Enumeration of m-endomorphisms

Louis Rubin and Brian Rushton
Enumeration of m-endomorphisms

Louis Rubin and Brian Rushton

(Communicated by Vadim Ponomarenko)

An m-endomorphism on a free semigroup is an endomorphism that sends every generator to a word of length $\leq m$. Two m-endomorphisms are combinatorially equivalent if they are conjugate under an automorphism of the semigroup. In this paper, we specialize an argument of N. G. de Bruijn to produce a formula for the number of combinatorial equivalence classes of m-endomorphisms on a rank-n semigroup. From this formula, we derive several little-known integer sequences.

1. Introduction

Let D be a nonempty set of symbols, and let D^+ be the set of all finite strings of one or more elements of D. That is, $D^+ = \{d_1 \cdots d_k : k \in \mathbb{N}, d_i \in D\}$. Paired with the operation of string concatenation, D^+ forms the free semigroup on D. If $d_1, \ldots, d_k \in D$, then we refer to the natural number k as the length of the string $d_1 \cdots d_k$. Denote the length of $W \in D^+$ by $|W|$.

By a semigroup endomorphism (or, simply, an endomorphism) on D^+, we mean a mapping $\phi : D^+ \to D^+$ satisfying $\phi(W_1 W_2) = \phi(W_1)\phi(W_2)$ for all $W_1, W_2 \in D^+$. Note that if ϕ is an endomorphism on D^+ and $d_1, \ldots, d_k \in D$, then $\phi(d_1 \cdots d_k) = \phi(d_1) \cdots \phi(d_k)$; this shows that an endomorphism on D^+ is determined by its action on the elements of D. On the other hand, any mapping $f : D \to D^+$ extends uniquely to the endomorphism $\phi_f : D^+ \to D^+$ defined by $\phi_f(d_1 \cdots d_k) = f(d_1) \cdots f(d_k)$, and it is straightforward to verify that ϕ_f is an automorphism (that is, a bijective endomorphism) precisely when f is a bijection on D.

Example 1. Let $D = \{a, b\}$, and let $f : D \to D^+$ be defined by $f(a) = ab$ and $f(b) = a$. Then, for example,

$$\phi_f(ababa) = f(a)f(b)f(a)f(b)f(a) = abaabaab.$$
all $d \in D$. Note that the mapping ϕ_f from Example 1 is an m-endomorphism for all $m \geq 2$. Now let Γ be the set of all m-endomorphisms on D^+. That is,

$$\Gamma = \{ \phi \in \text{End}(D^+) : \phi(D) \subseteq R \},$$

where $R = \{ W \in D^+ : |W| \leq m \}$. Consider the set Ω consisting of all mappings $f : D \to R$. Then we may write

$$\Gamma = \{ \phi_f : f \in \Omega \}.$$

We can put the set Γ into one-to-one correspondence with Ω by sending each m-endomorphism to its restriction to D. Moreover, if $|D| = n \in \mathbb{N}$, then the size of these sets is easily evaluated in view of the fact that $|R| = \sum_{i=1}^{m} n^i$. In particular, if $n > 1$, then $|R| = (n^{m+1} - n)/(n - 1)$, and

$$|\Gamma| = |\Omega| = \left(\frac{n^{m+1} - n}{n-1}\right)^n.$$

However, in this paper we are interested in counting the number of classes of m-endomorphisms under a particular equivalence relation. To motivate our definition of equivalence on Γ, we define a relation \sim on Ω as follows:

$$f_1 \sim f_2 \iff \text{there exists a bijection } g : D \to D \text{ such that } f_2 \circ g = \phi_g \circ f_1.$$

As an exercise, the reader may wish to verify that \sim satisfies the reflexive, symmetric, and transitive properties required of any equivalence relation. In Section 1.1, however, it will be shown that \sim is a specific instance of a well-known equivalence relation induced by a group acting on a nonempty set.

Example 2. Let f be as in Example 1 (with $D = \{a, b\}$). Consider the bijection $g : D \to D$ defined by $g(a) = b$ and $g(b) = a$. Now let $f_1 : D \to D^+$ be given by $f_1(a) = b$ and $f_1(b) = ba$. Then

$$(f_1 \circ g)(a) = f_1(g(a)) = f_1(b) = ba = g(a)g(b) = \phi_g(ab) = \phi_g(f(a)) = (\phi_g \circ f)(a),$$

$$(f_1 \circ g)(b) = f_1(g(b)) = f_1(a) = b = g(a) = \phi_g(a) = \phi_g(f(b)) = (\phi_g \circ f)(b),$$

which shows that $f \sim f_1$.

