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In this paper, we look at three common theorems in number theory: the Chinese
remainder theorem, the multiplicative property of the Euler totient function, and
a decomposition property of reduced residue systems. We use a grid of squares
to give simple transparent visual proofs.

1. Introduction

Let m and n be positive integers. Construct an m� n grid of squares. We place
the sequence of positive integers 1; 2; 3; : : : into the grid beginning with the upper
left-hand corner cell and moving from the cell numbered i to the cell numbered
i C 1 by going one box down and one to the right. If this is not possible (at the last
row or the rightmost column of our m� n table), we wrap around to the opposite
edge and continue. It is easy to see that the i -th row has numbers that are congruent
to i modulo m and the j -th column has numbers that are congruent to j modulo n.

We observe that two positive integers x and y fill the same cell if and only
if x � y mod m and x � y mod n, which is equivalent to x � y is divisible by
Œm; n�, the least common multiple of m and n. From this, it follows that there is
a repetition after we get to Œm; n� and, of course, that Œm; n� is the first integer to
arrive at the lower right-hand corner. Thus we have the positive integers from 1

to Œm; n� in the table. Notice that we can number all mn boxes in this way if and
only if m and n are relatively prime. This follows from .m; n/Œm; n�Dmn. Here
.m; n/ denotes the greatest common divisor of m and n. When mD 3 and nD 5,
the above explanation can be illustrated by a glued 3� 5 table and a discrete torus,
which appear in [Terras 1999]; see Figure 1.

In what follows, we point out some applications of this elementary construction.
It provides not only a visual verification of two common theorems in number theory,
namely, the Chinese remainder theorem and the multiplicative property of the Euler
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Figure 1. A glued 3� 5 table and its corresponding discrete torus.

totient �-function, but also gives a constructive proof for a decomposition property
of reduced residue systems, to be defined below. The results are presented in
Sections 2 and 3, respectively.

2. The Chinese remainder theorem

Let d D .m; n/. We can split the m� n table into .m=d/� .n=d/ subtables so that
each of them is a square d � d table as shown in Figure 2.

By the above filling method, each subtable has numbers only in its diagonal. For
example, the upper left-hand corner subtable will be filled with integers from 1

to d . We move from one subtable to another by going one subtable down and one
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Figure 2. Our division of the m � n table into d � d subtables,
where d D .m; n/.
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to the right and wrap around as explained before. Hence a square d � d subtable
can be viewed as a block in an .m=d/� .n=d/ table. Since .m=d; n=d/D 1, all
d � d cells have the subsequence

.l � 1/d C 1; .l � 1/d C 2; : : : ; ld for some l 2
n
1; 2; : : : ;

mn

d2

o
in their diagonals. Thus, the m� n table is transformed into an .m=d/� .n=d/
table with .m=d; n=d/D 1 and we can now number all of the mn=d2 boxes with
1; 2; : : : ;mn=d2. Now observe that the integers in the original table appear only
in the positions .k C id; k C jd/, where k � d; i � m=d � 1 and j � n=d � 1.
In other words, the positions of the integers are .a; b/ with a� b mod d , that is,
d j .a� b/. Furthermore, as mentioned earlier, there is a repetition of solutions
modulo Œm; n�. Therefore we have proved the Chinese remainder theorem:

Theorem 1. Let m and n be positive integers. For integers a and b, the congruences

x � a mod m and x � b mod n

admit a simultaneous solution if and only if .m; n/ divides a� b. Moreover, if a
solution exists, then it is unique modulo Œm; n�.

The result when .m; n/D 1 was also described by Ledet [2007]. We demonstrate
Theorem 1 by the following example.

Example 2. Let mD 6 and nD 8. Then .m; n/D 2 and Œm; n�D 24. Filling the
6� 8 table with the numbers from 1 to 24 as previously described, we obtain

1 19 13 7

2 20 14 8

9 3 21 15

10 4 22 16

17 11 5 23

18 12 6 24

According to this table, one easily sees that x � 22 mod 24 is a simultaneous
solution for x � 4 mod 6 and x � 6 mod 8, and there is no x for which both
x � 5 mod 6 and x � 4 mod 8. �

If m is a positive integer, the Euler totient function �.m/ is defined to be the
number of positive integers not exceeding m which are relatively prime to m. By
a reduced residue system modulo m, we mean any set of �.m/ integers, pairwise
incongruent modulo m, each of which is relatively prime to m. Notice that if p

is a prime, then �.p/ D p � 1 and f1; 2; : : : ;p � 1g is a reduced residue system
modulo p. It is also immediate that �.ps/D ps �ps�1 for all s 2 N.
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Next, we investigate the decomposition property of the reduced residue systems
by our combinatorial technique. Let aDmn, where m and n are positive integers.

