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We show that the rings of invariants for the three-dimensional modular represen-
tations of an elementary abelian p-group of rank four are complete intersections
with embedding dimension at most five. Our results confirm the conjectures of
Campbell, Shank and Wehlau (Transform. Groups 18 (2013), 1-22) for these
representations.

Introduction

We continue the investigation of the rings of invariants of modular representations
of elementary abelian p-groups initiated in [Campbell et al. 2013]. We show that
the rings of invariants for three-dimensional modular representations of groups of
rank four are complete intersections and we confirm the conjectures of [loc. cit., §8]
for these representations.

Let V denote an n-dimensional representation of a group G over a field F of
characteristic p for a prime number p. We will usually assume that G is finite and
that p divides the order of G, in other words, that V is a modular representation
of G. We view V as a left module over the group ring FG and the dual, V* as a
right FG-module. Let F[V] denote the symmetric algebra on V* The action of G
on V* extends to an action by degree-preserving algebra automorphisms on F[V]. By
choosing a basis {x1, x7, ..., x,} for V* we identify [V ] with the algebra of polyno-
mials F[xy, x7, ..., x,]. Our convention that F[V] is aright FG-module is consistent
with the convention used by the invariant theory package in the computer algebra
software Magma [Bosma et al. 1997]. The ring of invariants, F[V]°, is the subring
of F[ V'] consisting of those polynomials fixed by the action of G. Note that elements
of F[V] represent polynomial functions on V and that elements of F[V ] represent
polynomial functions on the set of orbits V/G. For G finite and F algebraically
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closed, F[V]C is the ring of regular functions on the categorical quotient V / G. For
background on the invariant theory of finite groups, see [Benson 1993; Campbell
and Wehlau 2011; Derksen and Kemper 2002; Neusel and Smith 2002].

Computing the ring of invariants for a modular representation is typically a
difficult problem; the rings are often not Cohen—Macaulay. It is natural to take
p-groups as a starting point and recent work of David Wehlau [2013] gives us a
good understanding in the case of a cyclic group of order p. The next step is to look
at elementary abelian p-groups. The rings of invariants for the two-dimensional
modular representations of elementary abelian p-groups were computed in Section 2
of [Campbell et al. 2013] and the three-dimensional modular representations were
classified in Section 4 of that paper. The only three-dimensional representations
for which computing the ring of invariants is not straightforward are those of
type (1, 1, 1), in other words, those representations for which dim(V %) = 1 and
dim((V/ V99 = 1. Our goal here is to compute the rings of invariants for
representations of type (1, 1, 1) for groups of rank four. The methods we use are
essentially the same as the methods used in [loc. cit.]. As the rank increases, the
complexity of the required calculations increases; we believe that it is not feasible
to use the methods here for rank greater than four.

We denote by E = (e, e2,e3,e4) = (Z/ p)4 a rank-four elementary abelian
p-group. Note that E only has representations of type (1,1, 1) if p > 2, so we
make this assumption throughout the paper. As in Section 4 of [loc. cit.], define
o : > = GL3(F) by

1 2¢ C%—l—CQ
o(ci,c) =10 1 (]
0 0 1

Note that o defines a representation of the group (F?, +). For a matrix

M= (011 €12 €13 Cl4>
€21 €22 €23 C24
with ¢;; € F, the assignment e; — o (cy;, cz;) determines a three-dimensional
representation of £, which we denote by Vj,. The action of E on F[x, y, 7] is
given by right multiplication on x =[0 0 1], y=[0 1 0] and z=[1 0 0]. Thus
x-o(ci,c0)=x, y-0(c1,c)=y+cixand z-o(cy, ) =z4+2c1y + (c%—{—cz)x.
The representation V), is of type (1, 1, 1) if at least one ¢y ; is nonzero. Furthermore,
by Proposition 4.1 of [loc. cit.], for every representation of type (1, 1, 1), there
exists a choice of basis for which the action is given by some matrix M.

In this paper, we compute F[Vy,]¢ for all M € F>*4 We give a stratification
of F?** and show that within each stratum there is a uniform computation of F[Vy,] E
Note that the automorphism group of E is isomorphic to GL4([,), where [, denotes
the field of p elements. Since [, C [, there is a natural right action of GL4([F,)
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on F**% If M and M’ lie in the same GL4(F,)-orbit, then F[Vy/]E = F[V)r]E.
Essentially, we study subrings of F[x, y, z] parametrised by points in F2**/ GL4(F)
and use elements of F[F2**]1544Fr) to describe the stratification.

In Section 2, we work over the field K:=F,(x;; | i € {1,2}, j €{1,2,3,4}) and
compute K[Vm]E for the generic matrix

X11 X12 X13 X14
M= .
X1 X2 X23 X24

We show that K[V]F is a complete intersection of embedding dimension five
with generators in degrees 1, p2, p>+2p, p> +2 and p*, and relations in
degrees p> 4+ 2p? and p* +2p. Consider the 10 x 4 matrix

X11 X12 X13 X14

X21 X22 X23 X24
p P P P
X1 X2 X3 Xig

p .p P P
=1 %1 X2 %23 X4

4 4 4 4
pt oot pt p
X X2 X3 X
4 4 4 4
ptoopt Pt p
szl Xop X3 Xog

and for a subsequence (i, j, k, £) of (1,2, ..., 10), let y;;x, denote the associated
4 x 4 minor of I'. Note that ;¢ € F[F2*415L4Fp) and, for g € GL4(F,), we have
& (Vijke) = det(g)yijke- We use zero-sets of various y;je to define the stratification
of F?**/ GL4(F,). In Section 3, we show that for M € F>** with y1234(M) # 0,
y1235(M) # 0 and y1357(M) # 0, the generic calculation survives evaluation. In
Sections 4 through 10, we compute the rings of invariants for the remaining strata.

Section 4: y1357(M) # 0, yi1235(M) # 0, y1234(M) = 0. We show F[Vy]® is a
complete intersection with generators in degrees 1, 2p, p? p*+2 and p* and
relations in degrees 2p> and p* + 2p.

Section 5: y1357(M) #0, y1235(M) =0, y1234(M) #0. If y1245(M) #0 then F[ V), 1©
is a complete intersection with generators in degrees 1, p% p*+p, p>+p+2
and p* and relations in degrees p> + p? and p* + p? +2p. Otherwise, F[Vj]F is
a hypersurface with generators in degrees 1, p% p?-+2 and p* with the relation in
degree p*+2p>

Section 6: y1357(M) = 0, y1235(M) # 0, y1234(M) # 0. We show F[Vy 1 is a
complete intersection with generators in degrees 1, p% p>+2p, p®+1 and p*
and relations in degrees p* 4+ 2p? and p* + p.

Section 7: y1357(M) # 0, y1235(M) =0, y123a(M) = 0. We show F[Vy]F is a
hypersurface. If y1257(M) = 0, then the generators are in degrees 1, 2, p* and p*
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and the relation is in degree 2p* Otherwise, the generators are in degrees 1, p,
P+ p?+ p+2, p* and the relation is in degree p* + p* + p> +2p.

Section 8: y1357(M) =0, y1235(M) # 0, y1234(M) = 0. We show F[Vy]1* is a
complete intersection with generators in degrees 1, 2p, p3, p*+1 and p* with
relations in degrees 2p? and p* + p.

Section 9: y1357(M) = 0, y1235(M) = 0, y1234(M) # 0. If y1245(M) # 0, then
F[Vy]F is a complete intersection with generators in degrees 1, p% p>+p, p>+1
and p* with relations in degrees p> 4+ p? and p* + p. Otherwise, F[Vy]F is a
hypersurface with generators in degrees 1, p% p?+ 1 and p* with a relation in
degree p* + p

Section 10: y1357(M) = 0, y1235(M) = 0, y1234(M) = 0. If y1246(M) # O then
F[ Va1 is a hypersurface with generators in degrees 1, p, p>+1, p* and a relation
in degree p* 4+ p. Otherwise, the representation is either not faithful or not of
type (1, 1, 1); in either case, the invariants were computed in [Campbell et al. 2013].

1. Preliminaries

We make extensive use of the theory of SAGBI bases to compute rings of invariants.
A SAGBI basis is the subalgebra analogue of a Grobner basis for ideals, and is a
particularly nice generating set for the subalgebra. The concept was introduced
independently by Robbiano and Sweedler [1990] and Kapur and Madlener [1989];
a useful reference is Chapter 11 of Sturmfels [1996]. We adopt the convention that
a monomial is a product of variables and a term is a monomial with a coefficient.
We use the graded reverse lexicographic order with x < y < z. For a polynomial
f €Flx, y, z], we denote the lead monomial of f by LM(f) and the lead term of f
by LT(f). For B={hy, ..., h¢} CFlx,y,z] and I = (i1, ..., i), a sequence of
nonnegative integers, denote ]_[33-:1 h}j by hl. A téte-a-téte for B is a pair (h!, h”)
with LM(A!) = LM(h’); we say that a téte-a-téte is nontrivial if the support
of I is disjoint from the support of J. The reduction of an S-polynomial is a
fundamental calculation in the theory of Grobner bases. The analogous calculation
for SAGBI bases is the subduction of a téte-a-téte. For any f € F[x, y, z], if there
exists a sequence I such that LM(f) = LM(h’), we can choose ¢ € F so that
LT(f) = LT(ch’). Then LT(f — ch!) < LT(f). If by iterating this process we
can write f as a polynomial in the /;, we say that f subducts to zero (using B).
For a téte-a-téte (h!, h”), choose ¢ so that LT(h!) = LT(ch’). We say that the
téte-a-téte subducts to zero if i’ —ch”’ subducts to zero. A subset B of a subalgebra
A C F[xy,...,x,] is a SAGBI basis for A if the lead monomials of the elements
of B3 generate the lead term algebra of A or, equivalently, every nontrivial téte-a-téte
for B subducts to zero. For background material on term orders and Grobner bases,
we recommend [Adams and Loustaunau 1994].
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The following specialisation of Theorem 1.1 of [Campbell et al. 2013] is our pri-
mary computational tool. Note that under the hypotheses of the theorem, {x, /1, f¢}
is a homogeneous system of parameters and, therefore, F[Vj/]% is an integral
extension of A.

