Let i ∈ {1, . . . , bn/2c}. If gcd(i, n)= 1, then n is not a divisor of i j for all
j = 1, . . . , bn/2c. By Lemma 8, (A+RB)(i, j)= n for all j = 1, 2, . . . , bn/2c.

If gcd(i, n) 6= 1 and i has order m in Zn (that is, m is the smallest possible integer
such that mi ≡ 0 (mod n)), then, by Lemma 8, (A+RB)(i, j) = 0 if and only if
j = ms for some positive integer s. Moreover, the nonzero entries in the i-th row
are equal to n. Thus, from the comments above, we conclude that there are at most
k distinct rows in A+RB, corresponding to the k proper divisors of n. Moreover,
one of these rows has all entries equal to n, while the remaining have the first zero
entry in distinct columns and have all the nonzero entries equal to n. Note that
distinct proper divisors have distinct orders. By elementary row operations, it can
be seen that these k rows are linearly independent, which proves the result. �

Remark 10. When n is prime, Lemma 9 implies that rank(A+RB)= 1.

Another immediate consequence of Lemma 9 is given in the next corollary.

Corollary 11. Let n be a positive integer and k be the number of proper divisors
of n. Then,

dim(ker(A+RB))=
⌊n

2

⌋
− k.

Since, from Lemma 7,

rank(Hn)= rank(A− RB)+ rank(A+RB) and rank(A− RB)≤
⌊n−1

2

⌋
,

from Lemma 9 we get the next result.

Corollary 12. Let n be a positive integer and let k be the number of proper divisors
of n. Then,

k ≤ rank(Hn)≤
⌊n−1

2

⌋
+ k.
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Next we compute a basis for the kernel of A+RB when n > 2. Note that when
n = 2, the kernel of A+RB only contains the zero vector by Corollary 11. We
start with a technical lemma.

Lemma 13. Let n be a positive integer. For each j ∈ {1, 2, . . . , bn/2c}, let d j =

gcd( j, n). Then, for 1 ≤ i ≤ bn/2c, we have (A+RB)(i, j) = 0 if and only if
(A+RB)(i, d j )= 0.

Proof. Note that, from Lemma 8, the statement (A+RB)(i, j)= 0 if and only if
(A+RB)(i, d j )= 0 is equivalent to n divides i j if and only if n divides id j .

Suppose that n divides i j . Then, there exists a positive integer k such that nk= i j .
Since gcd( j, n)= d j , we have d j = j x + ny for some x, y ∈ Z, x 6= 0. Thus,

nk = i
(

d j − ny
x

)
,

which implies n(xk+ iy)= id j and, therefore, n divides id j .
Suppose now that n divides id j . Since d j divides j , we have id j divides i j and,

therefore, n divides i j . �

We denote by ei the vector of appropriate size whose entries are 0 except the
entry in position i which is 1.

Theorem 14. Let n > 2. The set of vectors u j := e j − ed j ∈ Mbn/2c,1, with
j ∈ {1, . . . , bn/2c}, where j is not a divisor of n and d j = gcd( j, n), forms a
basis for ker(A+RB).

Proof. First we show that the vectors u j are in the kernel of A+RB. Note that, by
the definition of u j , the i-th entry of the vector (A+RB)u j is (A+RB)(i, j)−
(A+RB)(i, d j ). By Lemma 8, each entry of A+RB is either n or 0 and, by
Lemma 13, (A+RB)(i, j) = 0 if and only if (A+RB)(i, d j ) = 0. This implies
that (A+RB)u j = 0 for all u j , as desired.

Next, we show that the vectors u j form a linearly independent set. Let U be
the matrix whose columns are the vectors u j and let J be the set of integers in
{1, . . . , bn/2c} that are not divisors of n. Notice that if j1, j2∈ J , then j1 6=d j2 since,
if j1 = d j2 = gcd( j2, n), then j1 would divide n. This implies that the submatrix
of U formed by the rows indexed by J is a row permutation of the identity matrix
of size |J |, which shows that U has full rank.

We have obtained a set of |J | linearly independent vectors in the kernel of
A+RB. Since the largest proper divisor of n is less than or equal to bn/2c, we
have |J |=bn/2c−k, where k is the number of proper divisors of n. By Corollary 11,
the result follows. �

Example 15. Let n = 24. Then dim(ker(A+RB)) = 5 and the set J defined in
the proof of Theorem 14 is given by {5, 7, 9, 10, 11}. A basis for ker(A+RB) is
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given by the vectors

−1
0
0
0
1
0
0
0
0
0
0
0



,



−1
0
0
0
0
0
1
0
0
0
0
0



,



0
0
−1

0
0
0
0
0
1
0
0
0



,



0
−1

0
0
0
0
0
0
0
1
0
0



,



−1
0
0
0
0
0
0
0
0
0
1
0



.

