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Affine hyperbolic toral automorphisms
Colin Thomson and Donna K. Molinek

(Communicated by Michael E. Zieve)

A hyperbolic transformation of the torus is an example of a function that is
Devaney chaotic; that is, it is topologically transitive and has dense periodic
points. An irrational rotation of the torus, on the other hand, is not chaotic
because it has no periodic points. We show that a hyperbolic transformation of
the torus followed by a translation (an affine hyperbolic toral automorphism) has
dense periodic points and maintains transitivity. As a consequence, affine toral
automorphisms are chaotic, even when the translation is an irrational rotation.

1. Introduction

Değirmenci and Koçak [2010] showed that the cross-product of the double-angle
map and an irrational rotation, which is a function on the torus, is transitive and has
sensitive dependence to initial conditions, but no periodic points, and therefore is not
chaotic. Linear hyperbolic toral automorphisms are known to be chaotic, so a natural
question in light of [Değirmenci and Koçak 2010] (and the generalizations in [Li and
Zhou 2013]) is whether a linear hyperbolic toral automorphism plus a translation is
still chaotic. We will refer to such functions as affine hyperbolic toral automorphisms
to indicate the translation. Our main goal will be to determine whether such an
affine map has periodic points, even in the event that the rotation is irrational.

We find that affine hyperbolic toral automorphisms are chaotic; in fact, we can
find the precise locations of periodic points in relation to the periodic points of
the corresponding linear map. In this respect, we generalize statements about the
transitivity and periodic points of linear hyperbolic toral automorphisms to affine
hyperbolic toral automorphisms.

2. Definitions

Throughout this paper, f : X → X will be a continuous function on a complete
metric space (X, d). We will examine the iterates of f using the notation f n to
represent the n-th iterate of f ; that is, f 1

= f and f n+1
≡ f ◦ f n. The composition

MSC2010: primary 54H20; secondary 37B40.
Keywords: topological dynamics, chaos, toral automorphism.
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542 COLIN THOMSON AND DONNA K. MOLINEK

of f is still a continuous function from X to X . For a specific point x ∈ X , we may
refer to the n-th iterate of x under f by xn , which means x0

= x is the initial point.
In this paper, all points in the space will be specified as vectors, and as such the
superscript notation will unambiguously denote an iterate, not raising to a power. In
addition, subscripts on points in the space will refer to the corresponding coordinate
value, with the basis specified in the case that it is unclear.

A function is transitive if for every pair of nonempty open sets U, V ⊆ X , there
exists a positive integer n such that f n(U )∩ V 6= ∅. An example of a transitive
function is the irrational rotation on the circle. An irrational rotation is actually
totally transitive, by which we mean that f m is transitive for every positive integer m.
A property of the irrational rotation that makes it useful for counterexamples is that
it is transitive, but has no periodic points.

A periodic point p ∈ X is one for which f n(p)= p for some n, a positive integer.
The least such n is called the period of p, and if n = 1, we say that p is a fixed
point. We can locate points with a given period m by finding fixed points of f n,
provided that there is no k < n such that f k also fixes that point.

A function is Devaney chaotic (henceforth, chaotic) if it is transitive, has dense
periodic points, and has sensitive dependence to initial conditions. “Dense” refers
to the presence of at least one periodic point in every nonempty open set. Sensitivity
to initial conditions means that there exists an ε > 0 so that for all δ > 0 and x ∈ X ,
there exists a y ∈ X with d(x, y) < δ and an n ∈N such that d( f n(x), f n(y)) > ε.
Banks et al. [1992] proved that the first two hypotheses are sufficient for the
third, making transitivity and dense periodic points all that is necessary for chaos.
As Crannell [1995] pointed out and by Banks et al. [1992], the elimination of
the sensitivity hypothesis makes chaos an entirely topological concept: sensitive
dependence on initial conditions is the only hypothesis of the three that relied on
the metric.

In general, no other combination of two hypotheses implies the third, but on the
unit interval, transitivity guarantees dense periodic points, and is therefore sufficient
for chaos [Vellekoop and Berglund 1994]. Contrast this with the irrational rotation
on the circle, which is transitive but has no periodic points and is not sensitive to
initial conditions.

A torus of d dimensions Td is the cartesian product of d copies of the circle,
S1
× S1
× · · · × S1. Since S1

= R/Z, coordinates in Td are real numbers from 0,
inclusive, to 1, exclusive. A linear automorphism of Td is matrix multiplication of
the coordinates in [0, 1)×[0, 1)× · · ·× [0, 1), taken modulo 1. Since the corners
of the unit d-cube are all identified on Td , their images under matrix multiplication
must all have integer entries to ensure they are each mapped to the origin, modulo 1.
Thus the matrix representing the linear transformation must have integer entries. In
addition, this matrix must have determinant ±1 so that the map is a bijection.
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This paper is concerned with hyperbolic toral automorphisms. If A is the matrix
representing the toral automorphism, the product of the d (not necessarily distinct)
eigenvalues of A is the determinant, which we require to be ±1. A toral automor-
phism is hyperbolic when none of the eigenvalues are equal in magnitude to 1.

3. Preliminary results

Lemma 3.1 [Katok and Hasselblatt 1995]. Any hyperbolic toral automorphism
with a largest eigenvalue whose eigenvector has rationally independent entries is
transitive.

Proof. Let U, V ⊂ Td be nonempty open sets. The set U must contain a line
segment parallel to the eigenvector associated with the largest eigenvalue. Since this
eigenvalue is greater than 1, under iteration the line segment grows without bound
while remaining parallel to the eigenvector. Since the line “wraps around” the torus
whenever the value of a coordinate exceeds 1, the distances between points where
the line intersects the i-axis take on values that are multiples of the i-th entry in the
eigenvector. As with the irrational rotation of the circle, as the number of iterates
tends towards infinity, these intersection points are dense on the i-axis. Since the
line stays parallel to the eigenvector, and the entries are rationally independent, the
orbit of the line is dense in Td . This guarantees that the line intersects V after a
finite number of iterations, and therefore U and V have nontrivial intersection for
some number of iterations of f . �

Lemma 3.2 [Katok and Hasselblatt 1995]. The rational points on the torus are
periodic for any hyperbolic toral automorphism.

Proof. Let
p =

(
p1

q
, . . . ,

pd

q

)
,

with p1, . . . , pd , q ∈N, be a point in Td with rational coordinates (not necessarily in
lowest terms). Since the entries of the matrix corresponding to the hyperbolic toral
automorphism are all integers, the image of p is also a rational point with common
denominator q . Since there are precisely qd rational points in the unit square with
denominator q (again, not necessarily in lowest terms), every such point can take on
only finitely many values under iterates of the automorphism. Thus, each rational
point is either periodic, or preperiodic (in the sense that p is mapped into a periodic
orbit, but that orbit does not contain p). Since the automorphism is invertible, no
points are preperiodic and therefore must be periodic, with maximum period qd . �

In fact, only the rational coordinates are periodic. To see this, consider that
periodic points of period n are in the kernel of An

− Id , where Id is the identity
matrix of dimension d. Since An

− Id has integer entries, its kernel is composed
only of vectors with rational entries.
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Example 3.3 [Elaydi 2008; Katok and Hasselblatt 1995]. The canonical example
of a hyperbolic toral automorphism is the Arnold “cat” map

L A : T
2
→ T2, x 7→

[
2 1
1 1

]
x mod 1. (1)

The eigenvalues of the matrix are 1
2(3+

√
5) and 1

2(3−
√

5)with respective eigenvec-
tors

[ 1
2(1+

√
5), 1

]> and
[ 1

2(1−
√

5), 1
]>. You can see that one of the eigenvalues

is larger than 1 and the other less, while both eigenvectors have irrational slope.

4. Main results

With the previous two lemmas, we have enough machinery to prove the main
theorem pertaining to affine hyperbolic toral automorphisms. As in the introduction,
an affine hyperbolic toral automorphism is a hyperbolic toral automorphism followed
by a translation. We give two proofs of the result. The first gives the precise location
of periodic points. The second relies on the fact that chaos is entirely topological
and uses topological conjugacy.

Theorem 4.1. Any affine hyperbolic toral automorphism is chaotic.

Proof. Let v1, v2, . . . , vd be the eigenvectors of A associated with λ1, λ2, . . . , λd ,
respectively. The eigenvectors form a basis for Rd , so for any translation b ∈ Rd ,
b can be written as b = b1v1 + b2v2 + · · · + bdvd and any point on x ∈ Td as∑d

i=1 xivi . So instead of xn+1
= Axn

+ b, we may write

xn+1
= A

d∑
i=1

xn
i vi +

d∑
i=1

bivi .

We wish to find a closed form of xm . For any point x0
∈ Td ,

x1
= Ax0

+ b = A
d∑

i=1

x0
i +

d∑
i=1

bivi =

d∑
i=1

λi x0
i vi +

n∑
i=1

bivi ,

x2
= Ax1

+ b = A
( d∑

i=1

λi x0
i vi +

d∑
i=1

bivi

)
+

n∑
i=1

bivi

=

d∑
i=1

λ2
i x0

i vi +

d∑
i=1

λi bivi +

d∑
i=1

bivi ,

x3
= Ax2

+ b = A
( d∑

i=1

λ2
i x0

i vi +

d∑
i=1

λi bivi +

n∑
i=1

bivi

)
+

d∑
i=1

bivi

=

d∑
i=1

λ3
i x0

i vi +

d∑
i=1

λ2
i bivi +

d∑
i=1

λi bivi +

d∑
i=1

bivi .
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The first three iterations suggest that

xn
=

d∑
i=1

λn
i x0

i vi +

n∑
j=1

d∑
i=1

λ
j−1
i bivi . (2)

Assume (2) as an induction hypothesis. Then we see that it also holds for n+ 1:

xn+1
= Axn

+ b = A
( d∑

i=1

λn
i x0

i vi +

n∑
j=1

d∑
i=1

λ
j−1
i bivi

)
+

d∑
i=1

bivi

=

d∑
i=1

λn+1
i x0

i vi +

n∑
j=1

d∑
i=1

λ
j
i bivi +

d∑
i=1

bivi

=

d∑
i=1

λn+1
i x0

i vi +

n+1∑
j=1

d∑
i=1

λ
j−1
i bivi .

The last expression in (2) is not particularly revealing until we rewrite the double
sum as

n∑
j=1

d∑
i=1

λ
j−1
i bivi =

d∑
i=1

bivi

n∑
j=1

λ
j−1
i =

d∑
i=1

bi
1− λn

i

1− λi
vi

and remember that we are looking for periodic points such that x0
= xm mod 1.

We are looking for x =
∑n

i=1 xivi mod 1 such that

d∑
i=1

xivi =

d∑
i=1

λn
i xivi +

d∑
i=1

bi
1− λn

i

1− λi
vi mod 1,

which leads to

0=
d∑

i=1

λn
i xivi −

d∑
i=1

xivi +

d∑
i=1

bi
1− λn

i

1− λi
vi mod 1

=

d∑
i=1

(
λn

i xivi − xivi + bi
1− λn

i

1− λi
vi

)
mod 1

=

d∑
i=1

(
(λn

i − 1)xivi + bi
1− λn

i

1− λi
vi

)
mod 1

=

d∑
i=1

(λn
i − 1)

(
xivi +

bi

λi − 1
vi

)
mod 1

=

d∑
i=1

(λn
i − 1)

(
xi +

bi

λi − 1

)
vi mod 1,
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from which we can conclude that the periodic points of the affine map are precisely
those of the linear map translated by

∑d
i=1(bi/(λi−1))vi . Since the periodic points

of the linear map are dense, so too are the periodic points of the affine map. In
addition, if U , V are open in Td , then there exists an n such that the n-th iterate of
the linear map of U intersects V . Thus, the affine map is chaotic. �

There is another proof of the main result that uses far less calculation, but does
not give the new locations of periodic points. We use the fact that the linear and
affine hyperbolic toral automorphisms f (x) and g(x)= f (x)+ b are topologically
conjugate, so that the following diagram commutes:

Td f
−−−→ Tdyh

yh

Td g
−−−→ Td

Alternate proof of Theorem 4.1. If we suppose f is defined by multiplication by a
matrix A and g is multiplication by A followed by translation by b, we must define
the homeomorphism h so that f = h−1

◦ g ◦ h. This homeomorphism h is simply
translation by some b̃:

Ax = A(x + b̃)+ b− b̃ = Ax + Ab̃+ b− b̃ = Ax + (A− Id)b̃+ b

=⇒ (A− Id)b̃ =−b =⇒ b̃ =−(A− Id)
−1b.