Remark 3. Perhaps a more intuitive illustration of \sim is as follows. If we let f and f_1 be as in Example 2, then the respective graphs of f and f_1 are $\{(a, ab), (b, a)\}$ and $\{(a, b), (b, ba)\}$. But the graph of f_1 can be obtained by applying the bijection g to each element of D that appears in the graph of f. In other words,

$$\{(g(a), g(a)g(b)), (g(b), g(a))\} = \{(a, b), (b, ba)\}.$$

Since the graphs of f and f_1 are “the same” up to a permutation of a and b, we wish to consider these mappings equivalent, and \sim provides the desired equivalence relation.
Extending \sim to an equivalence relation on Γ leads to the following definition. If $f, h \in \Omega$, then ϕ_f is combinatorially equivalent to ϕ_h if and only if there exists a bijection $g : D \to D$ such that $\phi_h \circ \phi_g = \phi_g \circ \phi_f$. To state precisely the aim of this paper: given a set of symbols D with $|D| = n$, we wish to produce a formula for the number of equivalence classes in Γ under the relation of combinatorial equivalence. To this end, we shall specialize an argument of N. G. de Bruijn [1972] (namely, that used for his Theorem 1) to produce a formula for the number of classes in Ω under the relation \sim. But it is easy to check that for all $f, h \in \Omega$, we have $f \sim h$ if and only if ϕ_f is combinatorially equivalent to ϕ_h. Hence, there is a well-defined correspondence given by $[f] \leftrightarrow [\phi_f]$ between the equivalence classes in Ω and those in Γ, and it follows that our formula will also provide the number of m-endomorphisms on D^+ up to combinatorial equivalence. Moreover, once this formula is obtained, we can fix one of the variables n, m and let the other run through the natural numbers in order to derive integer sequences, many of which appear to be little-known.

1.1. Group actions. For the reader’s convenience, we review group actions. The following material (through Proposition 4) is paraphrased from [Malik et al. 1997]. Let G be a group and S a nonempty set. A left action of G on S is a function $\cdot : G \times S \to S$, $(g, s) \mapsto g \cdot s$, such that, for all $g_1, g_2 \in G$ and for all $s \in S$,

1. $(g_1g_2) \cdot s = g_1 \cdot (g_2 \cdot s)$, where g_1g_2 denotes the product of g_1, g_2 in G, and
2. $e \cdot s = s$, where e is the identity element of G.

A left action induces the well-known equivalence relation E on the set S given by

$$(a, b) \in E \iff g \cdot a = b \text{ for some } g \in G$$

for all $a, b \in S$. We refer to the equivalence classes under this relation as the orbits of G on S. The following result (known as Burnside’s lemma) gives an expression for the number of these, provided that G and S are finite.

Proposition 4 [Malik et al. 1997]. Let S be a finite, nonempty set, and suppose there is a left action of a finite group G on S. Then the number of orbits of G on S is

$$\frac{1}{|G|} \sum_{g \in G} |\{s \in S : g \cdot s = s\}|.$$

Thus, the number of orbits of G on S equals the average number of elements of S that are “fixed” by an element of G. We now show that the relation \sim from Section 1 is a specific instance of the relation E described above. To see this, let D
be a finite nonempty set, and let \(\text{Sym}(D) \) denote the symmetric group on \(D \) (i.e., the group of all bijections on \(D \)). Then \(\text{Sym}(D) \) acts on the set \(\Omega \) according to the rule
\[
g \cdot f = \phi_g \circ f \circ g^{-1}
\]
for all \(g \in \text{Sym}(D), f \in \Omega \). (One can easily verify that \(\cdot \) defined in this way is indeed a left action.) Now, for any \(f_1, f_2 \in \Omega \), we have
\[
f_1 \sim f_2 \iff f_2 \circ g = \phi_g \circ f_1 \text{ for some } g \in \text{Sym}(D)
\]
\[
\iff f_2 = \phi_g \circ f_1 \circ g^{-1} \text{ for some } g \in \text{Sym}(D)
\]
\[
\iff g \cdot f_1 = f_2 \text{ for some } g \in \text{Sym}(D)
\]
\[
\iff (f_1, f_2) \in E.
\]

It follows that the equivalence classes in \(\Omega \) under the relation \(\sim \) are just the orbits of \(\text{Sym}(D) \) on \(\Omega \). Enumerating the elements of \(\text{Sym}(D) \) by \(g_1, \ldots, g_n! \), we find the number of orbits to be
\[
\frac{1}{n!} \sum_{r=1}^{n!} |\{ f \in \Omega : f \circ g_r = \phi_{g_r} \circ f \}|. \tag{1}
\]

For any permutation \(g \) of a finite set, and for each natural number \(j \), let \(c(g, j) \) denote the number of cycles of length\(^1 \) \(j \) occurring in the cycle decomposition of \(g \). (This notation comes from [de Bruijn 1972].) The quantities \(c(g, j) \) will play a role in the evaluation of \(|\{ f \in \Omega : f \circ g_r = \phi_{g_r} \circ f \}| \), which occurs in the next section. Our evaluation is a modification of de Bruijn’s counting argument [1964, § 5.12].

2. Main results

We now produce a formula for the number of equivalence classes in \(\Omega \) under the relation \(\sim \). Let \(D \) be a finite set, and suppose that \(g \in \text{Sym}(D) \) is the product of disjoint cycles of lengths \(k_1, k_2, \ldots, k_\ell \), where \(k_1 \leq k_2 \leq \cdots \leq k_\ell \). Then the sequence \(k_1, k_2, \ldots, k_\ell \) is called the cycle type of \(g \). For example, if \(D = \{a, b, c, d, e\} \), then the permutation \(g = (a)(b, c)(d, e) \) has cycle type 1, 2, 2. The following lemma will be useful.

