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The gonality of a graph is a discrete analogue of the similarly named geometric
invariant of algebraic curves. Motivated by recent progress in Brill–Noether
theory for graphs, we study the gonality of random graphs. In particular, we show
that the gonality of a random graph is asymptotic to the number of vertices.

1. Introduction

In the moduli space of curves, the locus of Brill–Noether general curves is a dense
open subset [Griffiths and Harris 1980]. In the moduli space of tropical curves,
however, the Brill–Noether general locus is open [Lim et al. 2012; Len 2014] and
nonempty [Cools et al. 2012], but it is not dense [Jensen 2014]. A natural question,
therefore, is how likely is it that a graph is Brill–Noether general?

In this paper, we approach this question by studying the gonality of Erdős–Rényi
random graphs. Recall that an Erdős–Rényi random graph G(n, p) is obtained by
fixing n vertices and, for each pair of vertices, introducing an edge between them
with probability p. We will often refer to such graphs simply as random graphs,
where the probability distribution is understood to be that of Erdős–Rényi. It is
common to define the probability p as a function of n, and to consider the expected
value of combinatorial invariants as n increases. Throughout, we use P and E to
denote the probability and expected value, respectively.

The current article is a natural follow-up to other recent work on the divisor theory
of random graphs. Most notably, Lorenzini [2008] asked about the distribution of
divisor class groups of random graphs, and in [Clancy et al. 2015b] it is conjectured
that they are distributed according to a variation of the Cohen–Lenstra heuristics.
This conjecture is proved in [Wood 2014], expanding on the preliminary work of
[Clancy et al. 2015a].

Before stating our main result, we briefly recall the basic theory of divisors on
graphs. For a more detailed account, see [Baker and Norine 2007] and [Baker
2008]. A divisor on a simple graph G is an element of the free abelian group on the
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vertices of G, and a divisor D =
∑

v∈V (G) avv is said to be effective if av ≥ 0 for
all v. Given a divisor D =

∑
v∈V (G) avv and a vertex v′, we may fire v′ to obtain a

new divisor D′ =
∑

v∈V (G) bvv, where

bv =


av − val(v) if v = v′,
av + 1 if v is adjacent to v′,
av otherwise,

where val(v) is the valence of the vertex v. Two divisors are equivalent if one can be
obtained from the other by firing a sequence of vertices, and we say that a divisor D
has positive rank if D−v is equivalent to an effective divisor for all vertices v in G.
The gonality gon(G) is the smallest degree of a divisor with positive rank. Our
main result is the following.

Theorem 1.1. Let p(n)= c(n)/n, and suppose that log(n)� c(n)� n. Then

E(gon(G(n, p)))∼ n.

Theorem 1.1 essentially says that the expected gonality of a random graph
is as high as possible. We note, however, that the gonality of random graphs
nevertheless falls short of that for a general curve, as the genus of a random graph is
asymptotically 1

2 c(n)n, and if c(n) is unbounded, this grows faster than n. From this
perspective, it may be more natural to study the gonality of random regular graphs,
as the genus of such graphs grows in proportion to the number of vertices. The case
of 3-regular graphs would be particularly interesting, as such graphs correspond to
top-dimensional strata of the moduli space of tropical curves.

Although Theorem 1.1 follows directly from the earlier work of de Bruyn and
Gijswijt [2014] and Wang et al. [2011], it appears to be unknown to experts in trop-
ical Brill–Noether theory. At the time of writing, we became aware of simultaneous
work by Amini and Kool [2016], in which they use an improvement on the spectral
methods of [Cornelissen et al. 2015] to show that the gonality of a random graph is
bounded above and below by constant multiples of n. Our results are essentially
a tightening of these bounds, so that both upper and lower bounds are asymptotic
to n, which indeed is conjectured in [Amini and Kool 2016, Section 5.2]. Their
techniques apply additionally to metric graphs, which we do not discuss here, and
to the case of random regular graphs, which they show to have gonality bounded
above and below by constant multiples of n as well.

Also of note is the bound that we provide on the error term n−E(gon(G(n, p)))
(see Theorem 3.3). In the future, it would be interesting to explore with what
precision we can bound this term.

A more complete study of the Brill–Noether theory of random graphs would
involve divisors of rank greater than one. A natural generalization of the current



GONALITY OF RANDOM GRAPHS 717

line of inquiry would be to study the Clifford index of random graphs, defined as

Cliff(G) := min
D∈Jac(G)

{
deg(D)− 2r(D) | r(D) > 0 and r(KG − D) > 0

}
.

Note that if the minimum in this expression is obtained by a divisor of rank one,
then Cliff(G)= gon(G)− 2. The Clifford index of an algebraic curve C is known
to always be either gon(C)− 2 or gon(C)− 3 [Coppens and Martens 1991]. The
corresponding statement remains open for graphs, but if true, it would imply that the
Clifford index of a random graph is asymptotic to the number of vertices as well.

2. A lower bound

In this section, we obtain a lower bound on the expected gonality of a random graph.
The first step is to identify a lower bound for the gonality of an arbitrary graph.
This is done in [de Bruyn and Gijswijt 2014], where it is shown that the treewidth
of a graph is a lower bound for the gonality.

