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Ochem, Rampersad, and Shallit gave various examples of infinite words avoiding
what they called approximate repetitions. An approximate repetition is a factor
of the form xx ′, where x and x ′ are close to being identical. In their work, they
measured the similarity of x and x ′ using either the Hamming distance or the edit
distance. In this paper, we show the existence of words avoiding approximate
repetitions, where the measure of similarity between adjacent factors is based
on the length of the longest common subsequence. Our principal technique is
the so-called “entropy compression” method, which has its origins in Moser and
Tardos’s algorithmic version of the Lovász local lemma.

1. Introduction

A now classical result of Thue [1906] showed the existence of an infinite word
over a 3-letter alphabet avoiding squares, that is, factors of the form xx . Ochem,
Rampersad, and Shallit [Ochem et al. 2008] generalized the work of Thue by
constructing infinite words over a finite alphabet that avoid factors of the form xx ′,
where x and x ′ are close to being identical. In most of their work, the closeness of
x and x ′ was measured using the Hamming distance; they also have some results
where the edit distance was used instead. Here, we measure the closeness of two
words based on the length of their longest common subsequence.

The most common metrics used to measure the distance between strings are
the edit distance, the Hamming distance, and the longest common subsequence
metric. The edit distance is the most general: it is defined as the smallest number of
single-letter insertions, deletions, and substitutions needed to transform one string
into the other. The other two distances can be viewed as restricted versions of the
edit distance: the Hamming distance (between strings of the same length) is the edit
distance where only the substitution operation is permitted; the longest common
subsequence metric allows only insertions and deletions.
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The study of the longest common subsequence of two (or several) sequences
has a lengthy history (which, at least initially, was motivated by the biological
problem of comparing long protein or genomic sequences). For example, Chvátal
and Sankoff [1975] explored the following question: given two random sequences
of length n over a k-letter alphabet, what is the expected length of their longest
common subsequence? Questions concerning longest common subsequences in
words continue to be studied to this day (see the recent preprint [Bukh and Zhou
2016], for example).

Ochem, Rampersad, and Shallit [2008] previously studied the avoidability of
approximate squares with respect to Hamming distance and edit distance. Using
the longest common subsequence metric has not yet been done, so it is the aim of
this paper to consider the avoidability of approximate squares with respect to this
measure of distance.

Our main result is nonconstructive—indeed it seems to be quite difficult to find
explicit constructions for words avoiding the kinds of repetitions we consider here—
and is based on the so-called “entropy compression” method, which originates from
Moser and Tardos’s algorithmic version [2010] of the Lovász local lemma. This
method has recently been applied very successfully in combinatorics on words, for
instance in [Grytczuk et al. 2013; 2011]. Ochem and Pinlou [2014] also recently
resolved a longstanding conjecture of Cassaigne using this method (this was also
accomplished independently by Blanchet-Sadri and Woodhouse [2013] using a
different method).

2. Measuring similarity

The definitions given in this section are essentially those of Ochem et al. except
that they are based on the longest common subsequence distance rather than the
Hamming distance.

For words x and x ′, let lcs(x, x ′) denote the length of a longest common subse-
quence of x and x ′. For example,

lcs(0120, 1220)= 3.

Given two words x, x ′ of the same length, we define their similarity, s(x, x ′), by

s(x, x ′) :=
lcs(x, x ′)
|x |

.

For example,
s(20120121, 02102012)= 3

4 .

The similarity coefficient sc(z) of a finite word z is defined to be

sc(z) :=max{s(x, x ′) : xx ′ a subword of z and |x | = |x ′|}.
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If sc(z)= α, we say that z is α-similar. If z is an infinite word, then its similarity
coefficient is defined by

sc(z) := sup{s(x, x ′) : xx ′ a subword of z and |x | = |x ′|}.

Again, if sc(z)= α then we say that z is α-similar.

