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Bootstrapping is a nonparametric statistical technique that can be used to esti-
mate the sampling distribution of a statistic of interest. This paper focuses on
implementation of bootstrapping in a new setting, where the data of interest are
3-dimensional rotations. Two measures of center, the mean rotation and spatial
average, are considered, and bootstrap confidence regions for these measures
are proposed. The developed techniques are then used in a materials science
application, where precision is explored for measurements of crystal orientations
obtained via electron backscatter diffraction.

1. Introduction

Three-dimensional rotation data is common in the field of materials science, where
electron backscatter diffraction (EBSD) can be used to study the microtexture of
metals, including the orientation of crystals within the metal. Using EBSD, a fixed
beam of electrons is diffracted off of a metal sample, creating an image on a focal
plane of sensors. These images reveal information about crystal structure and
orientation in the metal [Randle 2003]. One area of interest in regards to EBSD
measurements is precision. As Bingham, Nordman, and Vardeman [Bingham et al.
2009a] point out, methods used for quantifying EBSD precision in the materials
science literature are not standard, with ad hoc precision estimates often reported
(see, for example, [Demirel et al. 2000; Wilson and Spanos 2001]). This led
Bingham et al. [2009a] to investigate the precision of measurements obtained
via EBSD by developing new statistical distributions for 3-dimensional rotations.
While the distributions developed by Bingham et al. [2009a] do allow for some
flexibility in modeling, our intent here is development of nonparametric techniques,
namely bootstrap confidence regions, that can be used without the need for any
distributional assumptions. While bootstrapping techniques are commonly used in
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one-dimensional nonparametric statistics, these techniques have not been applied
to 3-dimensional rotation data.

Suppose that O1, . . . , On ∈ SO(3) represent orientations at n scanned locations
on a metal specimen as measured by EBSD, where SO(3) denotes the set of all 3×3
orthogonal rotation matrices. When adjacent locations produce similar EBSD crystal
orientations, those locations are considered to be part of the same grain. We are inter-
ested in estimating the central rotation of a set of orientations from within the same
grain, since the true central orientation would represent the actual grain orientation,
with random scatter in O1, . . . , On due to measurement error in the EBSD process.
We will investigate two different measures of center for 3-dimensional rotation data.

The mean rotation, M , is a commonly used measure of center [León et al. 2006;
Bingham et al. 2009a; Khatri and Mardia 1977] that is defined to be the rotation
that maximizes trace(MT O), where O = 1

n

∑n
i=1 Oi for O1, . . . , On ∈ SO(3). The

mean rotation M can be found by using M = V W , where O = V6W is the singular
value decomposition of O . It is necessary to use these components from the singular
value decomposition since O may not be an element of SO(3), but M is.

The second measure of center considered is the spatial average of Ball and
Greiner [2012]. The spatial average of a set of rotations O1, . . . , On ∈ SO(3) is
obtained through an iterative procedure that uses what is referred to as the axis-angle
representation of a matrix. For a given matrix, the axis and angle are such that if
you rotate the 3× 3 identity matrix about the axis by the angle, you will arrive at
the specified matrix. The steps to find the spatial average are outlined below, where
the end result is the matrix S found in step (4) in the final iteration. The procedure
begins by looking at just the first two matrices, O1 and O2. Starting at O1, we
rotate half of the way towards O2, resulting in a matrix S. Then we consider the
third matrix in the data set O3 and rotate S one-third of the way towards this matrix,
giving an updated matrix S. We then rotate S one-fourth of the way towards O4,
again updating S. This process continues until we have been through all n matrices
in the data set. Note that for large samples both the mean rotation and spatial
average converge to the population central matrix.

(1) Let S = O1 and let i = 2.

(2) Compute G = ST Oi .

(3) Let u be the axis of G, let θ be the angle of G, and let p = θ/ i .

(4) Compute S = S P , where P is the matrix form of (u, p), and let i = i + 1.

(5) If i ≤ n, return to step (2).

In Section 2, development of bootstrap confidence regions for these measures
of center for 3-dimensional rotations will be discussed. Accuracy of the bootstrap
techniques will be explored through a simulation study in Section 3. Finally, the
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bootstrap procedure will be applied to data from a nickel specimen to evaluate
EBSD precision in Section 4.

2. Development of bootstrapping technique

Bootstrapping is a nonparametric statistical technique that uses resampling with
replacement. It can be used to estimate the sampling distribution of almost any
statistic, e.g., mean, proportion, variance. It is commonly used to find confidence
regions for population parameters. To find a 95% confidence interval in one-
dimension, a large number (say 1000) of samples of size n are drawn from the
original sample of size n with replacement and the statistic of interest is computed
for each bootstrap sample. This creates a sampling distribution for the statistic of
interest. Under the bootstrap percentile method, a 95% confidence interval is then
obtained by using the 2.5th and 97.5th percentiles as confidence bounds.