Lemma 5. Let \(D \) be a finite set, and let \(g \in \text{Sym}(D) \) have cycle type \(k_1, k_2, \ldots, k_\ell \). For each \(1 \leq i \leq \ell \), select a single \(d_i \in D \) from the cycle corresponding to \(k_i \). (Thus, \(k_i \) is the smallest natural number such that \(g^{k_i}(d_i) = d_i \).) Now suppose that \(f \in \Omega \). Then \(f \circ g = \phi_g \circ f \) if and only if for each \(1 \leq i \leq \ell \),

\[
(1) \quad (f \circ g^j)(d_i) = (\phi_g^j \circ f)(d_i) \text{ for all } j \in \mathbb{N},
\]

\[
(2) \quad f(d_i) \text{ is of the form } d'_1 \cdots d'_{k \leq m}, \text{ where } d'_1, \ldots, d'_{k} \in D \text{ each belong to a cycle in } g \text{ whose length divides } k_i.
\]

\(^1\)There should be no confusion between the notions of “string length” and “cycle length”.
Proof. First assume that $f \circ g = \phi_g \circ f$. Then condition (1) follows from an inductive argument. But $f(d_i) = f(g^{k_i}(d_i)) = \phi_g^{k_i}(f(d_i))$. Write $f(d_i) = d'_1 \cdots d'_k$, where $d'_1, \ldots, d'_k \in D$ and $k \leq m$. Then

$$d'_1 \cdots d'_k = \phi_g^{k_i}(d'_1 \cdots d'_k) = g^{k_i}(d'_1) \cdots g^{k_i}(d'_k).$$

In particular, for each $1 \leq t \leq k$, we have $d'_t = g^{k_i}(d'_t)$. This implies that $$(d'_1, g(d'_1), g^2(d'_1), \ldots, g^{k_i-1}(d'_1))$$
is a cycle whose length divides k_i. The conclusion follows.

Conversely, suppose that condition (1) holds. (Condition (2) is superfluous here.) Let $d \in D$. Then there exist $i, j \in \mathbb{N}$ such that $d = g^j(d_i)$. Now,

$$f(g(d)) = f(g(g^j(d_i))) = f(g^{1+j}(d_i)) = \phi_g^{1+j}(f(d_i)) = \phi_g(\phi_g^j(f(d_i))) = \phi_g(f(g^j(d_i))) = \phi_g(f(d)).$$

Therefore, $f \circ g = \phi_g \circ f$, so the proof is complete. \qed

Once again, suppose that $|D| = n$, and label the elements of $\text{Sym}(D)$ by $g_1, \ldots, g_n!$. For each $1 \leq r \leq n!$, we can find the number of $f \in \Omega$ satisfying

$$f \circ g_r = \phi_{g_r} \circ f.$$

(2)

Suppose that g_r has cycle type $k_{r_1}, k_{r_2}, \ldots, k_{r_{\ell_r}}$. For each $1 \leq i \leq \ell_r$, select a single element $d_{ri} \in D$ from the cycle corresponding to k_{ri}. Then Lemma 5 implies that any $f \in \Omega$ satisfying (2) is determined by its values on each d_{ri}. Hence, to find the number of f satisfying (2), we need only count the number of possible images of d_{ri} under such an f, and then take the product over all i. But the m or fewer elements of D comprising the string $f(d_{ri})$ must each belong to a cycle in the decomposition of g_r whose length divides k_{ri}. For each $1 \leq k \leq m$, there are

$$\left(\sum_{j \mid k_{ri}} j c(g_r, j)\right)^k$$
choices of $f(d_{ri})$ such that $|f(d_{ri})| = k$. Hence, there are

$$\sum_{k=1}^{m} \left(\sum_{j \mid k_{ri}} j c(g_r, j)\right)^k$$
total choices of $f(d_{ri})$. Taking the product over all i, it follows that the number of f satisfying (2) is

$$\prod_{i=1}^{\ell_r} \left(\sum_{k=1}^{m} \left(\sum_{j \mid k_{ri}} j c(g_r, j)\right)^k\right).$$

(3)
Thus, we’ve evaluated \(|\{ f \in \Omega : f \circ g_r = \phi_{g_r} \circ f \}|\), and putting together (1) and (3) gives an expression for the number of equivalence classes in \(\Omega\) under the relation \(\sim\). Recalling that these classes are in one-to-one correspondence with the classes in \(\Gamma\) under the relation of combinatorial equivalence, we obtain our main result:

Theorem 6. If \(|D| = n\), then the number of \(m\)-endomorphisms on \(D^+\), up to combinatorial equivalence, is the value of

\[
\frac{1}{n!} \sum_{r=1}^{n} \left(\prod_{i=1}^{\ell_r} \left(\sum_{k=1}^{m} j(c(g_r, j))^k \right) \right),
\]

where \(g_1, \ldots, g_n\) are the elements of \(\text{Sym}(D)\), and \(k_{r1}, \ldots, k_{r\ell_r}\) is the cycle type of \(g_r\).

