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In this paper, we investigate the isoperimetric constant (or expansion constant)
of a Paley graph, and the Kazhdan constant of the group and generating set
associated with a Paley graph.

We give two new upper bounds for the isoperimetric constant h(X p) for the
Paley graph X p. These bounds improve previously known eigenvalue bounds
on h(X p). Along with a known eigenvalue lower bound for h(X p), they pro-
vide a narrow strip in which h(X p) must live. More precisely, we show that
(p−
√

p )/4≤ h(X p)≤ (p− 1)/4, which implies that limp→∞ h(X p)/p = 1/4.
In addition, we show that the Kazhdan constant associated with the integers

modulo p and the generating set for the Paley graph X p approaches 2 as p tends
to infinity, which is the best possible limit that the Kazhdan constant can be.

1. Introduction

Paley graphs are interesting because they allow one to use graph-theoretic tools
to study the theory of quadratic residues. They also have interesting properties
that make them useful in graph theory. For example, they are strongly regular,
self-complementary, and their eigenvalues are essentially Gauss sums.

Let p be an odd prime with p ≡ 1 (mod 4). The Paley graph X p is constructed
as follows. The vertices of X p consist of the integers modulo p, which we denote
by Zp. Two vertices x and y from Zp are adjacent if and only if x − y is an
element of 0p = {γ

2
| γ ∈ Zp and γ 6= 0}. It is well known that −1 is in 0p since

p ≡ 1 (mod 4). Hence the above definition is well-defined; that is, x − y is in 0p if
and only if y− x is in 0p.

For example, if p=13, then 013={1, 3, 4, 9, 10, 12}. Then 1 and 10 are adjacent
since 10− 1= 9, which is in 013. A picture of X13 is given in Figure 1.
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Figure 1. The Paley graph on Z13.

A great reference for Paley graphs is [Elsawy 2009]. Note that one can define
a Paley graph on a finite field of size pn . However, we are sticking with n = 1 in
this paper.

We want to get approximations on two constants associated with the Paley
graph: the isoperimetric constant and the Kazhdan constant. We first introduce the
isoperimetric constant.

Let X be a graph with vertex set V . Let F be a subset of V . The boundary of F ,
denoted by ∂F , consists of the edges of X with one end in F and the other end in
V \ F . The isoperimetric constant of X is defined to be

h(X)=min
{
|∂F |
|F |

∣∣∣∣ F ⊆ V and |F | ≤
|V |
2

}
.

In layman’s terms, the isoperimetric constant of a graph X gives a rough estimate
for how “good” a graph is as a communications network. It has been heavily studied
by both computer scientists and mathematicians. One main topic of investigation in
this area is that of expander families. A family of finite regular graphs, each with the
same degree, whose order is unbounded, is said to be an expander family if there is a
uniform positive lower bound for h(X) for all X in the family. Recently it has been
shown that every family of finite nonabelian simple groups yields an expander family
via the Cayley graph construction. This was proven for all families except Suzuki
groups by Kassabov, Lubotzky, and Nikolov [Kassabov et al. 2006], with the final
case of Suzuki groups proven by Breuillard, Green, and Tao [Breuillard et al. 2011].

In general it is a difficult combinatorial problem to get an exact value for the
isoperimetric constant of a graph. Some examples where the isoperimetric constant
of a graph family is known are as follows. The isoperimetric constant for cycle
graphs of order n is equal to 4/n when n is even and 4/(n− 1) when n is odd. The
isoperimetric constant of a complete graph of order n is equal to n/2 when n is even
and (n+1)/2 when n is odd. See [Krebs and Shaheen 2011] for proofs. Rosenhouse
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[2002] shows that h(Xn)= 4/n, where Xn is the Cayley graph constructed using
the dihedral group D2n with generators r , r−1, and s. Lanphier and Rosenhouse
[2004] derive approximations on the isoperimetric constants of Platonic graphs.