Though we could not find appropriate techniques from matrix theory to show it,
numerical experiments in Matlab, in which the rank of Hn was computed for any n
from 2 to 1000, suggest the following conjecture. Recall that rank(Cn)= rank(Hn),
where Cn is the matrix defined in (1).

Conjecture 16. Let n be a positive integer and let k be the number of proper
divisors of n. Then,

rank(Cn)= rank(Hn)=
⌊n−1

2

⌋
+ k.

Clearly, the conjecture holds when n = 2. In the next section we prove the
conjecture when n is prime. The result when n is not prime remains open.

Remark 17. Because of Lemmas 7 and 9, it follows that, if Conjecture 16 is true
and n > 2, then A− RB is a nonsingular matrix. Note that, if n = 2, the matrix
A− RB is empty and A+RB is nonsingular as well.

3. The rank of the matrix Hn when n is prime

In this section we compute the rank of the matrix Hn , when n is prime, using
techniques from character theory and analytic number theory.

We start with some basic concepts and lemmas that will be used to obtain the
main result.

Definition 18 (character [Apostol 1976, Section 6.5]). Let G be a group and let C

denote the set of complex numbers. A function f :G→C is called a character of G if

(i) f is a group homomorphism of G, that is, f (g1g2) = f (g1) f (g2) for all
g1, g2 ∈ G; and

(ii) f (g) 6= 0 for some g ∈ G.
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The set of characters of a finite group G is also a group with respect to the group
operation of pointwise multiplication defined by ( f1 · f2)(g)= f1(g) f2(g) [Apostol
1976, Section 6.6]. This group is denoted by Ĝ. The identity element of Ĝ is the
character f I given by f I (g) = 1 for all g ∈ G. The inverse of a character f is f̄
given by f̄ (g)= f (g) for all g ∈ G, where f (g) is the complex conjugate of f (g).
The identity element of Ĝ is called the principal character of G, while the other
characters are called nonprincipal characters of G. Note that any character of G
maps the identity element of G to 1.

According to the next result, if f is a character of a finite group G, the range of
a character of G lies on the unit circle. We recall that if G is a finite group with
identity element e, then the exponent of G is the least positive integer k such that
gk
= e for all g ∈ G.

Proposition 19 [Apostol 1976, Theorem 6.7]. Let G be a finite group with identity
element e and let f ∈ Ĝ. Then, f (e)= 1 and each function value f (g) is an m-th
root of unity, where m is the exponent of G.

One may think that the set of characters of a group could potentially contain
many functions. The next theorem gives the exact number of characters when the
group is finite and abelian.

Proposition 20 [Apostol 1976, Theorem 6.8]. If G is a finite abelian group, then
|Ĝ| = |G|.

In particular, if G is a finite cyclic group of order n (in which case the exponent
of G equals the order of G) and g is a generator of G, then the n characters of G
are determined by sending g to the different n-th roots of unity in C.

Example 21. Let G be the additive group Z4. Then, there exist four characters
f1, f2, f3, f4 of G and each character value is in the set {1,−1, i,−i}, the 4th roots
of unity. Suppose that f1 is the principal character and f2, f3, f4 are defined by
f2(1) = −1, f3(1) = i and f4(1) = −i . Note that, since 1 is a generator of G
and characters are group homomorphisms, f2, f3, f4 are well-defined. We give the
range of the characters of G through a 4× 4 matrix A whose entry A(i, j) is given
by fi (g j ), where g1 = 0, g2 = 1, g3 = 2, and g4 = 3:

A =


1 1 1 1
1 −1 1 −1
1 i −1 −i
1 −i −1 i

 .
The following concept will be key in the proof of our main results.

Definition 22 (group matrix [Chan et al. 1998]). Let G be a finite group of order n.
Fix an enumeration {g1, . . . , gn} of the elements of G. For every complex-valued
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function α on G, the matrix Aα given by Aα(i, j) = α(gi g
−1
j ) is called a group

matrix associated to α.

