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The size of the automorphism group of a compact Riemann surface of genus g> 1
is bounded by 84(g− 1). Curves with automorphism group of size equal to this
bound are called Hurwitz curves. In many cases the automorphism group of
these curves is the projective special linear group PSL(2, q). We present a
decomposition of the Jacobian varieties for all curves of this type and prove that
no such Jacobian variety is simple.

1. Introduction

Let X be a compact Riemann surface of genus g (henceforth called a “curve”),
and G its automorphism group with identity element denoted idG . A result of
Wedderburn gives the decomposition of the group ring QG,

QG ∼=
⊕

i

Mni (1i ),

where Mni (1i ) denotes ni × ni matrices with coefficients in a division ring 1i .
It is possible to decompose the Jacobian variety, JX , of the curve X into abelian
varieties, up to isogeny ∼, as

JX ∼
⊕

i

(ei (JX))ni , (1)

where ei are certain idempotents in End(JX)⊗Z Q. More details about this de-
composition may be found in [Paulhus 2008]. It is important to note here that this
decomposition may not be the finest possible decomposition. Some of the abelian
variety factors ei (JX) could decompose further.

Decomposable Jacobian varieties have applications to rank and torsion questions
in number theory [Howe et al. 2000; Rubin and Silverberg 2001]. In genus 2,
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the elliptic curve factors appearing in these decompositions have interesting arith-
metic properties (see [Cardona 2004; Earle 2006; Magaard et al. 2009], among
many others).

The dimension, as an abelian variety, of the factor ei (JX ) in (1) is 1
2〈ψi , χ〉,

where 〈ψi , χ〉 denotes the inner product of ψi , the i-th irreducible Q-character
labeled according to the Wedderburn decomposition, with χ , a character we define
below called the Hurwitz character. To define the character χ , we consider the
covering from X to its quotient Y = X/G, a curve with genus denoted gY . Let
h1, . . . , hs ∈ G be the monodromy of this covering. For any subgroup H of G,
define the character χH to be the trivial character of H induced to G, and 1G to be
the trivial character of G. In this paper H is a cyclic subgroup generated by one
element of the monodromy, which we write as 〈hi 〉. Note that with this notation
χ〈idG 〉 is the character associated to the regular representation. Define the Hurwitz
character as

χ = 2 · 1G + 2(gY − 1)χ〈idG 〉+

s∑
j=1

(χ〈idG 〉−χ〈h j 〉), (2)

which is the character of the representation of G on H 1
et(X,Q`) [Milne 1980,

Chapter V, §2]. To determine the dimensions of factors of JX from (1), we must
know the automorphism group of X , the irreducible Q-characters for that particular
group, and the monodromy of the covering X→ Y.

The upper bound on the size of the automorphism group of a curve of genus g> 1
is given by 84(g− 1). Curves whose automorphism groups attain this bound are
called Hurwitz curves and the groups themselves are called Hurwitz groups. Hurwitz
groups have a long history in the study of triangle groups, Riemann surfaces, and
hyperbolic geometry. See [Conder 1990] for a nice survey of these groups and
their significance.

For all Hurwitz curves, the quotient curve Y is the projective line, so gY = 0.
Since the quotient curve has genus 0, the monodromy of the covering is a set of
elements {h1, . . . , hs} in G such that h1 · · · hs= idG and the set of all hi generates G.
The monodromy for Hurwitz curves is always of type (2, 3, 7), meaning it consists
of an element of order 2, an element of order 3, and an element of order 7, denoted
in this paper by h2, h3, and h7, respectively. (Equivalently, a Hurwitz group is a
finite, nontrivial quotient of the (2, 3, 7)-triangle group.) For Hurwitz curves, (2)
may be simplified to

χ = 2 · 1G +χ〈idG 〉−χ〈h2〉−χ〈h3〉−χ〈h7〉. (3)

Let PSL(2, q) denote the projective special linear group with coefficients in the
finite field of order q. In this paper we will use (1) to decompose the Jacobian
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varieties of all Hurwitz curves with automorphism group PSL(2, q). This decom-
position may be found in Theorem 10 and, in particular, in Corollary 9 we prove
that the Jacobian variety of these curves is never simple.

While there is an infinite family of Hurwitz curves with automorphism group
PSL(2, q) (as we will see immediately below), there are many Hurwitz curves with
other automorphism groups. For example, the alternating group An is a Hurwitz
group for all n ≥ 168 as well as for many smaller n [Conder 1990]. It is likely that
a similar analysis would yield results about the decomposition of the Jacobians of
these families of curves too.

Macbeath determines for which q the group PSL(2, q) is a Hurwitz group.

Theorem 1 [Macbeath 1969]. The group PSL(2, q) is a Hurwitz group if and only if

(i) q = 7,

(ii) q is a prime and congruent to ±1 mod 7, or

(iii) q = p3 for a prime p ≡±2 or ±3 mod 7.

Note that in both cases (ii) and (iii), we have q ≡±1 mod 7. Case (i) occurs for
a Hurwitz curve of genus 3, and the Jacobian is known to decompose as JX ∼ E3,
where E is an elliptic curve [Kuwata 2005]. In case (ii), when q = 13 (and g = 14),
the technique above may be used to show that JX ∼ E14, again for E some elliptic
curve. Case (iii) includes the special case where q = 8. This corresponds to a
genus 7 curve sometimes called the Macbeath curve. It has long been known that
JX ∼ E7 [Wolfart 2002].