Instead of calculating h(X) exactly, one must usually be satisfied with approxima-
tions. One way to approximate h(X) is to use the eigenvalues of X . The eigenvalues
of X are especially useful in finding a lower bound on h(X).

Let λ1(X) be the second largest eigenvalue of a d-regular graph. A well-known
inequality is

d − λ1(X)
2

≤ h(X)≤
√

2d(d − λ1(X)) (1)

(see [Krebs and Shaheen 2011, p. 31]). One also has a tighter upper bound on h(X)
given by Mohar [1989]. It is

h(X)≤
√
(d + λ1(X))(d − λ1(X)). (2)

Let us see what (1) and (2) tell us about Paley graphs. Since Paley graphs are
strongly regular graphs, one can find a quadratic polynomial that the adjacency
matrix satisfies. This leads one to the eigenvalues of a Paley graph. (For the details,
see [Gross et al. 2014, pp. 684–685]). The eigenvalues of X p are (p− 1)/2 with
multiplicity 1,

√
p/2− 1/2 with multiplicity (p− 1)/2 and −

√
p/2− 1/2 with

multiplicity (p− 1)/2. Thus λ1(X p) =
√

p/2− 1/2. Plugging this into (1) and
using the fact that X p is (p− 1)/2 regular, we get that

p−
√

p
4

≤ h(X p)≤

√
p2− p

√
p− p+

√
p

2
. (3)

Using the Mohar bound, given in (2), one gets

h(X p)≤

√
p2− 3p+ 2

√
p

2
, (4)

which reduces the upper bound in (3) by a factor of
√

2 as p tends to infinity.
The lower bound in (3) seems optimal for Paley graphs. However, the two upper

bounds given above are far from optimal. In this paper, we will give two new upper
bounds. One we call the α-bound, which is the average of the first half of the
elements of 0p, and the other is the simpler bound of (p− 1)/4. Both of these
bounds give much better upper bounds than the eigenvalue bounds given above in (3)
and (4). Consider Table 1. Note how close the eigenvalue lower bound is to both the
α-bound and (p−1)/4, and how much better the two new upper bounds are. While
h(X p) is still not known exactly, we have found a very narrow band in which it must
exist. For example, we have 2,168,090≤ h(X p)≤ 2,168,277 when p = 8,675,309.
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prime p 13 577 40,961 8,675,309

eigenvalue lower bound from (3) 2.35 138.24 10,189 2,168,090
α-bound (new upper bound) 2.67 139.29 10,201 2,168,277
(p− 1)/4 (new upper bound) 3 144 10,240 2,168,827

eigenvalue upper bound from (4) 5.86 287.77 20,479 4,337,654
eigenvalue upper bound from (3) 7.51 399.07 28,891 6,133,328

Table 1. Lower and upper bounds for h(X p).

Summarizing the above, we have our main result for the isoperimetric constant
of a Paley graph.

Theorem 1. Let p be an odd prime with p ≡ 1 (mod 4). Then

p−
√

p
4

≤ h(X p)≤
p− 1

4
.

Note that inequalities (3) and (4) show that

1
4
≤ lim inf

p→∞

h(X p)

p
≤ lim sup

p→∞

h(X p)

p
≤

1
2
.

Theorem 1, however, shows more precisely that

lim
p→∞

h(X p)

p
=

1
4
.

Before moving on, we would like to note that we do not know if the α-bound is
always smaller than (p− 1)/4, but from calculations it appears to be so.

The second result of this paper concerns the Kazhdan constant of the pair (Zp, 0p)

associated with the Paley graph X p. We begin by giving the general definition of a
Kazhdan constant for any finite group. The definition greatly simplifies when the
group is the integers modulo p. The reader who has never encountered representation
theory may skim the next paragraph to get the idea with no loss of understanding.

Let G be a finite group, and let 0 be a nonempty subset of G. Let ρ be a unitary
representation of G acting on some vector space Vρ . We define

κ(G, 0, ρ)= min
‖v‖=1
v∈Vρ

max
γ∈0
‖ρ(γ )v− v‖.