Theorem 1.1. For homogeneous hy, ..., hy € F[Vy1E with LM(h;) = yi for
some i >0, LM(hy) :zjfor some j > 0and LM(hy) € Fly, z] fork=2,...,£—1,
define B := {x, hy,...,h¢} and let A denote the algebra generated by B. If
Alx " =F[Vy1E[x~" and B is a SAGBI basis for A, then A = F[Vy/1* and B is
a SAGBI basis for F[Vy1E.

Note that, if an algebra is generated by a finite SAGBI basis, then for the
corresponding presentation, the ideal of relations is generated by elements corre-
sponding to the subductions of the nontrivial téte-a-t€tes (see Corollary 11.6 of
[Sturmfels 1996]). We use the term complete intersection to refer to an algebra with
a presentation for which the ideal of relations is generated by a regular sequence.
Since the Krull dimension of F[Vy,]¥ is three, the ring is a complete intersection if
the number of generators minus the number of nontrivial téte-a-tétes is three.

We routinely use the SAGBI/divide-by-x algorithm introduced in Section 1 of
[Campbell et al. 2013]. The traditional SAGBI basis algorithm proceeds by sub-
ducting téte-a-tétes and adding any nonzero subductions to the generating set. For
SAGBI/divide-by-x, if a nonzero subduction is divisible by x, we divide by the
highest possible power of x before adding the polynomial to the generating set.
While the SAGBI algorithm extends the generating set for a given subalgebra,
SAGBI/divide-by-x extends the subalgebra. If we start with a subalgebra A which
contains a homogeneous system of parameters and satisfies the condition that
Alx~ Y = F[Vy1E[x "], then the SAGBI/divide-by-x algorithm will produce a
generating set for F[Vj;]F (see Theorem 1.2 of [loc. cit.]).

For f € F[Vy], we define the norm of f to be the orbit product

Nu(f):=]]{f ¢lgeE)eFVul®

with the action of E determined by M. When applying Theorem 1.1, we often
take hy to be Ny (2).

Remark 1.2. Note that the action of E restricts to an action on F[x, y] and that
Flx, y1¥ = Flx, Ny (y)] (see Section 2 of [Campbell et al. 2013]). Therefore, if
h € Flx, y]¥ is homogeneous with deg(h) = |{y - g | g € E}| then A is a linear
combination of Ny (y) and x9eg®),

Define 8 := y? — xz and observe that

§-0(cr ) =(y+c1x)® —x(z4+2c1y + (cf +c2)x) =8 — cox™.
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Note that F[x, y, z][x~'] = F[x, y, —8/x][x '] and that the F[x, y, —8/x]F is a
polynomial algebra (see Theorem 3.9.2 of [Campbell and Wehlau 2011]). This
“change of basis” can be a useful way to compute the field of fractions of F[V,]E.
Form the matrix T by augmenting I" with the column

HOIGNC RO

For a subsequence J = (ji,...,j5) of (1,2,...,10), let fj e Kix, y, Zl1[x™1]
denote the associated 5 x 5 minor of T". Let f7 denote the element of K[x, y, z]
constructed by minimally clearing the denominator of f;. Observe that f; €
K[Vr(1E. Furthermore, the coefficients of f; lie in Fplx; j]SL“([FP) and, for an arbitrary
M e F>*4 evaluating the coefficients of f; at M gives an element f; € F[Vy].
Invariants constructed in this way are a crucial ingredient in our calculations. Define
fi = fi2345 and observe that LT( f;) = y1234y” - Note that LT( fi2346) = — 1234y
A straightforward calculation shows that

2 2
LT(f7 + 1234 f12346) = 2V1234Y1235x7 2P yP 1P
Therefore,
fE +v1234 fi2346 E
= k
) S e K[Vl

has lead term )/1234)/1235yp2+2p.
We make frequent use of the Pliicker relations for the minors of I" and I'.

Theorem 1.3. Let N be an n x m matrix with n > m. Denote by p;, . . the
m x m minor of N determined by the rows iy, ..., i,,. For sequences (i1, ..., i—1)
and (ji, ..., jm+1), we have the following Pliicker relation

m+1

a=1
For a proof of the above theorem, see, for example, [Lakshmibai and Raghavan
2008, §4.1.3].

Lemma 14. For2 <i <7,

P _ p p p p
Y12i7Y1234 = Y12i6Y1235 — Y12i5V1245 T V12iaY 1345 — V12i3V 2345+

Proof. Since taking p-th powers is [,-linear, y(12)(j+2)(k+2)(¢4+2) = Vi§k£~ For
example, yiu56 = y1”234. The desired result follows from this fact, using the
(1,2,i)(3,4,5,6,7) Pliicker relation for the matrix I. O

For K = (ky, ko, . . ., k) a subsequence of (1, 2, ..., 10), let K; denote the subse-
quence of K formed by omitting i and let K; ; denote the subsequence of K formed
by omitting i and j. The following is Lemma 5.3 from [Campbell et al. 2013].
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Lemma 1.5. For any subsequence (i1, i»,i3) of K,
(_I)EIJ/K,'].,'2 fKi3 + (_1)62]/1(1‘2,,‘:$ fK,'l + (_1)63 yKiM} fKi2 =0
for some choice of €y € {0, 1}.

Remark 1.6. Note that y;357(M) = 0 if and only if {c11, c12, c13, c14} is linearly
dependent over [F,,. This follows from the usual construction of the Dickson invari-
ants; see, for example, [Wilkerson 1983]. The key observation is that y357(M)? -1
is the product of the nonzero [,-linear combinations of {c;1, c12, €13, c14}.

2. The generic case

In this section we compute K[Vy]%. With f; and f, defined as in Section 1, using
Theorem 5.2 of [Campbell et al. 2013], we see that

KIVMIE[x ™" =Kix, fi, Alx7']

Thus it is sufficient to extend {x, fi, f2, Na(2)} to a SAGBI basis. We use the
SAGBI/divide-by-x algorithm of [loc. cit., §1] to do this. We will show that the
algorithm produces one new invariant, which we denote by f3, and that

3
LT(f3) = yi3s7y” 2.

For p =3 and p =5, this result follows from a Magma calculation. For the rest of
this section, we assume p > 5.
Expanding the definitions of fi, fi12346 and f; gives

2 2 2 2 2_
f1 = 11230y 123587 X7 T2 4yi0asx P TP yP4p13a58x 7 2 yasasx? Ty,

2p2—1

2 2p%*-2 2p%— 2p%-2
f12346 = —¥12348" +y12368" X TP 4y1246X 77 TP yP 413460 X7 T "+ Y0346 y

and

2
i+ v1234 f12346
2xP*-2p

fr=

2 2 2
+ 2p—2
= Y1234Y1235Y" 87 + v123471245X Py TP + 1034 y13458x P2 yP

2p—1 p>+1 4, 1.2 . 2p_p* | 1.2 <2p p>—2
+1234v2345X 7T YT 4 3 Vi34 P2 4 5 vingsd T xP T
V12351124587 X7 P yP + Y1335 V1348”1 T 4 yioasyanass Pty
+71235Y1245 1235Y1345 12352345

1 2 1,2 2.2 24+p—2
+ 3¥1234V1236X 7 87 4 3¥in45x" Y7P +v124sy13456x” TPTyP

2 2 2
+p—1_p+1 1 + 1.2 o2 p>+2p—4
+y1245V23asxl TPyl +§V1234J/1246ypxp p+5713455 xPep

2 2
$2p—3. 1.2 $2p—2.2
+Y1345V23458 X7 TP Ty 4 S ya3usxl TPy

1 2+2p—2 1 2+2p—1
+ 3112347134607 TP T+ S y1034 Y0346 TP Ty
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Subducting the téte-a-téte (£, f7) gi
ubducting the téte-a-téte (f; " ~, f;) gives

7 p p+2 2 p 2_2p pp
B=Vipsfi ~ —Viwaly tax? TP f
—_—— ——— . ———

T e T3
2 2 — 2 _
p+1 2p%=2p pp—1 2p*—p £(p=3)/2 (p+1)/2
+052xp f] + o3x b pfl fot+asx P pf] 2 >
n Ts Ts
where
p+1 p+3
o= -2y o — p on = Y1234 Y1237 o — Y1234 Y1257
1= —<Y12355 2 = Y1234V1245> 3= ) 4= T2
V1235 Y1235

Lemma 2.1. For p > 5, we have LT( f3) = ax2P"=2yP*+2 yith

J/p+1 y y2p+2
_ 71234 p+1 p p+1 . 135771234
o= (712343/1345 1 Vi235V1345V1236 — V1235 71346) =-

Y1235 Y1235

Proof. We work modulo the ideal in K[x, y, z] generated by x2r'=1, By the definition
of f>, we have

2
h-Nh+T= _V1p2357/1234f1pf12346 - V1234f2p-
3

As fl =yls,yP and

p_.,p P sp>.p p P _p* pP+p?
12 = VipaaYi2350” Y0+ VinaaVipasx” Y

PP sp .2p°=2p p? p P 2p—p p+p
+V1234V 134587 % Y5 V12347 2345% yeor

we obtain
Ti=To4 T3 = =yl vhasx” Y7 7 =755 (ViosaViasT7asVioae) 8777 2 3P
- ylz;;l (Vl 2347235V i2357) 246)x2p2_pyp3+p
- lezy VinsV13460% 2p2_2)’ 7,
Since