Example 7. Let \(D = \{a, b\}\). We find the number of classes of 1-endomorphisms on \(D^+\). The elements of \(\text{Sym}(D)\) (in cycle notation) are \(g_1 = (a)(b)\) and \(g_2 = (a, b)\). Evidently, \(c(g_1, 1) = 2\), \(c(g_2, 1) = 0\), and \(c(g_2, 2) = 1\). Using Theorem 6, there are

\[
\frac{1}{2} (c(g_1, 1)^2 + 2c(g_2, 2)) = \frac{1}{2} (2^2 + 2) = 3
\]

classes of 1-endomorphisms on \(D^+\). These are given by

\[
\begin{align*}
\{ &a \to a \}, \quad \{ &a \to b \} \quad \text{and} \quad \{ &a \to a \equiv a \to b \}.
\end{align*}
\]

We can extend the result of Example 7 by fixing \(n = 2\) and letting \(m\) be arbitrary. From (4), we find that the number of classes of \(m\)-endomorphisms on \(D^+\), where \(|D| = 2\), is

\[
\frac{1}{2} ((2^{m+1} - 2)^2 + (2^{m+1} - 2)).
\]

Running \(m\) through the natural numbers, we obtain values 3, 21, 105, 465, 1953, \ldots. This is the sequence A134057 in the On-line Encyclopedia of Integers [OEIS 1996]. However, for \(n = 3\), the number of classes of \(m\)-endomorphisms becomes

\[
\frac{1}{6} \left(\left(\frac{3^{m+1} - 3}{2} \right)^3 + 3m \frac{3^{m+1} - 3}{2} + 2 \frac{3^{m+1} - 3}{2} \right).
\]

Letting \(m = 1, 2, 3, 4, \ldots\) gives values 7, 304, 9958, 288280, \ldots. This sequence appears to be little-known, and has been submitted by the authors to the OEIS.

2.1. An alternative formulation of Theorem 6. We now present a slight rewording of Theorem 6. In order to compute the number of equivalence classes of \(m\)-endomorphisms (where \(|D| = n\)), we need not, in practice, consider each element of \(\text{Sym}(D)\) individually. Rather, we need only consider the cycle types of these permutations. The following well-known result gives the number of permutations in \(\text{Sym}(D)\) of a given cycle type.
Proposition 8 [Dummit and Foote 2004]. Let $|D| = n$, and let $g \in \text{Sym}(D)$. Suppose that m_1, m_2, \ldots, m_s are the distinct integers appearing in the cycle type of g. For each $j \in \{1, 2, \ldots, s\}$, abbreviate $c_j = c(g, m_j)$. Let C_g be the set of all permutations in $\text{Sym}(D)$ whose cycle type is that of g. Then

$$|C_g| = \frac{n!}{\prod_{j=1}^{s} c_j! m_j^{c_j}}. \quad (5)$$

For convenience, we shall say that $g \in \text{Sym}(D)$ fixes the mapping $f \in \Omega$ if and only if $f \circ g = \phi_g \circ f$. Now, two bijections in $\text{Sym}(D)$ with the same cycle type must fix the same number of $f \in \Omega$. Therefore, in order to derive an expression for the number of classes of m-endomorphisms on D^+, we can select a single representative in $\text{Sym}(D)$ of each possible cycle type, then determine the number of $f \in \Omega$ fixed by each representative using expression (3), multiply this number by the corresponding value of (5), and then sum up over all of our representatives and divide by $n!$. But the cycle types in $\text{Sym}(D)$ are precisely the integer partitions of n, namely, the nondecreasing sequences of natural numbers whose sum is n. If $p(n)$ denotes the number of integer partitions of n, then we may restate Theorem 6 as follows.

Corollary 9. Let $|D| = n$, and suppose that $g_1, \ldots, g_{p(n)} \in \text{Sym}(D)$ have distinct cycle types. Then the number of m-endomorphisms on D^+, up to combinatorial equivalence, is the value of

$$\frac{1}{n!} \sum_{r=1}^{p(n)} \left(\frac{\ell_r}{c_{g_r}} \prod_{i=1}^{\ell_r} \left(\sum_{k=1}^{m} \left(\sum_{j \mid k_r i} j c(g_r, j) \right)^k \right) \right), \quad (6)$$

where $k_{r1}, \ldots, k_{r \ell_r}$ is the cycle type of g_r, and C_{g_r} is as in Proposition 8.

Example 10. To illustrate Corollary 9, we compute the number of classes of m-endomorphisms when $|D| = 4$. Let $D = \{a, b, c, d\}$. As previously mentioned, the cycle types in $\text{Sym}(D)$ are the integer partitions of 4:

$$1 + 1 + 1 + 1, \quad 1 + 1 + 2, \quad 2 + 2, \quad 1 + 3, \quad 4.$$

Hence, the bijections

$$g_1 = (a)(b)(c)(d), \quad g_2 = (a)(b)(c, d), \quad g_3 = (a, b)(c, d), \quad g_4 = (a)(b, c, d), \quad g_5 = (a, b, c, d)$$

encompass all possible cycle types in $\text{Sym}(D)$. Direct calculation using (5) yields

$$|C_{g_1}| = 1, \quad |C_{g_2}| = 6, \quad |C_{g_3}| = 3, \quad |C_{g_4}| = 8, \quad |C_{g_5}| = 6.$$

Thus, by Corollary 9, the number of classes of m-endomorphisms when $n = 4$ is

$$\frac{1}{24} \left(\Lambda_4^4 + 6 \Lambda_2^2 \Lambda_4 + 3 \Lambda_4^2 + 8m \Lambda_4 + 6 \Lambda_4 \right),$$

where $\Lambda_k = (k^{m+1} - k)/(k - 1)$.