The Kazhdan constant of the pair (G, 0) is defined to be

κ(G, 0)=min
ρ
{κ(G, 0, ρ)},

where the minimum is over all irreducible, nontrivial, unitary representations ρ
of G. Question: why is one interested in computing such a constant? One answer
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is because, when 0 is a symmetric subset of G, we know that κ(G, 0) is related to
the isoperimetric constant of the Caley graph built from G and 0. More specifically,
suppose that 0 is a symmetric subset of the group G. That is, γ ∈ 0 if and only if
γ−1
∈ 0. Then one can build the Caley graph X = Cay(G, 0), where the vertices

of X are the elements of G and x, y ∈G are adjacent if and only if y−1x ∈0. (Note
that if G = Zp, then 0 = 0p gives the Paley graph.) Here X is a regular graph of
degree d = |0|. In this case, we have the relationship h(X)≥ κ(G, 0)2/4d . Hence,
by finding lower bounds on κ(G, 0), one can find lower bounds on h(X). For more
information on the above discussion, see [Krebs and Shaheen 2011, Chapter 8].

We would like to note that it is difficult to calculate κ(G, 0) in general. There
are very few results in this area. As an example, Bacher and de la Harpe [1994]
calculate κ(Zn, 0) for several very specific sets 0, such as κ(D2n, {r, s}), where
D2n is the dihedral group and r and s are its generators, and κ(Sn, 0n), where
0n = {(1, 2), . . . , (n− 1, n)}.

We are interested in approximating the Kazhdan constant of the pair (Zp, 0p).
When G = Zp, the Kazhdan constant simplifies considerably. To simplify our
notation, we set ξp = e2π i/p. The irreducible, nontrivial, unitary representations
of Zp are given by the maps ρa(γ ) : C→ C, where ρa(γ )z = ξ

aγ
p z, Va = C, and

a = 1, 2, . . . , p− 1. Hence,

κ(Zp, 0p)= min
1≤a≤p−1

min
‖v‖=1
v∈C

max
γ∈0
‖ξaγ

p v− v‖

= min
1≤a≤p−1

max
γ∈0
‖ξaγ

p − 1‖.

In words, κ(Zp, 0p) is calculated by considering each a and finding the γ for which
ξ

aγ
p is the maximal distance away from 1, and then one finds the minimum of these

maximums. Or another way of saying it is that for any 1≤ a ≤ p− 1, there exists
a γ ∈ 0 such that ‖ξaγ

p − 1‖ ≥ κ(Zp, 0p).
Let Z×p =Zp \{0} and 0p =Zp \(0p∪{0}). If a ∈Z×p then it is easy to show that

a0p=0p if a ∈0p; otherwise, a0p=0p if a ∈0p. (To see this note that 0p is a sub-
group of Z×p under multiplication and there are only two cosets: 0p and 0p.) Hence

κ(Zp, 0p)= min
1≤a≤p−1

max
γ∈0p
‖ξaγ

p − 1‖

=min
{
max
γ∈0p
‖ξ γp − 1‖,max

γ∈0p

‖ξγp − 1‖
}
.

Thus to calculate κ(Zp, 0p), one must find the square γ1 ∈ Zp, where ξ γ1
p is as

far away from 1 as possible, and the nonsquare γ2 ∈ Zp, where ξγ2
p is as far away

from 1 as possible. Then one calculates the minimum of those two distances.
For example, when p = 17, we have that 017 = {1, 2, 4, 8, 9, 13, 15, 16} and
017 = {3, 5, 6, 7, 10, 11, 12, 14}; see Figure 2. We have labeled the elements ξγ by
squares when γ is in 017 and by circles when γ is in 017. The element ξ γ where
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κ

Figure 2. The Kazhdan constant κ = κ(Z17, 017).

