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A partial differential equation (PDE)-based model combining the effects of
surface electromigration and substrate wetting is developed for the analysis of the
morphological instability of a monocrystalline metal film in a high temperature
environment typical to operational conditions of microelectronic interconnects
and nanoscale devices. The model accounts for the anisotropies of the atomic
mobility and surface energy. The goal is to describe and understand the time-
evolution of the shape of the film surface. The formulation of a nonlinear parabolic
PDE problem for the height function h(x, t) of the film in the electric field is
presented, followed by the results of the linear stability analysis of a planar surface.
Computations of a fully nonlinear evolution equation are presented and discussed.

1. Introduction

The drift of ionized adsorbed atoms (adatoms) on a metal or semiconductor crys-
tal surface due to their interaction with the “electron wind” is termed surface
electromigration. The “wind” force on adatoms is the effect of a high-density
direct current through the bulk of a crystal, which also heats up the surface —
thus increasing the adatoms’ own kinetic energy. It is this combination that makes
adatoms drift. Surface electromigration was studied theoretically in connection to the
grain-boundary grooving in polycrystalline films [Averbuch et al. 2001; Maroudas
1995], the kinetic instabilities of crystal steps [Chang et al. 2006; Debierre et al.
2007; Stoyanov 1997], morphological stability of thin films [Dobbs and Krug 1994;
Krug and Schimschak 1997; Barakat et al. 2012; Khenner 2013], and recently, as a
way to fabricate nanometer-sized gaps in metallic films — suitable for testing of the
conductive properties of single molecules and control of their functionalities [Barnes
et al. 2010; Bolotin et al. 2007; Block et al. 2006]. Although the phenomenon of
electromigration has been known for over 100 years, it became of practical interest
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in 1966 when the first integrated circuits became commercially available. It is
considered a key factor in determining the reliability of integrated circuits.

As we just mentioned, one recent technological application of electromigration
is the fabrication of the nanoscale contacts (gaps) that are manufactured from the
thin Ag films wetting the Si substrate [Barnes et al. 2010; Bolotin et al. 2007; Block
et al. 2006]. The gap between contacts can be cyclically opened and closed. To
open the contact, a strong electric current is applied at a low temperature of the
film (∼80 K), which enables the surface mass flow of adatoms across the narrow
bridge, thus connecting the anode and the cathode, until the bridge breaks. To close
the contact, the natural surface diffusion of adatoms across the gap is enabled by
heating the film to the room temperature, all the while keeping the electric current.

Another example, more relevant to the present study, is a faceting of the initially
planar surface of a crystalline thin film upon passing the current along the substrate.
This way the so-called quantum wires can be fabricated [Dai et al. 2014]. Since the
cross-section of a quantum wire is only a few nanometers, it possesses very special
electronic properties, which makes it desirable for integration into nanoscale devices.

Here we further develop the PDE-based mathematical model of the film-surface
morphological instability and evolution driven by the electromigration [Khenner
2013]. The very special feature of the presented model is that it accounts both for
the wetting and the surface energy anisotropy effects. The surface morphological
instability and evolution in a thin film system where the wetting, anisotropy, and elec-
tromigration are active have not been addressed theoretically, although PDE-based
models of wetting and anisotropy [Davis et al. 2004; Gill and Wang 2008; Khenner
2008a; 2008b; Khenner et al. 2011], wetting and electromigration [Khenner 2013],
and electromigration and anisotropy [Barakat et al. 2012] have been published.

The wetting effect emerges due to the existence of the attractive force between the
adatoms and the substrate atoms; this force is nonnegligible because of the very small
thickness of the film (h∼ 10 nm). The surface-energy anisotropy effect emerges due
to the crystal nature of the film surface. The combination of the two effects results
in a complicated nonlinear evolution PDE. We use the approach of [Khenner 2013]
to build and analyze the model with the added anisotropy effect; first, the governing
PDE is derived, and then we analytically obtain the stability regions of the planar
surface in the space of the physical parameters and, for the values of the parameters
such that the planar surface is unstable, compute the evolution of the small, one-
wavelength surface perturbation on a periodic domain. The typical evolution scenar-
ios, such as the evolution to a steady-state or the lateral surface drift, are presented.