Although bootstrapping has been used to create confidence regions in a wide
variety of settings, including analyzing directional data such as p-dimensional
unit vectors [Fisher and Hall 1989], we introduce the concept of bootstrapping for
measures of center in the 3-dimensional setting, where the data can be represented by
3×3 orthogonal rotation matrices. To estimate measures of center for 3-dimensional
rotation data by bootstrapping, we sample with replacement from the original sample
of n matrices 1000 times. Each sample is a bootstrap sample, for which we compute
a measure of center (mean rotation or spatial average). We will refer to these
1000 matrices as bootstrap central matrices. To provide an estimate of center for
the 3-dimensional rotation data, the mean rotation of the 1000 bootstrap central
matrices can be computed. Since this matrix is analogous to what we would consider
a “point estimate” when considering 1-dimensional data, we also refer to it as a
point estimate here.

After obtaining the point estimate for our central rotation, we want to find a
confidence region around this matrix. Because rotation matrices do not have a
natural ordering, the percentile bootstrap method of using the 2.5th and 97.5th
percentiles as confidence bounds does not translate directly to 3-dimensional rotation
data. Instead, we will use a set of three cones centered at the point estimate to give
a confidence region for the true central rotation in a similar fashion to Bingham
et al. [2009a]. Figure 1 illustrates this concept for two different-sized sets of cones.
To determine the size of the cones needed to give a 95% confidence region, we
first think of each matrix as a set of three axes (x , y, and z) and consider the angles
between the axes of the point estimate and the bootstrap central matrices. For each
bootstrap central matrix, we find three angles. Each one is the angle between an
axis and the corresponding axis of the point estimate. We then take the maximum of
these three angles, so that moving a distance of that angle away from all three axes
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Figure 1. Plot of confidence cones around a point estimate (rep-
resented as three axes) with an angle of 0.2 radians (left) and
0.6 radians (right).

of the point estimate would contain all three axes of the bootstrap central matrix.
Once these maximum angles are computed for all 1000 bootstrap central matrices,
we take the 95th percentile and use this as the cone size. Since this set of three cones
centered at the point estimate will capture 95% of the bootstrap central matrices,
we think of it as a 95% bootstrap percentile region for the true central matrix.

3. A simulation study

To examine the accuracy of the bootstrap technique developed in Section 2, a
simulation study was performed. Data sets were simulated from both the von Mises
version of the uniform axis random spin (vM-UARS) distributions [Bingham et al.
2009a] and the matrix Fisher distribution [Khatri and Mardia 1977]. A vM-UARS
or matrix Fisher distribution is characterized by a central rotation S ∈ SO(3) and
a spread parameter κ ∈ (0, ∞). The spread parameter κ is best described as a
concentration parameter since larger values of κ yield rotations with less variability.

For this simulation study we used κ values of 1, 5, 20, and 500 and sample size n
of 10, 30, and 100. For each combination of κ and n both the mean rotation and
spatial average were considered and the bootstrapping procedure was replicated
1000 times (i.e., 1000 different samples were drawn from each of the vM-UARS
and matrix Fisher distributions) with 1000 bootstrap samples taken from the original
sample each time. For each of the 1000 replications a 95% confidence region as
a set of three cones was found. The coverage rates of the confidence cones were
then found as the proportion of times out of 1000 that the true central rotation S
was captured. Note that our choice of S for simulation purposes was arbitrary, as
results are the same regardless of what true central rotation is used. Tables 1 and 2
show the coverage rates along with the median cone size, in radians, for each case.

The coverage rates fluctuate closely around 95%, which validates that the boot-
strapping procedure is behaving as desired for the two distributions considered here.
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(κ, n)
Mean rotation Spatial average

Coverage rate Median cone size Coverage rate Median cone size

(1, 10) 0.966 0.63441 0.944 0.72272
(1, 30) 0.962 0.32435 0.980 0.51034
(1, 100) 0.948 0.16934 0.979 0.26583

(5, 10) 0.944 0.22523 0.924 0.22695
(5, 30) 0.932 0.13152 0.947 0.13726
(5, 100) 0.954 0.07147 0.965 0.07526

(20, 10) 0.944 0.10876 0.943 0.10816
(20, 30) 0.946 0.06436 0.945 0.06500
(20, 100) 0.956 0.03512 0.959 0.03535

(500, 10) 0.944 0.02157 0.927 0.02176
(500, 30) 0.963 0.01269 0.945 0.01271
(500, 100) 0.949 0.00697 0.961 0.00702

Table 1. Coverage rates and median cone sizes (in radians) for
estimating the center of the vM-UARS distribution using the mean
rotation and the spatial average.