γ is a square that is furthest from 1 is ξ 8. The element ξγ where γ is a nonsquare
that is furthest from 1 is ξ 7. Therefore, κ(Z17, 017)= ‖ξ

7
17− 1‖.

For specific congruency classes of primes, one can use arguments involving the
Legendre symbol to explicitly calculate κ(Zp, 0p). For example, arguments from
[Voskanian 2013] show that if p is a prime with p ≡ 17 (mod 24), then

κ(Zp, 0p)= ‖eπ i(1−3/p)
− 1‖.

And when p ≡ 97 (mod 120),

κ(Zp, 0p)= ‖eπ i(1−5/p)
− 1‖.

However, it seems that one cannot generalize these arguments to give a formula for
κ(Zp, 0p) for all p ≡ 1 (mod 4).

Notice that 0 < κ(Zp, 0p) < 2. We will not be able to explicitly calculate
κ(Zp, 0p); however, we will show the following theorem, which is our main result
on the Kazhdan constant of a Paley graph.

Theorem 2. We have that
lim

p→∞
κ(Zp, 0p)= 2

as p goes over the primes which are congruent to 1 modulo 4.

2. The isoperimetric constant of a Paley graph

We now give the proofs of the new upper bounds for the isoperimetric constant of
X p that were discussed in the introduction to this paper. We begin with the α-bound
and then proceed to the (p−1)/4 bound. Note that if F ⊆ Zp with 0< |F | ≤ Zp/2
then h(X p)≤ |∂F |/|F |. This is the technique that we will use in both proofs. That
is, we will pick a specific F that will give an upper bound for h(X p).

2.1. The α-bound. The proof of the α-bound relies on a table that we call the
adjacency table for X p. The adjacency table for X p is obtained by constructing the
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group addition table for Zp (under the usual addition modulo p) with all the rows
corresponding to any δ /∈ 0p omitted.

For each α ∈0p, we write the additive inverse of α as α−1. Note that α−1
= p−α,

and |0p| = (p− 1)/2; hence we can arrange the elements of 0p in increasing order
and we will write

0p = {α1, α2, . . . , αk, α
−1
k , . . . , α−1

2 , α−1
1 },

where k = (p− 1)/4. Since 1 is the smallest element of 0p, we will always have
α1 = 1 and α−1

1 = p− 1. Incorporating these considerations into our construction,
we arrive at the following adjacency table:

0 1 2 · · · p− 1

1 2 3 · · · 0
α2 α2+ 1 α2+ 2 · · · α2− 1
α3 α3+ 1 α3+ 2 · · · α3− 1
...

...
...

...
...

αk αk + 1 αk + 2 · · · αk − 1
α−1

k α−1
k + 1 α−1

k + 2 · · · α−1
k − 1

...
...

...
...

...

α−1
3 α−1

3 + 1 α−1
3 + 2 · · · α−1

3 − 1
α−1

2 α−1
2 + 1 α−1

2 + 2 · · · α−1
2 − 1

p− 1 0 1 · · · p− 2

For example, when p = 13 we have that 013 = {1, 3, 4, 9, 10, 12}, which gives
the following table:

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 0
3 4 5 6 7 8 9 10 11 12 0 1 2
4 5 6 7 8 9 10 11 12 0 1 2 3
9 10 11 12 0 1 2 3 4 5 6 7 8

10 11 12 0 1 2 3 4 5 6 7 8 9
12 0 1 2 3 4 5 6 7 8 9 10 11

To get the α-bound, we will be considering the set F = {0, 1, 2, . . . , (p− 3)/2}.
The following lemma and propositions will be useful when we tally the edges in
∂F row-wise.

Lemma 3. Let 0p={α1, α2, . . . , αk, α
−1
k , . . . , α−1

2 , α−1
1 }. Then 1≤αi ≤ (p−1)/2

for all i = 1, . . . , k.