For odd q , PSL(2, q) has a well understood and relatively straightforward char-
acter table. Additionally, the monodromy of the coverings is not hard to find as (3)
only requires knowledge of the monodromy up to conjugation. It turns out that, as
we show below in Proposition 2, for almost all q satisfying Theorem 1, PSL(2, q)
has only one conjugacy class of elements of order 2, one of elements of order 3, and
three conjugacy classes of elements of order 7. This then allows us to compute the
inner product 〈ψi , χ〉 in all such examples and prove very general results about the
Jacobian decompositions of curves with these groups as automorphism groups. The
few exceptional q are either discussed above or at the end of the paper in Section 6.

We begin in Section 2 by reviewing known results about G = PSL(2, q). In
particular, in Section 2.3 we determine the irreducible Q-characters, a key piece in
our determination of the dimension of the factors in the Jacobian decompositions.
In Section 3 we compute the Hurwitz character χ , and in Section 4 we compute
the inner products. Finally we put the pieces together and present the Jacobian
decomposition in Section 5.

Using a different set of idempotents in QG and the fact that PSL(2, q) has a
partition (a set of subsets of G whose pairwise intersection is the identity and
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whose union is the whole group), Kani and Rosen [1989, Example 2] describe a
decomposition of a power of the Jacobian variety of curves with such automorphisms.
The factors are themselves Jacobians of quotients of the curve by p-Sylow subgroups
or Cartan subgroups of G.

2. Properties of PSL(2, q)

Here we collect the relevant information about the group G = PSL(2, q). More
details may be found in [Karpilovsky 1994] and we follow the notation in that
book. For the rest of the paper, assume q is odd, q > 27, and q satisfies case (ii) or
case (iii) in Theorem 1. All cases not covered by this are discussed above, except
for q = 27, which we cover in Section 6.

First, the size of PSL(2, q) is
1
2q(q + 1)(q − 1).

To describe the character table of PSL(2, q) we need several special elements of
SL(2, q). Let α be a generator of the group of units of the finite field with q2

elements, let β = αq+1, and define b as the element of SL(2, q) determined by the
map x→ αq−1x for x ∈ Fq2 . Additionally define elements of SL(2, q)

a =
[
β 0
0 β−1

]
, c =

[
1 0
1 1

]
, and d =

[
1 0
β 1

]
.

The images of the elements a, b, c, and d in the quotient PSL(2, q) are denoted
as ā, b̄, c̄, and d̄ . The element ā has order 1

2(q−1), the element b̄ has order 1
2(q+1)

and the elements c̄ and d̄ each have order q .

2.1. Conjugacy classes. To determine the monodromy of the covering, we need
to understand the conjugacy classes of elements of orders 2, 3, and 7. The rep-
resentatives of the conjugacy classes of PSL(2, q) are 1̄, c̄, d̄, ān , and b̄m , where
1≤ n,m ≤ 1

4(q−1) if q ≡ 1 mod 4, while 1≤ n ≤ 1
4(q−3) and 1≤m ≤ 1

4(q+1)
if q ≡−1 mod 4. We will write the conjugacy class of an element h ∈ G as [h].

Conjugacy classes with a representative ān have size q(q + 1), and conjugacy
classes with a representative b̄m have size q(q − 1), with the exception of the
conjugacy class containing elements of order 2 which has order half that size,

(
or

1
2q(q − 1)

)
[Karpilovsky 1994]. We will see in the proof of Proposition 2 that the

conjugacy class of elements of order 2 is [ā(q−1)/4
] if q ≡ 1 mod 4 and [b̄(q+1)/4

]

if q ≡−1 mod 4.
It turns out that χ as defined in (3) is 0 outside of the conjugacy classes of

elements of orders 1, 2, 3, and 7, as we will see in Section 3. So it will be sufficient
to only study these conjugacy classes of PSL(2, q) since any other conjugacy
class will not contribute to our goal of computing the inner product of χ with the
irreducible Q-characters. But how many such conjugacy classes are there?
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Proposition 2. If G = PSL(2, q) for q odd, greater than 27, and satisfying case (ii)
or case (iii) in Theorem 1, then G has three distinct conjugacy classes of elements
of order 7, and one each of elements of orders 2 and 3.

Proof. When q is as in the proposition, since elements of the conjugacy classes
represented by c̄ and d̄ have order q , the elements of order 7 can only lie in conjugacy
classes represented by some power of ā or b̄. (For q = 7 this need not be true as c̄
and d̄ both have order q = 7.)