2 3 2

p+l _ _p

x? f1 = V1234yp xP fi
= PP §P 2’ =2p P’
=YX Y V123471235 y

P 207 =p\Ptp 4o, P 2p*=2,p°
t Vi234V1245% y + ¥i234V13456%

y,
we see that
_ ., ptl p p D 2p%2=2p piep
N =D+ T3+Ti= Y (V1235V1245 ~ V123571236 — 71234V134s)x yé
p+l( p+l P P 2p*—p  p>+p
t Vi34 (V1245 — Y1235Y1246 — y1234y2345)x y

p+1 22

p P 2 3
+ Vi (V1245V1345 - V1235V1346)5x i
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Using Lemma 1.4 for i = 3 and i = 4, along with the analogous result coming
from the (1, 3,4)(3, 4,5, 6,7) Pliicker relation for I', gives

_ 2p+1 2p*-2 3
Ni=T+ T+ Ta=—vigy Vg™ Py o7
2p+1 2p?=pyp’tp _ 201 2p°-2,p°
— Y1234 Yi247% y — Vizza Viza78% Yo

Since 3p? —4p > 2p2 — 1 for p > 5, we have x27" =27 fP = = P lyp’=p" y20°-2p
Using the description of f, given above,

2 2 2 —
X772 ) = p123ax P 2P yP (1123587 + YiaasxPyP 4 yi3aséx?P 2.
Thus

3 2_ —
Ts = a3ylha, v %7 2P (1123587 + Y12a5xXP YP + Y13458x2P 7).

Using the (1,2,4)(1,2,3,5,7) and (1, 3,5)(1,2, 3,4, 7) Pliicker relations gives

Vi34 V - + Y1234 V -

1234 /1257 2p? 3 1234 71357 ¢ 2p>—2_ p3

T\ — T+ T3+ Ty+Ts=——=2 22202 PyPitp D298 D 9L o2y P,
Y1235 Y1235

Expanding and reducing modulo (xzf’z_l), we get

2p=p ¢(p=3)/2 _ 2p*—p  (p—3)/2_(p?-3p?)/2
X2l 12— \2p py1§34/y(p PH/

and
2p2—p £(p+D/2 _ _(p+1)/2_ (p+1)/2_2p>—p (p*+3p?)/2+p
X g = VY1234 1235 X y .
Thus T
6 _ p=1_(p+1)/2 2p>—p_ p3+p
a_=V1234V1235 X Y
4
and

=TI —To4 T+ Tu+Ts + Tg = ax? ~2yr'+2,
Using the (1,2, 3)(1,3,4,5,6) and (1, 3,5)(3,4,5, 6, 7) Pliicker relations, we obtain

p+2 2p+2
o= Y1234 . p+1 Py = Y1234 Y1357
= Wiz4s — Vi3s6¥1235) =
Y1235 Y1235

and, since we are using the grevlex term order with x < y < z, the result follows. [J

Define v
= 1235
B=—fb—5 -5
Vlzréi X202
so that LT( f3) = y1357 yl’3+2. Looking at the exponents of y modulo p, it is clear
that there is only one new nontrivial téte-a-téte: ( f3p S flp _1). In order to prove
that B := {x, f1, f>, f3, Nam(2)} is a SAGBI basis for K[V\(]%, it is sufficient to

show that this té€te-a-téte subducts to zero. However, Ny((z) is rather complicated
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and it is more convenient to take an indirect approach. Subducting the téte-a-téte
using only {x, f1, f2, f3} gives

- 2 2—(p+3)/2 L(p+D)/2
Jo=Biff = Bofl " ot pax? f I pea D)
S —
Ty T I
2p—2 pp*— 2p—1 +(PP=1/2—p (p—1)/2 (p+1)/2
+ Bax=t flp pf3+135xp flp )/ pf2p / 3p /,

7 7/

where

p p
B, = P2 By =17 By = Y1234 (V1245Y1357 — Y1235V 2357)
1= V1235V1234> 2= Y1357 3=

(p+1)/2 ’
Y1235
P p—1 o (P*+p+2)/2_ (p+3)/2_ (p—3)/2
Ba = Vi34V1345V1357>  B5 = V1234 1235  Yi3s71 -

The lemma below proves that {x, f1, f2, f3, f4/x2”} is a SAGBI basis. We then

use this in the proof of Theorem 2.3.
~ 2

Lemma 2.2. For p > 5, we have LT( fy) = %y1g34y1p£51x2pzp4.
Proof. We work modulo the ideal in K[x, y, z] generated by x2?*! and x2”y, which
we denote by n. Since p > 5, we have p> —2p >2p + 1. Therefore, using the
expressions for f] and f, given above, we have f| =, y1234yp and

- pPsp PP p 2p—2,,p*
J2 =n vi23av1235y” 87 + yiozayiasy? TPxP + yio3ay13456xP 7y

2
+ Vizsayasasx P IyP 4 3Viasax 2P

We will need expressions modulo n for f3p , x2P72 f3 and x2P~! f3(p T2 Tetm
denote the ideal generated by x?y and x>. Reworking the calculations of the proof
of Lemma 2.1 to keep additional terms of f3 gives

3 3 3
_ +1, 1 2
3 =m Y135789" + y23s7xyP T + 5 y1035x 720

Thus
p_ P spupt P pupt+p 1.0 2p_p*
I3 = vizs78"y +V2357x Yy t3Vi3sX 2,
3 2p—1 p>4+1 | 1 2p _p?
72 f3 =n V13578 2 YP  yaasyx Py 4 Ly gz
2P 1f(p+1)/2 yl(g;l)/l 2p— ly(p +2)(p+1)/2.
Therefore

4 2 4
+p _ P 14 2p=2.p
V123471345 y13578x y

4 4
p—1_p*+1 p+l _2p_p
y +2V1234V1235x .

T T = pz( P h )Xl yP

1 2 =n Y1234\V1235V2357 — V1245V 1357) X Y
2

p p 2

~VY1234Y2345V1357%
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Since x? f<p+1>/2 =, y1(2”3j‘)/2y1(§3§‘)/2 P y<p3+3p2)/2+p, we have
2p—2 4

A 2 / p
I —hL+tT3=s 3/1234)’13451’1357(S y N 2 o
p—1,p*+ P rt
V1234)’2345V1%57x y + 2y1234y1235x Pz

Using the description of x2”~2 f3 given above, we see that

T —T,+T;+T,

—_ p+1
2p lyp +1+ 2p Zp

— .,P p—1
=n Y1234V1357 ()/1345 V2357 — J/1357V2345)x 2 J/1234)’1235X

The (2,3,5)(1,3,4,5,7) Pliicker relation gives

V2345Y1357 — V2357V1345 = —V1235)3457-
Thus

2 _ 4 2
Il ’ ' P p—1 2p—1_ p*+1 p+1_2p p
Ty =T, + T3 + Ty =n ¥1234Y1357 V1235 V3457% y + 23’12347’12353‘ Pz

Observe that

2P 1f(p -D/2-p _ )/1(5324 D/2=p, 2p— ly(p -p)/2-p?

and

21 (p—1)/2 (p—1)/2_ (p— 1)/2 2p—1_(p>+pH/2—
T =n V1234 V1235 Py,

(p+1)/2

Therefore, using the description of x27~! 13 given above, we obtain

+1_2
fo=T =T+ T+ T+ T =, 27’12347’117235’“ Pz,
and, since we are using the grevlex term order with x < y < z, the result follows. [J

Theorem 2.3. The set B := {x, f1, f2, f3, N\m(2)} is a SAGBI basis, and hence a
generating set, for K[VaE. Furthermore, K[V\F is a complete intersection with
generating relations coming from the subduction of the téte-a-tétes ( fzp , fr Jr2) and

2, !

Proof. Define fy := f4/x27, B' := {x, fi, f2, f3, f4} and let A denote the al-
gebra generated by B'. The only nontrivial téte-a-tétes for B’ are ( f2 fi P +2

and ( f3 § f1 . From Lemmas 2.1 and 2.2, these téte-a-t€tes subduct to
zero. Therefore B/ is a SAGBI basis for A. From Theorem 5.2 of [Campbell
et al. 2013], K[V\1E[x~11 = KIx, fi, f1[x7']. Thus A[x~'] = K[Va 1B [x 1.
Note that LM(fy) = zp4. Therefore, by Theorem 1.1, A = K[V\(]¥ and B’ is
a SAGBI basis for K[Vy(]. Hence the lead term algebra of K[Vy\(]F is gener-
ated by {x, y?’, yP’+2P, yP*+2 zP"} Since the orbit of z has size p*, we see that
LM(Nap(2)) = 27" Thus LM(B) =LM(8B') and B is also a SAGBI basis for K[ V] E.
For any subalgebra with a SAGBI basis, the relatlons are generated by the nontrivial
teéte-a-t€te. Hence ( f2 , fr +2) and ( f3 5 f1 ) generate the ideal of relations
and K[Vy(]% is a complete intersection with embedding dimension five. (]
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3. The essentially generic case

In this section we consider representations Vy; for M € F>** for which y1234 (M) #0,
Y1235(M) # 0 and yy357(M) % 0. With this restriction on M, we can evaluate the
coefficients of the polynomials {f; | i =1, 2, 3, 4}, as defined in Section 2, at M
to get {fi | i =1,2,3,4} C F[Vy]E. Note that LT(fi) = y1234(M)y?" so that
LM(f) = y?”. Similarly LM(f) = y?’ 27, LM(f3) = y”' 2 and LM(fy) = z*"
Also, note that y357(M) = 0 if and only if {c;1, c12, €13, €14} is linearly dependent
over [,. Thus, if y1357(M) # 0, the orbit of z has size p4 and LM(Ny(z)) = z”4.