Proof. We know α1 = 1 is the smallest element in 0p, so we have 1 ≤ αi . Now
suppose that, for some i , we have αi > (p− 1)/2. Since αi is an integer and p
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is odd, the smallest αi can be is (p + 1)/2. Thus, we see that αi ≥ (p + 1)/2.
Therefore, it follows that

α−1
i = p−αi ≤ p−

p+ 1
2
=

p− 1
2

.

In this case, we have αi ≥ (p+ 1)/2 and α−1
i ≤ (p− 1)/2. In particular, α−1

i < αi .
Since this contradicts the ordering of 0p, we see that αi ≤ (p − 1)/2 for all
i = 1, 2, . . . , k. �

Proposition 4. Let F = {0, 1, 2, . . . , (p−3)/2} be a subset of vertices in X p. Then
row αi of the adjacency table for X p contributes exactly αi edges to the boundary
set ∂F.

Proof. By our choice of F , we only need to scan the entries in row αi from column 0
to column (p− 3)/2, and any entry we encounter contributes an edge to ∂F if and
only if it is greater than (p − 3)/2. Since |F | = (p − 1)/2, there are a total of
(p−1)/2 columns headed by elements of F , and thus (p−1)/2 entries to consider.
Also, we recall that for any entry γ in the table, the entry in the same row, one
column to the right, is γ + 1.

Let us tally the contributions made to ∂F by row αi of the adjacency table.
Starting at column 0, we scan row αi until we arrive at the entry (p− 3)/2 in some
column β. In this case, all the entries encountered so far are less than or equal to
(p−3)/2, and thus contribute no edges to ∂F . Since (p−3)/2 is the entry in row αi ,
column β, we have (p− 3)/2= αi +β. Thus, β = (p− 3)/2−αi . Scanning from
column 0 to column β, we have encountered β + 1 entries. This means there are

p− 1
2
− (β + 1)=

p− 1
2
−

(
p− 3

2
−αi + 1

)
= αi

entries remaining to consider in the columns headed by the entries from F . These
entries increase in unit increments from (p−3)/2+1 to (p−3)/2+αi . By Lemma 3,
we have that 1≤ αi ≤ (p− 1)/2. This implies that (p− 3)/2+αi ≤ p− 2. This
means the sequence of remaining entries never reaches p to revert to 0 modulo p.
That is, each of the remaining αi entries is strictly larger than (p− 3)/2, and thus
contributes an edge to ∂F . So row αi contributes exactly αi edges to ∂F . �

Proposition 5. Let F = {0, 1, 2, . . . , (p−3)/2} be a subset of vertices in X p. Then
rows αi and α−1

i of the adjacency table each contribute the same number of edges
to ∂F.

Proof. By our choice of F , we only need to scan the entries in row α−1
i from

column 0 to column (p− 3)/2, and any entry we encounter contributes an edge
to ∂F if and only if it is greater than (p− 3)/2. This gives a total of (p− 1)/2
columns to scan through and, thus, (p− 1)/2 entries to consider.
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Noting that the entries increase in unit increments as we scan from left to right,
we begin with the entry α−1

i in column 0 and scan to the right until we reach the
entry p− 1 in column β. By Lemma 3, we have 1≤ αi ≤ (p− 1)/2, so it follows
that (p+ 1)/2 ≤ α−1

i ≤ p− 1. Thus, we see that every entry encountered so far,
of which there are β + 1, is greater than (p− 3)/2 and contributes an edge to ∂F .
Since p− 1 resides in row α−1

i , column β, we have p− 1= α−1
i +β, from which

it follows that β + 1 = p− α−1
i = αi . That is, thus far we have encountered αi

entries in row α−1
i contributing edges to ∂F .

Now, if αi = (p − 1)/2, then we must have already scanned through all the
necessary columns. This means there are no more entries to consider, and row α−1

i
contributes exactly αi edges to ∂F .