Recall for a finite group G, the order of gk for any g ∈ G and positive integer k
is o(gk)= o(g)/ gcd(k, o(g)). Thus, 7 must divide the order of ā or the order of b̄
but not both, else it divides 1

2(q + 1)− 1
2(q − 1)= 1. Thus the conjugacy class(es)

of order 7 are either represented by some power(s) of ā or some power(s) of b̄.
First consider the case where q ≡ 1 mod 4. Suppose that the conjugacy classes of

elements of order 7 are represented by powers of ā (so q ≡ 1 mod 7). The number
of conjugacy classes will be the number of i such that 7= o(ā)/ gcd(o(ā), i), where
1≤ i ≤ 1

4(q−1). Since 7 divides the order of ā, we let o(ā)= 7 j for some positive
integer j . Then the number of i such that 7 = 7 j/ gcd(7 j, i) is the number of i
that satisfy gcd(7 j, i) = j and 1 ≤ i ≤ 7

2 j . Since o(ā) = 1
2(q − 1) and q > 13,

there are always three of them: i = j
(
or 1

14(q − 1)
)
, i = 2 j

(
or 1

7(q − 1)
)
, and

i = 3 j
(
or 3

14(q − 1)
)
. Hence the elements of order 7 are in the conjugacy classes

represented by ā(q−1)/14, ā(q−1)/7, and ā3(q−1)/14. A similar argument works if these
classes are represented by powers of b̄ (or q ≡−1 mod 7). The elements of order 7
are in the conjugacy classes represented by b̄(q+1)/14, b̄(q+1)/7, and b̄3(q+1)/14.

Now, when q ≡ −1 mod 4, the argument is identical except the bounds on i
change to 1≤ i ≤ 1

4(q−3) if q≡1 mod 7 and 1≤ i ≤ 1
4(q−1) if q≡−1 mod 7. The

rest of the argument does not change and so there are three conjugacy classes of ele-
ments of order 7, again defined as ā(q−1)/14, ā(q−1)/7, and ā3(q−1)/14 if q ≡ 1 mod 7
or b̄(q+1)/14, b̄(q+1)/7, and b̄3(q+1)/14 if q ≡−1 mod 7.

The cases with orders 2 and 3 follow similarly. When q ≡ 1 mod 4, the elements
of order 2 are in the conjugacy class [ā(q−1)/4

]; when q ≡−1 mod 4, the elements
of order 2 are in the conjugacy class [b̄(q+1)/4

]. For elements of order 3, the
conjugacy class is [ā(q−1)/6

] if q ≡ 1 mod 3 and [b̄(q+1)/6
] if q ≡ −1 mod 3. (If

q = 27 there are two conjugacy classes of elements of order 3. See Section 6 for
this special case.) �

2.2. Character tables. Let ε be a primitive (q−1)-th root of unity and let δ be a prim-
itive (q+1)-th root of unity, where εkn = ε

2kn
+ε−2kn and δtm =−(δ

2tm
+δ−2tm).

When q ≡ 1 mod 4, the character table of G = PSL(2, q) is given in Table 1 for
1≤ m, n, t ≤ 1

4(q − 1) and 1≤ k ≤ 1
4(q − 5) [Karpilovsky 1994, Theorem 8.9].

When q ≡−1 mod 4, the character table of G = PSL(2, q) is given in Table 2
for 1≤ n, k, t ≤ 1

4(q−3) and 1≤m ≤ 1
4(q+1) [Karpilovsky 1994, Theorem 8.11].
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[1̄] [ān] [b̄m
] [c̄ ] [d̄ ]

1G 1 1 1 1 1
λ q 1 −1 0 0
µk q+1 εkn 0 1 1
θt q−1 0 δtm −1 −1
χ1

1
2(q+1) (−1)n 0 1

2(1+
√

q ) 1
2(1−

√
q )

χ2
1
2(q+1) (−1)n 0 1

2(1−
√

q ) 1
2(1+

√
q )

Table 1. The character table of G = PSL(2, q) for q ≡ 1 mod 4.

[1̄] [ān
] [b̄m

] [c̄ ] [d̄ ]
1G 1 1 1 1 1
λ q 1 −1 0 0
µk q+1 εkn 0 1 1
θt q−1 0 δtm −1 −1
γ1

1
2(q−1) 0 (−1)m+1 1

2(−1+
√
−q ) 1

2(−1−
√
−q )

γ2
1
2(q−1) 0 (−1)m+1 1

2(−1−
√
−q ) 1

2(−1+
√
−q )

Table 2. The character table of G = PSL(2, q) for q ≡−1 mod 4.

2.3. Irreducible Q-characters. The character tables above give the irreducible
C-characters of PSL(2, q) but we need Q-characters to compute the dimensions
of the factors of the Jacobian decompositions. Since all irreducible C-characters
of PSL(2, q) have Schur index 1 [Janusz 1974], it is sufficient to find the Galois
conjugates of all C-characters.

The characters 1G and λ are already Q-characters, and it is clear that χ1+ χ2

and γ1+γ2 are Q-characters as their noninteger entries are Galois conjugates. This
leaves the µk and θt characters.

Proposition 3. (a) Let r be a divisor of 1
2(q − 1) and define the set

Mr =

{{
µi | 1≤ i ≤ 1

4(q − 5) and gcd
(
i, 1

2(q − 1)
)
= r

}
if q ≡ 1 mod 4,{

µi | 1≤ i ≤ 1
4(q − 3) and gcd

(
i, 1

2(q − 1)
)
= r

}
if q ≡−1 mod 4.

The sum of the characters in each Mr is an irreducible Q-character of PSL(2, q).