We arrange the positive integers 1; 2; : : : ; Œm; n� into the m�n grid of squares by
using the above filling method and delete the i -th rows and j -th columns of the table
for all i and j with .m; i/ > 1 and .n; j / > 1. For a better understanding of this
construction, one may erase all even (second, fourth, . . . ) rows and all even columns
of the table in Example 2. Recall that the i -th row has numbers that are congruent
to i modulo m and the j -th column has numbers that are congruent to j modulo n.

Let l be a remaining positive integer in the table. Notice that l � i mod m with
.m; i/ D 1 and 1 � i � m; that is, l D i C km for some nonnegative integer k.
Since .m; i/D 1, there exist integers x and y such that mxC iyD 1. Consequently,
we choose x0 D x � ky 2 Z and y0 D y 2 Z. Then mx0C ly0 D 1, so we have
.l;m/D 1. Similarly, we can show that .l; n/D 1. Since aDmn, we also have
.l; a/D 1. Hence all positive integers left in the table after deletion are relatively
prime to a and less than Œm; n�.

For .m; n/D 1, we can place the positive integers from 1 to Œm; n�DmnD a in
the m�n grid by the means above. Erase the i -th rows that are not relatively prime
to m and cross out the j -th columns that are not relatively prime to n. Then we
obtain �.m/�.n/ undeleted cells and eliminate all numbers that are not relatively
prime to m and n. Since .m; n/ D 1, the entries left in the table coincide with
positive integers less than and relatively prime to a, so the number of these entries is
equal to �.a/. Hence we can conclude the well-known multiplicative property of the
Euler totient �-function, namely, if .m; n/D 1, then �.mn/D �.a/D �.m/�.n/.
This combinatorial proof is the one given in the famous book on number theory
[Niven et al. 1991]. Since �.ps/D ps �ps�1 D ps.1�p�1/ when p is a prime
and s � 1, the multiplicative property gives a formula for computing

�.M /DM
Y

p jM

.1�p�1/

for any positive integer M .

3. Decomposition property of reduced residue systems

Let m0 be the product of primes in m not in n with the same exponents that they
have in m. It is easy to see that m0 and n are relatively prime. Place the positive
integers from 1 to m0n in the m0 � n grid and erase the rows that are not relatively
prime to m0 and the columns that are not relatively prime to n. Let l be a positive
integer left in the table after deletion. Then .l;m0/ D 1 D .l; n/. Assume that
there exists a prime p dividing l and aDmn. Thus p jm or p j n. But .l; n/D 1,
so p is not in n and thus p is in m. Therefore p jm0, which contradicts the fact
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that .l;m0/ D 1. Hence the remaining �.m0/�.n/ positive integers in the table
are relatively prime to a. Consider them as a �.m0/��.n/ matrix. The set of all
members in each row of this matrix is a reduced residue system modulo n and
x � y mod n for all integers x and y that are in the same column.

Let A0 be the above �.m0/��.n/ matrix and

Ai DA0C i

264m0n : : : m0n
:::

: : :
:::

m0n : : : m0n

375
�.m0/��.n/

for i D 0; 1; : : : ;
�.mn/

�.m0/�.n/
� 1:

The identity �.M /DM
Q

pjM .1�p�1/ shows that

�.mn/

�.m0/�.n/
D

m

m0
;

so the index i ranges from 0 up to m=m0� 1, which implies that the entries of Ai

do not exceed a. It is also obvious that each entry in Ai is relatively prime to a.
We augment A0 by the matrices

A1; : : : ;A �.a/

�.m0/�.n/
�1
;

respectively, to form a new .�.a/=�.n//� �.n/ matrix. Then the entries of this
matrix are integers from 1 to a, relatively prime to a, with the condition that the set
of the entries in each row is a reduced residue system modulo n and x�y mod n for
all integers x and y that are in the same column. Hence we have a constructive proof
for a theorem on a decomposition property of reduced residue systems modulo a

summarized as follows.

Theorem 3. Let S be a residue system modulo a, and let n � 1 be a divisor of a.
Then we have the following decompositions of S :

(1) S is the union of �.a/=�.n/ disjoint sets, each of which is a reduced residue
system modulo n.

(2) S is the union of �.n/ disjoint sets, each of which consists of �.a/=�.n/
numbers congruent to each other modulo n.

Remark. Another proof of this theorem and its application on character sums can
be found in Apostol’s book [1976].
Example 4. Consider aD 48 with mD 6 and nD 8. Since 8D 23 and 6D 2 � 3,
let m0 D 3. Filling a 3� 8 table with numbers by our technique, we obtain

1 10 19 4 13 22 7 16

17 2 11 20 5 14 23 8

9 18 3 12 21 6 15 24
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Delete the rows that contain numbers not relatively prime to 3 and the columns that
contain numbers not relatively prime to 8. We have then the 2� 4 matrix formed
from the remaining numbers given by

AD

�
1 19 13 7

17 11 5 23

�
:

Augment this matrix with �.3/D 2 rows obtained by adding m0n to all entries of A,
so we finally reach the decomposition

A0 D

2664
1 19 13 7

17 11 5 23

25 43 37 31

41 35 29 47

3775
as desired. �
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