2. Problem statement

We assume a simple one-dimensional geometry, where the surface is an open curve
(without overhangs) in the xz-plane, described by a function z = h(x). Since the
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Figure 1. Sketch of the film surface h(x, t) in the horizontal, constant
electric field E. Here Eloc = E cos θ is the projection of E on the
surface. The surface atomic flux j is in the direction opposite to Eloc.

curve deforms with time, h is also a function of time t ; that is, z = h(x, t). As is
common in physics literature, the curve h(x, t) is termed the film surface in the
following, despite being a one-dimensional object.

Following [Khenner 2013], we focus on the case of the horizontal electric field
(directed along the substrate and the initially planar film surface h(x, 0)= const.).
As was stated in the Introduction, we will incorporate the effects of substrate wetting
by the film [Khenner 2008a], the anisotropy of the diffusional mobility M(θ) [Krug
and Schimschak 1997], and weak anisotropy of the surface energy γ (θ) [Liu and
Metiu 1993], where θ is the angle that the unit normal n to the surface makes with
the vertical coordinate axis z. From the mathematical standpoint, these effects will
manifest in our model through various linear and nonlinear terms in the parabolic
PDE for h(x, t). The physicomathematical framework in which our model is
firmly rooted has been established, beginning in 1960s, through the efforts of many
prominent materials scientists, physicists, and mathematicians [Mullins 1963; Cahn
et al. 1992; Cahn and Taylor 1994; Di Carlo et al. 1992; Dobbs and Krug 1994;
Liu and Metiu 1993; Davis et al. 2004]. The mathematics of the accounting for the
relevant physical effects are summarized below, and the physical foundations, as
well as further mathematical detail, can be found in the cited papers. To illustrate the
effects of the electromigration on film morphology, Figure 1 depicts two directions
of the electric field. In Figure 1 (left), the electric current forces the adatoms
downhill (from the crest to the trough); thus the surface becomes more planar with
time. In Figure 1 (right), the field in the opposite direction forces the adatoms uphill
(from the trough to the crest) and thus the surface becomes less planar. This is the
instability mechanism that we are investigating in this paper.

The dimensionless PDE governing the evolution of h(x, t) has the form

ht = B
[
M(hx)(1+ h2

x)
−1/2µx

]
x + A

[
M(hx)(1+ h2

x)
−1/2]

x . (1)

In (1), B > 0 is the effective diffusivity of adatoms and A ≥ 0 is the strength of the
electric field. The first term on the right-hand side stems from the natural diffusion
of adatoms (in the absence of the electric current) on a heated crystal surface. The
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meaning of this term is that relocation of adatoms through diffusion changes the
shape of the surface. It was first derived by Mullins [1963] in what is now considered
the classical work. Similarly, the second term stems from the forced diffusion (drift)
of adatoms caused by the electromigration force. It was derived in several papers,
including [Dobbs and Krug 1994; Krug and Schimschak 1997; Khenner 2013]. The
surface chemical potential µ(x, t) entering the Mullins term contains, in our model,
the contributions from wetting (through the dependence of the surface energy γ on
the film thickness h; see (3) below) and anisotropy. The expression for µ(x, t) reads

µ= (γ+γθθ )κ+(γh−hxγhθ )cosθ, cosθ= (1+h2
x)
−1/2, κ=−hxx(1+h2

x)
−3/2.

(2)
Here κ is the curvature, and γ (h, θ) is the weakly anisotropic film-surface energy
(tension):

γ (h, θ)= 1+ εγ cos 4θ + (G− 1− εγ cos 4θ)e−h, θ = arctan hx , (3)

where G > 1 and 0≤ εγ < 1
15 are the parameters; G is the ratio of the (dimensional)

substrate energy to the (dimensional) surface energy, and εγ is the strength of the
anisotropy. The interval for εγ implies that the “stiffness” γ+γθθ is larger than 0 for
all θ in (2) when γ = γ (θ)= 1+εγ cos 4θ (the four-fold anisotropy typical for most
semiconductor and metal crystals). This implies a negative effective “diffusivity” α1

in the linearized PDE (1) (for A = 0): ht = α1hxxxx , where α1 < 0. Such a linear
PDE is well-posed; i.e., it is forward parabolic. If εγ ≥ 1

15 (strong anisotropy, typical
at comparatively low temperatures), then the PDE is backward parabolic for some
θ-intervals and the regularization is required; usually the curvature-squared term
is added to γ (θ) [Di Carlo et al. 1992], which raises the PDE order from the fourth
to the sixth. In the presence of the electric current, the crystal temperature is high
due to Joule heating, which justifies the restriction of the consideration to mild
anisotropy. The choice G > 1 means that only wetting films are considered; i.e.,
the substrate energy is larger than the surface energy. Thus dewetting, meaning the
substrate exposure, may occur only through the application of the external force,
such as the electromigration.