Theorem 3.1. If y1234(M) # 0, yi1235(M) # 0 and y1357(M) # 0, then the set
B := {x, fi, . f3, Nu(2)} is a SAGBI basis, and hence a generating set, for
F[ V1. Furthermore, F[Vy1F is a complete intersection with generating 2relations
coming from the subduction of the téte-a-tétes ( pr , _lp +2) and ( ff , fz flp 71).

Proof. Define B := {x, f1, f>, f3, f4} and let A denote the algebra generglted by B'.
The only nontrivial téte-a-tétes for B’ are ( fzp , _lp +2) and ( f3p , f_2 flp _1). The
calculations in the proofs of Lemmas 2.1 and 2.2 survive evaluation at M, proving
that these téte-a-tétes subduct to zero and B’ is a SAGBI basis for A. Thus, to use
Theorem 1.1 to prove A = F[V,,], we need only show that A[x '] =F[ Vi 1E[x~!].

Consider

3 2 3,2 3_ 372 371
fi12357 = V123597 — vi237yP X TP+ y10579P X7 TP 4 y13578x P T + yossyx?

and evaluate the coefficients at M to get f]2357 € F[Vy]F with lead monomial y”3.
Since y1357(M) # 0, we know that f12357 has degree one as a polynomial in z.
Furthermore, the coefficient of z is —y357(M )x”3_1. Therefore, using Theorem 2.4
of [Campbell and Chuai 2007], F[Vy15[x~1] = F[x, Ny (y), fi23571[x~']. Thus,
to prove A = F[ V1%, it is sufficient to show that {Ny(y), f_12357} c Alx7 1.
Using Lemma 1.5 for the subsequence (1, 2,4) of (1,2, 3,4, 5,7) shows that

Vs f12357 = v3457 fi23s7 € Spang {2357 f13457, Y1357 fzas)-

Thus fl2357 € Spanﬂx’x_l]{ fl3457, ];23457}. Similarly, using the (1, 6, 7) subsequence
of (1,3,4,5,6,7), we have that f13457 € Spang, —11{ f13456, f{345}- Iterating this
process gives

fi2357 € Spang, ,—1){ f12345, fir3a5: S12346}-

. = = = ;o2 = = _
Since fioss = fi and fiozae = 2fox? 2P — f2, we see that fius7 € A[x~']. A
similar argument shows that

- T
Jias19 € Spaan[x,x*‘]{f11;345’ Fiyae | 1,7 €10, 1,2},

giving fl3579 € A[x~']. Since f_13579 = y1357(M)Np;(y) (see Remark 1.2), we have
Ny(y) € A[x~!']. Therefore A = F[V)/]E. As in the proof of Theorem 2.3, observe
that LM(B) = LM(B'). U
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Remark 3.2. Lemmas 2.1 and 2.2 are only valid for p > 5. However, for the
Magma calculations used to verify Theorem 2.3 for p =3 and p = 5, only y1234
and i35 are inverted. Thus Theorem 3.1 remains valid for p =3 and p = 5.

4. The y1234 = 0, y1235 # 0, y1357 # 0 stratum

In this section we consider representations V), for M € F2*4 for which Y1234(M) =0,
v1235(M) # 0 and yy357(M) # 0. For convenience, we write ;e for y;jxe(M).
Evaluating coefficients gives

- - 2 _ 2 _ 2 _ 2
fi = 7123587 X7 2P + P1asyPxP TP 4 P13as8x” T+ Pozasyx?
Define
fi fio3s7

l’ll = '—])Z—Zp and ]’l2
V1235X J/1235

so that LT(h;) = y21’ and LT (hy) = yPS. Note that &y, hy € F[Vy,]E. Furthermore,
arguing as in the proof of Theorem 3.1, F[Vy/1Z[x ™11 = Flx, Ny (»), hal[x 1.

Vhy 71359 a3 y1357 5
Lemma 4.1. Ny (y) =h% + 257 2 hox PP Z 11351 pi=2p,
Vi35 Y1357 ]/1235

Proof. Since f_13579 = y1357Nm (y) (see Remark 1.2), we have

4 VI35 p3 phopd V1319 g2 pi 2 VIST9 Y3579 pi_
Nyu(y) =yl =222y Py P =p D22 Py =Pt 220 Py r* P IRy p
Y1357 Y1357 Y1357 Y1357

Using the definition gives

hy = y”3 _ 7/1237yp oPp + V1257ypxp -4 )/13578 P -2 112357yxp3_1.
Y1235 Y1235 Y1235 Y1235
Thus
_p _
Nu(y) —hé’ _ <V1237 V1359>yp3xp4_p3 _ (@ B m)ypzxp4_pz
Vhas V1357 V1235 Y1357

p -

V. Y1579 4_ V 4 Y3579 4_

_(_2p357 + = ypxp )2 13578p p 2p+ yxp 1.
Yiazs Y1357 )/1235 Y1357

Using the (1,3,5)(3,4,5,7,9), (1,3,7)(3,4,5,7,9) and (1,5,7)(3,4,5,7,9) Pliicker
relations gives

-p— 1
14
Ny () —h5 = L (345 y” PP iy

V1235 -
4_2p)+1/3579 x,,4_1.

Y1357

—371457ypxp P —p13578FxP
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Using the (1,2,3)(1,3,4,5,7) and (1,2,5)(1, 3,4, 5,7) Pliicker relations,

_ Y1237Y1345 Y1245Y1357 — V12571345

V1347 and yuus7 = —
Y1235 Y1235
Thus
-p— 1 - - -
V Y1357V1245 4_ Y1357V1345 4_
Ny (y) = 1357 <V1345h2xp -t TSIV p o ptop  ISTTS 5 0p 2)
)/1235 Y1235 Y1235

- _p—l — -
V13575,, pi-2p <V3579 _ Vi3s7 y1345y2357>yx”4_1.

Y1357 5P+l

V1235 Y1235

Using the (1,3,5)(2,3,4,5,7) Plicker relation, y1345Y2357 = V13572345 + ;7{;;1,
giving

-p—1 - - - =D
Y1357 V13452357 _ V2345Y1357 L pp)

1 =7 b 1357
J/lszgrs Y1235
From the definition of &,
p—1- _
V Y 3 V V3579  -p—1 4_
Nu(y) = i+ =25 P — ZGBT a2 < . yl’§57>yxp E
Y1235 Vinss Y1357
The result follows from the fact that 5,9 = )711;57. ([

As a consequence of the lemma, FIVy1E[x~"] = Flx, hy, ha][x~']. Thus ap-
plying the SAGBI/divide-by-x algorithm to {x, &, h2,2 Nyr(2)} produces a generat-
ing set for F[Vj/]%. Subducting the téte-a-téte (h3, h") gives

-~ Y 2
iy im 12— 7 2 VB p D 2 gt o VST R0 2, iy
Y1235 Y1235

- 2y
Lemma 4.2. LT(h3) = YB35 pi42, 072,
Y1235

-1

Proof We Work modulo the ideal in F[x, y, z] generated by xP’~1. Therefore

hp —y21’ hlxp p—y2pxp ~P and
h% 327 3_27/1237yp +p2 PP —p +2V1257yp +p, P p+2V13578 P -2
Y1235 V1235 Y1235

. 3.2 2 2 3,2 3,2 3 2
Since x? 7" hY = xP ~P’y2P’ we have (h?)(PHD/2x P =P" = xP" =P yP"+P" Thus

h% = hPZ _2V1237hp(p+1)/2 PP—p +2)/1257h(p +1)/2 p —p +2y13575 3 P _2
! Y1235 Y1235 V1235

Hence 53 = 2()71357/)71235)8y”3x”3_2, and the result follows. |
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Define hs := )7123553/(2)71357#’3_2) so that LT(h3) = yp3+2. Subducting the
tete-a-téte (h%, hihy) gives

~ 341)/2 _ 3_p2y/2

hai= 15 —hih} — e xPh" 02 4 a2 psnP

2p—1h(Pz—l)/Qh(p—3)/2h(P+1)/2
1 2 3 ’

— o3X
with
()72357 )p Y1245 Vi34 . Y2357 V2345
oy = — — = s o) ‘= — s o3 = 0y — — = .
Y1357 Y1235 Y1235 Y1357 Y1235
= P
~ 4
Lemma 4.3. LT () = (@> X2
Y1357

Proof. We work modulo the ideal n := (x>P*! x27y). Using the definition of /3
and methods analogous to the proof of Lemma 4.2, it is not hard to show that

Y2357 3 Y1235 3
h3—x3xy 3yp +— yp +1+__ XZZP.

Y1357 Y1357
Thus » _ »
hy =, 8"y Lt (y2357> xPyP* e 4 (@) X zP
Y1357 Y1357

. 3
Since hy =, y”", we have
y

h1h§ =y’ (8p+)’1245yp ,,_'_)/1345(S 2p—2+)12345yx2p_1).
Y1235 Y1235 Y1235

3
Furthermore, since x?h; =, xP§?, expanding gives xPp'P D2 =, x”y"4+p. Thus
p gg 1
3
hY —hh8 — xR 02

> > = )4
Y1345 sx2-2ypt _ V2345 2Ly (V1235) 2
Y1235 Y1235 Y1357

n
3 2
Note that x21’_2h§p P2 = x2=2yp* =P Thus

3,2
x2p’2h3h§p /2 =, x2p2( pt 54 Y257 V2357 Xy 4“).
Y1357
Hence

3 3_,2
hY —hh8 — oy xPh" Y a2 2pan PO

y p
=, a3x2p—1yp4+l + (@) sy
Y1357
2 _
Since xzf’_lhip thgp 3)/2}1;”“)/2 =, le’_lyf’4+l, the result follows. (]

Define hy := 7135774/ (71357x2P) so that LT(hy) = 2.
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Theorem 4.4. If y1234(M) = 0, y1235(M) # 0 and y1357(M) # 0O, then the set
B := {x, hy, ho, h3, Ny(2)} is a SAGBI basis, and hence a generating set, for

F[Vy1E. Furthermore, F[Vy1E is a complete mtersectlon with generating relations
coming from the subduction of the téte-a-tétes (h3, hp Y and (W%, h hp ).