(b) Let s be a divisor of 1
2(q + 1) and define the set

2s =

{{
θi | 1≤ i ≤ 1

4(q − 1) and gcd
(
i, 1

2(q − 1)
)
= s

}
if q ≡ 1 mod 4,{

θi | 1≤ i ≤ 1
4(q − 3) and gcd

(
i, 1

2(q − 1)
)
= s

}
if q ≡−1 mod 4.

The sum of the characters in each 2s is an irreducible Q-character of PSL(2, q).
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[ā] [ā2
] · · · [ā(q−1)/4

]

µ1 ρ+ρ−1 ρ2
+ρ−2

· · · ρ(q−1)/4
+ρ−(q−1)/4

µ2 ρ2
+ρ−2 ρ4

+ρ−4
· · · ρ(q−1)/2

+ρ−(q−1)/2

...
...

...
. . .

...

µ(q−5)/4 ρ(q−5)/4
+ρ−(q−5)/4 ρ(q−5)/2

+ρ−(q−5)/2
· · · ρ(q−5)(q−1)/16

+ρ−(q−5)(q−1)/16

Table 3. Values of µk on conjugacy classes of elements ān when
q ≡ 1 mod 4.

Proof. We prove (a) below. The argument for (b) is almost identical. Since the only
nonrational values of the µk characters are their values on the [ān

], we only need
to consider the values on these conjugacy classes. For simplicity of notation, we
define ρ to be ε2, so ρ is a primitive 1

2(q−1)-th root of unity. Then the values of
the µk on the conjugacy classes [ān

] in the case where q ≡ 1 mod 4 are given in
Table 3.

(
For q ≡ −1 mod 4, replace 1

4(q − 5) in the last row with 1
4(q − 3) and

change the exponent in the last column from 1
4(q − 1) to 1

4(q − 3).
)

Fix a particular µk with gcd
(
k, 1

2(q − 1)
)
= r . The Galois orbit is completely

determined by µk([ā]) since the values of µk on the conjugacy classes with represen-
tative powers of ā are sums of powers of the summand ofµk([ā]) (as seen in Table 3).
So it is enough to find the Galois conjugates of µk([ā]). Now µk([ā])= ρk

+ ρ−k ,
where ρk is a primitive 1

2r (q−1)-th root of unity. The Galois conjugates of this
will be sums of the other primitive 1

2r (q−1)-th roots of unity. By a simple or-
der argument, we determine that ρi is a primitive

( 1
2(q − 1)/ gcd

(
i, 1

2(q − 1)
))

-th
root of unity. So the other primitive 1

2r (q−1)-th roots of unity appear for ex-
actly those µi such that gcd

(
i, 1

2(q − 1)
)
= r . So the irreducible Q-character

associated with µk will be the sum of µk with the other characters µi such that
gcd

(
i, 1

2(q − 1)
)
= gcd

(
k, 1

2(q − 1)
)
= r . �

Example. We demonstrate the previous proposition with an example. Consider
q=29≡1 mod 4. Here 1

2(q−1)=14, 1
2(q+1)=15, 1

4(q−5)=6, and 1
4(q−1)=7

and so there are 6 µk characters and 7 θt characters. The only divisors of 1
2(q − 1)

less than 6 are 1 and 2. From Proposition 3(a) we have two distinct sets

M1 = {µi | gcd(i, 14)= 1} = {µ1, µ3, µ5},

M2 = {µi | gcd(i, 14)= 2} = {µ2, µ4, µ6}.

The divisors of 1
2(q + 1) less than 7 are 1, 3, and 5, so from Proposition 3(b) there

are three distinct sets
21 = {θi | gcd(i, 15)= 1} = {θ1, θ2, θ4, θ7},

23 = {θi | gcd(i, 15)= 3} = {θ3, θ6},

25 = {θi | gcd(i, 15)= 5} = {θ5}.
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Therefore when q = 29, there are two irreducible Q-characters of degree q + 1
(µ1+µ3+µ5 and µ2+µ4+µ6) and three irreducible Q-characters of degree q−1
(θ1+ θ2+ θ4+ θ7, θ3+ θ6, and θ5).

We also need the values of the irreducible Q-characters from Proposition 3 for
the inner product computation of the dimensions of the factors in (1). In the rest of
the paper, for any character µk , we denote by r the gcd

(
k, 1

2(q − 1)
)
, and for any

character θt , we denote by s the gcd
(
t, 1

2(q + 1)
)
. Thus Mr from Proposition 3(a)

will contain the characterµk and2s from Proposition 3(b) will contain θt . The value
of the characters in Proposition 3 will be the value of µk (or θt ) times the number of
irreducible C-characters in the set Mr (or2s). The size of Mr is half the number of i
such that gcd

(
i, 1

2(q−1)
)
= r , or half the number of i such that gcd

(
i, 1

2r (q−1)
)
=1.

This is 1
2φ
( 1

2r (q − 1)
)
, where φ(x) is the Euler phi function. Similarly, the size of

2s is equal to 1
2φ
( 1

2s (q+1)
)
. Additionally for our computations, we will only need

the values of the characters on conjugacy classes of orders 1, 2, 3, and 7, as it turns
out that the Hurwitz character χ is 0 outside these conjugacy classes. This means
the inner product we use to compute the dimension of the factors of the Jacobian
will not be impacted by the values outside of these conjugacy classes. Again, see
Section 3 and (5).