The form of (3) results from the consideration of the conventional “two-layer”
model for the film energy; for the discussion of that model see, for instance, [Davis
et al. 2004] and the references therein. The parameters and their typical range of
values are displayed in Table 1. Notice that the classical Mullins model assumes
γ = const. (the isotropic case without the wetting effect); thus the chemical potential
reduces to µ= γ κ . The form of the wetting potential contribution to the surface
energy, (γh−hxγhθ ) cos θ , is well established and is taken from [Davis et al. 2004].

In reference to the electromigration term in (1),

M(hx)=
1+β cos2(N (arctan hx +φ))

1+β cos2(Nφ)
, where β, N, φ = const., (4)
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Physical Typical
Range Physical meaningparameters values

B 8 fixed effective adatoms diffusivity
M(0) 1 fixed adatoms mobility on the horiz. surface

h0 3 0≤ h0 ≤ 20 initial height of the film (same for all x)
A 72 10≤ A ≤ 1000 strength of the electric field
G 2 1< G ≤ 100 ratio of the substrate energy to the surface energy

M ′(0) −3 −10≤ M ′(0)≤ 0 derivative of adatoms’ mobility on the horiz. surface

Table 1. Values of the dimensionless physical parameters. The def-
initions of these parameters in terms of the dimensional quantities
can be found in [Khenner 2013; 2008b; Khenner et al. 2011]. The
typical values in the second column result from the substitutions in
these expressions of the published standard values of the dimensional
parameters [Mullins 1963; Maroudas 1995; Dobbs and Krug 1994;
Krug and Schimschak 1997; Davis et al. 2004; Liu and Metiu 1993],
which have been measured in the experiments.

is the anisotropic diffusional mobility (notice that the denominator of the fraction
is a constant value for the given nonnegative parameters β, N and φ); here β is
the anisotropy strength, N is the number of crystallographic symmetry axes and
φ is the angle between a symmetry direction and the average surface orientation.
In this paper, β varies (resulting in a variation of M ′(0); see Table 1), N = 4, and
φ= π/16. Notice that M(0)= 1 for any β, N , φ. Equation (4) is taken from [Krug
and Schimschak 1997].

Next, we begin by linearizing M(hx) about hx = 0; i.e., we write M(hx) =

M(0)+M ′(0)hx , where M(0) and M ′(0) will be later calculated from (4) for given
β, N and φ (see [Khenner 2013]). Then

∂M(hx)

∂x
=
∂M(hx)

∂hx
hxx = M ′(0)hxx , (5)

and (1) now reads

ht = B M ′(0)hxx(1+ h2
x)
−1/2µx + B(M(0)+M ′(0)hx)

[
(1+ h2

x)
−1/2µx

]
x

+ AM ′(0)hxx(1+ h2
x)
−1/2
+ A(M(0)+M ′(0)hx)

[
(1+ h2

x)
−1/2]

x . (6)

In order to compute µx in (6), we first calculate γθθ , γh , γhθ using (3). Then we
substitute these expressions in (2), use the trigonometric identities

cos 4θ = 8(cos4θ − cos2θ)+ 1, sin 4θ = 4 sin θ cos θ(2 cos2θ − 1),

(where cos θ = (1+ h2
x)
−1/2 and sin θ = hx(1+ h2

x)
−1/2) and obtain µ(x, t) in

terms of hx , h2
x , hxx , etc. We then substitute µ(x, t) into (6) and the remaining

differentiations are performed.
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Finally, we employ the small-slope approximation. The spatial derivatives are
replaced as ∂/∂xk