Proof. Define B’ := {x, hy, hy, h3, hs} and let A denote the algebra generated
by B’. The only nontrivial téte-a-tétes for B’ are (h2, hp yand (hY, h hg ). Using
Lemmas 4.2 and 4.3, these téte-a-tétes subduct to zero, proving that B is a SAGBI
basis for A. Since F[Vy1E[x~'] = Flx, Ay, hal[x '], using Theorem 1.1, A =
F[Vy1E. Finally, observe that LM(B) = LM(B). O

5. The y1234 # 0, Y1235 =0, y1357 # 0 strata

In this section we consider representations Vy; for M € F2*# for which y;235(M) =0,
Y1234(M) # 0 and y1357(M) # 0. For convenience, we write y; ke for y;jxe(M).

Lemma 5.1. If y1234 # 0, Y1235 = 0 and y1357 # 0, then y1345 # 0.

Proof. Let r; denote row i of the matrix I'(M). Since y1234 #0, the set {ry, rp, 3, r4}
is linearly independent. Using this and the hypothesis that {1235 = 0, we conclude
that r5 is a linear combination of {r, r2, r3}, say rs = ar; +axr, +asrs. Since r3 is
nonzero and the entries of r5 are the p-th powers of the entries of r3, we see that r;s
is nonzero. Suppose, by way of contradiction, that 1345 = 0. Then r5 is a nonzero
linear combination of {ry, r3, r4}, say rs = byr; + b3r3 + bars. Thus byry + bsrz +
bary = ayry +ayry +asrs. Since {ry, rp, r3, r4} is linearly independent, by = a, =0,
a; =by, az =b3 and rs = ar;+a3r3, contradicting the assumption that 31357 0. [

Take f; as defined in Section 2, evaluate coefficients and divide by y234 to get

fii=y" + @y”x” -p 4 V13455 PP=2 4 @yxpz—l.
V1234 V1234 V1234
Note that fl is of degree one in z with coefficient xpz_z)?1345 /Y1234 and so, using
Theorem 2.4 of [Campbell and Chuai 20071, F[Vy 12 [x 1= Flx, Na(y), fillx~'1.
Define
hy = Ny (y) — f]pz +a1flpxp4_”3 +a2ﬁ2x”4_2pz,

with
_ —[72 2
oy = @ + % and oy: )/117345'
YI3ST iy Y1234
We work modulo the ideal n := (x”4_1’2_1). Since y1357Ny (y) = f]3579 (see

Remark 1.2), we have Ny (y) =, yl’4 — (Y1359/V1357) y* xP*=P’ Therefore
2

2
- =P

—p -
VISST 9y V1234
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Thus
_ p? _p?
A2 ~ 4_ 3 Y 2 4 _H 2 V4 2 4 _H 2
p p _ 1345 202 _ 1345 .2 2
Nu(y) = fi +aifixt=? =n_?5p xP T =y ;2 Y PxP—er,
Y1234 Y1234
Hence
~ Ap2 Ap p4_p3 ) [74_2[72
hy=Ny(y)— fi +orfix +ay fix

2“2 2 4 2 2 4 2

_ - tpopt—p—p | 2 o2

=03 (V12a5y? TPxP TP £ ppagsy? TP TP,
1234

We first consider the case y1245 7% 0. Define
hy = 371[)223:1EZ/(2XP4_172_F771%245771245)
so that LT(hy) = y? *+7_ Since Ny (y) € Flx fl, h»], we have
FIVa1® e = Flx, /i, hallx ™',

Subducting the téte-a-téte (h%, 7™

1 Y1345 2 2
hiy = 17+ —hl+ <_ ) lP h3 2,P7=2p
Y1245

) gives

pt1
Lemma 5.2. LT(h3) = (y1345) yP PR P2
V1245

Proof. We work modulo the ideal (xpz_p_l). Thus fl = ypz. Reviewing the
definition of /,, we see that

S \P
hY = yP ety (@) yP 2P p?=2p

Y1245
and
h%xpz—lp = y2p2+2pxp2—2p +2 ( {1345 )y2p2+p+2xp2—p—2_
Y1245
Thus
- +1
Frt_nl ()/1345) Fr2n P-2p _ 2()51345 )” P P2
Y1245 Y1245
and the result follows. |

Define h3 := plyia i3/ (2pliax?” ~P=2) so that LT(h3) = y? +7+2,

Ap2__
Lemma 5.3. Subducting the téte- d téte (hg , flp 1h%) gives an invariant with lead

2
term — V1245V1234Zp xP +2p/(4)’ Das’)-
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Proof. Modulo the ideal (x?’+2P+1 xP*+2Py)  the expression
Ap +1 Ap? ApP+1
- h2+ﬁ1h3f” PR g Boha f 6P+ B fT P
_ 2
 Bah3 U T g Bk} fT a7
-2 2 Apt— 245
+ Bh3 T TR Bl £ 4 pshs £

+ﬁ9h2f1p7 p+p+/310h3hp1 PPPo2p P22

(p+1)/2; (p—3)/2 p(p*+1)/2— 242p—1
+,311h3p /th /flp / PP +2p ’

with

-~ = p+1 /- p
Y1345 V1245 V1234
V1245 V1234 Y1345
_ _ 2 _ 2
By = 1<V1245, )p (( Y2345 >‘D B <V1245 )p (V1245 )p)
2\ Y1345 Y1345 Y1345 Y1234 '
1 (71345 \’ P13as \P Pizas \P 2
184 ::__(— 9 ,35 ::2 — ) ﬂ6 ::_2 — )
2\ V1245 Y1245 Y1245

1 (71245 \' ( V1234 piop Y1359 _ V1345
B7:= —(_— = Bs == B7,

Y1345 Y1345 J/1357 Y1234
- P/ PSS -
Bo = _1()’1245) ()/1234) ()/1245)/1379 n V1579>
2\ V1345 Y1345 Vi2zayisss  Viss1)
—_ — —_ 2 - - —_ 2 -
1 ( y1245 P V1234 P Y1379 1 (V1245 b Y1234 b V3579
Bio:==| = - —, Bui==|= — —,
2\ V1345 V1345 Y1357 2\ Y1345 Y1345 Y1357

2
is congruent to —j15,s 71,27 X720 | (47 +p) U

Theorem 5.4. If y1234(M) # 0, y1235(M) =0, y1357(M) # 0 and y1245(M) # 0,
then the set B := {x, f1, ha, h3, Ny (2)} is a SAGBI basis for F[Vy1E. Further-
more, F[Vy1E is a complete intersection with generatmg relations coming from the
subduction of the téte-a-tétes (h%, pH) and (hp f1 _lhg)

Proof. Use the subduction of (h’7 f1 h%) glven in Lemma 5.3 to construct an
invariant s4 with lead term z” Define B’ := {x, f1 , hy, h3, hs} and let A denote the
algebra generated by B'. The only nontrivial téte-a-tétes for B’ are (h?, i +1)
and (hp f1 h%) Using Lemmas 5.2 and 5.3, these téte-a-té€tes subduct to zero,
proving that B’ is a SAGBI basis for A. Since F[Vy1E[x~ "] = Flx, fl, hallx~1,
using Theorem 1.1, A = F[V,]%. Finally, observe that LM(B) =LM(B). U
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We now consider the case y1245 = 0. Define h2 = )/1234 hz / (2x” —p*=2 1’;4";1)
so that LT(hz) = yP’*2. Since Ny (y) € Flx, fi. ha], we have F[Vy]E[x~!] =
Flx, fi, hollx~11.
Lemma 5.5. Subducting the téte-a-téte (hp , f ) gives an invariant with lead
term 2P (712342 2713as) "
Proof. Modulo the ideal (x? 41 , xP’ y), the expression
Ap2 A2 A Ap2 A
flp +2—h§ —(0l1h2fp xp2_2+0l fp2+]xp
—|—oz3hpfp —P\2p —2p+a4flg(p+l)/ZfI(pzfpr)/ZXsz—p

roapP—1 2p2- F(PPHD/2 2(p?=3)/2 2p2—
—Hxshgflp 2P 2—|—a6h§p )/ fl(p )/2,.2p 1)’

with
— Y = =P
. 21345 . Y1379Y1234 . Y1359Y1234
o1 = — , oy = — —2, o3 1= _———pz—p
V1234 Y1357 )/1345 Y1357V1345
_ _ pZ -1 _ _ p2
Y1579Y1234 . V1379)/1234 . Y3579V1234
Oy 1= —2, o5 = —21, og = —ﬁ,
Y1357 )/1 345 V1357V1345 Y1357V1345
. — —_ 2
is congruent to 27" (71234x2/(271345))”" O

Theorem 5.6. If y1234(M) # 0, yi235(M) =0, y1357(M) # 0 and y1245(M) =
then the set B .= {x, fl, hz, Ny (2)} is a SAGBI basis for F[Vi]E. Furthermore

FIVu1E is a hypersurface with the relation coming from the subduction of the
téte-a-téte (h’7 , p +2).