Determining the value of each µk or θt on the relevant conjugacy classes boils
down to whether elements of that order are powers of ā or b̄. The next three
propositions give the values of these characters on conjugacy classes of elements
of orders 2, 3, and 7, respectively.

Proposition 4. Consider the conjugacy class of elements of order 2 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When q ≡ 1 mod 4, the irreducible Q-characters from Proposition 3(a) evaluate
to (−1)kφ

( 1
2r (q − 1)

)
, while the irreducible Q-characters from Proposition 3(b)

evaluate to 0.

(b) When q ≡−1 mod 4, the irreducible Q-characters from Proposition 3(a) eval-
uate to 0, while the irreducible Q-characters from Proposition 3(b) evaluate to
(−1)t+1φ

( 1
2s (q + 1)

)
.

Proof. (a) As we saw in the proof of Proposition 2, the conjugacy class of elements
of order 2 is represented by a power of either ā or b̄, depending on whether
q ≡±1 mod 4. In the first case, it is [ā(q−1)/4

]. Consider the value of one µk on
this conjugacy class:

εk(q−1)/4 = ε
k(q−1)/2

+ ε−k(q−1)/2.

Since ε is a primitive (q−1)-th root of unity, ε(q−1)/2 is a primitive second root
of unity, i.e., −1. Thus εk(q−1)/4 = (−1)k + (−1)−k . When k is odd, this value
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is −2, and when k is even, this value is 2. Combining this value with the number
of characters in the set Mr yields the value of

(−1)kφ
(

q − 1
2r

)
.

The Q-characters which are sums of the characters in 2s (as in Proposition 3(b))
are 0 on this class in this case. From the character table for this case, it is clear that
each θt has a value of 0 on any conjugacy class of the form [ān

] and hence the sum
of such characters also has a value of 0.

(b) When q ≡−1 mod 4, the conjugacy class is represented by b̄(q+1)/4 and so the
Q-characters in Proposition 3(a) are 0 on that class since each µk evaluates to 0. A
similar argument as for q ≡ 1 mod 4 gives that θt will be 2 when t is odd and −2
when t is even. Then the irreducible Q-characters in Proposition 3(b) evaluate to
this value multiplied by the size of 2s . This gives

(−1)t+1φ

(
q + 1

2s

)
. �

Proposition 5. Consider the conjugacy class of elements of order 3 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When q ≡ 1 mod 3 the irreducible Q-characters in Proposition 3(a) evaluate to{
φ
( 1

2r (q − 1)
)

if k ≡ 0 mod 3,

−
1
2φ
( 1

2r (q − 1)
)

otherwise,

while the irreducible Q-characters from Proposition 3(b) evaluate to 0.

(b) When q ≡−1 mod 3, the characters described in Proposition 3(a) evaluate to 0,
while the irreducible Q-characters in Proposition 3(b) evaluate to{

−φ
( 1

2s (q + 1)
)

if t ≡ 0 mod 3,
1
2φ
( 1

2s (q + 1)
)

otherwise.

Proof. As was discussed in the proof of Proposition 2, the conjugacy class of
elements of order 3 is represented by ā(q−1)/6 or b̄(q+1)/6.

(a) Consider the value of µk :

εk(q−1)/6 = ε
k(q−1)/3

+ ε−k(q−1)/3.

Since ε is a primitive (q−1)-th root of unity, ε(q−1)/3 is a third root of unity, which
we call ω. Thus, εk(q−1)/4 = ω

k
+ω−k . When 3 | k, this is 2 and when 3 -k, this is

εk(q−1)/4 = ω+ω
2
=−1. This value, together with the size of Mr gives the value

of the irreducible Q-characters in Proposition 3(a) on elements of order 3. Since
each θt evaluates to 0 on the conjugacy classes represented by powers of ā, the
irreducible Q-characters from Proposition 3(b) also evaluate to 0.
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(b) A similar argument may be used when q ≡−1 mod 3 (or the elements of order 3
are in the conjugacy class represented by b̄(q+1)/6). �

Proposition 6. Consider the conjugacy classes of elements of order 7 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When q ≡ 1 mod 7, the characters in Proposition 3(b) evaluate to 0, while the
irreducible Q-characters from Proposition 3(a) evaluate to{

φ
( 1

2r (q − 1)
)

if k ≡ 0 mod 7,

−
1
2φ
( 1

2r (q − 1)
)

otherwise.

(b) When q ≡−1 mod 7, the irreducible Q-characters in Proposition 3(a) evaluate
to 0, while the irreducible Q-characters from Proposition 3(b) evaluate to{

−φ
( 1

2s (q + 1)
)

if t ≡ 0 mod 7,
1
2φ
( 1

2s (q + 1)
)

otherwise.

Proof. From the proof of Proposition 2 we know that the three conjugacy classes of
order 7 are represented by ā(q−1)/14, ā(q−1)/7, and ā3(q−1)/14 or b̄(q+1)/14, b̄(q+1)/7,
and b̄3(q+1)/14.