→ εk∂/∂xk , the coefficients of the powers of ε are collected,
and all but the coefficients of εk , k = 1, 2, 3, 4, are set to zero. Then, ε is set equal
to 1. This results in the fourth-order, nonlinear PDE for h(x, t):

ht = B M(0)
(
15εγ − 1+ (1−G− 15εγ )e−h)hxxxx

+
(

AM ′(0)− B M(0)(1−G+ εγ )e−h)hxx

− Ahxx
(
M(0)hx +

3
2 h2

x M ′(0)
)
+ Be−h F,

(7)

where

F = M ′(0)h3
x(1−G+ εγ )− 2M ′(0)hx hxx(1−G+ εγ )−M(0)h4

x(1−G− 7εγ )

+M(0)h2
x(1−G+ εγ )+ 5M(0)h2

x hxx
(
1−G− 51

5 εγ
)

− 3M(0)hx hxxx(1−G− 15εγ )− 2M(0)h2
xx(1−G− 15εγ ). (8)

The first and second lines of (7) are composed of the linear contributions, while
all terms in the third line are nonlinear (i.e., they are proportional to the products
of the spatial derivatives of h). The terms in the first line emerge due to the natural
diffusions of adatoms, mediated by a surface/substrate-interaction force, on a heated
crystal surface with anisotropic surface energy. In the second line, the linear term that
is proportional to B is also due to the natural diffusion mediated by the wetting effect,
while another linear term there that is proportional to A is due to the electromigration
drift of adatoms. In the third line, the two terms that are proportional to A also are
due to the electromigration. Finally, the last contribution in the third line, Be−h F , is
the nonlinearity produced by the substrate wetting effect. This contribution, as well
as the linear terms that are proportional to e−h in the first and second lines of (7), drop
out in the limit of a thick film, h→∞, where the film surface/substrate-interaction
force vanishes. When εγ = 0, equations (7) and (8) are reduced to [Khenner 2013,
(15)]. In the following, it is important that the coefficients of the linear terms are
negative, due to negativity of M ′(0) and weak anisotropy, 0< εγ < 1

15 .

2.1. Example: analysis of a linear second-order PDE. Equation (7) is a well-
posed, fourth-order, nonlinear parabolic PDE. The prototype linear fourth-order
parabolic PDE is

ht = α1hxxxx +α2hxx , α1, α2 < 0. (9)

This equation has the trivial solution h(x, t)= h0 = const. In the physical context,
this solution corresponds to a constant-height film for all values of x and t , that is, a
film with a planar stationary surface. We call such a solution an equilibrium surface.
The key issue is whether the equilibrium is stable or unstable with respect to small
perturbations ξ(x, t). This can be settled by substituting h = h0+ ξ(x, t) and then
assuming ξ(x, t) is a single Fourier mode: ξ(x, t) = ξ0eωt eikx , where ξ0 is the
amplitude, ω(k) is the growth rate, and k is the wavenumber. (The wavelength, or
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Figure 2. Two cases of the typical growth rate ω(k). Left: long-
wave instability. Right: stability, ω(k) < 0 for all k.

the spatial period, is λ=2π/k.) Then one obtains the expression for the perturbation
growth rate as a function of the wavenumber, the so-called dispersion relation

ω(k)= α1k4
−α2k2. (10)

For small k, the second term is dominant in this expression. For large k, it is the
first term. Since α2 < 0, perturbations with small wavenumbers (large wavelengths)
grow (ω(k) > 0); because α1 < 0, perturbations with large wavenumbers (small
wavelengths) decay (ω(k) < 0). This is reflected in the shape of the curve ω(k) (see
Figure 2 (left)), and correspondingly the instability is termed the long-wavelength
instability. All perturbations with wavenumbers in the interval 0< k < kc grow, and
all perturbations with wavenumbers greater than kc decay; kc is termed the instability
cut-off wavenumber. The surface is unstable with respect to long-wavelength
perturbations, and it is stable with respect to small-wavelength perturbations. In
practice, the perturbation (induced, for instance, by a thermal noise) is not a single
Fourier mode. However, most perturbations can be represented by a superposition
of Fourier modes. Thus some modes grow and some decay. Among the unstable
modes, there is a mode with the largest growth rate, ωmax. This most dangerous
mode will dominate over other modes shortly after the surface is destabilized,
resulting in a surface deformation of the form h(x, t) = h0 + ξ0eωmaxt cos kmaxx .
Here, kmax is the wavenumber for which ω = ωmax, i.e., the maximum of ω(k) on
the interval 0≤ k ≤ kc. In other words, kmax is the positive solution of dω/dk = 0.