3. Infinite words with low similarity

Our main result is the following:

Theorem 1. Let 0 < α < 1 and let k > 161/α be an integer. Then there exists an
infinite word z over an alphabet of size k such that sc(z)≤ α.

To prove this, we follow the method of Grytczuk, Kozik, and Witkowski [Grytczuk
et al. 2011]. We begin by defining a randomized algorithm which attempts to
construct a word S of length n with similarity coefficient at most α by a sort of
backtracking procedure. Let si denote the i-th element of S.

Input : n, k, α
1: S =∅, i = 1
2: while i ≤ n do
3: randomly choose a ∈ {1, . . . , k} and set si = a
4: if sc(s1s2 · · · si )≤ α then set i to i + 1
5: else s1s2 · · · si is β-similar, β > α, and contains a subword xx ′ such

that |x | = |x ′| = `, ` ≤ i/2 and s(x, x ′) = β, say x = st+1st+2 · · · st+` and
x ′ = st+`+1st+`+2 · · · st+2`, where t + 2`= i .

6: for t + `+ 1≤ j ≤ t + 2` do
7: delete s j

8: end for
9: set i = t + `+ 1
10: end if
11: end while

Algorithm 1. Choosing a sequence with similarity coefficient at
most α.

The algorithm generates consecutive terms of a sequence S by choosing symbols
at random (uniformly and independently). Every time a β-similar subword xx ′ is
created, where β > α, the algorithm erases x ′, to ensure that the β-similar subword
is deleted. Note that in line 6 the subword xx ′ must occur as a suffix of s1s2 · · · si

(i.e., t + 2`= i), since if it occurred elsewhere it would have been detected at an
earlier stage of the algorithm and its second half would have been deleted.
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It is easy to see that the algorithm terminates after a word of length n with
similarity coefficient at most α has been produced. The general idea is to prove
the algorithm cannot continue forever with all possible evaluations of the random
inputs.

Fix a real number α. We will show that for every positive integer n there exists a
word of length n with similarity coefficient at most α. The existence of an infinite
word with the same property then follows by a standard compactness argument.

Let n be a positive integer, and suppose for the sake of contradiction that every
possible execution of the algorithm fails to produce a sequence of length n. We are
going to count the possible executions of the algorithm in two ways.

Suppose the algorithm runs for M steps. By “step” we mean appending a letter to
the sequence S (which only happens in line 3). Let a1, a2, . . . , aM be the sequence
of values chosen randomly and independently in the first M steps of the algorithm.
Each a j , 1≤ j ≤ M , can take k different values; thus there are k M such sequences.

The second way of counting involves analyzing the behavior of the algorithm.
For a fixed evaluation of the first M random choices of the algorithm we define a
4-tuple (R, X, Y, S), called a log, whose elements consist of the following:

• A route R in the upper right quadrant of the Cartesian plane, going from
coordinate (0, 0) to coordinate (2M, 0), with possible moves (1, 1) and (1,−1),
which never goes below the axis y = 0.

• A sequence X over {1, . . . , k} ∪ {∗} whose elements correspond to the peaks
on the route R, where a peak is defined as a move (1, 1) followed immediately
by a move (1,−1).

• A sequence Y over {0, ∗} whose elements also correspond to the peaks in R.

• A sequence S over {1, . . . , k} produced after M steps of the algorithm.

The values of R, X , Y , and S are determined as follows. Each time the algorithm
appends a letter to the sequence S, we append a move (1, 1) to the route R and every
time an si is deleted we append (1,−1). Every down-step (1,−1) corresponds to
an up-step (1, 1) so we never reach below the y-axis. At the end of computations
we add to the route R one down-step for each element of S which was not deleted
at any point in the algorithm, bringing us to the point (2M, 0). If a β-similar word
is created, say xx ′, we concatenate to X the word obtained from x ′ by replacing the
elements of the longest common subsequence of x and x ′ with the symbol star (∗).
We also concatenate to Y the word obtained from x by replacing the elements of the
longest common subsequence of x and x ′ with the star symbol and setting all other
positions equal to zero. At the end of computations we pad X and Y with enough
stars so that |X | = |Y | = M . Lastly, S is the sequence produced by Algorithm 1
after making M random selections from {1, . . . , k}.
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Example 2. For example, let us choose α = 37
50 . Then d16