(a) If q ≡ 1 mod 7 (equivalently the conjugacy classes of elements of order 7 are
represented by powers of ā) thenµk evaluates to ζ k

+ζ−k on these conjugacy classes,
where ζ is a primitive 7th root of unity. If 7 | k, then ζ k

+ ζ−k is 2 and if 7-k, then
ζ k
+ ζ−k is −1. Combining this with the size of the set Mr or 2s gives the result.

(b) A similar argument follows for q ≡ −1 mod 7 except we are considering
conjugacy classes represented by powers of b̄. �

3. Computation of the Hurwitz character

Recall from (3) that in order to compute χ , we need to determine χ〈idG 〉, χ〈h2〉, χ〈h3〉,
and χ〈h7〉. Let H be a subgroup of G. By the definition of χH , the induced character
of the trivial character of H is

χH (g)=
1
H

∑
x∈G

χo(xgx−1), where χo(g)=
{

1 if g ∈ H,
0 if g /∈ H.

Note that χ〈idG 〉 is just the regular representation

χ〈idG 〉(g)=
{
|G| if g = idG,

0 if g 6= idG .

To compute the remaining three characters, we need several facts from Section 2.1
and a lemma, which is an immediate consequence of the orbit-stabilizer theorem
considering the group action of conjugation.
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Lemma 7. Let G be a group and g, h ∈ G with g not the identity. The number
of x ∈ G such that xgx−1

= h is the size of the centralizer of h if g ∈ [h] and 0
otherwise.

Consider χ〈h2〉. We know

χ〈h2〉(g)=
1
2

∑
x∈G

χo(xgx−1). (4)

For each g ∈ G, we must determine the number of x ∈ G such that xgx−1
= idG

or h2, since 〈h2〉 = {idG, h2}. The case of xgx−1
= idG follows from the fact that,

for any group G and g ∈ G not the identity, there is no x ∈ G so that xgx−1
= idG .

Thus the number of x ∈G such that xgx−1
= idG or h2 is the size of G when g is the

identity and 0 otherwise. For χ〈h2〉(g)when g 6= idG , if g /∈[h2] then this number is 0,
else we must determine the number of x ∈G so that xgx−1

= h2. By Lemma 7, this
is the size of the centralizer of h2. Recall that under the action of conjugation, orbits
are conjugacy classes. By the orbit-stabilizer theorem, |CG(h2)| = |G|/|[h2]|. For
h2 of order 2, we have |[h2]|=

1
2q(q+1) when q≡ 1 mod 4, and |[h2]|=

1
2q(q−1)

when q ≡−1 mod 4, hence |CG(h2)| = q−1 if q ≡ 1 mod 4 and |CG(h2)| = q+1
if q ≡−1 mod 4. Plugging these values into (4) gives

χ〈h2〉(g)=


1
2 |G| if g = idG,

1
2(q − 1) if g ∈ [h2] and q ≡ 1 mod 4,
1
2(q + 1) if g ∈ [h2] and q ≡−1 mod 4,

0 otherwise.

Now, we calculate χ〈h3〉. As before, for each g ∈ G, we need to find the number
of x ∈ G so that xgx−1

∈ 〈h3〉 = {1, h3, h2
3}, and the formula in this case is

χ〈h3〉(g)=
1
3

∑
x∈G

χo(xgx−1).

When g = idG , we have χ〈h3〉(idG) =
1
3 |G|. Else by Lemma 7 and the fact that

h2
3 ∈ [h3], we have χ〈h3〉(g) =

2
3 |CG(h3)| if g ∈ [h3] and 0 otherwise. From

Section 2.1 we know |[h3]| = q(q − 1) if 3 | 1
2(q + 1) and |[h3]| = q(q + 1)

if 3 | 1
2(q−1). Then |CG(h3)| =

1
2(q+1) if 3 | 1

2(q+1) and |CG(h3)| =
1
2(q−1) if

3 | 1
2(q − 1), and

χ〈h3〉(g)=


1
3 |G| if g = idG,

1
3(q − 1) if g ∈ [h3] and q ≡ 1 mod 3,
1
3(q + 1) if g ∈ [h3] and q ≡ 2 mod 3,

0 otherwise.
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Value for elements of orderq mod 84
1 2 3 7

±1 1
42 |G| −

1
2(q ∓ 1) −1

3(q ∓ 1) −1
7(q ∓ 1)

±13 1
42 |G| −

1
2(q ∓ 1) −1

3(q ∓ 1) −1
7(q ± 1)

±29 1
42 |G| −

1
2(q ∓ 1) −1

3(q ± 1) −1
7(q ∓ 1)

±43 1
42 |G| −

1
2(q ± 1) −1

3(q ∓ 1) −1
7(q ∓ 1)

Table 4. Values of χ ′ on conjugacy classes of elements of orders 1,
2, 3, and 7.

For χ〈h7〉, as with the proof of the other characters, χ〈h7〉(idG)=
1
7 |G|. To compute

the value on other elements, observe that for any g of order 7, we know that g and g−1

are in the same conjugacy class [Karpilovsky 1994, Corollary 8.3] but g, g2, and g3

are all in distinct conjugacy classes. Combining Lemma 7 with this information
gives us that χ〈h7〉(g)=

2
7 |CG(h7)|, and we know the sizes of the conjugacy classes

by Section 2.1. Putting all this information together, the value of χ〈h7〉(g) is

χ〈h7〉(g)=


1
7 |G| if g = idG,

1
7(q − 1) if g ∈ [h7] and q ≡ 1 mod 7,
1
7(q + 1) if g ∈ [h7] and q ≡−1 mod 7,

0 otherwise.