It is easy to show that for (10), we have kmax= kc/
√

2. First, we set the right-hand
side of (10) to zero and solve for k:

ω(k)=−α2k2
+α1k4

=0 =⇒ k2(−α2+α1k2)=0 =⇒ k=0 or k=±
√
α2/α1.

Since we need a positive solution, kc =
√
α2/α1. To determine kmax, we solve

dω/dk = 0 for k; that is,

−2α2k+4α1k3
= 0 =⇒ 2k(−α2+2α1k2)= 0 =⇒ k= 0 or k=±

√
α2/2α1.

Again we take the positive solution. Thus, kmax =
√
α2/2α1 = kc/

√
2.
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Notice that the parameter α1 in (9) cannot be positive. Otherwise, the short-
wavelength perturbations will grow, which is not physically permissible, since
in this case the surface is always unstable — such perturbations would be always
present in the spectrum. However, an instability is not universal, and most material
surfaces remain planar. Mathematically, (9) in the case of α1> 0 is ill-posed; despite
its higher order, it is similar to the (ill-posed) backward heat equation ht =−hxx .
However, the parameter α2 may be positive for some physical parameters’ values.
Then ω(k) is negative for all k (Figure 2 (right)), meaning that all perturbations
decay and the surface restores its initial planar shape.

Equations such as (7) are nonlinear; thus the exponential growth of the most
dangerous mode will not continue forever. Nonlinear terms in the equation will
dampen growth, which usually results in a stationary, nontrivial solution which has
the spatial form resembling the large-amplitude cosine curve. Determination of the
stability of (7) and the form of the stationary solution will be discussed next.

3. Linear stability analysis

The dynamics of the film surface are governed by the nonlinear PDE (7). Toward
our goal of determining stability of the surface with respect to small perturbations,
we notice that (7) has the equilibrium solution h = h0 = const., and we linearize
about this solution along the lines described above for (9). First, using the general
small perturbation ξ(x, t), we substitute h = h0+ ξ(x, t) in (7) and retain only the
linear terms in ξ . Then, we substitute ξ = ξ0eωt eikx , calculate the partial derivatives
and divide out the factor ξ0eωt . This results in the dispersion relation

ω(k)=−B M(0)
(
(G− 1+ 15εγ )e−h0 + 1− 15εγ

)
k4

−
(
B M(0)(G− 1− εγ )e−h0 + AM ′(0)

)
k2. (11)

3.1. Analysis of the dispersion relation (11). In this section we determine how
the physical parameters of the problem affect the surface instability.

As we explained in Section 2, if ω(k) < 0 for all k, then the surface is stable
with respect to the perturbations of any wavenumber (Figure 2 (right)). When
this condition does not hold, the surface is long-wave unstable (Figure 2 (left)).
The degree of the instability is measured by the width of the domain under the
dispersion curve ω(k). That is, the larger the cut-off wavenumber kc is, the stronger
the instability.

We notice that the dispersion relation (11) has the form of (10) and thus we
identify

α1 =−B M(0)
(
(G− 1+ 15εγ )e−h0 + 1− 15εγ

)
,

α2 = B M(0)(G− 1− εγ )e−h0 + AM ′(0).
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Figure 3. Characterization of the film linear stability. (a) kc vs. h0;
(b) kc vs. A; (c) kc vs. G; (d) kc vs. M ′(0); (e) kc vs. εγ . In (f)–(j),
ωmax is plotted vs. the same variables. In each panel, all parameters
except the single one that is varied are fixed to the typical values
from the second column of Table 1. In (a)–(j), εγ is chosen equal
to zero (isotropic evolution). The same strategy with regard to
parameters is followed in Figures 4 and 5.
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Then the expressions for kc, kmax and ωmax are

kc =

√
Aeh0 M ′(0)+ B M(0)(G− 1− εγ )

B M(0)
(
1−G− 15εγ + (15εγ − 1)eh0

) , kmax =
kc
√

2
,

ωmax =
1
4

(
Aeh0 M ′(0)+ B M(0)(G− 1)− B M(0)εγ

)2

B M(0)eh0
(
G− 1+ 15εγ + (1− 15εγ )eh0

) .
(12)