Example 23. Let G be the additive group Z4 and let f2 be the character defined in
Example 21. Then, the following matrix is a group matrix associated to f2:

A f2 =


1 −i i −1
−1 1 −i i

i −1 1 −i
−i i −1 1

 .
In what follows, we let p denote a prime number. Next we show that the rank

of Hp can be computed by finding the rank of a group matrix. In particular, the next
lemma states that the matrix Hp can be obtained by permuting some columns of a
group matrix associated with a real-valued function on the multiplicative group Z×p
consisting of the units of Zp.

Lemma 24. Let p be a prime number. Let α : Z×p → N be given by α(m̄) = m,
where m̄ denotes the equivalence class mod p of m ∈ {1, 2, . . . , p− 1}. Then, Hp

is a column permutation of the group matrix Aα associated to α.

Proof. First recall that, since p is a prime number, the group Z×p is a cyclic group
under multiplication. Let ḡ, where g ∈ {1, 2, . . . , p−1}, be a generator for Z×p and
consider the enumeration of Z×p given by {gσ(1), gσ(2), . . . , gσ(p−1)}, where σ is a
permutation of {1, 2, . . . , p− 1} such that gσ(i) = i . Then,

Aα(i, j)= α(gσ(i)g−σ( j))= i j−1 (mod p).

Let π be the permutation of {1, 2, . . . , p− 1} such that π( j)= j−1. Now consider
the matrix Ãα obtained from Aα by permuting its columns as follows: column j
of Ãα is column π( j)= j−1 of Aα. Then, Ãα = Hp is obtained by permuting the
columns of Aα and the result follows. �

The previous lemma implies that rank(Hp)= rank(Aα).
We next characterize the eigenvalues of a group matrix of a finite abelian group, as-

sociated to an injective function, and show that it is diagonalizable, implying that its
rank is the number of its nonzero eigenvalues. For this purpose, we present the next
lemma which gives the spectrum of a group matrix associated to an integer-valued
injective function in terms of the values of the characters of G at an element of the
group ring Z[G], when G is a finite abelian group. Note that any character in the char-
acter group of G can be extended by linearity to a complex-valued function on Z[G].

Lemma 25 [Chan et al. 1998; Jungnickel 1993, Theorem 7.7.4]. Let G be a finite
abelian group and α an injective function from G to N. Let a=

∑
g∈G α(g)g ∈Z[G].

Then, the group matrix Aα associated to α is diagonalizable and its spectrum is the
set { f (a) : f ∈ Ĝ}.
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Since Aα is diagonalizable, we can compute the rank of Aα by counting the
number of eigenvalues distinct from zero. Thus, rank(Aα)= |{ f ∈ Ĝ : f (a) 6= 0}|.

Remark 26. Taking into account Lemmas 24 and 25, in order to compute rank(Hp),
it is enough to determine the number of characters f in the character group of Z×p
such that

∑p−1
i=1 i f (ī) 6= 0.

Here, it becomes convenient to work with the so-called Dirichlet characters
whose definition we give below.

Definition 27 (Dirichlet character [Apostol 1976, Section 6.8]). Let n ∈ N and f
be any character of Z×n . The function χ : N→ C given by

χ(m)=
{

f (m̄) if n and m are relatively prime,
0 if n and m are not relatively prime

is called the Dirichlet character modulo n induced by f . The Dirichlet character
induced by the principal character is called the principal Dirichlet character mod-
ulo n. A Dirichlet character modulo n that is not the principal character is called
nonprincipal.

It is easy to see that Dirichlet characters modulo n are completely multiplicative
and periodic with period n [Apostol 1976, Theorem 6.15]; that is, if χ is a Dirichlet
character, then

• χ(x + n)= χ(x) for all x ∈ N;

• χ(xy)= χ(x)χ(y) for all x, y ∈ N.

Note that the number of Dirichlet characters modulo n equals the order of Z×n
since, by Proposition 20, the number of characters of a finite abelian group equals
its cardinality.

Example 28. The following table displays the Dirichlet characters for n = 5. We
obtain four functions since Z5 contains 4 units. We only give the values of the
functions on the set {1, . . . , 5} since these Dirichlet characters are periodic functions
of period 5:

x 1 2 3 4 5
χ1(x) 1 1 1 1 0
χ2(x) 1 −1 −1 1 0
χ3(x) 1 i −i −1 0
χ4(x) 1 −i i −1 0

Definition 29 (primitive Dirichlet character [Apostol 1976, Section 8.7]). If χ is a
Dirichlet character modulo n, we say that χ is primitive if for every proper divisor d
of n, there exists an integer a such that a≡ 1 (mod d), gcd(a, n)= 1, and χ(a) 6= 1.
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Example 30. Consider the Dirichlet characters modulo 5, given in Example 28.
The only proper divisor of 5 is 1. Note that χ1 is not primitive since χ1(a) = 1
whenever gcd(a, n)= 1. However, the rest of the Dirichlet characters are primitive
since χi (2) 6= 1 for i = 2, 3, 4.