If 1 ≤ αi ≤ (p − 3)/2, then there are (p − 1)/2 − αi entries, ranging from
(p− 1)+ 1= 0 in column β + 1 to

(p− 1)+
(

p− 1
2
−αi

)
=

p− 3
2
−αi

in column (p − 3)/2, remaining to consider. However, since αi is at least 1,
(p−3)/2−αi is no greater than (p−5)/2. So we see that the remaining entries range
from 0 to at most (p−5)/2, which means that none of them contribute edges to ∂F .

We have shown that, for all possible values of αi , row α−1
i contributes exactly

αi edges to ∂F . But that is how many edges row αi contributes. Thus, we see rows
αi and α−1

i each contribute the same number of edges to ∂F . �

Proposition 6. Let F = {0, 1, 2, . . . , (p− 3)/2} be a subset of vertices in X p and
0p be arranged in increasing order. Then

|∂F | = 2
k∑

i=1

αi ,

where αi is the i-th element of 0p and k = (p− 1)/4.

Proof. Recall that when arranged in increasing order, we have labeled

0p = {α1, α2, . . . , αk, α
−1
k , . . . , α−1

2 , α−1
1 }

and that column 0 of the adjacency table is populated in increasing order from
top to bottom by the elements of 0p. Since there are 2k elements in 0p and
|0p| = (p− 1)/2, it follows that k = (p− 1)/4.

Since F = {0, 1, 2, . . . , (p− 3)/2}, if we use the adjacency table to tally the
edges in ∂F row-wise, by Proposition 5, rows αi and α−1

i each contribute exactly
αi edges to ∂F . Thus, we see rows α1 through αk contribute a total of

∑k
i=1 αi

edges to ∂F ; as do rows α−1
k through α−1

1 .
Since there are no other rows to consider, we see there are exactly 2

∑k
i=1 αi

edges in ∂F , as required. �
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Proposition 7. The isoperimetric constant of a Paley graph satisfies the bound

h(X p)≤
1
k

k∑
i=1

αi ,

where 0p = {α1, α2, . . . , αk, α
−1
k , . . . , α−1

2 , α−1
1 } and k = (p− 1)/4 as above.

Proof. Let F = {0, 1, 2, . . . , (p − 3)/2}. By Proposition 6, this choice gives
|∂F | = 2

∑k
i=1 αi . Noting that |F | = (p− 1)/2, we see that

|∂F |
|F |
=

2
∑k

i=1 αi
p−1

2

=
1

p−1
4

k∑
i=1

αi =
1
k

k∑
i=1

αi . �

2.2. The (( p − 1)/4)-bound. We have the suspicion that the α-bound is smaller
than (p− 1)/4 for all primes p congruent to 1 modulo 4, though this has yet to be
proven. In fact, early into our work, sample values for the α-bound supported this,
and thus contributed to the plausibility for (p− 1)/4 as an upper bound for h(X p).
Whether or not the α-bound is smaller in general than the ((p− 1)/4)-bound, they
appear to be very close.

We begin the proof for the ((p− 1)/4)-bound by introducing a key subset of
vertices from the graph X p. As above, let 0p =Zp \ (0p∪{0}). That is, 0p consists
of the nonsquares in Zp. We will prove that h(X p)≤ (p− 1)/4 by showing that

|∂(0p)|

|0p|
=

p− 1
4

. (5)

Noting that 0p is the set of all nonzero nonsquares in Zp, two results follow that
will contribute towards our goal: no element of 0p is adjacent to 0, and {0p, {0}, 0p}
is a partition of the vertices of X p. From these two results, we can distill that ∂(0p)
contains only edges going between 0p and 0p. Therefore, we will determine |∂(0p)|

by figuring out how many of the edges incident to vertices in 0p remain once the
edges going between either an element of 0p and 0 or two elements of 0p are
accounted for. We have that

|0p| ·
p− 1

2
= (# of edges going between 0p and 0p)

+ (# of edges going between 0p and 0)

+ 2 · (# of edges going between vertices in 0p).