We know A− Id is invertible because A has no eigenvalues equal to 1.
Since f and g are topologically conjugate, they have the same properties regard-

ing transitivity and periodic points. The transitivity and dense periodic points of
linear f are known, so they hold also for the affine g. �

Corollary 4.2. Any affine hyperbolic transformation of T2 is chaotic.

Proof. Suppose the linear part of the transformation is multiplication by a matrix A.
Then the roots of the characteristic polynomial are

det(A− λI2)= det
[

a− λ b
c d − λ

]
= λ2
− (a+ d)λ+ (ad − bc)

=⇒ λ=
(a+ d)±

√
(a+ d)2− 4(ad − bc)

2
.

The discriminant (a+ d)2− 4(ad − bc)= (a+ d)2− 4 cannot be a perfect square
because 2 is not part of any Pythagorean triple. Thus the eigenvalues are irrational,
which in turn implies that each of the eigenvectors has irrational slope. This is
sufficient since all affine hyperbolic functions on T2 meet the criteria of the main
result, and are thus chaotic. �
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Example 4.3. We now give a specific example of the previous corollary based on
Example 3.3. Let L A,b : T

2
→ T2 be defined as

L A,b

([
x1

x2

])
=

[
2 1
1 1

] [
x1

x2

]
+

[√
2/2
√

3/3

]
. (3)

Recall that the eigenvectors of the matrix A are v1 =
[1

2(1+
√

5), 1
]> and v2 =[ 1

2(1−
√

5), 1
]>, with eigenvalues λ1 =

1
2(3+

√
5) and λ2 =

1
2(3−

√
5), so that

λ1 > 1> λ2 > 0. The points

p1 =

[
0
0

]
, p3 =

[
1/2
1/2

]
and p10 =

[
1/5
3/5

]
are fixed and periodic of periods 3 and 10 respectively under Example 3.3. To
find the corresponding periodic points q1, q3, q10 under L A,b, first calculate b1, b2,
which are the projections of b against v1, v2.1 Then add the translation prescribed
by Theorem 4.1:

b1

1−λ1
v1+

b2

1−λ2
v2=
〈b,v1〉

1−λ1
v1+
〈b,v2〉

1−λ2
v2≈

[
.4227
.8702

]
,

q1≈ p1 +

[
.4227
.8702

]
=

[
.4227
.8702

]
,

q3≈ p3 +

[
.4227
.8702

]
=

[
.9227
.3702

]
,

q10≈ p10+

[
.4227
.8702

]
=

[
.6227
.4702

]
.

One can check numerically that indeed

L A,b(q1)= q1, L3
A,b(q3)= q3, L10

A,b(q10)= q10,

and for each this is the minimum number of iterations required.

Corollary 4.4. Any function fk,α on the circle given by fk,α : θ 7→ kθ + α with
k ∈ Z \ {−1, 0, 1} and α ∈ S1 is chaotic.

Proof. The slope of an eigenvector degenerates for S1
= T1, and in any case

the function fk,α is not an automorphism. In the sense that fk,α is a function
that is known to be chaotic followed by a (possibly irrational) rotation, the main
result holds.

First, an alternative explanation for the transitivity of fk,α is in order. Any open
set U in S1 contains an open arc (θ1, θ2)with length θ2−θ1. Define m=2π/(θ2−θ1).
After n ≥ km iterations of fk,α on U , we have f n

k,α(U )= S1. (A function with this

1Remember that all arithmetic is performed modulo 1.
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condition is said to be locally eventually onto.) Since every open set is “eventually
onto” the circle, any U will certainly have nontrivial intersection with any nonempty
open V ∈ S1 after a finite number of iterations.

The periodic points of fk = fk,0 are the rational points in [0, 1) with denominator
one less than a power of k. Moreover, if this denominator is q= kn

−1, then the point
p/q ∈Q∩ [0, 1) will have period n if p/q is fully reduced. To see this, note that

f n
k

(
p
q

)
= kn p

kn − 1
= (kn

−1+1)
p

kn − 1
= (kn

−1)
p

kn − 1
+

p
kn − 1

= p+
p
q
=

p
q

because p ∈ N and all of our arithmetic is modulo 1. Since q can be chosen
arbitrarily large and p = 0, 1, . . . , q − 1, with p/q evenly spaced about the circle,
the periodic points of fk are dense in S1.

We can now use the closed form from the proof of Theorem 4.1 to find the
periodic points of fk,α . We are searching for points such that f n

k,α(x)= x mod 1, or

(kn
− 1)

(
x +

α

k− 1

)
= x mod 1.

This shows that the periodic points of fk,α are rational points of fk rotated about
the circle by α/(k−1). Since the locally eventually onto property is preserved, and
periodic points are still dense, fk,α is chaotic. �

5. Conclusion

Our main result shows that affine hyperbolic toral automorphisms are chaotic. The
added translation by a vector b preserves the transitivity of the map and translates all
of the periodic points by

∑d
i=1(bi/(λi −1))vi , where the vi are eigenvectors, λi the

corresponding eigenvalues, and bi the coordinates of the translation vector b in the
basis defined by the eigenvectors. Note that in the case that b= 0, the periodic points
are not translated at all, which coincides with a linear hyperbolic toral automorphism.

Using this translation result, one can construct an automorphism of the torus in
which any specified point y has a specified period n: Find an x such that x has
period n under a linear hyperbolic toral automorphism. By Lemma 3.2, x will
have rational coordinates in the standard basis (but not necessarily in the basis
defined by the eigenvectors of the linear automorphism). Then define b such that
bi = (λi−1)(yi−xi ) mod 1, where bi , xi , yi are the coordinates in the basis defined
by the eigenvectors of the linear toral automorphism. The resulting affine hyperbolic
toral automorphism will have y as a periodic point with period n.

More generally, the main result shows that the incorporation of an irrational
rotation into a toral automorphism does not necessarily eliminate the possibility of
periodic points.
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Rings of invariants for
the three-dimensional modular representations
of elementary abelian p-groups of rank four

Théo Pierron and R. James Shank

(Communicated by Ravi Vakil)

We show that the rings of invariants for the three-dimensional modular represen-
tations of an elementary abelian p-group of rank four are complete intersections
with embedding dimension at most five. Our results confirm the conjectures of
Campbell, Shank and Wehlau (Transform. Groups 18 (2013), 1–22) for these
representations.

Introduction

We continue the investigation of the rings of invariants of modular representations
of elementary abelian p-groups initiated in [Campbell et al. 2013]. We show that
the rings of invariants for three-dimensional modular representations of groups of
rank four are complete intersections and we confirm the conjectures of [loc. cit., §8]
for these representations.

Let V denote an n-dimensional representation of a group G over a field F of
characteristic p for a prime number p. We will usually assume that G is finite and
that p divides the order of G, in other words, that V is a modular representation
of G. We view V as a left module over the group ring FG and the dual, V ∗, as a
right FG-module. Let F[V ] denote the symmetric algebra on V ∗. The action of G
on V ∗ extends to an action by degree-preserving algebra automorphisms on F[V ]. By
choosing a basis {x1, x2, . . . , xn} for V ∗, we identify F[V ]with the algebra of polyno-
mials F[x1, x2, . . . , xn]. Our convention that F[V ] is a right FG-module is consistent
with the convention used by the invariant theory package in the computer algebra
software Magma [Bosma et al. 1997]. The ring of invariants, F[V ]G, is the subring
of F[V ] consisting of those polynomials fixed by the action of G. Note that elements
of F[V ] represent polynomial functions on V and that elements of F[V ]G represent
polynomial functions on the set of orbits V/G. For G finite and F algebraically
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Keywords: modular invariant theory, elementary abelian p-groups.
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closed, F[V ]G is the ring of regular functions on the categorical quotient V//G. For
background on the invariant theory of finite groups, see [Benson 1993; Campbell
and Wehlau 2011; Derksen and Kemper 2002; Neusel and Smith 2002].

Computing the ring of invariants for a modular representation is typically a
difficult problem; the rings are often not Cohen–Macaulay. It is natural to take
p-groups as a starting point and recent work of David Wehlau [2013] gives us a
good understanding in the case of a cyclic group of order p. The next step is to look
at elementary abelian p-groups. The rings of invariants for the two-dimensional
modular representations of elementary abelian p-groups were computed in Section 2
of [Campbell et al. 2013] and the three-dimensional modular representations were
classified in Section 4 of that paper. The only three-dimensional representations
for which computing the ring of invariants is not straightforward are those of
type (1, 1, 1), in other words, those representations for which dim(V G) = 1 and
dim((V/V G)G) = 1. Our goal here is to compute the rings of invariants for
representations of type (1, 1, 1) for groups of rank four. The methods we use are
essentially the same as the methods used in [loc. cit.]. As the rank increases, the
complexity of the required calculations increases; we believe that it is not feasible
to use the methods here for rank greater than four.

We denote by E = 〈e1, e2, e3, e4〉 ∼= (Z/p)4 a rank-four elementary abelian
p-group. Note that E only has representations of type (1, 1, 1) if p > 2, so we
make this assumption throughout the paper. As in Section 4 of [loc. cit.], define
σ : F2

→ GL3(F) by

σ(c1, c2) :=

1 2c1 c2
1+c2

0 1 c1

0 0 1

 .
Note that σ defines a representation of the group (F2,+). For a matrix

M :=
(

c11 c12 c13 c14

c21 c22 c23 c24

)
with ci j ∈ F, the assignment ej 7→ σ(c1 j , c2 j ) determines a three-dimensional
representation of E , which we denote by VM . The action of E on F[x, y, z] is
given by right multiplication on x = [0 0 1], y = [0 1 0] and z = [1 0 0]. Thus
x ·σ(c1, c2)= x , y ·σ(c1, c2)= y+ c1x and z ·σ(c1, c2)= z+ 2c1 y+ (c2

1+ c2)x .
The representation VM is of type (1, 1, 1) if at least one c1 j is nonzero. Furthermore,
by Proposition 4.1 of [loc. cit.], for every representation of type (1, 1, 1), there
exists a choice of basis for which the action is given by some matrix M .

In this paper, we compute F[VM ]
E for all M ∈ F2×4. We give a stratification

of F2×4 and show that within each stratum there is a uniform computation of F[VM ]
E.

Note that the automorphism group of E is isomorphic to GL4(Fp), where Fp denotes
the field of p elements. Since Fp ⊆ F, there is a natural right action of GL4(Fp)
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on F2×4. If M and M ′ lie in the same GL4(Fp)-orbit, then F[VM ]
E
= F[VM ′]

E.
Essentially, we study subrings of F[x, y, z] parametrised by points in F2×4/GL4(Fp)

and use elements of F[F2×4
]
SL4(Fp) to describe the stratification.

In Section 2, we work over the field k := Fp(xi j | i ∈ {1, 2}, j ∈ {1, 2, 3, 4}) and
compute k[VM]

E for the generic matrix

M :=
(

x11 x12 x13 x14

x21 x22 x23 x24

)
.

We show that k[VM]
E is a complete intersection of embedding dimension five

with generators in degrees 1, p2, p2
+ 2p, p3

+ 2 and p4, and relations in
degrees p3

+ 2p2 and p4
+ 2p. Consider the 10× 4 matrix

0 :=



x11 x12 x13 x14

x21 x22 x23 x24

x p
11 x p

12 x p
13 x p

14

x p
21 x p

22 x p
23 x p

24
...

...
...

...

x p4

11 x p4

12 x p4

13 x p4

14

x p4

21 x p4

22 x p4

23 x p4

24


and for a subsequence (i, j, k, `) of (1, 2, . . . , 10), let γi jk` denote the associated
4× 4 minor of 0. Note that γi jk` ∈ F[F2×4

]
SL4(Fp) and, for g ∈ GL4(Fp), we have

g(γi jk`)= det(g)γi jk`. We use zero-sets of various γi jk` to define the stratification
of F2×4/GL4(Fp). In Section 3, we show that for M ∈ F2×4 with γ1234(M) 6= 0,
γ1235(M) 6= 0 and γ1357(M) 6= 0, the generic calculation survives evaluation. In
Sections 4 through 10, we compute the rings of invariants for the remaining strata.