The wavelength of the most dangerous perturbation is λmax = 2π/kmax.
The expressions for kc, kmax and ωmax include new contributions due to the

surface energy anisotropy (the terms proportional to εγ ).
The film stability decreases with increasing h0, and this trend saturates around

h0 = 5.12 nm (Figure 3(a)). This is because the film wets the substrate and thus the
attractive, cohesive force between the adatoms and the substrate atoms is stronger for
thinner films (smaller h0). Increasing the electric field strength A also makes the film
less stable, but increasing G makes it more stable, since the substrate energy provides
a stabilizing effect (Figures 3(b)–(c)). The stability of the film decreases with increas-
ing |M ′(0)| and εγ (Figures 3(d)–(e)). The results in the panels (a)–(d) and (f)–(i)
were obtained also in [Khenner 2013]; here these results are recomputed from (7).
The results in the panels (e) and (j) are new; they stem from the new feature of the
extended model: the accounting for the mild anisotropy of the film-surface energy.

4. Numerical solution of equation (7)

Using the information from the previous section on how the physical parameters
affect the surface stability, in this section we compute the full nonlinear PDE (7) by
implementing the method of lines (MOL) [Verwer and Sanz-Serna 1984; Schiesser
1994] in Mathematica [Wolfram 2016]. The MOL is a technique for solving partial
differential equations by discretizing in all but one dimension, and then integrating
the semidiscrete problem as a system of ordinary differential equations (ODEs).
A significant advantage of the method is that it allows us to use the sophisticated
general-purpose software [Hairer and Wanner 1999; Brown et al. 1989] that has been
developed for numerically integrating large systems of ODEs. For the parabolic
initial-boundary-value problems, the MOL typically is very efficient and accurate.
Sophisticated adaptive MOL methods were also developed for some hyperbolic
equations [Saucez et al. 2001].

The initial condition is the perturbation of h = h0, and the boundary conditions
are periodic:

h(x, 0)= h0+δ cos(kmaxx), h(0, t)= h(λmax, t), h′(0, t)= h′(λmax, t), (13)

where δ is a small amplitude (we take δ = 0.01). Periodic boundary conditions
are used since the goal is to compute the evolution of a finite section of a periodic,
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laterally unbounded surface. Notice that h(x, 0) is the most dangerous (fastest
growing) unstable perturbation according to the linear stability analysis in Section 3.

Evolution of the perturbation is computed until the steady-state solution emerges.
The steady-state solution is either a stationary or a traveling wave of wavelength λmax

and constant amplitude. The amplitude and wave speed are studied as a function
of the parameters A, h0, G, M ′(0), and εγ . It is important to emphasize here that
the traveling wave is a nonlinear effect (which was overlooked in [Khenner 2013]);
indeed, the perturbation growth rate ω(k) is real-valued (see (11)), indicating the
absence of a linear traveling wave. In computations, the profile started to shift
laterally only when the amplitude of a cosine-like perturbation became fairly large,
indicating that nonlinearities in (7) are responsible. Another important observation
is that for thick films, h� 1, the wave speed is zero; thus the traveling wave solution
is caused by the nonlinear effect of substrate wetting, which is described by the term
Be−h F in (7). The lateral drift of surface perturbations has been noted previously
in surface electromigration problems; for instance, the drift is the hallmark of [Krug
and Schimschak 1997], where it is caused by the nonlocality of the electric field.

Two sets of simulations are conducted, at different film heights: h0 = 3 and
h0 = 10; when one parameter is varied, other parameters are fixed to their typical
values in Table 1. In addition, the height is also varied with all other parameters
fixed. The results are displayed in Figures 4 and 5.

Figures 4(a)–(b) show the effect of varying the film height on the amplitude and
the wave speed. Both graphs show the sharp decreases and then the amplitude levels
off, while the wave speed vanishes at h0 ≈ 7. The decrease of the wave amplitude
and speed is expected, since the wetting potential and the corresponding driving
force decay exponentially as the film thickness increases.