The observations in the previous example can be generalized as follows.

Lemma 31 [Apostol 1976, Theorems 8.13 and 8.14]. The principal Dirichlet
character modulo n is not primitive. Moreover, if n is prime, all nonprincipal
Dirichlet characters modulo n are primitive.

Definition 32 (admissible Dirichlet character). Let χ be a Dirichlet character mod-
ulo n. We say that χ is admissible if

n−1∑
i=1

iχ(i) 6= 0.

Note, the principal Dirichlet character modulo p is admissible since
∑p−1

i=1 i 6= 0.
Taking into account Remark 26, we obtain the following.

Remark 33. If p is prime, the rank of Hp is equal to the number of admissible
Dirichlet characters modulo p.

In order to see which Dirichlet characters are admissible, we need some well-
known results from the theory of Dirichlet L-functions.

Definition 34 (Dirichlet L-function [Apostol 1976, Sections 11 and 12]). Let χ
be a Dirichlet character modulo n and s ∈ C with real part greater than 1. The
associated Dirichlet L-series is the absolutely convergent series given by

L(s, χ)=
∞∑

i=1

χ(i)
i s .

If χ is nonprincipal, L(s, χ) is a complex-valued function in s that can be analyti-
cally extended to an entire function on the whole complex plane [Apostol 1976,
Theorem 12.5]. This function is called a Dirichlet L-function and is also denoted
by L(s, χ).

The following is a well-known result in analytic number theory.

Lemma 35 [Apostol 1976, Thm. 12.20]. If χ is a nonprincipal Dirichlet character
modulo n, then

L(0, χ)=−1
n

n−1∑
i=1

iχ(i).

Remark 36. The admissible Dirichlet characters modulo p, where p is prime, are
exactly the principal Dirichlet character and the nonprincipal Dirichlet characters
such that L(0, χ) 6= 0.
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In order to determine when L(0, χ) 6= 0, we introduce the functional equation
for Dirichlet L-functions.

Let χ̄ denote the complex conjugate of the Dirichlet character χ .

Lemma 37 (functional equation [Apostol 1976, Theorem 12.11]). Let χ be a
primitive Dirichlet character modulo n. Then, for all s ∈ C, we have

L(1− s, χ)=
ns−10(s)
(2π)s

(
e−π is/2

+χ(−1)eπ is/2)G(1, χ)L(s, χ̄),
where 0(s) is the Gamma function and G(1, χ)=

∑n
r=1 χ(r)e

2π ir/n is the Gauss
sum associated with χ .

The following are well-known results in analytic number theory.

Lemma 38 [Apostol 1976, Theorem 8.15]. Let χ be a primitive Dirichlet character
modulo n. Then, G(1, χ) 6= 0.

Lemma 39 [Apostol 1976, Section 7.3]. Let χ be a nonprincipal Dirichlet charac-
ter modulo n. Then, L(1, χ) is finite and nonzero.

The next result gives necessary and sufficient conditions for a Dirichlet character
modulo p to be admissible.

Lemma 40. Let p > 2 be a prime number and consider the primitive (p−1)-th
root of unity w= e2π i/(p−1). Let ḡ be a generator of Z×p and let fk be the character
of Z×p defined by fk(ḡ) := wk−1, with k = 1, . . . , p − 1. Let χ1, . . . , χp−1 be
the Dirichlet characters modulo p induced by f1, . . . , fk , respectively. Then, for
k = 2, . . . , p− 1, we have χk is admissible if and only if k is even.

Proof. Since ḡ is a generator of Z×p , we have g p−1
≡ 1 (mod p) and gs

6= 1 (mod p)
for s = 1, . . . , p− 2. Thus, g(p−1)/2

≡−1 (mod p). So, for k = 2, . . . , p− 1, we
have χk(−1)= χk(g(p−1)/2)= (w(p−1)/2)k−1

= (−1)k−1. Therefore, χk(−1)=−1
if k is even and χk(−1) = 1 if k is odd. Since p is prime and χk is nonprincipal,
χk is primitive by Lemma 31. By Lemma 37,

L(0, χk)=
1

2π
(
−i +χk(−1)i

)
G(1, χk)L(1, χk).