Section 4: γ1357(M) 6= 0, γ1235(M) 6= 0, γ1234(M) = 0. We show F[VM ]
E is a

complete intersection with generators in degrees 1, 2p, p3, p3
+ 2 and p4, and

relations in degrees 2p3 and p4
+ 2p.

Section 5: γ1357(M) 6=0, γ1235(M)=0, γ1234(M) 6=0. If γ1245(M) 6=0 then F[VM ]
E

is a complete intersection with generators in degrees 1, p2, p2
+ p, p3

+ p+ 2
and p4, and relations in degrees p3

+ p2 and p4
+ p2
+ 2p. Otherwise, F[VM ]

E is
a hypersurface with generators in degrees 1, p2, p2

+2 and p4, with the relation in
degree p4

+ 2p2.

Section 6: γ1357(M) = 0, γ1235(M) 6= 0, γ1234(M) 6= 0. We show F[VM ]
E is a

complete intersection with generators in degrees 1, p2, p2
+ 2p, p3

+ 1 and p4,
and relations in degrees p3

+ 2p2 and p4
+ p.

Section 7: γ1357(M) 6= 0, γ1235(M) = 0, γ1234(M) = 0. We show F[VM ]
E is a

hypersurface. If γ1257(M)= 0, then the generators are in degrees 1, 2, p4 and p4
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and the relation is in degree 2p4. Otherwise, the generators are in degrees 1, p,
p3
+ p2
+ p+ 2, p4 and the relation is in degree p4

+ p3
+ p2
+ 2p.

Section 8: γ1357(M) = 0, γ1235(M) 6= 0, γ1234(M) = 0. We show F[VM ]
E is a

complete intersection with generators in degrees 1, 2p, p3, p3
+ 1 and p4, with

relations in degrees 2p2 and p4
+ p.

Section 9: γ1357(M) = 0, γ1235(M) = 0, γ1234(M) 6= 0. If γ1245(M) 6= 0, then
F[VM ]

E is a complete intersection with generators in degrees 1, p2, p2
+ p, p3

+1
and p4, with relations in degrees p3

+ p2 and p4
+ p. Otherwise, F[VM ]

E is a
hypersurface with generators in degrees 1, p2, p2

+ 1 and p4, with a relation in
degree p4

+ p2.

Section 10: γ1357(M) = 0, γ1235(M) = 0, γ1234(M) = 0. If γ1246(M) 6= 0 then
F[VM ]

E is a hypersurface with generators in degrees 1, p, p3
+1, p4 and a relation

in degree p4
+ p. Otherwise, the representation is either not faithful or not of

type (1, 1, 1); in either case, the invariants were computed in [Campbell et al. 2013].

1. Preliminaries

We make extensive use of the theory of SAGBI bases to compute rings of invariants.
A SAGBI basis is the subalgebra analogue of a Gröbner basis for ideals, and is a
particularly nice generating set for the subalgebra. The concept was introduced
independently by Robbiano and Sweedler [1990] and Kapur and Madlener [1989];
a useful reference is Chapter 11 of Sturmfels [1996]. We adopt the convention that
a monomial is a product of variables and a term is a monomial with a coefficient.
We use the graded reverse lexicographic order with x < y < z. For a polynomial
f ∈ F[x, y, z], we denote the lead monomial of f by LM( f ) and the lead term of f
by LT( f ). For B = {h1, . . . , h`} ⊂ F[x, y, z] and I = (i1, . . . , i`), a sequence of
nonnegative integers, denote

∏`
j=1 hi j

j by h I. A tête-à-tête for B is a pair (h I , h J )

with LM(h I ) = LM(h J ); we say that a tête-à-tête is nontrivial if the support
of I is disjoint from the support of J . The reduction of an S-polynomial is a
fundamental calculation in the theory of Gröbner bases. The analogous calculation
for SAGBI bases is the subduction of a tête-à-tête. For any f ∈ F[x, y, z], if there
exists a sequence I such that LM( f ) = LM(h I ), we can choose c ∈ F so that
LT( f ) = LT(ch I ). Then LT( f − ch I ) < LT( f ). If by iterating this process we
can write f as a polynomial in the hi , we say that f subducts to zero (using B).
For a tête-à-tête (h I , h J ), choose c so that LT(h I ) = LT(ch J ). We say that the
tête-à-tête subducts to zero if h I

−ch J subducts to zero. A subset B of a subalgebra
A ⊂ F[x1, . . . , xn] is a SAGBI basis for A if the lead monomials of the elements
of B generate the lead term algebra of A or, equivalently, every nontrivial tête-à-tête
for B subducts to zero. For background material on term orders and Gröbner bases,
we recommend [Adams and Loustaunau 1994].
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The following specialisation of Theorem 1.1 of [Campbell et al. 2013] is our pri-
mary computational tool. Note that under the hypotheses of the theorem, {x, h1, h`}
is a homogeneous system of parameters and, therefore, F[VM ]

E is an integral
extension of A.

Theorem 1.1. For homogeneous h1, . . . , h` ∈ F[VM ]
E with LM(h1) = yi for

some i > 0, LM(h`)= z j for some j > 0 and LM(hk)∈ F[y, z] for k= 2, . . . , `−1,
define B := {x, h1, . . . , h`} and let A denote the algebra generated by B. If
A[x−1

] = F[VM ]
E
[x−1
] and B is a SAGBI basis for A, then A = F[VM ]

E and B is
a SAGBI basis for F[VM ]

E.

Note that, if an algebra is generated by a finite SAGBI basis, then for the
corresponding presentation, the ideal of relations is generated by elements corre-
sponding to the subductions of the nontrivial tête-à-têtes (see Corollary 11.6 of
[Sturmfels 1996]). We use the term complete intersection to refer to an algebra with
a presentation for which the ideal of relations is generated by a regular sequence.
Since the Krull dimension of F[VM ]

E is three, the ring is a complete intersection if
the number of generators minus the number of nontrivial tête-à-têtes is three.

We routinely use the SAGBI/divide-by-x algorithm introduced in Section 1 of
[Campbell et al. 2013]. The traditional SAGBI basis algorithm proceeds by sub-
ducting tête-à-têtes and adding any nonzero subductions to the generating set. For
SAGBI/divide-by-x , if a nonzero subduction is divisible by x , we divide by the
highest possible power of x before adding the polynomial to the generating set.
While the SAGBI algorithm extends the generating set for a given subalgebra,
SAGBI/divide-by-x extends the subalgebra. If we start with a subalgebra A which
contains a homogeneous system of parameters and satisfies the condition that
A[x−1

] = F[VM ]
E
[x−1
], then the SAGBI/divide-by-x algorithm will produce a

generating set for F[VM ]
E (see Theorem 1.2 of [loc. cit.]).

For f ∈ F[VM ], we define the norm of f to be the orbit product

NM( f ) :=
∏
{ f · g | g ∈ E} ∈ F[VM ]

E

with the action of E determined by M . When applying Theorem 1.1, we often
take h` to be NM(z).

Remark 1.2. Note that the action of E restricts to an action on F[x, y] and that
F[x, y]E = F[x, NM(y)] (see Section 2 of [Campbell et al. 2013]). Therefore, if
h ∈ F[x, y]E is homogeneous with deg(h) = |{y · g | g ∈ E}| then h is a linear
combination of NM(y) and xdeg(h).

Define δ := y2
− xz and observe that

δ · σ(c1, c2)= (y+ c1x)2− x
(
z+ 2c1 y+ (c2

1+ c2)x
)
= δ− c2x2.
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Note that F[x, y, z][x−1
] = F[x, y,−δ/x][x−1

] and that the F[x, y,−δ/x]E is a
polynomial algebra (see Theorem 3.9.2 of [Campbell and Wehlau 2011]). This
“change of basis” can be a useful way to compute the field of fractions of F[VM ]

E.
Form the matrix 0̃ by augmenting 0 with the column[

y
x

(
−
δ

x2

) (
y
x

)p (
−
δ

x2

)p

· · ·

(
y
x

)p4 (
−
δ

x2

)p4
]T

.

For a subsequence J = ( j1, . . . , j5) of (1, 2, . . . , 10), let f̃ J ∈ k[x, y, z][x−1
]

denote the associated 5× 5 minor of 0̃. Let fJ denote the element of k[x, y, z]
constructed by minimally clearing the denominator of f̃ J . Observe that fJ ∈

k[VM]
E. Furthermore, the coefficients of fJ lie in Fp[xi j ]

SL4(Fp) and, for an arbitrary
M ∈ F2×4, evaluating the coefficients of fJ at M gives an element f̄J ∈ F[VM ]

E.
Invariants constructed in this way are a crucial ingredient in our calculations. Define
f1 := f12345 and observe that LT( f1)= γ1234 y p2

. Note that LT( f12346)=−γ1234 y2p2
.

A straightforward calculation shows that

LT( f 2
1 + γ1234 f12346)= 2γ1234γ1235x p2

−2p y p2
+2p.

Therefore,

f2 :=
f 2
1 + γ1234 f12346

2x p2−2p
∈ k[VM]

E

has lead term γ1234γ1235 y p2
+2p.

We make frequent use of the Plücker relations for the minors of 0 and 0̃.

Theorem 1.3. Let N be an n × m matrix with n > m. Denote by pi1,...,im the
m×m minor of N determined by the rows i1, . . . , im . For sequences (i1, . . . , im−1)

and ( j1, . . . , jm+1), we have the following Plücker relation
m+1∑
a=1

(−1)a pi1,...,im−1, ja p j1,..., ja−1, ja+1,..., jm+1 = 0.

For a proof of the above theorem, see, for example, [Lakshmibai and Raghavan
2008, §4.1.3].

Lemma 1.4. For 2< i < 7,

γ12i7γ
p

1234 = γ12i6γ
p

1235− γ12i5γ
p

1245+ γ12i4γ
p

1345− γ12i3γ
p

2345.

Proof. Since taking p-th powers is Fp-linear, γ(i+2)( j+2)(k+2)(`+2) = γ
p

i jk`. For
example, γ3456 = γ

p
1234. The desired result follows from this fact, using the

(1,2, i)(3,4,5,6,7) Plücker relation for the matrix 0. �

For K = (k1, k2, . . . , k6) a subsequence of (1, 2, . . . , 10), let Ki denote the subse-
quence of K formed by omitting i and let Ki, j denote the subsequence of K formed
by omitting i and j . The following is Lemma 5.3 from [Campbell et al. 2013].
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Lemma 1.5. For any subsequence (i1, i2, i3) of K ,

(−1)ε1γKi1,i2
f̃Ki3
+ (−1)ε2γKi2,i3

f̃Ki1
+ (−1)ε3γKi1,i3

f̃Ki2
= 0

for some choice of ε` ∈ {0, 1}.

Remark 1.6. Note that γ1357(M) = 0 if and only if {c11, c12, c13, c14} is linearly
dependent over Fp. This follows from the usual construction of the Dickson invari-
ants; see, for example, [Wilkerson 1983]. The key observation is that γ1357(M)p−1

is the product of the nonzero Fp-linear combinations of {c11, c12, c13, c14}.

2. The generic case

In this section we compute k[VM]
E. With f1 and f2 defined as in Section 1, using

Theorem 5.2 of [Campbell et al. 2013], we see that

k[VM]
E
[x−1
] = k[x, f1, f2][x−1

].

Thus it is sufficient to extend {x, f1, f2, NM(z)} to a SAGBI basis. We use the
SAGBI/divide-by-x algorithm of [loc. cit., §1] to do this. We will show that the
algorithm produces one new invariant, which we denote by f3, and that

LT( f3)= γ1357 y p3
+2.

For p = 3 and p = 5, this result follows from a Magma calculation. For the rest of
this section, we assume p > 5.