ENUMERATION OF m-ENDOMORPHISMS

429
<table>
<thead>
<tr>
<th></th>
<th>(n = 1)</th>
<th>(n = 2)</th>
<th>(n = 3)</th>
<th>(n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = 1)</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>(m = 2)</td>
<td>2</td>
<td>21</td>
<td>304</td>
<td>6,915</td>
</tr>
<tr>
<td>(m = 3)</td>
<td>3</td>
<td>105</td>
<td>9,958</td>
<td>2,079,567</td>
</tr>
<tr>
<td>(m = 4)</td>
<td>4</td>
<td>465</td>
<td>288,280</td>
<td>556,898,155</td>
</tr>
<tr>
<td>(m = 5)</td>
<td>5</td>
<td>1,953</td>
<td>7,973,053</td>
<td>144,228,436,231</td>
</tr>
<tr>
<td>(m = 6)</td>
<td>6</td>
<td>8,001</td>
<td>217,032,088</td>
<td>37,030,504,349,475</td>
</tr>
</tbody>
</table>

Table 1. Values of (6) for \(n, m \leq 6\).

Proceeding along the lines of Example 10, we find that there are
\[
\frac{1}{120} \left(\Lambda_5^5 + 10 \Lambda_3^3 \Lambda_5 + 15m \Lambda_5^2 + 20 \Lambda_2^2 \Lambda_5 + 20 \Lambda_2 \Lambda_3 + 30m \Lambda_5 + 24 \Lambda_5 \right)
\]
classes of \(m\)-endomorphisms when \(n = 5\), and
\[
\frac{1}{720} \left(\Lambda_6^6 + 15 \Lambda_4^4 \Lambda_6 + 45 \Lambda_2^2 \Lambda_6^2 + 15 \Lambda_6^3 + 40 \Lambda_3^3 \Lambda_6 \\
+ 120m \Lambda_3 \Lambda_4 + 40 \Lambda_6^2 + 90 \Lambda_2^2 \Lambda_6 + 90 \Lambda_2 \Lambda_6 + 144m \Lambda_6 + 120 \Lambda_6 \right)
\]
classes of \(m\)-endomorphisms when \(n = 6\). Letting \(m\) run through \(\mathbb{N}\) in these cases, we again obtain sequences that are not well-known. Table 1 displays the values of (6) for \(n, m \leq 6\).

Remark 11. The sequence 1, 3, 7, 19, 47, 130, \ldots is sequence A001372 in [OEIS 1996].

3. Two natural variations

In this section, we highlight two natural variations of Corollary 9. First, we restrict our attention to endomorphisms on \(D^+\) that send each element of \(D\) to a string of length exactly \(m\). We then consider \(m\)-endomorphisms of the so-called free monoid, which contains the empty string. Expressions analogous to those in Section 2 are derived in each case.

3.1. \(m\)-uniform endomorphisms. Fix \(n, m \in \mathbb{N}\), and suppose that \(|D| = n\). Then \(\phi \in \text{End}(D^+)\) is called an \(m\)-uniform endomorphism if and only if \(|\phi(d)| = m\) for
each $d \in D$. In this section, we produce a formula for the number of m-uniform endomorphisms on D^+ up to combinatorial equivalence. To begin, let $g_1, \ldots, g_{p(n)} \in \text{Sym}(D)$ have distinct cycle types. We now put $R = \{W \in D^+ : |W| = m\}$ and take Ω to be the set of all mappings of D into R. For each $1 \leq r \leq p(n)$, we ask for the number of $f \in \Omega$ satisfying

$$f \circ g_r = \phi_{g_r} \circ f.$$

Once again, if g_r has cycle type $k_{r1}, \ldots, k_{r\ell_r}$, then for each $1 \leq i \leq \ell_r$ we select an element d_{ri} from the cycle corresponding to k_{ri}, and count the number of possible values of $f(d_{ri})$. In this case, we must have $|f(d_{ri})| = m$, where the elements of D comprising the string $f(d_{ri})$ each belong to a cycle whose length divides k_{ri}. Hence, there are

$$\left(\sum_{j \mid k_{ri}} j c(g_r, j) \right)^m$$

choices of $f(d_{ri})$, and multiplying over all i yields

$$\prod_{i=1}^{\ell_r} \left(\sum_{j \mid k_{ri}} j c(g_r, j) \right)^m$$

as the value of $|\{f \in \Omega : f \circ g_r = \phi_{g_r} \circ f\}|$. Noting that permutations in $\text{Sym}(D)$ of the same cycle type fix the same number of $f \in \Omega$, we multiply by $|C_{g_r}|$, sum with respect to r, and divide by $n!$ to obtain the following.

Corollary 12. If $|D| = n$ and $g_1, \ldots, g_{p(n)} \in \text{Sym}(D)$ have distinct cycle types, then the number of m-uniform endomorphisms on D^+, up to combinatorial equivalence, is the value of

$$\frac{1}{n!} \sum_{r=1}^{p(n)} \left(|C_{g_r}| \prod_{i=1}^{\ell_r} \left(\sum_{j \mid k_{ri}} j c(g_r, j) \right)^m \right),$$

(7)

where $k_{r1}, \ldots, k_{r\ell_r}$ is the cycle type of g_r, and C_{g_r} is as in Proposition 8.