50
37 e = 43 and we have

alphabet {1, . . . , 43} and log {R =∅, X =∅, Y =∅, S =∅}. Suppose we create
the word 12324541465 after 11 steps of the algorithm. Each of our steps avoids
creating a β-similar word, so at each step we append (1, 1) to R and the randomly
selected letter to S. Thus we have

{R = (1, 1)11, X =∅, Y =∅, S = 12324541465}.

Suppose in the 12th step of the algorithm we append 4 to S; then our log becomes

{R = (1, 1)12, X =∅, Y =∅, S = 123245414654}.

Observe that the factor xx ′ = 45414654 is 3
4 -similar, where x = 4541, x ′ = 4654

and the longest common subsequence of x and x ′ is 454. As 3
4 >

37
50 , we replace

the longest common subsequence elements of x and x ′ with stars and we append
∗6∗∗ to X and ∗∗∗0 to Y . We then delete x ′ and append to R a (1,−1) for each
deleted element. This results in the log

{R = (1, 1)12(1,−1)4, X = ∗6∗∗, Y = ∗∗∗0, S = 12324541}.

Lemma 3. Every log corresponding to an execution of the algorithm uniquely
determines the sequence a1, a2, . . . , aM of the first M values chosen randomly and
independently in this execution of Algorithm 1.

Proof. Let us fix some log (R, X, Y, S). Before we decode a1, a2, . . . , aM , we
do some preparatory analysis. We construct a sequence D = (d1, d2, . . . , dp),
corresponding to the lengths of consecutive down-steps, (1,−1), of R. Let N =
d1+ d2+ · · ·+ dp. Next we delete the last M − N stars from X and partition the
resulting sequence into blocks of lengths d1, d2, . . . , dp. Let X ′ be the sequence of
these blocks; i.e.,

X ′ = (x1x2 · · · xd1, xd1+1xd1+2 · · · xd1+d2, . . . , xN−dp+1xN−dp+2 · · · xN ).

We do the same for the sequence Y , obtaining a sequence of blocks

Y ′ = (y1 y2 · · · yd1, yd1+1 yd1+2 · · · yd1+d2, . . . , yN−dp+1 yN−dp+2 · · · yN ).

Next we use information from route R to determine which si , 1≤ i ≤ n, were not
deleted at each step of Algorithm 1 and to find the coordinates of the blocks which
were deleted at line 6 of the algorithm. Notice that appending some letter from
{1, . . . , k} to S corresponds to some up-step (1, 1) on the route R, while deleting an
si corresponds to some down-step (1,−1) on the route R. We analyze the route R,
starting from the point (0, 0) to the point (2M, 0). Assume the first peak occurs
between the j -th and ( j+1)-th step. As this is the first time that we erase elements,
we know that s1, . . . , s j are the only nondeleted elements at this point. From the
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number of down-steps on R we deduce the length of the deleted block, say there are
d1 down-steps, and remember that for this peak we deleted s j−d1+1, s j−d1+2, . . . , s j .
Now again each up-step on R denotes appending some value of {1, . . . , k} to S.
Continuing on in this manner, we are able to determine exactly which position was
set last as we reach the next peak. From this information it is easy to determine
which positions were deleted as a result of erasing the repetition. We repeat these
operations until we reach the end of the route R.

After these preparatory measures we are ready to decode a1, a2, . . . , aM . We
consider the sequence R in reverse order, from the point (2M, 0) to the point
(0, 0), modifying the sequences X ′ and Y ′ from the preparatory step and the final
sequence S. We use information encoded in S, X ′ and Y ′, as well as knowledge
from the preparatory step.