Expanding the definitions of f1, f12346 and f2 gives

f1= γ1234 y p2
+γ1235δ

px p2
−2p
+γ1245x p2

−p y p
+γ1345δx p2

−2
+γ2345x p2

−1 y,

f12346=−γ1234δ
p2
+γ1236δ

px2p2
−2p
+γ1246x2p2

−p y p
+γ1346δx2p2

−2
+γ2346x2p2

−1 y

and

f2 =
f 2
1 +γ1234 f12346

2x p2−2p

= γ1234γ1235 y p2
δ p
+γ1234γ1245x p y p2

+p
+γ1234γ1345δx2p−2 y p2

+γ1234γ2345x2p−1 y p2
+1
+

1
2γ

2
1234x2pz p2

+
1
2γ

2
1235δ

2px p2
−2p

+γ1235γ1245δ
px p2

−p y p
+γ1235γ1345δ

p+1x p2
−2
+γ1235γ2345δ

px p2
−1 y

+
1
2γ1234γ1236x p2

δ p
+

1
2γ

2
1245x p2

y2p
+γ1245γ1345δx p2

+p−2 y p

+γ1245γ2345x p2
+p−1 y p+1

+
1
2γ1234γ1246 y px p2

+p
+

1
2γ

2
1345δ

2x p2
+2p−4

+γ1345γ2345δx p2
+2p−3 y+ 1

2γ
2
2345x p2

+2p−2 y2

+
1
2γ1234γ1346δx p2

+2p−2
+

1
2γ1234γ2346x p2

+2p−1 y.
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Subducting the tête-à-tête ( f p+2
1 , f p

2 ) gives

f̃3 = γ
p

1235 f p+2
1︸ ︷︷ ︸

T1

− γ 2
1234 f p

2︸ ︷︷ ︸
T2

+α1x p2
−2p f p

1 f2︸ ︷︷ ︸
T3

+α2x p2
f p+1
1︸ ︷︷ ︸

T4

+α3x2p2
−2p f p−1

1 f2︸ ︷︷ ︸
T5

+α4x2p2
−p f (p−3)/2

1 f (p+1)/2
2︸ ︷︷ ︸

T6

,

where

α1 =−2γ p
1235, α2 = γ1234γ

p
1245, α3 =

γ
p+1

1234 γ1237

γ1235
, α4 =

γ
p+3

1234 γ1257

γ
(p+3)/2
1235

.

Lemma 2.1. For p ≥ 5, we have LT( f̃3)= αx2p2
−2 y p3

+2 with

α =
γ

p+1
1234

γ1235

(
γ1234γ

p+1
1345 + γ

p
1235γ1345γ1236− γ

p+1
1235 γ1346

)
=−

γ1357γ
2p+2
1234

γ1235
.

Proof. We work modulo the ideal in k[x, y, z] generated by x2p2
−1. By the definition

of f2, we have

T1− T2+ T3 =−γ
p

1235γ1234 f p
1 f12346− γ

2
1234 f p

2 .

As f p
1 ≡ γ

p
1234 y p3

and

f p
2 ≡ γ

p
1234γ

p
1235δ

p2
y p3
+ γ

p
1234γ

p
1245x p2

y p3
+p2

+γ
p

1234γ
p

1345δ
px2p2

−2p y p3
+ γ

p
1234γ

p
2345x2p2

−p y p3
+p,

we obtain

T1−T2+T3≡−γ
p+2

1234 γ
p

1245x p2
y p3
+p2
−γ

p+1
1234

(
γ1234γ

p
1345+γ

p
1235γ1236

)
δ px2p2

−2p y p3

−γ
p+1

1234

(
γ1234γ

p
2345+γ

p
1235γ1246

)
x2p2

−p y p3
+p

−γ
p+1

1234 γ
p

1235γ1346δx2p2
−2 y p3

.

Since

x p2
f p+1
1 ≡ γ

p
1234 y p3

x p2
f1

≡ γ
p+1

1234 x p2
y p3
+p2
+ γ

p
1234γ1235δ

px2p2
−2p y p3

+ γ
p

1234γ1245x2p2
−p y p3

+p
+ γ

p
1234γ1345δx2p2

−2 y p3
,

we see that

T1− T2+ T3+ T4 ≡ γ
p+1

1234

(
γ1235γ

p
1245− γ

p
1235γ1236− γ1234γ

p
1345

)
x2p2

−2p y p3
δ p

+ γ
p+1

1234

(
γ

p+1
1245 − γ

p
1235γ1246− γ1234γ

p
2345

)
x2p2

−p y p3
+p

+ γ
p+1

1234

(
γ

p
1245γ1345− γ

p
1235γ1346

)
δx2p2

−2 y p3
.
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Using Lemma 1.4 for i = 3 and i = 4, along with the analogous result coming
from the (1,3,4)(3,4,5,6,7) Plücker relation for 0, gives

T1− T2+ T3+ T4 ≡−γ
2p+1
1234 γ1237x2p2

−2p y p3
δ p

− γ
2p+1
1234 γ1247x2p2

−p y p3
+p
− γ

2p+1
1234 γ1347δx2p2

−2 y p3
.

Since 3p2
−4p ≥ 2p2

−1 for p ≥ 5, we have x2p2
−2p f p−1

1 ≡ γ
p−1

1234 y p3
−p2

x2p2
−2p.

Using the description of f2 given above,

x2p2
−2p f2 ≡ γ1234x2p2

−2p y p2
(γ1235δ

p
+ γ1245x p y p

+ γ1345δx2p−2).

Thus

T5 ≡ α3γ
p

1234 y p3
x2p2

−2p(γ1235δ
p
+ γ1245x p y p

+ γ1345δx2p−2).

Using the (1,2,4)(1,2,3,5,7) and (1,3,5)(1,2,3,4,7) Plücker relations gives

T1− T2+ T3+ T4+ T5 ≡−
γ

2p+2
1234 γ1257

γ1235
x2p2

−p y p3
+p
−
γ

2p+2
1234 γ1357

γ1235
δx2p2

−2 y p3
.

Expanding and reducing modulo 〈x2p2
−1
〉, we get

x2p2
−p f (p−3)/2

1 ≡ x2p2
−pγ

(p−3)/2
1234 y(p

3
−3p2)/2

and
x2p2

−p f (p+1)/2
2 ≡ γ

(p+1)/2
1234 γ

(p+1)/2
1235 x2p2

−p y(p
3
+3p2)/2+p.

Thus
T6

α4
≡ γ

p−1
1234 γ

(p+1)/2
1235 x2p2

−p y p3
+p

and
f̃3 = T1− T2+ T3+ T4+ T5+ T6 ≡ αx2p2

−2 y p3
+2.

Using the (1,2,3)(1,3,4,5,6) and (1,3,5)(3,4,5,6,7) Plücker relations, we obtain

α =
γ

p+2
1234

γ1235
(γ

p+1
1345 − γ1356γ

p
1235)=−

γ
2p+2
1234 γ1357

γ1235

and, since we are using the grevlex term order with x < y< z, the result follows. �

Define
f3 := − f̃3

γ1235

γ
2p+2
1234 x2p2−2

so that LT( f3)= γ1357 y p3
+2. Looking at the exponents of y modulo p, it is clear

that there is only one new nontrivial tête-à-tête: ( f p
3 , f2 f p2

−1
1 ). In order to prove

that B := {x, f1, f2, f3, NM(z)} is a SAGBI basis for k[VM]
E, it is sufficient to

show that this tête-à-tête subducts to zero. However, NM(z) is rather complicated
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and it is more convenient to take an indirect approach. Subducting the tête-à-tête
using only {x, f1, f2, f3} gives

f̃4 := β1 f p
3︸ ︷︷ ︸

T ′1

−β2 f p2
−1

1 f2︸ ︷︷ ︸
T ′2

+β3x p f p2
−(p+3)/2

1 f (p+1)/2
2︸ ︷︷ ︸

T ′3

+β4x2p−2 f p2
−p

1 f3︸ ︷︷ ︸
T ′4

+β5x2p−1 f (p
2
−1)/2−p

1 f (p−1)/2
2 f (p+1)/2

3︸ ︷︷ ︸
T ′5

,

where

β1 := γ1235γ
p2

1234, β2 := γ
p

1357, β3 :=
γ1234(γ1245γ

p
1357− γ1235γ

p
2357)

γ
(p+1)/2
1235

,

β4 := γ
p

1234γ1345γ
p−1

1357 , β5 := −γ
(p2
+p+2)/2

1234 γ
(p+3)/2
1235 γ

(p−3)/2
1357 .

The lemma below proves that {x, f1, f2, f3, f̃4/x2p
} is a SAGBI basis. We then

use this in the proof of Theorem 2.3.

Lemma 2.2. For p ≥ 5, we have LT( f̃4)=
1
2γ

p2

1234γ
p+1

1235 x2pz p4
.

Proof. We work modulo the ideal in k[x, y, z] generated by x2p+1 and x2p y, which
we denote by n. Since p ≥ 5, we have p2

− 2p ≥ 2p+ 1. Therefore, using the
expressions for f1 and f2 given above, we have f1 ≡n γ1234 y p2

and

f2 ≡n γ1234γ1235 y p2
δ p
+ γ1234γ1245 y p2

+px p
+ γ1234γ1345δx2p−2 y p2

+ γ1234γ2345x2p−1 y p2
+1
+

1
2γ

2
1234x2pz p2

.

We will need expressions modulo n for f p
3 , x2p−2 f3 and x2p−1 f (p+1)/2

3 . Let m
denote the ideal generated by x2 y and x3. Reworking the calculations of the proof
of Lemma 2.1 to keep additional terms of f3 gives

f3 ≡m γ1357δy p3
+ γ2357xy p3

+1
+

1
2γ1235x2z p3

.

Thus

f p
3 ≡n γ

p
1357δ

p y p4
+ γ

p
2357x p y p4

+p
+

1
2γ

p
1235x2pz p4

,

x2p−2 f3 ≡n γ1357δx2p−2 y p3
+ γ2357x2p−1 y p3

+1
+

1
2γ1235x2pz p3

,

x2p−1 f (p+1)/2
3 ≡n γ

(p+1)/2
1357 x2p−1 y(p

3
+2)(p+1)/2.

Therefore

T ′1 − T ′2 ≡n γ
p2

1234

(
γ1235γ

p
2357− γ1245γ

p
1357

)
x p y p4

+p
− γ

p2

1234γ1345γ
p

1357δx2p−2 y p4

−γ
p2

1234γ2345γ
p

1357x2p−1 y p4
+1
+

1
2γ

p2

1234γ
p+1

1235 x2pz p4
.
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Since x p f (p+1)/2
2 ≡n γ

(p+1)/2
1234 γ

(p+1)/2
1235 x p y(p

3
+3p2)/2+p, we have

T ′1 − T ′2 + T ′3 ≡n −γ
p2

1234γ1345γ
p

1357δx2p−2 y p4

− γ
p2

1234γ2345γ
p

1357x2p−1 y p4
+1
+

1
2γ

p2

1234γ
p+1

1235 x2pz p4
.

Using the description of x2p−2 f3 given above, we see that

T ′1 − T ′2 + T ′3 + T ′4

≡n γ
p2

1234γ
p−1

1357

(
γ1345γ2357− γ1357γ2345

)
x2p−1 y p4

+1
+

1
2γ

p2

1234γ
p+1

1235 x2pz p4
.

The (2,3,5)(1,3,4,5,7) Plücker relation gives

γ2345γ1357− γ2357γ1345 =−γ1235γ3457.

Thus

T ′1 − T ′2 + T ′3 + T ′4 ≡n γ
p2

1234γ
p−1

1357 γ1235γ3457x2p−1 y p4
+1
+

1
2γ

p2

1234γ
p+1

1235 x2pz p4
.

Observe that

x2p−1 f (p
2
−1)/2−p

1 ≡n γ
(p2
−1)/2−p

1234 x2p−1 y(p
4
−p2)/2−p3

and
x2p−1 f (p−1)/2

2 ≡n γ
(p−1)/2
1234 γ

(p−1)/2
1235 x2p−1 y(p

3
+p2)/2−p.