(κ, n)
Mean rotation Spatial average

Coverage rate Median cone size Coverage rate Median cone size

(1, 10) 0.957 1.05138 0.951 1.35648
(1, 30) 0.950 0.55232 0.995 0.88534
(1, 100) 0.942 0.29247 0.991 0.43596

(5, 10) 0.922 0.27921 0.909 0.27613
(5, 30) 0.945 0.16369 0.939 0.16325
(5, 100) 0.954 0.09025 0.947 0.09023

(20, 10) 0.919 0.13289 0.920 0.13365
(20, 30) 0.932 0.07896 0.952 0.07891
(20, 100) 0.950 0.04319 0.939 0.04318

(500, 10) 0.918 0.02629 0.925 0.02633
(500, 30) 0.940 0.01556 0.948 0.01544
(500, 100) 0.947 0.00851 0.948 0.00851

Table 2. Coverage rates and median cone sizes (in radians) for
estimating the center of the matrix Fisher distribution using the
mean rotation and the spatial average.
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We also see that the values of κ and n impact the median confidence region sizes as
expected, with larger κ (less spread) and larger n resulting in smaller regions. It is
also important to compare the nonparametric bootstrap techniques developed here
to existing parametric methods for the vM-UARS and matrix Fisher distributions.
Bingham, Vardeman, and Nordman [Bingham et al. 2009b, Table 5, page 618]
provide median cone sizes for the central rotation of the vM-UARS distributions
obtained by maximum quasi-likelihood estimation using the same κ and n values
considered here. Bingham, Nordman, and Vardeman [Bingham et al. 2010b, Table 5,
page 1325] use maximum likelihood estimation to provide similar results for the
matrix Fisher distribution. To compare the cone sizes of these works to the results
given in Tables 1 and 2 presented here, we calculated the relative difference between
the sizes as d(ap, ab) = |ap − ab|/ap, where ap is the angle from the parametric
approach and ab is the angle from the bootstrap approach. For the vM-UARS distri-
bution, the largest relative difference was 0.1360 (for κ = 1 and n = 100). For the
matrix Fisher distribution, the largest relative difference was 0.1441 (for κ = 1 and
n= 10). Both of these differences are small, indicating that the bootstrap techniques
developed here produce results that are equivalent to existing parametric approaches.

4. Application to electron backscatter diffraction data

Now that the bootstrapping technique developed in Section 2 has been shown to keep
coverage rates as expected and perform similarly to existing parametric methods, we
use it to investigate precision of measurements obtained through EBSD. A high-iron-
concentration nickel specimen of size 40µm × 40µm was scanned using EBSD.
The scanning was done over a regularly spaced grid with 0.2µm step size across
the top of the specimen, resulting in 4121 crystal orientations. See [Bingham et al.
2010a] for more details regarding the machinery used and data collection process.

For two orientations P and Q, the misorientation angle between them is the
smallest angle of rotation needed to get from P to Q when rotating about some axis.
When using EBSD, orientations close in proximity are classified as composing
a grain when the misorientation angle between them is small, so that a grain is
thought of as a homogeneous piece of material that produces observations which
generally share a common orientation. Figure 2 gives the grain map that resulted
from using EBSD on the nickel specimen [Bingham et al. 2010a]. The grain map
can be viewed as if one was looking down on the piece of nickel, so that the axes
give the x- and y-locations on a rectangular grid. Each dot in the figure corresponds
to a single measured orientation from the total 4121 orientations in this scan. Similar
orientations are classified into grains, with each colored block on the map indicating
a different grain. The similarity of color within grains makes some of the 4121 dots
indistinguishable from others. Dots that clearly stand out represent locations on
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Figure 2. EBSD grain map for the nickel specimen, with grains
represented by blocks of similar color.

Grain Sample size (n) Original cone size Reported EBSD precision

1 49 0.0647◦ 0.4531◦

2 31 0.1742◦ 0.9699◦

3 21 0.0876◦ 0.4016◦

4 44 0.0823◦ 0.5461◦

5 22 0.1054◦ 0.4942◦

Table 3. Size of 95% confidence regions for central rotations and
reported precision of EBSD measurements (in degrees).

the scan with deformities. Although there are over ten grains present, we will use
subsets of data from five of these grains in the analysis here.

For each of the five grains considered, we applied the bootstrapping technique
to the 3× 3 matrices representing crystal orientations. Using the mean rotation
as our measure of center, 95% confidence regions for the central rotation were
found. The sizes of the confidence cones are provided in Table 3, in degrees.
Because confidence region sizes decrease at a rate of 1/

√
n (which can be verified

by examining the cone sizes presented in Tables 1 and 2), before reporting the
degree of precision we multiply each of the five cone sizes by

√
n. The reported

precision estimates are also provided in Table 3. We find EBSD precision estimates
comparable to the 1◦ reported by Demirel, El-Dasher, Adams, and Rollett [Demirel
et al. 2000] and the 0.5◦ reported by Wilson and Spanos [2001] by using methods
that are much more statistically sound than the methods employed in these works.

5. Conclusion

The study of precision for EBSD measurements considered here is just one of
many applications that could benefit from the bootstrapping techniques developed.
These bootstrapping techniques, while simple to implement, have been shown
to perform as well as existing parametric approaches. Given the complexity of
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existing parametric methods, they are likely not easily accessible to practitioners
(such as materials scientists) who often collect 3-dimensional rotation data. Further,
statistical methods that do not rely on distributional assumptions are important in
the area of 3-dimensional rotation data since there are relatively few developed
distributions for which parametric methods are even available [Bingham et al. 2009a;
Khatri and Mardia 1977; León et al. 2006]. Therefore, the bootstrapping techniques
presented here could play an important role in the field of statistics, as well as in
areas of study where 3-dimensional rotations are commonly found.
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