Proof. Use the subduction of (fzp 2, ir +2) given in Lemma 5.5 to construct an
invariant h3 with lead term zl’ Deﬁne B = {x, f1, hz, h3} and let A denote the
algebra generated by B’. The only nontrivial téte-a-téte for B’ is (hp i ir +2 ),
which subducts to zero using Lemma 5.5. Thus B’ is a SAGBI basis for A. Since
F[Va1E[x~']1 = Fx, fi, h2][x~'], using Theorem 1.1, A = F[V),]E. Finally, ob-
serve that LM(B) = LM(B). O

6. The 1234 # 0, Y1235 # 0, Y1357 = 0 stratum

In this section we consider representations Vs for M € F2*4 for which Y1234(M) #£0,
v1235(M) # 0 and y1357(M) = 0. For convenience, we write y;jx, for )/,jkg(M)
Evaluating the coefficients of f| and dividing by ;234 glves f1 with lead term yp
Since 1357 = 0 and Y235 # 0, the orbit of y has size p and Ny (y) = f12357/y1235
(see Remark 1.2). For convenience, write

Nu(y) = y”" +any? xP’ 77 4 a1 yPx? P 4 agyx?’ !

and
Fr=y7 4 B8P xP T 4 BoyPx P 4 Br5x? T 4 Boyx? !,
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with
Y1237 Y1257 Y2357
H=———, ==, Q==
Y1235 Y1235 Y1235
Y1235 Y1245 V1345 Y2345
3 = -_ 9 2 = —_— 9 1 = —_ 9 0 = —_— .
V1234 V1234 Y1234 V1234

Subducting Ny (y) gives

~ A 39,2 A
hoy = Ny (y) — fl + BYxP 20" f2.

S \PH]
Lemma 6.1. LT(hy) = 2()/1235) YP R P =P =2p
V1234

Proof. We work modulo the ideal (x”3_1’2_p ). Using the definitions of fj;3s7 and

3 ~ 3 - — 2 3 2
fi2345, we have Ny (y) = y? and f[ = y7" + (71235/71234)P y* xP ~*P". The
result follows from the observation that

~ 3_9,2 2 . 3_5,2 )71235 3.2
fixP? 2p = yP xP 4 (_—)szXP pP°=2p O
Y1234

Define ha := haypt, /27 haax? "7 ~2P) so that LT(h) = y”"+2P and

ha =2 ypz(ép—i-&y”x”+&8x2”_2+@yx2p_l>. (1)
B3 3 B3

Lemma 6.2. FIVi1Ex~ 1 = Flx, fi, hallx ']

Proof. Since 1357 = 0 and the first row of M is nonzero, we can use a change of
coordinates, see [Campbell et al. 2013, §4], and the GL4([F,)-action to write

M=<1 C12 C13 0>.

0 ¢ c23 ¢4

Since 1235 # 0, we have cr4 # 0. With this choice of generators for E, let H denote
the subgroup generated by e; and e4. Using the calculation of F[x, y, z]¥ from
Theorem 6.4 of [loc. cit.], we see that F[Vy 17 [x~!] = F[x, Ng(y), Ny ®1x~1
with Ny (y) := y? — yx?~! and Ny (8) = 87 — 8(coax>)P~!. Thus, to compute
FIVMm1CTx " = (F[Vy 17 [x 1) C/H | it is sufficient to compute

(Flx, Nu(y), NgO)Wx " DH = Flx, Ny (y) /xP 7L, Ny (8) /2P~ 119/H [x 1],
Note that deg(Ny (v)/xP~") = deg(Ny (8)/x2p—1) = 1. Furthermore
Flx, Ng(3)/xP" " = Flx, Ng/u(Nu (y)/xP~ )]

and N(;/H(NH(y)/xp_l) = NM(y)/xPS_pz. Using the form of M given above,
we see that y345 = —054_1)71235. If we evaluate I' at M and set x =1, y =1
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and z = 1, then first and last columns of the resulting matrix are equal. Thus
Jf12345(1, 1, 1) = y1234 + Y1245 + Y2345 = 0. Using these two relations, we can write

Y1235
Y1234
Thus we have fl/xpz_f’ eFlx, Ny (y)/xP~, Ny (8)/x*P~116/H s of degree one in
Ng(8)/ x2P~1 with coefficient x?~! Y1235/ Y1234. Thus by Theorem 2.4 of [Campbell
and Chuai 2007], we have

Flx, Ny (3)/xP ™, Ny (8)/x2P =0/ H [x = =F[x, Ny () /x? =7, fi /3P~ P]1x 1.

Therefore F[Vy1Z[x '] = F[x, N u (), fl][x ]. The result then follows from the
fact that Ny, (y) € Flx, fl,hz]. O
p+2

fi=Np()P — m“SN ()PP + 225 N 5y

Subducting the téte-a-téte (h%, ) gives

hy:=hl — fr*? +2,33fph2x” ~2p

— By fI N — oy fT o oy fPTI RO 20y
for p > 5 and
hy=h3— f7 +2B5 fhox?

— (B3 + B = Ba fPhax'?) — (@177 + oy + B3

for p =3.
Lemma 6.3. LT(h3) = aoBy "y? +1x" L,
Proof. For p = 3, this is a Magma calculation. Suppose p > 5. We work mod-
ulo the ideal (x> 2) Since p —2p* > 2p we have y”. Furthermore,

3p —4p > 2p?, giving f1x2P" =2 = yP’x2P"~2_ Using congruence (1) given above,
we have

h2x2” =2 — 20 “2py, (3[1 ﬁzypxp+&3x2p—2+@yx2p—l)

3 3 B3
and

p
hY = y» (8”+§2 P p—i—%éxz"_z—i-%yxz”_l) :

Using the definition of &;, we get
o 2_ _ 2.3 A
f = 2B3hax? 72 = B Px* P (FF — Ny (y))
=" + B3P ((BY —an)y? x?" + BLoPx2r'=2r

2 2
+ (BF — ) yPx* TP —agyx? ).
Thus
3
A ~ p
— IR = 283ax ) = T ey g T e
3
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Furthermore, using the above expressions,
Aptl p2 Ap—1 2922 3.2 2 2 A 2 o 2 3, .2
DTl = B3 fT hax T = g TPy i — Bihox? TEP) = x Py P
Therefore
FP 72 22 +1_p? Fp—ly 2pP-2
— fL U7 = 2B3hax? =2P) — 57 (fp P = Baf T hax?PTEP)
3 3

)4
=%(a1y"x2” P 4 apyx?”h,
3

2 2 2 N 2 2
Note that hpx2P’ =P = yP"+2rx2P* =P and fix2P'~P = yP*x2P"~P_ Hence

F(p=3)/2, (p+1)/2_2p°—p _ | pP+p 2p*—
! h X = P P2

~ 3 2
- — +1,2p%=1 /P :
giving hz = agy? "'x“P 7"/ B5, as required. ([

- - — 1 . — - -
Note that ao/BL = 72357734/ 7as- Since 1357 = 0, 71235 # 0 and 457 =
V1235 # 0, argumg as in the proof of Lemma 5.1, we see that y,357 # 0. Define

hy = Pl s/ (62 Paasi70,) so that LT(hs) = y? '+,
Lemma 6.4. LM(h} — h D2 f0i=20=0/2) _ yp ot

Proof. Worklng modulo the 1dea1 n = (xP*1 xPy), we see that fl =, yP2 and
by =a Y7420, giving K0 —R V2 FP20-02 2 e ptee T it i suffi-
cient to identify the lead monom1a1 of hy — y? 1 Note that yP'+1 and xzP" are
consecutive monomials in the grevlex term order. Therefore, if xzP appears with
nonzero coefficient in /3, then LM (k3 — y1’3+1) =xz? 3, and the result follows. Work
modulo the ideal m := (y). Then fl =n —ﬁ3szP2_P — ﬁlzxpz_l and Ny (y) =i 0.
Therefore

1 p
hy =n (sz 4 ﬁ},z”x”zﬂ’ +x”2(ﬂ3zp ~|—,81zx”_1)2>.

2/33 3
Hence /3 has degree p? as a polynomial in z, with leading coefficient x /2aq and
the result follows. ]

Theorem 6.5. If y123a(M) # 0, y1235(M) # 0 and y1357(M) = 0, then the set

= {x, fl, ha, h3, Ny (2)} is a SAGBI basis for F[Vy1E. Furthermore, F[Vy1E is
a complete intersection with generatmg relations commg from the subduction of the
téte-a-tétes (h’7 fp+2) and (hp f117 —2p= 1)/zh(p +1)/2)

Proof. Use the subduction given in Lemma 6.4 to construct an invariant 44 with lead
term zp4. Define B’ := {x, f1, ha, h3, h4} and let A denote the algebra generated
by B’. The only nontrivial téte-a-tétes for B’ are

(hé’ I’+2) and (hp f(]’ —2p— 1)/2h(l72+1)/2)

Using Lemmas 6.3 and 6.4, these téte-a-tétes subduct to zero, proving that B’ is
a SAGBI basis for A. By Lemma 6.2, we have F[Vy,1F[x '] = F[x, f, ho]l[x~].
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Using Theorem 1.1, A = F[Vy/]. Clearly LT(Ny(z)) = 77" for k < 4. Since B’ is
a SAGBI basis for F[V¢]%, this forces k = 4, giving LM(B) = LM(B). [l

7. The y1234 =0, y1235 =0, Y1357 # 0 strata

In this section we consider representations V), for M € F2** for which Y1235(M) =0,
Y1234(M) = 0 and y1357(M) # 0. For convenience, we write y; ke for y;jxe(M).

We first consider the case yj257 = 0. Let r; denote row i of the matrix I'(M).
Since y1357(M) #0, the set {ry, r3, r5, r7} is linearly independent. Thus r; is a linear
combination of 71, r5 and r7. Since y235 =0, we know that r; is a linear combination
of r1, r3 and rs. Using the (1, 2,3)(3,4, 5,7, 9) Pliicker relation, yj237 = 0. Thus r;
is a linear combination of 7, 3 and 7. Combining these observations, we see that r
is a scalar multiple of ;. Using a change of coordinates (see Section 4 of [Campbell
et al. 2013]), we may assume that r, is zero. If the second row of M is zero, then
Vi is a symmetric square representation and the invariants are generated by x, &,
Ny (y) and Ny (z). Since 1357 % 0, we have that Ny (y) and Ny, (z) are both of
degree p* and there is a single relation in degree 2p* which can be constructed by
subducting the téte-a-téte (81’4, Ny (y)z) (see Theorem 3.3 of [loc. cit.]).