Therefore, using the description of x2p−1 f (p+1)/2
3 given above, we obtain

f̃4 := T ′1 − T ′2 + T ′3 + T ′4 + T ′5 ≡n
1
2γ

p2

1234γ
p+1

1235 x2pz p4
,

and, since we are using the grevlex term order with x < y< z, the result follows. �

Theorem 2.3. The set B := {x, f1, f2, f3, NM(z)} is a SAGBI basis, and hence a
generating set, for k[VM]

E. Furthermore, k[VM]
E is a complete intersection with

generating relations coming from the subduction of the tête-à-têtes ( f p
2 , f p+2

1 ) and
( f p

3 , f2 f p2
−1

1 ).

Proof. Define f4 := f̃4/x2p, B′ := {x, f1, f2, f3, f4} and let A denote the al-
gebra generated by B′. The only nontrivial tête-à-têtes for B′ are ( f p

2 , f p+2
1 )

and ( f p
3 , f2 f p2

−1
1 ). From Lemmas 2.1 and 2.2, these tête-à-têtes subduct to

zero. Therefore B′ is a SAGBI basis for A. From Theorem 5.2 of [Campbell
et al. 2013], k[VM]

E
[x−1
] = k[x, f1, f2][x−1

]. Thus A[x−1
] = k[VM]

E
[x−1
].

Note that LM( f4) = z p4
. Therefore, by Theorem 1.1, A = k[VM]

E and B′ is
a SAGBI basis for k[VM]

E. Hence the lead term algebra of k[VM]
E is gener-

ated by {x, y p2
, y p2

+2p, y p3
+2, z p4

}. Since the orbit of z has size p4, we see that
LM(NM(z))= z p4

. Thus LM(B)=LM(B′) and B is also a SAGBI basis for k[VM]
E.

For any subalgebra with a SAGBI basis, the relations are generated by the nontrivial
tête-à-tête. Hence ( f p

2 , f p+2
1 ) and ( f p

3 , f2 f p2
−1

1 ) generate the ideal of relations
and k[VM]

E is a complete intersection with embedding dimension five. �
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3. The essentially generic case

In this section we consider representations VM for M ∈F2×4 for which γ1234(M) 6=0,
γ1235(M) 6= 0 and γ1357(M) 6= 0. With this restriction on M , we can evaluate the
coefficients of the polynomials { fi | i = 1, 2, 3, 4}, as defined in Section 2, at M
to get { f̄i | i = 1, 2, 3, 4} ⊂ F[VM ]

E. Note that LT( f̄1) = γ1234(M)y p2
so that

LM( f̄1) = y p2
. Similarly LM( f̄2) = y p2

+2p, LM( f̄3) = y p3
+2 and LM( f̄4) = z p4

.
Also, note that γ1357(M)= 0 if and only if {c11, c12, c13, c14} is linearly dependent
over Fp. Thus, if γ1357(M) 6= 0, the orbit of z has size p4 and LM(NM(z))= z p4

.

Theorem 3.1. If γ1234(M) 6= 0, γ1235(M) 6= 0 and γ1357(M) 6= 0, then the set
B := {x, f̄1, f̄2, f̄3, NM(z)} is a SAGBI basis, and hence a generating set, for
F[VM ]

E. Furthermore, F[VM ]
E is a complete intersection with generating relations

coming from the subduction of the tête-à-têtes ( f̄ p
2 , f̄ p+2

1 ) and ( f̄ p
3 , f̄2 f̄ p2

−1
1 ).

Proof. Define B′ := {x, f̄1, f̄2, f̄3, f̄4} and let A denote the algebra generated by B′.
The only nontrivial tête-à-têtes for B′ are ( f̄ p

2 , f̄ p+2
1 ) and ( f̄ p

3 , f̄2 f̄ p2
−1

1 ). The
calculations in the proofs of Lemmas 2.1 and 2.2 survive evaluation at M , proving
that these tête-à-têtes subduct to zero and B′ is a SAGBI basis for A. Thus, to use
Theorem 1.1 to prove A= F[VM ]

E, we need only show that A[x−1
]= F[VM ]

E
[x−1
].

Consider

f12357 = γ1235 y p3
− γ1237 y p2

x p3
−p2
+ γ1257 y px p3

−p
+ γ1357δx p3

−2
+ γ2357 yx p3

−1

and evaluate the coefficients at M to get f̄12357 ∈ F[VM ]
E with lead monomial y p3

.
Since γ1357(M) 6= 0, we know that f̄12357 has degree one as a polynomial in z.
Furthermore, the coefficient of z is −γ1357(M)x p3

−1. Therefore, using Theorem 2.4
of [Campbell and Chuai 2007], F[VM ]

E
[x−1
] = F[x, NM(y), f̄12357][x−1

]. Thus,
to prove A = F[VM ]

E, it is sufficient to show that {NM(y), f̄12357} ⊂ A[x−1
].

Using Lemma 1.5 for the subsequence (1, 2, 4) of (1, 2, 3, 4, 5, 7) shows that

γ
p

1235 f̃12357 = γ3457 f̃12357 ∈ SpanFp
{γ2357 f̃13457, γ1357 f̃23457}.

Thus f̄12357∈SpanF[x,x−1]{ f̄13457, f̄23457}. Similarly, using the (1, 6, 7) subsequence
of (1, 3, 4, 5, 6, 7), we have that f̄13457 ∈ SpanF[x,x−1]{ f̄13456, f̄ p

12345}. Iterating this
process gives

f̄12357 ∈ SpanF[x,x−1]{ f̄12345, f̄ p
12345, f̄12346}.

Since f̄12345 = f̄1 and f̄12346 = 2 f̄2x p2
−2p
− f̄ 2

1 , we see that f̄13457 ∈ A[x−1
]. A

similar argument shows that

f̄13579 ∈ SpanF[x,x−1]

{
f̄ pi

12345, f̄ p j

12346

∣∣ i, j ∈ {0, 1, 2}
}
,

giving f̄13579 ∈ A[x−1
]. Since f̄13579 = γ1357(M)NM(y) (see Remark 1.2), we have

NM(y) ∈ A[x−1
]. Therefore A= F[VM ]

E. As in the proof of Theorem 2.3, observe
that LM(B)= LM(B′). �
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Remark 3.2. Lemmas 2.1 and 2.2 are only valid for p > 5. However, for the
Magma calculations used to verify Theorem 2.3 for p = 3 and p = 5, only γ1234

and γ1235 are inverted. Thus Theorem 3.1 remains valid for p = 3 and p = 5.

4. The γ1234 = 0, γ1235 6= 0, γ1357 6= 0 stratum

In this section we consider representations VM for M ∈F2×4 for which γ1234(M)=0,
γ1235(M) 6= 0 and γ1357(M) 6= 0. For convenience, we write γ̄i jk` for γi jk`(M).
Evaluating coefficients gives

f̄1 = γ̄1235δ
px p2

−2p
+ γ̄1245 y px p2

−p
+ γ̄1345δx p2

−2
+ γ̄2345 yx p2

−1.

Define

h1 :=
f̄1

γ̄1235x p2−2p
and h2 :=

f̄12357

γ̄1235

so that LT(h1)= y2p and LT(h2)= y p3
. Note that h1, h2 ∈ F[VM ]

E. Furthermore,
arguing as in the proof of Theorem 3.1, F[VM ]

E
[x−1
] = F[x, NM(y), h2][x−1

].

Lemma 4.1. NM(y)= h p
2 +

(
γ̄

p
1237

γ̄
p

1235
−
γ̄1359

γ̄1357

)
h2x p4

−p3
−
γ̄

p
1357

γ̄
p

1235
h1x p4

−2p.

Proof. Since f̄13579 = γ̄1357 NM(y) (see Remark 1.2), we have

NM(y)= y p4
−
γ̄1359

γ̄1357
y p3

x p4
−p3
+
γ̄1379

γ̄1357
y p2

x p4
−p2
−
γ̄1579

γ̄1357
y px p4

−p
+
γ̄3579

γ̄1357
yx p4

−1.

Using the definition gives

h2 := y p3
−
γ̄1237

γ̄1235
y p2

x p3
−p2
+
γ̄1257

γ̄1235
y px p3

−p
+
γ̄1357

γ̄1235
δx p3

−2
+
γ̄2357

γ̄1235
yx p3

−1.

Thus

NM(y)− h p
2 =

(
γ̄

p
1237

γ̄
p

1235
−
γ̄1359

γ̄1357

)
y p3

x p4
−p3
−

(
γ̄

p
1257

γ̄
p

1235
−
γ̄1379

γ̄1357

)
y p2

x p4
−p2

−

(
γ̄

p
2357

γ̄
p

1235
+
γ̄1579

γ̄1357

)
y px p4

−p
−
γ̄

p
1357

γ̄
p

1235
δ px p4

−2p
+
γ̄3579

γ̄1357
yx p4

−1.

Using the (1,3,5)(3,4,5,7,9), (1,3,7)(3,4,5,7,9) and (1,5,7)(3,4,5,7,9) Plücker
relations gives

NM(y)−h p
2 =

γ̄
p−1

1357

γ̄
p

1235

(
γ̄1345 y p3

x p4
−p3
−γ̄1347 y p2

x p4
−p2

−γ̄1457 y px p4
−p
−γ̄1357δ

px p4
−2p)
+
γ̄3579

γ̄1357
yx p4

−1.
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Using the (1,2,3)(1,3,4,5,7) and (1,2,5)(1,3,4,5,7) Plücker relations,

γ̄1347 =
γ̄1237γ̄1345

γ̄1235
and γ̄1457 =

γ̄1245γ̄1357− γ̄1257γ̄1345

γ̄1235
.

Thus

NM(y)= h p
2 +

γ̄
p−1

1357

γ̄
p

1235

(
γ̄1345h2x p4

−p3
−
γ̄1357γ̄1245

γ̄1235
y px p4

−p
−
γ̄1357γ̄1345

γ̄1235
δx p4

−2
)

−
γ̄

p
1357

γ̄
p

1235
δ px p4

−2p
+

(
γ̄3579

γ̄1357
−
γ̄

p−1
1357 γ̄1345γ̄2357

γ̄
p+1

1235

)
yx p4

−1.

Using the (1,3,5)(2,3,4,5,7) Plücker relation, γ̄1345γ̄2357 = γ̄1357γ̄2345 + γ̄
p+1

1235 ,
giving

γ̄
p−1

1357 γ̄1345γ̄2357

γ̄
p+1

1235

=
γ̄2345γ̄

p
1357

γ̄
p

1235
+ γ̄

p−1
1357 .

From the definition of h1,

NM(y)= h p
2 +

γ̄
p−1

1357 γ̄1345

γ̄
p

1235
h2x p4

−p3
−
γ̄

p
1357

γ̄
p

1235
h1x p4

−2p
+

(
γ̄3579

γ̄1357
− γ̄

p−1
1357

)
yx p4

−1.

The result follows from the fact that γ̄3579 = γ̄
p

1357. �

As a consequence of the lemma, F[VM ]
E
[x−1
] = F[x, h1, h2][x−1

]. Thus ap-
plying the SAGBI/divide-by-x algorithm to {x, h1, h2, NM(z)} produces a generat-
ing set for F[VM ]

E. Subducting the tête-à-tête (h2
2, h p2

1 ) gives

h̃3 := h2
2− h p2

1 + 2
γ̄1237

γ̄1235
h p(p+1)/2

1 x p3
−p2
− 2

γ̄1257

γ̄1235
h(p

2
+1)/2

1 x p3
−p.

Lemma 4.2. LT(h̃3)=
2γ̄1357

γ̄1235
y p3
+2x p3

−2.

Proof. We work modulo the ideal in F[x, y, z] generated by x p3
−1. Therefore

h p2

1 ≡ y2p3
, h1x p3

−p
≡ y2px p3

−p and

h2
2 ≡ y2p3

− 2
γ̄1237

γ̄1235
y p3
+p2

x p3
−p2
+ 2

γ̄1257

γ̄1235
y p3
+px p3

−p
+ 2

γ̄1357

γ̄1235
δy p3

x p3
−2.

Since x p3
−p2

h p
1 ≡ x p3

−p2
y2p2

, we have (h p
1 )
(p+1)/2x p3

−p2
≡ x p3

−p2
y p3
+p2

. Thus

h2
2 ≡ h p2

1 − 2
γ̄1237

γ̄1235
h p(p+1)/2

1 x p3
−p2
+ 2

γ̄1257

γ̄1235
h(p

2
+1)/2

1 x p3
−p
+ 2

γ̄1357

γ̄1235
δy p3

x p3
−2.