As we process the elements of R in reverse order, suppose we encounter an
up-step. Note that each up-step corresponds to some a j . In the preparatory analysis
we determined the indices of elements a j in S, so each time there is an up-step
of R we assign to a j a value from the appropriate si (where i was determined in
the preparatory step), and delete si .

Now we suppose that we encounter a down-step of R (or rather, a block of down-
steps of R). At the end of R there is some number of down-steps corresponding to the
last nondeleted elements of S (the elements added at the end of computations); we
skip these elements and move on. The first block of down-steps that follows an up-
step has length dp and corresponds to the last element of X ′, say X ′N , as well as the
last element of Y ′, say Y ′N . Let si , si+1, . . . , si+dp−1 be the elements of S that were
deleted at each down-step in this block of down-steps. We reconstruct the values of
these elements by using the information from si−dp , si−dp+1, . . . , si−1, Y ′N , and X ′N .

Together, the elements of si−dp , si−dp+1, . . . , si−1 that correspond to the star ele-
ments of Y ′N form the longest common subsequence of si−dp , si−dp+1, . . . , si−1 and
si , si+1, . . . , si+dp−1; call this sequence LCS. The values of si , si+1, . . . , si+dp−1

are obtained by replacing the stars in X ′N with the elements of LCS. We add
these elements to the end of S and repeat the process. Continuing in this manner,
we are able to reconstruct all deleted blocks, and therefore the entire sequence
a1, a2, . . . , aM . �

We have just shown that there is an injective mapping between the set of all
sequences of randomly chosen values during the execution of the algorithm and the
set of all logs. Consequently, the number of different logs is always greater than or
equal to the number of possible sequences a1, a2, a3, . . . , aM . We now derive an
upper bound for the number of possible logs.

The number of possible routes R, of length 2M and possible moves (1, 1) and
(1,−1), in the upper right quadrant of the Cartesian plane is the M-th Catalan
number CM .
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To count X we first note that |X |=M and that each deleted factor x ′ has (strictly)
more than α|x ′| star positions, so it follows that X has more than αM star positions.
Let j be the number of stars in X . There are k choices for the M − j nonstar
positions in X , so there are

(M
j

)
k M− j possibilities for X . Now if X has j positions

with stars, then so does Y , and the remaining positions in Y are 0’s. Thus, there
are

(M
j

)
possibilities for Y , and hence

(M
j

)2
k M− j possibilities for the pair (X, Y ).

Summing over all j , we conclude that there are

M∑
j=dαMe

(M
j

)2
k M− j

possibilities for the pair (X, Y ).
The sequence S consists of at most n elements of value between 1 and k, so

there are (kn+1
− 1)/(k− 1) possible sequences S.

Multiplying these individual bounds together brings us to the conclusion that the
number of possible logs is at most

kn+1
− 1

k− 1
CM

M∑
j=dαMe

(M
j

)2
k M− j .

Comparing with the number k M of possible choices for the sequence a1, . . . , aM

we get the inequality

k M
≤

kn+1
− 1

k− 1
CM

M∑
j=dαMe

(M
j

)2
k M− j .

Asymptotically, the Catalan numbers CM satisfy CM ∼ 4M/(M
√
πM), and(M

j

)
< 2M , which implies that

k M
�

kn+1
− 1

k− 1
4M

M
√
πM

M∑
j=dαMe

(2M)2k M− j .

Simplifying we get that

k M
�

kn+1
− 1

k− 1
4M

M
√
πM

4M
M∑

j=dαMe

k M− j

=
kn+1
− 1

k− 1
16M

M
√
πM

M−dαMe∑
j=0

k j

=
16M

M
√
πM

(kn+1
− 1)(k M−dαMe+1

− 1)
(k− 1)2

≤ kn+2 16M

M
√
πM

k M(1−α)

(k− 1)2
.
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It is easy to verify that when k>161/α , the last expression in the above calculation
is o(k M), which is a contradiction. This contradiction implies that for some specific
choices of a1, a2, . . . Algorithm 1 stops (i.e., produces a word of length n with
similarity coefficient at most α). This completes the proof of Theorem 1.