For the rest of this section, we assume y|257 # 0. Evaluating coefﬁcients gives
the invariant f12357 Using the (1,2,3)(3,4,5,7,9) Pliicker relatlon y1237 =0.
Thus y1237 =0, an3d we have fi2357 = )/1257y”x”z P+ 713578x7 "2 4 a5y yxl
Divide by yj257x? ~F to get

V13578 p2 372357yxp_1
Y1257 Y1257

hy =y’ +

Observe that Ny (y) = fi3579/71357. Subducting Ny (y) gives

~ 3 39,2 4_H 3 30,2, p242 4_ .3 _».2
hy = Ny (y) — bV P h{? xP 72" — 2P +P pP 2P p"=p"=2p

3,2 2 2 432
+4gP TP +phf P2 pt=pi=p 2p’

with o := y1357/V1257.
~ 3 2 3,2 43 2
Lemma 7.1. LT (hy) = 8P TP P+l 4p tpt2 p"=p =p"=p=2

Proof. 1t will be convenlent to Work modulo the ideal (xp =p' xp'=p=pt=p=l ),
so that Ny (y) = y”" and hp = yP" 4 aP’8P xP 2P’ Thus Ny (y) — hp =

3.3 4 3
—aP” 8P xP"—2P" Expanding gives

xp4_2p3 (hfz)z _ xp4_2p3yp3 (yps n 2ap28p2xp3_2p2).
Thus

3 3.92p2 4_9,3 3,,2 3 .2 43 5.2
Ny (y) —hY ol P xP =20 = 2qP TP yP §P x P =P =20,
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Again expanding gives
240 4_ .3 _~n,2 4_ .3 5,2 3,2 2 2_
thrPxp PP=2p° — PP’ =2p yP +p (yP" 420787 xP 217)'
Hence

3 3.9p2 4_9,3 3. ,2. p242 4_ 3 9,2
p p 2 +p2, P2 +2p 2
Ny (y) —hy +af " xP 7P —2aP TP p] xP P =P
3 2 3 2 4_ 3 2
= 4ol tr +p5pyp +p P PP =2p
. 2 2 432 4_ 32 3,2 _
Since hY PP P P 220 = )PP P20y PP P (P 4 20 8xP2), we have
iy = 8ap3+p2+p+1yp3+p2+p+2xp4—p3—p2—p—2
and the result follows. (]
— pP+p2+p+l, pt—p*—p?—p-2 p+pi+p+2
Define h; := hy /(8 X ) so that LT(hy) =y .

3 2
Lemma 7.2. Subducting the téte-a-téte (h?, hf trte Jr2) gives an invariant with

lead term
3 2

- pi+pitp
( Y1257 ) P PP

2y1357

Proof. For p =3, this is a Magma calculation. For p > 3, the subduction is given by
p_p PPHpHp+2 P p-2
hy —h; +2ahoh| x
1 3452 2 2. 53 3_,2
p+p +2 p+2p pP—p*+2
el A L R
2 3 2 53 2 3_p2 34,
+2B1al TP RY TP P 4B P Py p PP P P2
3 3 340 2 3_p2_ 245
—Box P (B TP X —aP WY T P 20 P T pyh TP TP PP 2)
3 2 3+1 3_,2_ —1 _
A Bax PP (W T —ahyhl TP TP X072
_134]12174‘1)/2h§P2+P+1)(p—3)/2x173+p2+2p—1)7
with

Y1357 Y1359 1379 1579 op-l
—, Pri=——, Bi=——, Bi=——, Bi:=V3s-
Y1257 Y1357 Y1357 Y1357

To calculate the lead term, work modulo the ideal generated by x?'+P*+2P+1 and
PP 2D y. U

Theorem 7.3. If y1234(M) = 0, y1235(M) =0, y1357(M) = 0 and y1257(M) # 0,

then the set B := {x, h1, ha, Ny (2)} is a SAGBI basis for F[Vy1E. Further-

more, F[Vy1E is a hypersurface with the relation coming from the subduction
A [NEUPN p P piEp2

of the téte-a-téte (h;, h ).
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Proof. Use the subduction given in Lemma 7.2 to construct an invariant 3 with
lead term z” Define B’ := {x, hy, ho, h3} and let A d%note the algebra generated
by B'. The only nontrivial téte-a-téte for B’ is (h5, h{ TPHPH2) Ghich subducts
to zero using the definition of h3. Thus B’ is a SAGBI basis for A. Since h; is
of degree one in z with coefficient —ax?~!, it follows from [Campbell and Chuai
2007] that F[Vy1E[x~ 11 = Flx, A1, Npy(0)1[x']. Since Ny (y) € Flx, hy, hal, we
have F[Vy 1E[x " = Flx, Ay, ho][x '] Using Theorem 1.1, A = F[Vu]E. Clearly
LT(Ny(2)) = z”k for k < 4. Since B’ is a SAGBI basis for F[V£]E, this forces
k =4, giving LM(B) C LM(B'). O

8. The y1234 =0, y1235 # 0, y1357 = 0 stratum

In this section we consider representations Vy; with y1235(M) # 0, y1234(M) =0
and y1357(M) = 0. The results of this section are valid for p > 3. For convenience,
we write ¥;jke for y;jxe(M). Observe that Ny (y) = f12357/;71235 (see Remark 1.2).
Thus Ny (y) has lead term yl’% Furthermore, f12345 has lead term 1735 yZPxP —2p,
Define 1 1= fio34s/(71235x” ~2") so that LT(;) = y?.

Lemma 8.1. FIVa1E[x~" = Flx, hy, Ny )11

Proof. We argue as in the proof of Theorem 4.4 of [Campbell et al. 2013]. Since
Ny () and hy/xP are algebraically independent elements of F[x, y, §/x]F with
deg(Ny(y)) deg(hy/xP) = p4 = |E|, applying Theorem 3.7.5 of [Derksen and
Kemper 2002] gives F[x, y, S/x]E = [F[x, Ny (y), h1/x?]. The result then follows
from the observation that

Flx, y, z15x "1 = Flx, v, 8/x15[x 1. 0

2
Subducting the téte-a-téte (Nyy (y)z, h{' ) gives

~ 2 _ 3_,2 (p? 2 3_ 2412
ho = Ny ()2 =Y + == (ragx? PR = g’ P02,
Y1235
Lemma 8.2. LT(7) = 27235797 17"~ f103s.
Proof. We work modulo the ideal (xf’ ). Expand Np(y)? and observe that
hf = y2p3, hfxl’3_p2 = y21’2xp3_p2 and hlxp3_1’ = y2pxp3_p. (|

Using the (1,3,5)(2,3,4,5,7) Pliicker relation, we have 13452357 = 771[;3r51
Thus 7357 # 0. Define hy 1= Pi23sha/ (27235757 ~1) s0 that LT(hp) = y?"*.

Lemma 8.3. LM(h} — h§p3+l)/2) = zP'xP.
Proof. A careful calculation shows that

3
LT — K02y = T2 o 0
Y2357
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Theorem 8.4. If y1234(M) =0, y1235(M) # 0 and y1357(M) =0, then the set 5 :=
{x,h1, ho, Nyy(), Ny (2)} is a SAGBI basis for F[Vy1F. Furthermore, F[Vy 1% is
a complete mtersecnon with relanons coming from the subduction of the téte-a-tétes
(Nt (02 B ) and (], w707,

Proof. Use the subduction from Lemma 8.3 to construct an invariant h3 with
lead term zp4. Define B’ := {x, Ny (y), h1, hy, h3} and let A denote the alge-
bra generated by B’. The nontrivial téte-a-tétes for B’ subduct to zero using
Lemmas 8.2 and 8.3. Thus B’ is a SAGBI basis for A. From Lemma 8.1,
FIVpm1E[x~'] = Flx, hy, Npy(»)][x~']. Thus, using Theorem 1.1, A = F[Vy,]E.
Clearly LT(Ny(z)) = z”k for k < 4. Since B’ is a SAGBI basis for F[Vz]E, this
forces k = 4, giving LM(B) = LM(B'). O

9. The 1234 # 0, ¥1235 =0, y1357 = 0 strata

In this section we consider representations Vy; with y1235(M) =0, y1234(M) #0
and y1357(M) = 0. For convenience, we write y;jx¢ for y;jxe(M). Using the
(1,3,5)(3,4,5,6,7) Pliicker relation, y;345 = 0. Thus

- _ 2 _ 2_ — 2_

fi = 712347 + ProasyPxP 7P 4+ posasyx? 1 e Flx, yl.

Since y1234 # 0, the orbit of y contains at least p2 elements. Thus Ny (y) = f_l /Y1234
(see Remark 1.2).

Lemma 9.1. FIVa1E1x ™' = Flx, Ny (), fiozasllx ™'

Proof. We argue as in the proof of Lemma 8.1 (and Theorem 4.4 of [Campbell
et al. 2013]). Since Ny (y) and ﬂ2346 /xp2 are algebraically independent elements
of Flx, y,8/x1% with deg(Ny (y)) deg(fizsas/x”") = p* = |E|, applying Theo-
rem 3.7.5 of [Derksen and Kemper 2002] gives

- 2
Flx, y, 8/x1% =Flx, Nu(y), fiozae/x" 1.
The result then follows from the observation that
Flx, y, 2)°[x " =Flx, y, 8/x1F[x 1. O

We first consider the case Y1245 # 0. Define fz = fz /(Y1234Y1245x") so that
LT(f) = y”**+P. Subduct the téte-a-téte (fF, Nu(»)P™) to get

hy = NM(y)”“—fzp—()f1245 y2345>fN ()P~ P,

V1234 Vi
- p+1

Lemma 9.2. LT(h3) = <V23151 )xpz_lyp3+l.
Vs

Proof. Expand and reduce modulo the ideal (x ”2). U
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Define ot

y ~

hy = 2 1245 h
—15Pt
V2345

3

so that LT(h3) = yP'+1.