Hence h̃3 ≡ 2(γ̄1357/γ̄1235)δy p3
x p3
−2, and the result follows. �
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Define h3 := γ̄1235h̃3/(2γ̄1357x p3
−2) so that LT(h3) = y p3

+2. Subducting the
tête-à-tête (h p

3 , h p
2 h1) gives

h̃4 := h p
3 − h1h p

2 −α1x ph(p
3
+1)/2

1 +α2x2p−2h3h(p
3
−p2)/2

1

−α3x2p−1h(p
2
−1)/2

1 h(p−3)/2
2 h(p+1)/2

3 ,

with

α1 :=

(
γ̄2357

γ̄1357

)p

−
γ̄1245

γ̄1235
, α2 :=

γ̄1345

γ̄1235
, α3 := α2

γ̄2357

γ̄1357
−
γ̄2345

γ̄1235
.

Lemma 4.3. LT(h̃4)=

(
γ̄1235

γ̄1357

)p

x2pz p4
.

Proof. We work modulo the ideal n := 〈x2p+1, x2p y〉. Using the definition of h3

and methods analogous to the proof of Lemma 4.2, it is not hard to show that

h3 ≡〈x3,x2 y〉 δy p3
+
γ̄2357

γ̄1357
xy p3

+1
+
γ̄1235

γ̄1357
x2z p3

.

Thus

h p
3 ≡n δ

p y p4
+

(
γ̄2357

γ̄1357

)p

x p y p4
+p
+

(
γ̄1235

γ̄1357

)p

x2pz p4
.

Since h2 ≡n y p3
, we have

h1h p
2 ≡n y p4

(
δ p
+
γ̄1245

γ̄1235
y px p

+
γ̄1345

γ̄1235
δx2p−2

+
γ̄2345

γ̄1235
yx2p−1

)
.

Furthermore, since x ph1 ≡n x pδ p, expanding gives x ph(p
3
+1)/2

1 ≡n x p y p4
+p. Thus

h p
3 − h1h p

2 −α1x ph(p
3
+1)/2

1

≡n −
γ̄1345

γ̄1235
δx2p−2 y p4

−
γ̄2345

γ̄1235
x2p−1 y p4

+1
+

(
γ̄1235

γ̄1357

)p

x2pz p4
.

Note that x2p−2h(p
3
−p2)/2

1 ≡n x2p−2 y p4
−p3

. Thus

x2p−2h3h(p
3
−p2)/2

1 ≡n x2p−2
(

y p4
δ+

γ̄2357

γ̄1357
xy p4

+1
)
.

Hence

h p
3 − h1h p

2 −α1x ph(p
3
+1)/2

1 +α2x2p−2h3h(p
3
−p2)/2

1

≡n α3x2p−1 y p4
+1
+

(
γ̄1235

γ̄1357

)p

x2pz p4
.

Since x2p−1h(p
2
−1)/2

1 h(p−3)/2
2 h(p+1)/2

3 ≡n x2p−1 y p4
+1, the result follows. �

Define h4 := γ̄1357h̃4/(γ̄1357x2p) so that LT(h4)= z p4
.



566 THÉO PIERRON AND R. JAMES SHANK

Theorem 4.4. If γ1234(M) = 0, γ1235(M) 6= 0 and γ1357(M) 6= 0, then the set
B := {x, h1, h2, h3, NM(z)} is a SAGBI basis, and hence a generating set, for
F[VM ]

E. Furthermore, F[VM ]
E is a complete intersection with generating relations

coming from the subduction of the tête-à-têtes (h2
2, h p2

1 ) and (h p
3 , h1h p

2 ).

Proof. Define B′ := {x, h1, h2, h3, h4} and let A denote the algebra generated
by B′. The only nontrivial tête-à-têtes for B′ are (h2

2, h p2

1 ) and (h p
3 , h1h p

2 ). Using
Lemmas 4.2 and 4.3, these tête-à-têtes subduct to zero, proving that B′ is a SAGBI
basis for A. Since F[VM ]

E
[x−1
] = F[x, h1, h2][x−1

], using Theorem 1.1, A =
F[VM ]

E. Finally, observe that LM(B)= LM(B′). �

5. The γ1234 6= 0, γ1235 = 0, γ1357 6= 0 strata

In this section we consider representations VM for M ∈F2×4 for which γ1235(M)=0,
γ1234(M) 6= 0 and γ1357(M) 6= 0. For convenience, we write γ̄i jk` for γi jk`(M).

Lemma 5.1. If γ̄1234 6= 0, γ̄1235 = 0 and γ̄1357 6= 0, then γ̄1345 6= 0.

Proof. Let ri denote row i of the matrix 0(M). Since γ̄1234 6=0, the set {r1, r2, r3, r4}

is linearly independent. Using this and the hypothesis that γ̄1235 = 0, we conclude
that r5 is a linear combination of {r1, r2, r3}, say r5= a1r1+a2r2+a3r3. Since r3 is
nonzero and the entries of r5 are the p-th powers of the entries of r3, we see that r5

is nonzero. Suppose, by way of contradiction, that γ̄1345 = 0. Then r5 is a nonzero
linear combination of {r1, r3, r4}, say r5 = b1r1+ b3r3+ b4r4. Thus b1r1+ b3r3+

b4r4 = a1r1+a2r2+a3r3. Since {r1, r2, r3, r4} is linearly independent, b4 = a2 = 0,
a1=b1, a3=b3 and r5=a1r1+a3r3, contradicting the assumption that γ̄1357 6=0. �

Take f1 as defined in Section 2, evaluate coefficients and divide by γ̄1234 to get

f̂1 := y p2
+
γ̄1245

γ̄1234
y px p2

−p
+
γ̄1345

γ̄1234
δx p2

−2
+
γ̄2345

γ̄1234
yx p2

−1.

Note that f̂1 is of degree one in z with coefficient x p2
−2γ̄1345/γ̄1234 and so, using

Theorem 2.4 of [Campbell and Chuai 2007], F[VM ]
E
[x−1
] = F[x, NM(y), f̂1][x−1

].
Define

h̃2 := NM(y)− f̂ p2

1 +α1 f̂ p
1 x p4

−p3
+α2 f̂ 2

1 x p4
−2p2

,

with

α1 :=
γ̄1359

γ̄1357
+
γ̄

p2

1245

γ̄
p2

1234

and α2 :=
γ̄

p2

1345

γ̄
p2

1234

.

We work modulo the ideal n := 〈x p4
−p2
−1
〉. Since γ̄1357 NM(y) = f̄13579 (see

Remark 1.2), we have NM(y)≡n y p4
− (γ̄1359/γ̄1357)y p3

x p4
−p3

. Therefore

NM(y)− f̂ p2

1 ≡n −

(
γ̄1359

γ̄1357
+
γ̄

p2

1245

γ̄
p2

1234

)
y p3

x p4
−p3
−
γ̄

p2

1345

γ̄
p2

1234

δ p2
x p4
−2p2

.
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Thus

NM(y)− f̂ p2

1 +α1 f̂ p
1 x p4

−p3
≡n −

γ̄
p2

1345

γ̄
p2

1234

δ p2
x p4
−2p2
≡n −

γ̄
p2

1345

γ̄
p2

1234

y2p2
x p4
−2p2

.

Hence
h̃2 = NM(y)− f̂ p2

1 +α1 f̂ p
1 x p4

−p3
+α2 f̂ 2

1 x p4
−2p2

≡n
2α2

γ̄1234
(γ̄1245 y p2

+px p4
−p2
−p
+ γ̄1345 y p2

+2x p4
−p2
−2).

We first consider the case γ̄1245 6= 0. Define

h2 := γ̄
p2
+1

1234 h̃2/(2x p4
−p2
−pγ̄

p2

1345γ̄1245)

so that LT(h2)= y p2
+p. Since NM(y) ∈ F[x, f̂1, h2], we have

F[VM ]
E
[x−1
] = F[x, f̂1, h2][x−1

].

Subducting the tête-à-tête (h p
2 , f̂ p+1

1 ) gives

h̃3 := f̂ p+1
1 − h p

2 +

(
γ̄1345

γ̄1245

)p

f̂ p−2
1 h2

2x p2
−2p.

Lemma 5.2. LT(h̃3)= 2
(
γ̄1345

γ̄1245

)p+1

y p3
+p+2x p2

−p−2.

Proof. We work modulo the ideal 〈x p2
−p−1
〉. Thus f̂1 ≡ y p2

. Reviewing the
definition of h2, we see that

h p
2 ≡ y p3

+p2
+

(
γ̄1345

γ̄1245

)p

y p3
+2px p2

−2p

and

h2
2x p2

−2p
≡ y2p2

+2px p2
−2p
+ 2

(
γ̄1345

γ̄1245

)
y2p2

+p+2x p2
−p−2.

Thus

f̂ p+1
1 − h p

2 +

(
γ̄1345

γ̄1245

)p

f̂ p−2
1 h2

2x p2
−2p
≡ 2

(
γ̄1345

γ̄1245

)p+1

y p3
+p+2x p2

−p−2

and the result follows. �

Define h3 := γ̄
p+1

1245 h̃3/(2γ̄
p+1

1345 x p2
−p−2) so that LT(h3)= y p3

+p+2.

Lemma 5.3. Subducting the tête-à-tête (h p
3 , f̂ p2

−1
1 h2

2) gives an invariant with lead
term −γ̄ p

1245γ̄
p2

1234z p4
x p2
+2p/(4γ̄ p2

+p
1345 ).



568 THÉO PIERRON AND R. JAMES SHANK

Proof. Modulo the ideal 〈x p2
+2p+1, x p2

+2p y〉, the expression

h p
3− f̂ p2

−1
1 h2

2+β1h3 f̂ p2
−p+1

1 x p−2
+β2h2 f̂ p2

1 x p
+β3 f̂ p2

+1
1 x2p

+β4h4
2 f̂ p2

−4
1 x p2

−2p
+β5h3h2

2 f̂ p2
−p−2

1 x p2
−p−2

+β6h2
3 f̂ p2

−2p
1 x p2

−4
+β7h2

2 f̂ p2
−2

1 x p2
+β8h3 f̂ p2

−p
1 x p2

+p−2

+β9h2 f̂ p2
−1

1 x p2
+p
+β10h3h p−1

2 f̂ p2
−2p

1 x p2
+2p−2

+β11h(p+1)/2
3 h(p−3)/2

2 f̂ (p
2
+1)/2−p

1 x p2
+2p−1,

with

β1 := 2
γ̄1345

γ̄1245
, β2 := −

(
γ̄1245

γ̄1234

)p+1(
γ̄1234

γ̄1345

)p

,

β3 :=
1
2

(
γ̄1245,

γ̄1345

)p((
γ̄2345

γ̄1345

)p2

−

(
γ̄1245

γ̄1345

)p2(
γ̄1245

γ̄1234

)p)
,

β4 := −
1
2

(
γ̄1345

γ̄1245

)p

, β5 := 2
(
γ̄1345

γ̄1245

)p+1

, β6 := −2
(
γ̄1345

γ̄1245

)p+2

,

β7 :=
1
2

(
γ̄1245

γ̄1345

)p(
γ̄1234

γ̄1345

)p2
−p
γ̄1359

γ̄1357
, β8 := −

γ̄1345

γ̄1234
β7,

β9 := −
1
2

(
γ̄1245

γ̄1345

)p(
γ̄1234

γ̄1345

)p2(
γ̄1245γ̄1379

γ̄1234γ̄1357
+
γ̄1579

γ̄1357

)
,

β10 :=
1
2

(
γ̄1245

γ̄1345

)p−1(
γ̄1234

γ̄1345

)p2
γ̄1379

γ̄1357
, β11 :=

1
2

(
γ̄1245

γ̄1345

)p(
γ̄1234

γ̄1345

)p2
γ̄3579

γ̄1357
,

is congruent to −γ̄ p
1245γ̄

p2

1234z p4
x p2
+2p/(4γ̄ p2

+p
1345 ). �

Theorem 5.4. If γ1234(M) 6= 0, γ1235(M) = 0, γ1357(M) 6= 0 and γ1245(M) 6= 0,
then the set B := {x, f̂1, h2, h3, NM(z)} is a SAGBI basis for F[VM ]

E. Further-
more, F[VM ]

E is a complete intersection with generating relations coming from the
subduction of the tête-à-têtes (h p

2 , f̂ p+1
1 ) and (h p

3 , f̂ p2
−1

1 h2
2).