As seen in Figures 4(e) and 5(e), as the electric field parameter A is increased, the
amplitude is decreased and then it levels off. As the graph is the same, we conclude
that the dependence of the amplitude on A is unaffected (or is affected very weakly)
by the height changes and by the traveling surface wave. Changing A affects the
wave speed in a more complicated manner. As Figure 5(f) shows, increasing the
strength of the field initially dampened the wave speed, but with further increase of
the field, the wave speed also increases. The latter behavior is expected, since the
strong field implies a fast adatoms drift. We will be looking into the reason for the
initial wave speed decrease.

Figures 4(c) and 5(a) show that increasing the anisotropy strength εγ makes the
amplitude smaller. The wave speed, however, increases with the increase of εγ , as
shown in Figure 5(b). The amplitude variation is primarily affected by εγ and the
simultaneous height changes make little difference.

In Figure 5(g), the amplitude increases only very little as the ratio of the ener-
gies G increases. (At h0 = 10, the amplitude value stays constant (≈ 0.65) as G is
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Figure 4. Graphs (a)–(b) show the effects of varying h0 on the
traveling wave amplitude and speed. Graphs (c)–(e) show the ef-
fects of varying εγ , M ′(0) and A on the stationary wave amplitude;
here h0 = 10, i.e., the film is thick. As is displayed in (b), for thick
films the wave speed is zero.

varied; thus this graph is not shown in Figure 4.) In Figure 5(h), the wave speed
increases as G increases.

Increasing the absolute value of the diffusional mobility derivative, |M ′(0)|,
results in the decrease of the amplitude and wave speed, as shown in Figures 4(d),
5(c) and 5(d). Once again we notice that the height variation does not seem to affect
the trends that M ′(0) places on these characteristics.

Notice from the graphs of the amplitude in Figures 4 and 5 that the amplitude
never reaches the value of h0, that is, 3 or 10. This means that the film’s local
height is not zero, and therefore the film does not dewet the substrate. In other
words, the film continuously covers the substrate at all times — the substrate is
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Figure 5. The effects of the parameters’ variation on the traveling
wave amplitude and speed (the first and second column, respec-
tively), for the thin film (h0 = 3).

not exposed, despite the application of the electromigration. This can be expected,
since the electric field is applied along the substrate, rather than across it. In the
latter situation the film is more likely to dewet [Khenner 2013].

These results give insights into the complicated nonlinear dynamics of a film
surface. Importantly, even though increasing A, εγ and |M ′(0)| results in the
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decrease of the amplitude, the initial state of δ = 0.01 is never reached. Thus at all
times t > 0 the surface is always more deformed than it is initially.

The amplitude trends shown in Figures 4(a),(d),(e) and Figures 5(c),(e),(g)
confirm the results obtained previously in [Khenner 2013]. The results for the
amplitude and wave speed in other panels of these figures are new. As we noted
above, the traveling wave solution was overlooked in [Khenner 2013] and thus the
dependence of the traveling wave speed and amplitude on parameters, including
the new parameter, i.e., the strength of the anisotropy εγ , was not computed there.

5. Conclusions

We performed the analysis of the partial differential equation model of the surface
morphological evolution affected by electromigration, assuming a wetting solid
film with the mildly anisotropic surface energy.

The linear stability analysis shows that the stability of the base planar state of the
surface decreases with the increasing film thickness h0, the electric field strength A,
the derivative of the diffusional mobility |M ′(0)| and the anisotropy strength εγ .
The stability increases with increasing the ratio G of the substrate energy to the
film energy, or equivalently, increasing the strength of the intermolecular attractive
force between the adatoms and the atoms of the substrate.

We used the method of lines to numerically solve the fully nonlinear PDE. This
way we found two outcomes of the surface evolution: the stationary wave relief
for thick films, and the traveling surface wave (the surface drift) for thin films. We
illustrated how all other physical parameters affect the amplitude of either wave
(stationary or traveling), as well as the wave speed of the traveling wave. Our results
also hint that there is no combination of the physically admissible parameters’ values
for which the film dewets the substrate.

Our numerical studies are on the periodic one-wavelength domain x ∈ [0, λmax],
and we used the cosine curve with the small initial amplitude to perturb the (constant)
initial height. Future work will be focused on computing the evolution of a small
random perturbation on the large periodic domain comprising many wavelengths. In
this setup, the coarsening of the initial perturbation can be studied and predictions
can be made about the pattern formation on the surface.
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