Note that if χk is a nonprincipal Dirichlet character, then χ̄ is also nonprincipal.
Taking into account Lemmas 38 and 39, it follows that, if k is even, L(0, χk) 6= 0;
if k is odd, L(0, χk)= 0. Now the result follows from Remark 36. �

We can now give the rank of the matrix Hp when p > 2 is a prime number.

Lemma 41. Let p > 2 be a prime number. Then, rank(Hp)= (p+ 1)/2.

Proof. By Lemma 40, we have that the nonprincipal Dirichlet characters modulo p
χ2, χ4, . . . , χp−1 are admissible, while χ3, χ5, . . . , χp−2 are not admissible. Since,
by Remark 36, χ1 is admissible, the result follows taking into account Remark 33. �
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Observe that, by Lemma 41, we have that Conjecture 16 is true when n > 2 is
prime. Then, by Remark 17, Lemma 7, and Theorem 14, we can obtain a basis
for the kernel of Hp when p > 2 is prime (note that when p = 2, the kernel of Hp

is {0}). From this basis for the kernel of Hp, we can easily obtain a basis for the
kernel of C p, the p× p matrix whose (i, j)-th entry is i j (mod p).

Theorem 42. Let p > 2 be a prime number and C p ∈ Mp be defined by C p(i, j)=
i j (mod p). Let K be as in Lemma 7. Let u j := e j − e1 ∈ M(p−1)/2,1 and w j =

[0(p−1)/2, u j , 0]T ∈ Mp,1, with j = 2, . . . , (p − 1)/2. Then, the set of vectors
{K−1w2, . . . , K−1w(p−1)/2, ep} is a basis for the kernel of C p. In particular,
rank(C p)= (p+ 1)/2.

4. Application

We now present a number theoretic application of the problem we have considered
in this paper. This application, which motivated our work, appears in the context of
the study of Stickelberger relations on class groups of group rings.

Let G be a finite abelian group and let n be the order of G. Fix a primitive n-th
root of unity z. Then, for each g ∈ G and f ∈ Ĝ, there is a unique integer r , with
1≤ r ≤ n, such that f (g)= zr . We therefore can define the function

〈 · , · 〉 : G× Ĝ→Q/Z

given by

〈g, f 〉 =
{ r

n

}
,

where {r/n} denotes the fractional part of r/n.
Note that the group rings Q[G] and Q[Ĝ] are Q-vector spaces with dimension
|G| = |Ĝ|, and G and Ĝ are bases for Q[G] and Q[Ĝ], respectively. Thus, we may
extend the function above via linearity to

〈 · , · 〉 :Q[G]×Q[Ĝ] →Q

defined by 〈∑
g∈G

cgg,
∑
f ∈Ĝ

c f f
〉
=

∑
g∈G

∑
f ∈Ĝ

cgc f 〈g, f 〉,

where cg, c f ∈Q. Now consider the function h: Q[Ĝ] →Q[G] given by

h(a)=
∑
g∈G

〈g, a〉g for any a ∈Q[Ĝ]. (6)

We may view h as a linear map between two Q-vector spaces of dimension |G|.
An interesting problem, which motivated our work, is the study of the kernel of h.
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When the group G is cyclic (and, therefore, isomorphic to Zn for some n), we can
determine explicitly the matrix representation of h as the following lemma states.

Lemma 43. Let G be the additive group Zn and g be a generator of G. Let
Ĝ = { f1, f2, . . . , fn}, where fi (g) = zi−1 and z is a primitive n-th root of unity.
Then, the matrix representation Rn of h in the bases β1 = { f2, f3, . . . , fn, f1} and
β2 = {g, g2, . . . , gn−1, e} is given by

Rn(i, j)=
{ i j

n

}
=

i j (mod n)
n

, i, j = 1, 2, . . . , n.

Proof. For i, j = 1, . . . , n − 1, since f j+1(gi ) = zi j , the (i, j)-th entry of Rn is
given by

〈gi , f j+1〉 =

{ i j
n

}
=

i j (mod n)
n

.

Since f j (e)= 1= z0, we have 〈e, f j 〉 = 0 for j = 1, . . . , n, which implies that the
last row of Rn is zero. Since f1(gi )= 1= z0, we have 〈gi , f1〉 = 0 for i = 1, . . . , n,
and, then, the last column of Rn is zero. Thus, the claim follows. �

Note that

Rn =
1
n

Cn =
1
n

[
Hn 0
0 0

]
.

Finally, we observe that, although the function h given in (6) is defined be-
tween Q-vector spaces, the determination of the kernel and rank of the matrix
representation of h can be done by considering it as a matrix over the real numbers.
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