Note that the values of χ are invariant under the three conjugacy classes of elements
of order 7. This means we do not have to find in which conjugacy class of elements
of order 7 the monodromy exists in order to compute (3) (i.e., we do not have to
explicitly find h7, we can just use the formula above for any element of order 7).

We will use χ to calculate inner products with irreducible Q-characters to find the
dimensions of the factors in the Jacobian variety decomposition. To simplify later
calculations, we rewrite χ as χ = 2·1G+χ

′, where χ ′=χ〈1G 〉−χ〈h2〉−χ〈h3〉−χ〈h7〉.
Then, the inner product of an irreducible Q-character ψi and χ will be 〈ψi , χ〉 =

2〈ψi , 1G〉+ 〈ψi , χ
′
〉. But since ψi and 1G are orthogonal when ψi 6= 1G , we have

that 〈ψi , χ〉 is simply 〈ψi , χ
′
〉 in all cases except for the trivial character.

Table 4 gives the values of χ ′ on the conjugacy classes of elements of orders
1, 2, 3, and 7, computed by combining all the data in this section. Additionally,
χ ′(g)= 0 if g is not in one of these conjugacy classes.

4. Inner product computations

Our next goal is to use our computation of χ ′ in Section 3 and the irreducible
Q-characters in Section 2.3 to compute the inner products 〈ψi , χ

′
〉. Consider
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〈ψi , χ
′
〉, where ψi is an irreducible Q-character of PSL(2, q). The formula for the

inner product is

〈ψi , χ
′
〉 =

1
|G|

∑
g∈G

ψi (g)χ ′(g−1).

Since g and g−1 are in the same conjugacy class and χ ′ is 0 for all elements that
are not of order 1, 2, 3, or 7, we have the formula

〈ψi , χ
′
〉 =

1
|G|

(
ψi (idG)χ

′(idG)+ |[h2]|ψi (h2)χ
′(h2)

+ |[h3]|ψi (h3)χ
′(h3)+ 3|[h7]|ψi (h7)χ

′(h7)
)
.

In Section 3 we saw that

|[h2]|χ
′(h2)=−

1
2 |G|, |[h3]|χ

′(h3)=−
2
3 |G|, 3|[h7]|χ

′(h7)=−
6
7 |G|.

The formula for the inner product reduces to

〈ψi , χ
′
〉 =

1
42ψi (idG)−

1
2ψi (h2)−

2
3ψi (h3)−

6
7ψi (h7). (5)

Since the values of the irreducible Q-characters are based on whether the con-
jugacy classes of elements of orders 2, 3 and 7 are represented by ā or b̄ (which
depends on the residue of q modulo 3, 4, or 7), the values of these characters, and
the subsequent inner products, will depend on what q is modulo 3 · 4 · 7= 84.

4.1. Trivial character. Recall that χ is the Hurwitz character, and χ = 2 ·1G +χ
′.

Proposition 8. 〈1G, χ〉 = 0.

Proof. By the calculation of χ , we have that 〈1G, χ〉 = 2〈1G, 1G〉+ 〈1G, χ
′
〉 and

〈1G, 1G〉 = 1. Consider 〈1G, χ
′
〉. We use (5) to get

〈1G, χ
′
〉 =

1
42 ·1G(1)− 1

2 ·1G(h2)−
2
3 ·1G(h3)−

6
7 ·1G(h7)=

1
42−

1
2−

2
3−

6
7 =−2.

Thus, 〈1G, χ
′
〉 = 2− 2= 0. �

All other irreducible Q-characters of PSL(2, q) have degree greater than 1. Hence
by (1), where the ni correspond to the degree of the i-th irreducible Q-character,
the decomposition of JX must have more than one factor.

Corollary 9. No Hurwitz curve with automorphism group PSL(2, q) has a simple
Jacobian variety.

4.2. Character of degree q. Recall λ is the character of degree q. We again
apply (5). Since the value of λ is either 1 or −1 depending on whether the element
is in a conjugacy class represented by powers of ā or b̄, we get that 〈λ, χ ′〉 =
1
42(q − u), where u is given in Table 5 and the positive u-values correspond to
positive q mod 84 values and the same holds for the negative values.
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q mod 84 Value of u

±1 ±85
±13 ±13
±29 ±29
±43 ±43

Table 5. Values for u in 〈λ, χ ′〉.

4.3. Characters of degree 1
2(q±1). For q ≡ 1 mod 4, this irreducible Q-character

is χ1+χ2 and evaluates to q+1 on the identity, 2(−1)n on the conjugacy classes [ān
],

and 0 on the conjugacy classes [b̄m
]. Furthermore, the conjugacy class of elements

of order 2 will always be in the set of conjugacy classes [ān
]. We use (5) again,

which becomes

〈χ1+χ2, χ
′
〉 =

q + 1
42
−
(χ1+χ2)(h2)

2
−

2(χ1+χ2)(h3)

3
−

6(χ1+χ2)(h7)

7
.