The first term on the right side is |∂(0p)|. Also, |0p| = (p− 1)/2, and every vertex
in 0p is adjacent to 0, so the first factor on the left-hand side and the second term
on the right-hand side are both (p− 1)/2. Substituting these values and solving
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for |∂(0p)|, we get

|∂(0p)| =
p− 1

2
·

p− 1
2
−

p− 1
2
− 2 · (# of edges between vertices in 0p). (6)

We now set our sights on determining the number of adjacencies between vertices
in 0p. The way to do this is to count walks of length 3 that start and end at 0
within X p. We use the following theorem to do this.

Theorem 8 [Stanley 2013]. Let G be a graph, λ1, λ2, . . . , λn be the eigenvalues
of G, and Nk be the number of closed walks in G of length k. Then

Nk =

n∑
i=1

λk
i .

We noted in the introduction that the eigenvalues of the Paley graph X p are
(p − 1)/2, with multiplicity 1; (

√
p − 1)/2, with multiplicity (p − 1)/2; and

(−
√

p − 1)/2, with multiplicity (p − 1)/2. So the number of closed walks of
length 3 in X p is given by(

p−1
2

)3

+

(
p−1

2

)(√
p−1
2

)3

+

(
p−1

2

)(
−
√

p−1
2

)3

=
p
8
(p−5)(p−1).

Paley graphs are Caley graphs, which have a nice property: vertex transitivity. More
specifically, if x1 and x2 are both vertices of X p, then the number of closed walks of
length k beginning at x1 is equal to the number of closed walks of length k beginning
at x2. (One can see this by shifting the walks from x1 to x2 by adding−x1+x2 to all
the vertices of the closed walk starting at x1, and vice versa.). Since there are p ver-
tices in X p, we see that the number of closed walks of length 3 beginning at any one
vertex of X p is 1

8(p−5)(p−1). In particular, this is how many such walks begin at 0.
Again, noting that 0 is adjacent to each element of 0p (and only to elements

of 0p), it follows that if δ and β are nonzero elements of Zp, then (0, δ2, β2, 0) is
a closed walk of length 3 beginning at zero if and only if (0, β2, δ2, 0) is a closed
walk of length 3 beginning at zero if and only if δ2 and β2 are adjacent vertices
of 0p. When viewed in this fashion, we see the number of closed walks of length 3
beginning at 0 double counts adjacencies between vertices in 0p. That is,

1
8(p− 5)(p− 1)= 2 · (# of edges between vertices in 0p).

It follows immediately from (6) that

|∂(0p)| =
p− 1

2
·

p− 1
2
−

p− 1
2
−

1
8(p− 5)(p− 1)

=
p− 1

2
·

p− 1
4

.

Dividing the above result by |0p|= (p−1)/2 gives us (5). Hence, h(X p)≤ (p−1)/4.
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3. The Kazhdan constant of the pair associated with a Paley graph

In this section, we prove Theorem 2. Recall that 0p = Zp \ (0p ∪ {0}), ξp = e2π i/p

and

κ(Zp, 0p)=min
{
max
γ∈0p
‖ξ γ − 1‖,max

γ∈0p

‖ξγ − 1‖
}
.

To attack the problem of approximating the Kazhdan constant of a Paley graph,
we need to use facts about squares and nonsquares in Zp. For this we need the
Legendre symbol. Recall that the Legendre symbol is defined as

(
a
p

)
=


0 if p divides a,
1 if a is a square modulo p,
−1 if a is a nonsquare modulo p.

One can show that
(ab

p

)
=
( a

p

)( b
p

)
. Also, if x ≡ y (mod p), then

( x
p

)
=
( y

p

)
.

It can also be shown that
(
−1
p

)
= 1 if and only if p ≡ 1 (mod 4). Likewise

( 2
p

)
= 1

if and only if p ≡±1 (mod 8).These results can be found in any standard book on
number theory. For example, see [Niven et al. 1991].

We now show that limp→∞ κ(Zp, 0p) = 2, where the limit is over all primes
with p ≡ 1 (mod 4). We break this into two cases: when p ≡ 1 (mod 8) and when
p ≡ 5 (mod 8).