. A s oa 21 Ay . . . .
Lemma 9.3. Subducting the téte-a-téte (ht, Ny (y)? 1fz) gives an invariant with
. 4
lead monomial xPz? .

Proof. Work modulo the ideal (x?*!, x?y) and expand to get

A 2,1 Y2345 1 )71[72234 77117245 4
— HLNu(y)? —xP"h NM(y)p B (f)zp xP. 0O
V1234 )/5’34’;1’
Theorem 9.4. If y1234(M) #0, y1235(M) = y1357(M) =0 and y1245(M)) # 0, then
the set B:={x, Ny (y), f», h3, Ny (2)} is a SAGBI basis for F[Vy1E. Furthermore,
F[Vum1E is a complete intersection with relations coming from the subduction of the

téte-a-tétes (fF, Ny ()P and (h%, Ny ()7~ fa).

Proof. Use the subduction given in Lemma 9.3 to construct an invariant 24 with
lead term zp4. Define B’ := {x, Ny (y), fz, hs3, ha} and let A denote the algebra
generated by B’. The nontrivial téte-a-tétes for 5" subduct to zero using Lemmas 9.2
and 9.3. Thus B’ is a SAGBI basis for A. From Lemma 9.1, F[Vy]5[x~!] =
Flx, N (), fi23a6llx 1. However, since f> = (2 + Vi2sa f12346) /(22X 2P), we
see that .

Flx, Ny (), fizsas)lx ™' 1= Flx, Nu (), f2llx 7]

Thus, using Theorem 1.1, A = F[V)/]. Clearly LT(Ny;(z)) = z? for k < 4. Since
B’ is a SAGBI basis for F[Vg]Z, this forces k = 4, giving LM(B) =LM(B'). [

Suppose Y1245 = 0 and let r; denote row i of the matrix I'(M). Since y;234 # 0,
we see that {ry, rp, r3, r4} is linearly independent. Using the assumptions that
Y1235 = Y1245 = 0, we see that rs € Span(ry, 2, r3) N Span(ry, r, r4). Therefore
rs € Span(ry, r;). However, since y;357 = 0, using a change of coordinates (see
[Campbell et al. 2013, §4]) and the GL4(F),)-action, we may assume

Mo (1 Cl12 C13 O)
0 c22 23 ¢4

with ¢4 # 0. Since rs = r1 . we conclude that s =T1. Thus y2345 = —Y1234.
Hence Ny (y) = f1/71234 = yp —yxp ~1. Define h, := fz/(y1234x2P 1) so that
LT(hy) = yP'*1.

Theorem 9.5. If y1234(M) # 0 and y1235(M) = y1357(M) = y1245(M) = 0, then
the set B := {x, Ny (y), ha, Ny (2)} is a SAGBI basis for F[Vy1E. Furthermore,
FIVyu1E is a hypersurface with the relation coming from the subduction of the

A2 2
téte-a-téte (hh, Ny (y)P"+1).
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Proof. Using the definition of h, and the description given above of Ny (y), we see
that
N 417 -1 1p*, p?
LT(hy —Nu? ™ = ho(xNy ()7 7') = =327 %7

Thus we can use the subduction of the téte-a-téte (ﬁgz, N M(y)”2+1) to construct
an invariant h4 with lead term 77" Define B = {x, N;u(y), ha, ha} and let A
denote the algebra generated by B’. The only nontrivial téte-a-téte subducts to
zero. Therefore B is a SAGBI basis for A. From Lemma 9.1, F[V),]E[x~!] =
Flx, Ny (»), f]2346][x_1]. However, it follows from the definition of fzz that
Flox, Nyt (y), fizsael[x 1= Flx, Ny (y), hol[x~']. Thus, using Theorem 1.1, A =
F[Viy1E. Clearly LT(Ny(z)) = z”* for k <4. Since B’ is a SAGBI basis for F[ V],
this forces k = 4, giving LM(B) = LM(B). O

10. The y1234 =0, y1235 =0, y1357 = 0 strata

In this section we consider representations Vy; with y1235(M) =0, y1234(M) =0
and yi357(M) = 0. For convenience, we write ;¢ for y;jxe(M). We assume that
the first row of M is nonzero; otherwise, the representation is of type (2, 1) and the
calculation of F[V),]¥ can be found in Section 4 of [Campbell et al. 2013]. Using
a change of coordinates, see Proposition 4.3 of [loc. cit.], the GL4([F,)-action, and
the hypothesis that y;357 = 0, we may take

1 cppc 0
= () ez 0.
0 ¢ 23 cu
Since 1235 =0, either cp4 =0 or {1, c12, c13} is linearly dependent over [,. We
assume c¢p4 # 0; otherwise the representation is not faithful and we can view Vj; as

a representation of a group of rank three. Using the GL4([F,)-action, we replace the
third column by a linear combination of the first two columns to get

<1 C12 0 0)
0 cn 3 )’

- p €23 €24
Yi2za = (ci2 —cpp)det| 5 5 ).
C C
23 €4

Expanding gives

Since y1234 =0, either c12 € F,, or {c23, c24} is linearly dependent over [F,. However,
if {c23, c24} 1s linearly dependent over [, then the representation is not faithful. So
we may assume ¢z € [,. Using the GL4([F,)-action to replace the second column
with a linear combination of the first two columns gives

<1 0 O 0)
0 c» 3 )’
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If Y1246 = 0, then {c22, ¢23, ¢24} is linearly dependent over [, and again the repre-
sentation is not faithful. Thus we may assume that yj24¢ 7% 0. Using the above form
for M, it is clear that Y1236 = 0, Y1346 = 0 and Y1246 = —¥2346. Thus

- _ 2_ 2_
Fi2346 = V1246 (PP 7P — yx?P" 71y e Flx, y]*.

Since F[x, y1Z = F[x, Ny ()], we have

Ny(y) = f12346/()71246x2p2_p) =y —yxP71.
Lemma 10.1. FIVa1E[x ™ = Flx, Nyr(y), fioasgllx ']

Proof. The proof is similar to the proof of Theorem 4.4 of [Campbell et al. 2013]
(and Lemmas 8.1 and 9.1). Since Ny (y) and f]246g/x1’3 are algebraically inde-
pendent elements of F[x, y, 8/x]F with deg(Ny(y)) deg(ﬁz468/x1’3) =p*=|E|,
applying Theorem 3.7.5 of [Derksen and Kemper 2002] gives

Flx, v, 8/x1% = FLx, Ny (y). fioass/x” 1.
The result then follows from the observation that
Flx, y, z15x " = Flx, v, 8/x15[x 711 0
Subducting f12463 gives
it = Fioass + Froas(Nu ) + 2Ny ()P 4P xP =7 4 2Ny ()P H P 7).
Lemma 10.2. LT(h)) = _2)71246xp3—1yp3+1‘

Proof. We work modulo the ideal (xPS). Using the definition, f_12468 = —91246 y2p3.
Since Ny (y) = y? — yxP~!, we have

Ny = 20" oy 7y’ p? (208207200 207 ot
Expanding and simplifying gives

2 3 2 2 3 3 2 3 2 3 3
+p, pP- +1,.p0—p _ PP+ - +1,.p%-1
Ny ()P PP =P 4 Ny ()P P =P = P+ 7 =p" _ypotl =1

hi = fioaes + )71246(1\/114()/)2”2 2Ny ()P PP +2NM()’)p2+1Xp3_p)
= —27iaaex? 1 yP O
Define h; := —ftl/(2)71246x1’3_]) so that LT(h) = yp3+1. Note that
Flx, Nar(3), hillx ™1 = Flx, Nar(y), fioassllx ™',

. PO 3 . . . .

Lemma 10.3. Subducting the téte-a-téte (h', Ny (y)?" 1) gives an invariant with
. 4
lead monomial xPz? .
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Proof. Refining the calculation in the proof of the previous lemma gives

~ _ 3 3 3.3
m =r+ xpy) Pioas(—2y7 Tl g x P27,
Thus
hy = PHL_ 10 and RP = P _ Lty
1 =2, xy) Y 2< 1 =@+t xey) Y 2 .
Furthermore
3 4 4 _
NM(y)p + E(xl’“,xl’y) yp P yp +1xp !
and
N pP-p’ p—1 _ Pl p—1
1 M(y) X =(xl’+1,x1’y) y X .
3
Thus LT(h‘i7 - NI{ZIJrl — thM(y)p3—P2) = _%xpzp“. m

Theorem 10.4. If y1234(M) =0, y1235(M) =0, y1357(M) = 0 and y1246(M) # 0,
then the set B:={x, Ny (y), h1, Ny (2)} is a SAGBI basis for F[Viy1E. Furthermore,
FIVuIE is a hypersurface with the relation coming from the subduction of the
téte-a-téte (h', Ny (y)P'+1).

Proof. Use the subduction given in Lemma 10.3 to construct an invariant f,
with lead term zp4. Define B’ := {x, Ny(y), h1, h2} and let A denote the alge-
bra generated by B’. The single nontrivial téte-a-téte for B’ subducts to zero
using Lemma 10.3. Thus B’ is a SAGBI basis for A. From Lemma 10.1,
FIVa1E[x~'] = Flx, Np(v), h11[x~']. Thus, using Theorem 1.1, A = F[Vy]E.
Clearly LT(Ny (z)) = z”k for k < 4. Since B’ is a SAGBI basis for F[Vg]%, this
forces k = 4, giving LM(B) = LM(B'). ([l
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