Determining these values depends on whether q ≡±1 mod 3 and whether q ≡
±1 mod 7 (as we have discussed above, this distinguishes the cases where the
elements of orders 3 and 7 are in conjugacy classes represented by powers of ā
or b̄). But additionally we need to determine if n is even or odd to determine the
sign of χ1+χ2. Recall n is given by 1

6(q−1) for elements of order 3 and 1
14(q−1)

for elements of order 7. This requires us to consider values modulo 3 ·4 ·7 ·2= 168.
Similar arguments will give us the values for γ1+ γ2 when q ≡−1 mod 4. In

all cases, the inner product is given by 1
42(q − v), where v is given in Table 6. In

the table, the positive values of q mod 168 correspond to the positive v-values and
the same holds for the negative values.

4.4. Characters of degree q ± 1. The computations for the inner products of χ ′

with sums of µk or θt are similar. We recall the values of these Q-characters

q mod 168 Values of v

±1 ±169
±13 ±13
±29 ±29
±41 ±41
±43 ±43
±85 ±85
±97 ±97
±113 ±113

Table 6. Values for v in 〈χ1+χ2, χ
′
〉 or 〈γ1+ γ2, χ

′
〉.
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q ≡ 1 mod 4 q ≡−1 mod 4

µk z+( f −1)·84 z− f ·84
θt z+ f ·84 z−( f −1)·84

Table 7. Values of w for the inner products of χ ′ with characters
of degree q±1.

on the conjugacy classes of orders 1, 2, 3, and 7 from Section 2.3. The values
depend on whether the conjugacy classes are powers of ā or b̄. To describe the
value in all cases, we define two additional values. For r = gcd

(
k, 1

2(q − 1)
)

and
s = gcd

(
t, 1

2(q+1)
)
, define f to be the number of 2, 3, and 7 which divide r (or s).

Also define z to be the least residue of q modulo 84. Then the inner product with
irreducible Q-characters from Proposition 3(a) is

1
2
φ

(
q − 1

2r

)
q −w

42
,

and the inner product with irreducible Q-characters from Proposition 3(b) is

1
2
φ

(
q + 1

2s

)
q −w

42
,

where w is given in Table 7.

Example. Continuing from the example in Section 2.3, let q = 29, so z also
is 29. When r = 1 (or s = 1 or 5) then f = 0 and when r = 2 (or s = 3)
we have f = 1. In this case (since q = z) if f = 1, then the value of the inner
product on the corresponding irreducible Q-character which is the sum of characters
in Mr (r = 2) will be 0 and if f = 0, the value on the inner product of the
corresponding irreducible Q-character which is the sum of characters in 2s (s = 1
or 5) will also be 0. This just leaves two nonzero values to compute (r = 1
and s = 3),

〈µ1+µ3+µ5, χ
′
〉 =

1
2φ
( 28

2

)
·
( 29+55

42

)
=

6
2 · 2= 6

and
〈θ3+ θ6, χ

′
〉 =

1
2φ
( 30

6

)
·
( 29+55

42

)
=

4
2 · 2= 4.

5. Decomposition of Jacobian varieties

As described in the introduction, Jacobian varieties may be factored into the direct
product of abelian varieties as in (1). The dimension of the factors is half of the
inner product computed in Section 4. Collecting the information in the previous
section we get the following result.
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Theorem 10. Let X be a Hurwitz curve with full automorphism group PSL(2, q),
where q is odd and q > 27. Let u, v, and w be as given in Tables 5, 6, and 7,
respectively.

When q ≡ 1 mod 4, the Jacobian variety of X is isogenous to

Aq
⊕ B(q+1)/2

⊕

∏
r | (q−1)/2
r<(q−5)/4

Cq+1
r ⊕

∏
s | (q+1)/2
s<(q−1)/4

Dq−1
s ,

and when q ≡−1 mod 4, the Jacobian variety of X is isogenous to

Aq
⊕ B(q−1)/2

⊕

∏
r | (q−1)/2
r<(q−3)/4

Cq+1
r ⊕

∏
s | (q+1)/2
s<(q−3)/4

Dq−1
s ,

where the factors in the decomposition are abelian varieties and

• A has dimension 1
84(q − u),

• B has dimension 1
84(q − v),

• each Cr has dimension 1
168φ

( 1
2r (q − 1)

)
· (q −w),

• and each Ds has dimension 1
168φ

( 1
2s (q + 1)

)
· (q −w).

As mentioned in the introduction, the decomposition technique does not guarantee
that the factors are indecomposable. Also, when determining w, note that the
product indexed by r corresponds to inner products of characters which are sums
of µk characters, and the product indexed by s corresponds to inner products of
characters which are sums of the θt characters.

6. Special case

In the special case when q = 27 = 33, there are still three conjugacy classes of
elements of order 7 and one of elements of order 2; however, there are now two
conjugacy classes of elements of order 3. When we apply the decomposition
technique to this special case we find

JX ∼ E13
1 × A26

3 × E27
2 ,

where the Ei are elliptic curves and A3 is a dimension-3 abelian variety. These
factors correspond to nonzero inner products of χ with the character γ1+γ2, a sum
of θt , and λ, respectively.
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