Proof. Use the subduction of (h p
3 , f̂ p2

−1
1 h2

2) given in Lemma 5.3 to construct an
invariant h4 with lead term z p4

. Define B′ := {x, f̂1, h2, h3, h4} and let A denote the
algebra generated by B′. The only nontrivial tête-à-têtes for B′ are (h p

2 , f̂ p+1
1 )

and (h p
3 , f̂ p2

−1
1 h2

2). Using Lemmas 5.2 and 5.3, these tête-à-têtes subduct to zero,
proving that B′ is a SAGBI basis for A. Since F[VM ]

E
[x−1
] = F[x, f̂1, h2][x−1

],
using Theorem 1.1, A = F[VM ]

E. Finally, observe that LM(B)= LM(B′). �
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We now consider the case γ̄1245 = 0. Define ĥ2 := γ̄
p2
+1

1234 h̃2/(2x p4
−p2
−2γ̄

p2
+1

1345 )

so that LT(ĥ2) = y p2
+2. Since NM(y) ∈ F[x, f̂1, ĥ2], we have F[VM ]

E
[x−1
] =

F[x, f̂1, ĥ2][x−1
].

Lemma 5.5. Subducting the tête-à-tête (ĥ p2

2 , f̂ p2
+2

1 ) gives an invariant with lead
term z p4

(γ̄1234x2/(2γ̄1345))
p2

.

Proof. Modulo the ideal 〈x p2
+1, x p2

y〉, the expression

f̂ p2
+2

1 −ĥ p2

2 −
(
α1ĥ2 f̂ p2

1 x p2
−2
+α2 f̂ p2

+1
1 x p2

+α3ĥ p
2 f̂ p2

−p
1 x2p2

−2p
+α4ĥ p(p+1)/2

2 f̂ (p
2
−p−2)/2

1 x2p2
−p

+α5ĥ2 f̂ p2
−1

1 x2p2
−2
+α6ĥ(p

2
+1)/2

2 f̂ (p
2
−3)/2

1 x2p2
−1),

with

α1 :=
2γ̄1345

γ̄1234
, α2 := −

γ̄1379γ̄
p2

1234

γ̄1357γ̄
p2

1345

, α3 := −
γ̄1359γ̄

p2
−p

1234

γ̄1357γ̄
p2−p

1345

,

α4 :=
γ̄1579γ̄

p2

1234

γ̄1357γ̄
p2

1345

, α5 :=
γ̄1379γ̄

p2
−1

1234

γ̄1357γ̄
p2−1

1345

, α6 := −
γ̄3579γ̄

p2

1234

γ̄1357γ̄
p2

1345

,

is congruent to z p4
(γ̄1234x2/(2γ̄1345))

p2
. �

Theorem 5.6. If γ1234(M) 6= 0, γ1235(M) = 0, γ1357(M) 6= 0 and γ1245(M) = 0,
then the set B := {x, f̂1, ĥ2, NM(z)} is a SAGBI basis for F[VM ]

E. Furthermore,
F[VM ]

E is a hypersurface with the relation coming from the subduction of the
tête-à-tête (ĥ p2

2 , f̂ p2
+2

1 ).

Proof. Use the subduction of (ĥ p2

2 , f̂ p2
+2

1 ) given in Lemma 5.5 to construct an
invariant ĥ3 with lead term z p4

. Define B′ := {x, f̂1, ĥ2, ĥ3} and let A denote the
algebra generated by B′. The only nontrivial tête-à-tête for B′ is (ĥ p2

2 , f̂ p2
+2

1 ),
which subducts to zero using Lemma 5.5. Thus B′ is a SAGBI basis for A. Since
F[VM ]

E
[x−1
] = F[x, f̂1, ĥ2][x−1

], using Theorem 1.1, A = F[VM ]
E. Finally, ob-

serve that LM(B)= LM(B′). �

6. The γ1234 6= 0, γ1235 6= 0, γ1357 = 0 stratum

In this section we consider representations VM for M ∈F2×4 for which γ1234(M) 6=0,
γ1235(M) 6= 0 and γ1357(M) = 0. For convenience, we write γ̄i jk` for γi jk`(M).
Evaluating the coefficients of f1 and dividing by γ̄1234 gives f̂1 with lead term y p2

.
Since γ̄1357 = 0 and γ̄1235 6= 0, the orbit of y has size p3 and NM(y)= f̄12357/γ̄1235

(see Remark 1.2). For convenience, write

NM(y)= y p3
+α2 y p2

x p3
−p2
+α1 y px p3

−p
+α0 yx p3

−1

and
f̂1 = y p2

+β3δ
px p2

−2p
+β2 y px p2

−p
+β1δx p2

−2
+β0 yx p2

−1,
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with

α2 =−
γ̄1237

γ̄1235
, α1 =

γ̄1257

γ̄1235
, α0 =

γ̄2357

γ̄1235
,

β3 =
γ̄1235

γ̄1234
, β2 =

γ̄1245

γ̄1234
, β1 =

γ̄1345

γ̄1234
, β0 =

γ̄2345

γ̄1234
.

Subducting NM(y) gives

h̃2 := NM(y)− f̂ p
1 +β

p
3 x p3

−2p2
f̂ 2
1 .

Lemma 6.1. LT(h̃2)= 2
(
γ̄1235

γ̄1234

)p+1

y p2
+2px p3

−p2
−2p.

Proof. We work modulo the ideal 〈x p3
−p2
−p
〉. Using the definitions of f12357 and

f12345, we have NM(y) ≡ y p3
and f̂ p

1 ≡ y p3
+ (γ̄1235/γ̄1234)

p y2p2
x p3
−2p2

. The
result follows from the observation that

f̂1x p3
−2p2
≡ y p2

x p3
−2p2
+

(
γ̄1235

γ̄1234

)
y2px p3

−p2
−2p. �

Define h2 := h̃2γ̄
p+1

1234 /(2γ̄
p+1

1235 x p3
−p2
−2p) so that LT(h2)= y p2

+2p and

h2 ≡〈x2p〉 y p2
(
δ p
+
β2

β3
y px p

+
β1

β3
δx2p−2

+
β0

β3
yx2p−1

)
. (1)

Lemma 6.2. F[VM ]
E
[x−1
] = F[x, f̂1, h2][x−1

].

Proof. Since γ̄1357 = 0 and the first row of M is nonzero, we can use a change of
coordinates, see [Campbell et al. 2013, §4], and the GL4(Fp)-action to write

M =
(

1 c12 c13 0
0 c22 c23 c24

)
.

Since γ̄1235 6= 0, we have c24 6= 0. With this choice of generators for E , let H denote
the subgroup generated by e1 and e4. Using the calculation of F[x, y, z]H from
Theorem 6.4 of [loc. cit.], we see that F[VM ]

H
[x−1
] = F[x, NH (y), NH (δ)][x−1

]

with NH (y) := y p
− yx p−1 and NH (δ) = δ

p
− δ(c24x2)p−1. Thus, to compute

F[VM ]
G
[x−1
] = (F[VM ]

H
[x−1
])G/H , it is sufficient to compute

(F[x, NH (y), NH (δ)][x−1
])G/H

= F[x, NH (y)/x p−1, NH (δ)/x2p−1
]
G/H
[x−1
].

Note that deg(NH (y)/x p−1)= deg(NH (δ)/x2p−1)= 1. Furthermore

F[x, NH (y)/x p−1
]
G/H
= F[x, NG/H (NH (y)/x p−1)]

and NG/H (NH (y)/x p−1) = NM(y)/x p3
−p2

. Using the form of M given above,
we see that γ̄1345 = −cp−1

24 γ̄1235. If we evaluate 0̃ at M and set x = 1, y = 1
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and z = 1, then first and last columns of the resulting matrix are equal. Thus
f̄12345(1, 1, 1)= γ̄1234+ γ̄1245+ γ̄2345 = 0. Using these two relations, we can write

f̂1 = NH (y)p
−
γ̄2345

γ̄1234
NH (y)x p2

−p
+
γ̄1235

γ̄1234
NH (δ)x p2

−2p.

Thus we have f̂1/x p2
−p
∈ F[x, NH (y)/x p−1, NH (δ)/x2p−1

]
G/H is of degree one in

NH (δ)/x2p−1 with coefficient x p−1γ̄1235/γ̄1234. Thus by Theorem 2.4 of [Campbell
and Chuai 2007], we have

F[x,NH (y)/x p−1,NH (δ)/x2p−1
]
G/H
[x−1
]=F[x,NM(y)/x p3

−p2
, f̂1/x p2

−p
][x−1

].

Therefore F[VM ]
E
[x−1
] = F[x, NM(y), f̂1][x−1

]. The result then follows from the
fact that NM(y) ∈ F[x, f̂1, h2]. �

Subducting the tête-à-tête (h p
2 , f̂ p+2

1 ) gives

h̃3 := h p
2 − f̂ p+2

1 + 2β3 f̂ p
1 h2x p2

−2p

−β
−p
3 (α2 f̂ p+1

1 x p2
−α2β3 f̂ p−1

1 h2x2p2
−2p
+α1 f̂ (p−3)/2

1 h(p+1)/2
2 x2p2

−p)

for p ≥ 5 and

h̃3 := h3
2− f̂ 5

1 + 2β3 f̂ 3
1 h2x3

− (α2β
−3
3 +β

3
3 )( f̂ 4

1 x9
−β3 f̂ 2

1 h2x12)− (α1β
−3
3 +α2β

−1
3 +β

5
3 )h

2
2x15

for p = 3.

Lemma 6.3. LT(h̃3)= α0β
−p
3 y p3

+1x2p2
−1.

Proof. For p = 3, this is a Magma calculation. Suppose p ≥ 5. We work mod-
ulo the ideal 〈x2p2

〉. Since p3
− 2p2 > 2p2, we have f̂ p

1 ≡ y p3
. Furthermore,

3p2
− 4p > 2p2, giving f̂1x2p2

−2p
≡ y p2

x2p2
−2. Using congruence (1) given above,

we have

h2x2p2
−2p
≡ x2p2

−2p y p2
(
δ p
+
β2

β3
y px p

+
β1

β3
δx2p−2

+
β0

β3
yx2p−1

)
and

h p
2 ≡ y p3

(
δ p
+
β2

β3
y px p

+
β1

β3
δx2p−2

+
β0

β3
yx2p−1

)p

.

Using the definition of h2, we get

f̂ 2
1 − 2β3h2x p2

−2p
= β

−p
3 x2p2

−p3
( f̂ p

1 − NM(y))

= δ p2
+β
−p
3

(
(β

p
2 −α2)y p2

x p2
+β

p
1 δ

px2p2
−2p

+ (β
p
0 −α1)y px2p2

−p
−α0 yx2p2

−1).
Thus

h p
2 − f̂ p

1 ( f̂ 2
1 − 2β3h2x p2

−2p)≡
y p3

β
p
3
(α2 y p2

x p2
+α1 y px2p2

−p
+α0 yx2p2

−1).
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Furthermore, using the above expressions,

f̂ p+1
1 x p2

−β3 f̂ p−1
1 h2x2p2

−2p
≡ y p3

−p2
x p2
(y p2

f̂1−β3h2x p2
−2p)≡ x p2

y p3
+p2
.

Therefore

h p
2 − f̂ p

1 ( f̂ 2
1 − 2β3h2x p2

−2p)−
α2

β
p
3
( f̂ p+1

1 x p2
−β3 f̂ p−1

1 h2x2p2
−2p)

≡
y p3

β
p
3
(α1 y px2p2

−p
+α0 yx2p2

−1).