When $n = 2$, the number of m-uniform endomorphisms on D^+, up to combinatorial equivalence, is

$$\frac{1}{2} (2^{2m} + 2^m).$$

Letting $m = 1, 2, 3, 4, \ldots$ gives values 3, 10, 36, 136, \ldots. This is the sequence A007582 from [OEIS 1996]. Moreover, when $n = 3$ there are

$$\frac{1}{6} (3^{3m} + 3 \cdot 3^m + 2 \cdot 3^m)$$

classes of m-uniform endomorphisms, and letting m run through \mathbb{N} gives the sequence 7, 129, 3303, 88641, \ldots, which is not well known. Continuing, the
$n = 1$ $n = 2$ $n = 3$ $n = 4$

$m = 1$ 1 3 7 19

$m = 2$ 1 10 129 2,836

$m = 3$ 1 36 3,303 700,624

$m = 4$ 1 136 88,641 178,981,696

$m = 5$ 1 528 7,973,053 45,813,378,304

$m = 6$ 1 2,080 64,570,689 11,728,130,323,456

$m = 1$ 47 130

$m = 2$ 83,061 3,076,386

$m = 3$ 254,521,561 141,131,630,530

$m = 4$ 794,756,352,216 6,581,201,266,858,896

$m = 5$ 2,483,530,604,092,546 307,047,288,863,992,988,160

$m = 6$ 7,761,021,959,623,948,401 14,325,590,271,500,876,382,987,456

<table>
<thead>
<tr>
<th>$n = 5$</th>
<th>$n = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 1$</td>
<td>47</td>
</tr>
<tr>
<td>$m = 2$</td>
<td>83,061</td>
</tr>
<tr>
<td>$m = 3$</td>
<td>254,521,561</td>
</tr>
<tr>
<td>$m = 4$</td>
<td>794,756,352,216</td>
</tr>
<tr>
<td>$m = 5$</td>
<td>2,483,530,604,092,546</td>
</tr>
<tr>
<td>$m = 6$</td>
<td>7,761,021,959,623,948,401</td>
</tr>
</tbody>
</table>

Table 2. Values of (7) for n, $m \leq 6$.

expressions when $n = 4$, 5, 6 are

\[
\frac{1}{24} \left(4^{4m} + 6 \cdot 2^{2m} \cdot 4^m + 3 \cdot 4^{2m} + 8 \cdot 4^m + 6 \cdot 4^m \right),
\]

\[
\frac{1}{120} \left(5^{5m} + 10 \cdot 3^m \cdot 5^m + 15 \cdot 5^m \cdot 2^m \cdot 5^m + 20 \cdot 2^m \cdot 3^m + 30 \cdot 5^m + 24 \cdot 5^m \right),
\]

\[
\frac{1}{720} \left(6^{6m} + 15 \cdot 4^{4m} \cdot 6^m + 45 \cdot 2^m \cdot 6^m + 15 \cdot 6^{3m} + 40 \cdot 3^m \cdot 6^m
\]

\[
+ 120 \cdot 3^m \cdot 4^m + 40 \cdot 6^{2m} + 90 \cdot 2^m \cdot 6^m + 90 \cdot 2^m \cdot 6^m + 144 \cdot 6^m + 120 \cdot 6^m \right),
\]

respectively. Table 2 displays the values of (7) for n, $m \leq 6$.

3.2. The free monoid. If we adjoin the unique string of length 0 (denoted by ϵ) to the set D^+, then we form the set D^*. Paired with the operation of string concatenation, D^* forms the free monoid on D. We refer to ϵ as the empty string, and it serves as the identity element in D^*. That is, for any $W \in D^*$,

\[
W \epsilon = W = \epsilon W.
\]

We define an endomorphism on D^* to be a mapping $\phi : D^* \to D^*$ such that $\phi(W_1 W_2) = \phi(W_1) \phi(W_2)$ for all $W_1, W_2 \in D^*$.

Remark 13. Note that if ϕ is an endomorphism on D^*, then $\phi(\epsilon) = \epsilon$. This follows since for any $W \in D^*$, we have

\[
\phi(W) = \phi(\epsilon W) = \phi(\epsilon) \phi(W),
\]

which implies that $\phi(\epsilon)$ has length 0.
Now, an m-endomorphism on D^* is an endomorphism such that $|\phi(d)| \leq m$ for all $d \in D$. Thus, an m-endomorphism on D^* can map elements of D to ϵ. To determine the number of m-endomorphisms on D^* up to combinatorial equivalence, we put $R = \{W \in D^* : |W| \leq m\}$, and for each $g \in \text{Sym}(D)$, we ask for the number of $f : D \rightarrow R$ that are fixed by g. Again, it suffices to count the number of possible images under such an f of a single $d \in D$ from each cycle in the decomposition of g, and then multiply over all the cycles. But there is now one additional possible value of $f(d)$: the empty string. Hence, if d belongs to a cycle of length k_t, then we have

$$1 + \sum_{k=1}^{m} \left(\sum_{j \mid k_t} j c(g_r, j) \right)^k = \sum_{k=0}^{m} \left(\sum_{j \mid k_t} j c(g_r, j) \right)^k$$

choices of $f(d)$. From this observation, we deduce the following.