Definition 2.1. A tree decomposition of a graph G is a tree T whose nodes are
subsets of the vertices of G, satisfying the following properties:

(1) Each vertex of G is contained in at least one node of T .

(2) If two nodes of T both contain a given vertex v, then all nodes of the tree in
the unique path between these two nodes must contain v as well.

(3) If two vertices v andw are adjacent in G, then there is a node of T that contains
both v and w.

The width of a tree decomposition is one less than the number of vertices in its
largest node. The treewidth tw(G) of a graph G is the minimum width among all
possible tree decompositions of G.

Proposition 2.2 [de Bruyn and Gijswijt 2014]. Let G be a simple connected graph.
Then

gon(G)≥ tw(G).

Although we will not use it, we note the following simple consequence.

Corollary 2.2.1. For a simple connected graph G,

gon(G)≥min{val(v) | v ∈ V (G)}.

Proof. The result follows immediately from Proposition 2.2 and the fact that
tw(G)≥min{val(v) | v ∈ V (G)} (see [Bodlaender and Koster 2011]). �

The treewidth of random graphs has been studied extensively in [Wang et al.
2011; Gao 2012].
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Lemma 2.3 [Wang et al. 2011]. Let p(n)= c(n)/n, and suppose that c(n)� n is
unbounded. Then

lim
n→∞

P
(
tw(G(n, p))≥ n−o(n)

)
= 1.

Theorem 2.4. Let p(n)= c(n)/n, and suppose that log(n)� c(n)� n. Then

lim
n→∞

P
(
gon(G(n, p))≥ n−o(n)

)
= 1.

Proof. A random graph is always simple, and by a well-known result of Erdős and
Rényi [1959], the assumption c(n)� log(n) implies that such a graph is connected
with probability approaching 1. It follows that

lim
n→∞

P
(
gon(G(n, p))≥ n−o(n) and G(n, p) is connected

)
= lim

n→∞
P
(
gon(G(n, p))≥ n−o(n)

)
.

By Proposition 2.2, if G(n, p) is connected, then gon(G(n, p))≥ tw(G(n, p)), and
it follows that

lim
n→∞

P
(
gon(G(n, p))≥ n−o(n)

)
≥ lim

n→∞
P
(
tw(G(n, p))≥ n−o(n)

)
= 1,

where the final equality follows from Lemma 2.3. �

3. An upper bound

In this section, we obtain an upper bound on the expected gonality of a random
graph. Together with the results of the previous section, this will imply that the
gonality of a random graph is asymptotically equal to the number of vertices. We
note that the number of vertices n is a very simple upper bound for the gonality of
a graph and, together with Theorem 2.4, this would be enough to establish the main
theorem. We actually go a bit further and obtain a bound on the expected value of
n− gon(G(n, p)). In the future, it would be interesting to explore this with higher
precision.

Recall that an independent set in a graph is a set of vertices, no pair of which
are connected by an edge. The independence number α(G) of a graph G is defined
to be the maximal size of an independent set.

Proposition 3.1. If G is a simple connected graph with n vertices, then gon(G)≤
n−α(G).

Proof. Let I be a maximal independent set, and let D be the sum of the vertices in
the complement of I. We will show that D has positive rank. If v /∈ I, then D−v is
effective by definition. On the other hand, if v ∈ I, then since all of the neighbors
of v are not in I and the graph is simple, by firing all of the vertices other than v
we obtain an effective divisor equivalent to D with at least one chip on v. It follows
that D has rank at least one, hence gon(G)≤ deg(D)= n−α(G). �
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Note that gonality n− 1 is achieved by the complete graph Kn , so this bound is
sharp. Note further that the complete graph is the only simple graph with n vertices
whose gonality is n− 1.

The expected independence number of a random graph has been studied in
[Frieze 1990].

Lemma 3.2 [Frieze 1990]. Let p(n) = c(n)/n, and suppose that c(n) � n is
unbounded. For any ε > 0, we have

lim
n→∞

P
(∣∣∣α(G(n, p))− 2

p(n)
(log c(n)−log log c(n)−log 2+1)

∣∣∣≤ ε

p(n)

)
= 1.

From this, we can conclude the following.

Theorem 3.3. Let p(n)= c(n)/n, and suppose that log(n)� c(n)� n. Then

lim
n→∞

P
(

gon(G(n, p))≤ n− 2
p(n)

(log c(n)−log log c(n)−log 2+1)
)
= 1.

Proof. By Lemma 3.2, for any ε > 0, we have

α(G(n, p)) > 2
p(n)

(log c(n)− log log c(n)− log 2+ 1− ε)

with probability 1 as n approaches infinity. By Proposition 3.1, the number
n−α(G(n, p)) is an upper bound for the gonality of G(n, p). �

Proof of Theorem 1.1. Again, the assumption that c(n)� log(n) implies that the
random graph is connected with high probability. By Theorem 3.3, the gonality
of a random graph is bounded above by n− o(n). Similarly, by Theorem 2.4, the
gonality of a random graph is bounded below by n− o(n). It follows that

lim
n→∞

1
n

E
(
gon(G(n, p))

)
= lim

n→∞

n− o(n)
n

= 1. �
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