Let ε > 0 be an arbitrary small number.
Suppose that p ≡ 5 (mod 8). In this case we have that

1=
(
−1
p

)
=

(
(p− 1)/2

p

)(
2
p

)
=−

(
(p− 1)/2

p

)
.

Hence (p − 1) · 2−1 is in 0p. Let N1 be an integer such that if p > N1 and
p ≡ 5 (mod 8), then

‖ξ (p−1)/2
p − 1‖> 2− ε.

This gives us a nonsquare (p−1)·2−1 of Zp, where ξ (p−1)/2
p is close to−1 in the com-

plex plane. Now let α be a real number such that 1/2<α<1 and ‖eiαπ
− 1‖> 2− ε.

Consider the interval
[√
αp/2,

√
p/2

]
. Note that limp→∞

(√
p/2−

√
αp/2

)
=∞.

Hence, there is a positive integer N2 such that if p>N2, then there exists an integer x
such that

√
αp/2< x <

√
p/2, which is equivalent to απ < (2πx2)/p<π . Hence

if p > N2 then there exists a square γ ∈ 0p such that

‖ξγp − 1‖> ‖eαπ i
− 1‖> 2− ε.

Combining the above, we have that if p is a prime with p ≡ 5 (mod 8) and p >
max{N1, N2} then κ(Zp, 0p) > 2− ε.
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Now suppose that p ≡ 1 (mod 8). In this case we have that

1=
(
−1
p

)
=

(
(p− 1)/2

p

)(
2
p

)
=

(
(p− 1)/2

p

)
.

Therefore (p − 1) · 2−1 is in 0p. Let N3 be an integer such that if p > N3 and
p ≡ 1 (mod 8), then ‖ξ (p−1)/2

p − 1‖ > 2 − ε. Let 0 < jp < p be the smallest
nonsquare in 0p. Note that jp must be odd since if it was even, then(

jp/2
p

)
=

(
2
p

)(
jp/2

p

)
=

(
jp

p

)
=−1.

This would imply that jp · 2−1 is a smaller nonsquare than jp in 0p, which is not
true. We also have that(

(p− jp)/2
p

)
=

(
(p− jp)/2

p

)(
2
p

)
=

(
−1
p

)(
jp

p

)
=

(
jp

p

)
=−1.

Thus, (p− jp) · 2−1 is a nonsquare. We now introduce a lemma which is taken
from [Pollack and Treviño 2014]. This lemma will give us a nice bound on jp.

Lemma 9. 0< jp <
1
2 +
√

p.

Proof. Note that p < jpdp/jpe< p+ jp. Hence the least nonnegative residue of
jpdp/jpemodulo p lies in the interval (0, jp). Therefore, jpdp/jpe is a square mod-
ulo p. Since jp is a nonsquare modulo p, we must have that ( jpdp/jpe)/jp=dp/jpe

is a nonsquare. By the minimality of jp, we have that jp ≤ dp/jpe ≤ 1+ p/jp.
Therefore, j2

p− jp < p and hence j2
p− jp+1≤ p. This implies that ( jp−1/2)2 <

j2
p − jp + 1≤ p. So, jp < 1/2+

√
p. �

By Lemma 9, we have that

p
2
>

p− jp

2
>

p
2
−

√
p

2
−

1
4
.

Hence

‖ξ
(p− jp)/2
p − 1‖> ‖ξ

p/2−
√

p/2−1/4
p − 1‖ = ‖eπ i−π i/

√
p−π i/2p

− 1‖.

Let N4 be a positive integer such that if p > N4 and p ≡ 1 (mod 8), then

‖ξ (p− jp)/2− 1‖> 2− ε.

Thus, if p is a prime with p ≡ 1 (mod 8) and p >max{N3, N4}, then κ(Zp, 0p) >

2− ε.
Combining all of the above results, we have that Theorem 2 has been proved.
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