Corollary 14. Let $|D| = n$, and suppose that $g_1, \ldots, g_{p(n)} \in \text{Sym}(D)$ have distinct cycle types. Then the number of m-endomorphisms on D^*, up to combinatorial equivalence, is the value of

$$\frac{1}{n!} \sum_{r=1}^{p(n)} \left(|C_{g_r}| \prod_{i=1}^{\ell_r} \left(\sum_{k=0}^{m} \left(\sum_{j \mid k_t} j c(g_r, j) \right)^k \right) \right),$$

where $k_{r1}, \ldots, k_{r\ell_r}$ is the cycle type of g_r, and C_{g_r} is as in Proposition 8.

When $n = 2$, the number of m-endomorphisms on D^*, up to combinatorial equivalence, is

$$\frac{1}{2} \left((2^{m+1} - 1)^2 + (2^{m+1} - 1) \right).$$

This is sequence A006516 from [OEIS 1996]. The corresponding expressions for $n = 3, 4, 5, 6$ are

$$\frac{1}{6} \left(\Delta_3^3 + 3(m + 1) \Delta_3 + 2 \Delta_3 \right),$$

$$\frac{1}{24} \left(\Delta_4^4 + 6 \Delta_2^2 \Delta_4 + 3 \Delta_4^2 + 8(m + 1) \Delta_4 + 6 \Delta_4 \right),$$

$$\frac{1}{120} \left(\Delta_5^5 + 10 \Delta_3^3 \Delta_5 + 15(m+1) \Delta_5^2 + 20 \Delta_2^2 \Delta_5 + 20 \Delta_2 \Delta_3 + 30(m+1) \Delta_5 + 24 \Delta_5 \right),$$

$$\frac{1}{720} \left(\Delta_6^6 + 15 \Delta_4^4 \Delta_6 + 45 \Delta_2^2 \Delta_6^2 + 15 \Delta_6^3 + 40 \Delta_3^3 \Delta_6 + 120(m+1) \Delta_3 \Delta_4 \\
+ 40 \Delta_6^2 + 90 \Delta_2^2 \Delta_6 + 90 \Delta_2 \Delta_6 + 144(m+1) \Delta_6 + 120 \Delta_6 \right),$$

where $\Delta_k = (k^{m+1} - 1)/(k - 1)$. Once again, the sequences given by these expressions appear to be little-known. Table 3 gives the values of (8) for $n, m \leq 6$.

4. (χ, ξ)-patterns

In closing, we briefly place the relation \sim from Section 1 into a more general context. Let G be a finite group, and let N and M be finite nonempty sets. Suppose
Table 3. Values of (8) for $n, m \leq 6$.

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 4$</th>
<th>$n = 5$</th>
<th>$n = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>16</td>
<td>45</td>
<td>121</td>
<td>338</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>28</td>
<td>390</td>
<td>8,442</td>
<td>244,910</td>
<td>8,967,034</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>120</td>
<td>10,760</td>
<td>2,180,845</td>
<td>770,763,470</td>
<td>419,527,164,799</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>496</td>
<td>295,603</td>
<td>563,483,404</td>
<td>2,421,556,983,901</td>
<td>19,636,295,549,860,505</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2,016</td>
<td>8,039,304</td>
<td>144,651,898,755</td>
<td>2,370,422,688,990,078</td>
<td>916,720,535,022,517,503,173</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8,128</td>
<td>217,629,416</td>
<td>37,057,640,711,850</td>
<td>23,683,244,198,577,149,289</td>
<td>42,775,066,732,111,188,868,070,978</td>
</tr>
</tbody>
</table>

that $\chi : G \to \text{Sym}(N)$ and $\zeta : G \to \text{Sym}(M)$ are group homomorphisms. Denote the set of all functions from N into M by M^N. This notation comes from de Bruijn [1972], who also introduced the equivalence relation $E_{\chi,\zeta}$ on M^N defined by

$$(f_1, f_2) \in E_{\chi,\zeta} \iff f_2 \circ \chi(\gamma) = \zeta(\gamma) \circ f_1 \text{ for some } \gamma \in G.$$

Example 15 [de Bruijn 1972]. Suppose that N is a set of size $n \in \mathbb{N}$, and define an equivalence relation S on the set of all mappings of N into itself by

$$(f_1, f_2) \in S \iff f_2 \circ \gamma = \gamma \circ f_1 \text{ for some } \gamma \in \text{Sym}(N).$$

Letting $G = \text{Sym}(N)$, $M = N$, and $\chi = \zeta$ be the identity homomorphism on $\text{Sym}(N)$ shows that S is a special case of the relation $E_{\chi,\zeta}$. Moreover, the sequence in Remark 11 gives the number of equivalence classes under S for $n = 1, 2, 3 \ldots$ (See [de Bruijn 1972, § 3].)