4. Similarity coefficients for small alphabets

Almost certainly, the bound of 161/α for the size of the alphabet needed to obtain an
infinite word with similarity coefficient at most α is far larger than the true optimal
alphabet size. For example, for α = 0.9 we get an alphabet size of 22, which is
surely much larger than necessary. In this section we investigate the following
question: given an alphabet 6 of size k, what is the smallest similarity coefficient
possible over all infinite words over 6? Implementing an algorithm similar to that
of Section 3 allows us to get an idea of which values of α, where 0< α < 1, are
avoidable and unavoidable. Given a similarity coefficient α to avoid, a length n,
and an alphabet size k, the algorithm starts at 0 and appends letters until a word of
length n with similarity coefficient less than α is obtained. If a factor with similarity
coefficient at least α is created, the last appended letter is deleted. If appending no
other letter avoids α, the algorithm deletes yet another letter, and so on and so forth.
The algorithm continues until a word of length n is produced. If no word of length n
avoids α, the algorithm returns the longest word avoiding α. If, on the other hand,
the algorithm produces words with similarity coefficient less than α for longer and
longer values of n, then we take this as evidence that there exists an infinite word
over a k-letter alphabet with similarity coefficient less than α. We performed this
computation for various alphabet sizes, and the results can be found in Table 1.

For each lower bound reported in the table, we are certain that there does not
exist an infinite word with this similarity coefficient. However, the upper bounds are
only conjectural: the backtracking algorithm described above produces long words
with similarity coefficient less than the stated bound, but we have no conclusive
proof that an infinite word exists.

alphabet size similarity coefficient

3 0.888< α < 0.901
4 0.690< α < 0.760
5 0.590< α < 0.700
6 0.500< α < 0.650
7 0.450< α < 0.650
8 0.400< α < 0.570

Table 1. Results of the backtracking algorithm. (Upper bounds are conjectural.)
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alphabet size similarity coefficient prefix length factor length

3 - 2401 500
4 11/12 912 500
5 16/19 9261 399
6 10/13 9261 312
7 - 5000 218
8 12/15 5000 445

Table 2. Results of computer calculations on Moulin Ollagnier’s
words.

In fact, we cannot produce a single explicit construction (with proof) of an
infinite word with similarity coefficient less than 1. However, computer calculations
suggest that the so-called Dejean words seem to have fairly low similarity (though
not nearly as low as the values given in Table 1). We now report the results of
our computer calculations on the words constructed by Moulin Ollagnier [1992]
in order to verify Dejean’s Conjecture for small alphabet sizes. For each alphabet
size k = 3, . . . , 11, Ollagnier constructed an infinite word over a k-letter alphabet.
Each such word verified a conjecture of Dejean [1972] concerning the repetitions
avoidable on a k-letter alphabet. See [Moulin Ollagnier 1992] for the precise nature
of the construction as well as the details of Dejean’s conjecture. In Table 2, we
report the largest similarity coefficient found among all factors of Moulin Ollagnier’s
words, up to a certain length. In the table, “prefix length” is the length of the prefix
of the infinite word that we examined, “factor length” is the maximum length of the
factors of this prefix that we examined, and a “-” signifies a continuous increase in
similarity coefficient as the lengths of the factors increase.

Two natural problems suggest themselves:

(1) Determine the similarity coefficients of Moulin Ollagnier’s words.

(2) For each alphabet size k, determine the least similarity coefficient among all
infinite words over a k-letter alphabet.

The second question is likely quite difficult. Even an answer just for the 3-letter
alphabet would be nice to have.
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