The relation $E_{\chi,\zeta}$ stems from the left action of G on M^N given by

$$\gamma \cdot f = \zeta(\gamma) \circ f \circ \chi(\gamma^{-1})$$

for all $\gamma \in G, f \in M^N$. De Bruijn [1972] referred to the orbits of G on M^N as (χ, ζ)-patterns, and provided a formula for the number of these by applying Burnside’s lemma, and then evaluating $|\{f \in M^N : \gamma \cdot f = f\}|$ for each $\gamma \in G$. But the relation \sim on the set $\Omega = \{\text{mappings of } D \text{ into } R\}$, where $0 < |D| < \infty$ and $R = \{W \in D^+ : |W| \leq m\}$, is a special instance of the relation $E_{\chi,\zeta}$. To see this,
take \(N = D, \ M = R, \) and \(G = \text{Sym}(D) \). Let \(\chi \) be the identity homomorphism on \(\text{Sym}(D) \), and define \(\zeta : G \to \text{Sym}(R) \) by

\[
\zeta(g) = \phi_g |_R
\]

for all \(g \in \text{Sym}(D) \). Then for any \(g, g' \in \text{Sym}(D) \),

\[
\zeta(g \circ g') = \phi_{g \circ g'} |_R = (\phi_g \circ \phi_{g'}) |_R = \phi_g |_R \circ \phi_{g'} |_R = \zeta(g) \circ \zeta(g'),
\]

so \(\zeta \) is a group homomorphism. Now, for any \(f_1, f_2 \in \Omega \), we have

\[
f_1 \sim f_2 \iff f_2 \circ g = \phi_g \circ f_1 = \phi_g |_R \circ f_1 \quad \text{for some } g \in \text{Sym}(D)
\]

\[
\iff f_2 \circ \chi(g) = \zeta(g) \circ f_1 \quad \text{for some } g \in \text{Sym}(D)
\]

\[
\iff (f_1, f_2) \in E_{\chi, \zeta}.
\]

It follows that the equivalence classes in \(\Omega \) under the relation \(\sim \) are \((\chi, \zeta)\)-patterns for \(\chi, \zeta \) chosen as above. In particular, our Theorem 6 is a special case of de Bruijn’s formula.

Acknowledgments

We thank the anonymous referee, whose numerous observations and suggestions led to substantial revision. This research was supported by Temple University’s Undergraduate Research Program.

References

Received: 2015-02-06 Revised: 2015-07-14 Accepted: 2015-07-20

rubinlj@slu.edu

Department of Mathematics and Computer Science, St. Louis University, 220 North Grand Boulevard, St. Louis, MO 63103, United States

brirush@mathematics.byu.edu

Department of Mathematics, Brigham Young University, 268 TMCB, Provo, UT 84602, United States
INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams Williams College, USA
John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA
Martin Bohner University of Wisconsin, USA
Nigel Boston University of North Carolina, Chapel Hill, USA
Amarjit S. Budhiraja La Trobe University, Australia
Pietro Cerone Sam Houston State University, USA
Scott Chapman University of South Carolina, USA
Joshua N. Cooper University of Colorado, USA
Conedore Howard University, USA
Michael Dorff Brigham Young University, USA
Sever S. Dragomir Victoria University, Australia
Behrouz Emamizadeh The Petroleum Institute, UAE
Joel Foisy SUNY Potsdam, USA
Errin W. Fulp Wake Forest University, USA
Joseph Gallian University of Minnesota Duluth, USA
Stephan R. Garcia Pomona College, USA
Anant Godbole East Tennessee State University, USA
Ron Gould Emory University, USA
Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA
Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA
Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA
Natalia Hritonenko Prairie View A&M University, USA
Glenn Hurlbert Arizona State University, USA
Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA
Gerry Ladas University of Rhode Island, USA
Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA
Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand
Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA
Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA
Ken Ono Emory University, USA
Timothy E. O’Brien Loyola University Chicago, USA
Joseph O’Rourke Smith College, USA
Yuval Peres Microsoft Research, USA
Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA
Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA
Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA
Joseph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA
Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA
James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor
Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA
Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA
John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $160/year for the electronic version, and $215/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFlow® from Mathematical Sciences Publishers.
A combinatorial proof of a decomposition property of reduced residue systems
Yotsanan Meemark and Thanakorn Prinyasart

361

Strong depth and quasigeodesics in finitely generated groups
Brian Gapinski, Matthew Horak and Tyler Weber

367

Generalized factorization in \(\mathbb{Z}/m\mathbb{Z} \)
Austin Mahlum and Christopher Park Mooney

379

Cocircular relative equilibria of four vortices
Jonathan Gomez, Alexander Gutierrez, John Little, Roberto Pelayo and Jesse Robert

395

On weak lattice point visibility
Neil R. Nicholson and Rebecca Rachan

411

Connectivity of the zero-divisor graph for finite rings
Reza Akhtar and Lucas Lee

415

Enumeration of \(m \)-endomorphisms
Louis Rubin and Brian Rushton

423

Quantum Schubert polynomials for the \(G_2 \) flag manifold
Rachel E. Elliott, Mark E. Lewers and Leonardo C. Mihalcea

437

The irreducibility of polynomials related to a question of Schur
Lenny Jones and Alicia Lamarche

453

Oscillation of solutions to nonlinear first-order delay differential equations
James P. Dix and Julio G. Dix

465

A variational approach to a generalized elastica problem
C. Alex Safsten and Logan C. Tatham

483

When is a subgroup of a ring an ideal?
Sunil K. Chebolu and Christina L. Henry

503

Explicit bounds for the pseudospectra of various classes of matrices and operators
Feixue Gong, Olivia Meyerson, Jeremy Meza, Mihai Stoiciu and Abigail Ward

517