Note that h2x2p2
−p
≡ y p2

+2px2p2
−p and f̂1x2p2

−p
≡ y p2

x2p2
−p. Hence

f̂ (p−3)/2
1 h(p+1)/2

2 x2p2
−p
≡ y p3

+px2p2
−p,

giving h̃3 ≡ α0 y p3
+1x2p2

−1/β
p
3 , as required. �

Note that α0/β
p
3 = γ̄2357γ̄

p
1234/γ̄

p+1
1235 . Since γ̄1357 = 0, γ̄1235 6= 0 and γ̄3457 =

γ̄
p

1235 6= 0, arguing as in the proof of Lemma 5.1, we see that γ̄2357 6= 0. Define
h3 := γ̄

p+1
1235 h̃3/(x2p2

−1γ̄2357γ̄
p

1234) so that LT(h3)= y p3
+1.

Lemma 6.4. LM(h p
3 − h(p

2
+1)/2

2 f̂ (p
2
−2p−1)/2

1 )= x pz p4
.

Proof. Working modulo the ideal n := 〈x p+1, x p y〉, we see that f̂1 ≡n y p2
and

h2 ≡n y p2
+2p, giving h p

3−h(p
2
+1)/2

2 f̂ (p
2
−2p−1)/2

1 ≡n h p
3−y p4

+p. Thus it is suffi-
cient to identify the lead monomial of h3− y p3

+1. Note that y p3
+1 and xz p3

are
consecutive monomials in the grevlex term order. Therefore, if xz p3

appears with
nonzero coefficient in h3, then LM(h3− y p3

+1)= xz p3
, and the result follows. Work

modulo the ideal m := 〈y〉. Then f̂1 ≡m −β3z px p2
−p
−β1zx p2

−1 and NM(y)≡m 0.
Therefore

h2 ≡m
1

2β3

(
z p2

x2p
+
β

p
1

β
p
3

z px p2
+p
+ x p2

(β3z p
+β1zx p−1)2

)
.

Hence h3 has degree p3 as a polynomial in z, with leading coefficient x/2α0 and
the result follows. �

Theorem 6.5. If γ1234(M) 6= 0, γ1235(M) 6= 0 and γ1357(M) = 0, then the set
B := {x, f̂1, h2, h3, NM(z)} is a SAGBI basis for F[VM ]

E. Furthermore, F[VM ]
E is

a complete intersection with generating relations coming from the subduction of the
tête-à-têtes (h p

2 , f̄ p+2
1 ) and (h p

3 , f̄ (p
2
−2p−1)/2

1 h(p
2
+1)/2

2 ).

Proof. Use the subduction given in Lemma 6.4 to construct an invariant h4 with lead
term z p4

. Define B′ := {x, f̂1, h2, h3, h4} and let A denote the algebra generated
by B′. The only nontrivial tête-à-têtes for B′ are

(h p
2 , f̄ p+2

1 ) and (h p
3 , f̄ (p

2
−2p−1)/2

1 h(p
2
+1)/2

2 ).

Using Lemmas 6.3 and 6.4, these tête-à-têtes subduct to zero, proving that B′ is
a SAGBI basis for A. By Lemma 6.2, we have F[VM ]

E
[x−1
] = F[x, f̂1, h2][x−1

].
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Using Theorem 1.1, A = F[VM ]
E. Clearly LT(NM(z))= z pk

for k ≤ 4. Since B′ is
a SAGBI basis for F[VE ]

E, this forces k = 4, giving LM(B)= LM(B′). �

7. The γ1234 = 0, γ1235 = 0, γ1357 6= 0 strata

In this section we consider representations VM for M ∈F2×4 for which γ1235(M)=0,
γ1234(M)= 0 and γ1357(M) 6= 0. For convenience, we write γ̄i jk` for γi jk`(M).

We first consider the case γ̄1257 = 0. Let ri denote row i of the matrix 0(M).
Since γ1357(M) 6=0, the set {r1, r3, r5, r7} is linearly independent. Thus r2 is a linear
combination of r1, r5 and r7. Since γ̄1235=0, we know that r2 is a linear combination
of r1, r3 and r5. Using the (1,2,3)(3,4,5,7,9) Plücker relation, γ̄1237 = 0. Thus r2

is a linear combination of r1, r3 and r7. Combining these observations, we see that r2

is a scalar multiple of r1. Using a change of coordinates (see Section 4 of [Campbell
et al. 2013]), we may assume that r2 is zero. If the second row of M is zero, then
VM is a symmetric square representation and the invariants are generated by x , δ,
NM(y) and NM(z). Since γ̄1357 6= 0, we have that NM(y) and NM(z) are both of
degree p4 and there is a single relation in degree 2p4 which can be constructed by
subducting the tête-à-tête (δ p4

, NM(y)2) (see Theorem 3.3 of [loc. cit.]).
For the rest of this section, we assume γ̄1257 6= 0. Evaluating coefficients gives

the invariant f̄12357. Using the (1,2,3)(3,4,5,7,9) Plücker relation, γ̄ p+1
1237 = 0.

Thus γ̄1237 = 0, and we have f̄12357 = γ̄1257 y px p3
−p
+ γ̄1357δx p3

−2
+ γ̄2357 yx p3

−1.
Divide by γ̄1257x p3

−p to get

h1 := y p
+
γ̄1357

γ̄1257
δx p−2

+
γ̄2357

γ̄1257
yx p−1.

Observe that NM(y)= f̄13579/γ̄1357. Subducting NM(y) gives

h̃2 = NM(y)− h p3

1 +α
p3

h2p2

1 x p4
−2p3
− 2α p3

+p2
h p2
+2p

1 x p4
−p3
−2p2

+ 4α p3
+p2
+ph p2

+p+2
1 x p4

−p3
−p2
−2p,

with α := γ̄1357/γ̄1257.

Lemma 7.1. LT(h̃2)= 8α p3
+p2
+p+1 y p3

+p2
+p+2x p4

−p3
−p2
−p−2.

Proof. It will be convenient to work modulo the ideal 〈x p4
−p3
, x p4

−p3
−p2
−p−1 y〉,

so that NM(y) ≡ y p4
and h p3

1 ≡ y p4
+ α p3

δ p3
x p4
−2p3

. Thus NM(y) − h p3

1 ≡

−α p3
δ p3

x p4
−2p3

. Expanding gives

x p4
−2p3

(h p2

1 )
2
≡ x p4

−2p3
y p3
(y p3
+ 2α p2

δ p2
x p3
−2p2

).

Thus

NM(y)− h p3

1 +α
p3

h2p2

1 x p4
−2p3
≡ 2α p3

+p2
y p3
δ p2

x p4
−p3
−2p2

.
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Again expanding gives

h p2
+2p

1 x p4
−p3
−2p2
≡ x p4

−p3
−2p2

y p3
+p2
(y p2
+ 2α pδ px p2

−2p).

Hence

NM(y)− h p3

1 +α
p3

h2p2

1 x p4
−2p3
− 2α p3

+p2
h p2
+2p

1 x p4
−p3
−2p2

≡−4α p3
+p2
+pδ p y p3

+p2
x p4
−p3
−p2
−2p.

Since h p2
+p+2

1 x p4
−p3
−p2
−2p
≡ x p4

−p3
−p2
−2p y p3

+p2
+p(y p

+ 2αδx p−2), we have

h̃2 ≡ 8α p3
+p2
+p+1 y p3

+p2
+p+2x p4

−p3
−p2
−p−2

and the result follows. �

Define h2 := h̃2/(8α p3
+p2
+p+1x p4

−p3
−p2
−p−2) so that LT(h2)= y p3

+p2
+p+2.

Lemma 7.2. Subducting the tête-à-tête (h p
2 , h p3

+p2
+p+2

1 ) gives an invariant with
lead term (

γ̄1257

2γ̄1357

)p3
+p2
+p

z p4
x p3
+p2
+2p.

Proof. For p= 3, this is a Magma calculation. For p> 3, the subduction is given by

h p
2−h p3

+p2
+p+2

1 +2αh2h p3

1 x p−2

+
1

4α p3+p2+p

(
β1h p3

+p2

1 x p2
+2p
−β1α

p2
h p3
+2p

1 x p3
−p2
+2p

+2β1α
p2
+ph p3

+p+2
1 x p3

−4β1α
p2
+p+1h2h p3

−p2

1 x p3
+p−2

−β2x p3
(h p3

+p
1 x2p

−α ph p3
+2

1 x p2
+2α p+1h2h p3

−p2
−p

1 x p2
+p−2)

+β3x p3
+p2
+p(h p3

+1
1 −αh2h p3

−p2
−p−1

2 x p−2)

−β4h(p+1)/2
2 h(p

2
+p+1)(p−3)/2

1 x p3
+p2
+2p−1),

with

α :=
γ̄1357

γ̄1257
, β1 :=

γ̄1359

γ̄1357
, β2 :=

γ̄1379

γ̄1357
, β3 :=

γ̄1579

γ̄1357
, β4 := γ̄

p−1
1357 .

To calculate the lead term, work modulo the ideal generated by x p3
+p2
+2p+1 and

x p3
+p2
+2p y. �

Theorem 7.3. If γ1234(M) = 0, γ1235(M) = 0, γ1357(M) = 0 and γ1257(M) 6= 0,
then the set B := {x, h1, h2, NM(z)} is a SAGBI basis for F[VM ]

E. Further-
more, F[VM ]

E is a hypersurface with the relation coming from the subduction
of the tête-à-tête (h p

2 , h p3
+p2
+p+2

1 ).
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Proof. Use the subduction given in Lemma 7.2 to construct an invariant h3 with
lead term z p4

. Define B′ := {x, h1, h2, h3} and let A denote the algebra generated
by B′. The only nontrivial tête-à-tête for B′ is (h p

2 , h p3
+p2
+p+2

1 ), which subducts
to zero using the definition of h3. Thus B′ is a SAGBI basis for A. Since h1 is
of degree one in z with coefficient −αx p−1, it follows from [Campbell and Chuai
2007] that F[VM ]

E
[x−1
] = F[x, h1, NM(y)][x−1

]. Since NM(y) ∈ F[x, h1, h2], we
have F[VM ]

E
[x−1
] = F[x, h1, h2][x−1

]. Using Theorem 1.1, A = F[VM ]
E. Clearly

LT(NM(z)) = z pk
for k ≤ 4. Since B′ is a SAGBI basis for F[VE ]

E, this forces
k = 4, giving LM(B)⊂ LM(B′). �

8. The γ1234 = 0, γ1235 6= 0, γ1357 = 0 stratum

In this section we consider representations VM with γ1235(M) 6= 0, γ1234(M)= 0
and γ1357(M)= 0. The results of this section are valid for p ≥ 3. For convenience,
we write γ̄i jk` for γi jk`(M). Observe that NM(y)= f̄12357/γ̄1235 (see Remark 1.2).
Thus NM(y) has lead term y p3

. Furthermore, f̄12345 has lead term γ̄1235 y2px p2
−2p.

Define h1 := f̄12345/(γ̄1235x p2
−2p) so that LT(h1)= y2p.

Lemma 8.1. F[VM ]
E
[x−1
] = F[x, h1, NM(y)][x−1

].

Proof. We argue as in the proof of Theorem 4.4 of [Campbell et al. 2013]. Since
NM(y) and h1/x p are algebraically independent elements of F[x, y, δ/x]E with
deg(NM(y)) deg(h1/x p) = p4

= |E |, applying Theorem 3.7.5 of [Derksen and
Kemper 2002] gives F[x, y, δ/x]E = F[x, NM(y), h1/x p

]. The result then follows
from the observation that

F[x, y, z]E [x−1
] = F[x, y, δ/x]E [x−1

]. �

Subducting the tête-à-tête (NM(y)2, h p2

1 ) gives

h̃2 := NM(y)2− h p2

1 +
2

γ̄1235
(γ̄1237x p3

−p2
h(p

2
+p)/2

1 − γ̄1257x p3
−ph(p

2
+1)/2

1 ).

Lemma 8.2. LT(h̃2)= 2γ̄2357 y p3
+1x p3

−1/γ̄1235.

Proof. We work modulo the ideal 〈x p3
〉. Expand NM(y)2 and observe that

h p2

1 ≡ y2p3
, h p

1 x p3
−p2
≡ y2p2

x p3
−p2

and h1x p3
−p
≡ y2px p3

−p. �

Using the (1,3,5)(2,3,4,5,7) Plücker relation, we have γ̄1345γ̄2357 = γ̄
p+1

1235 .
Thus γ̄2357 6= 0. Define h2 := γ̄1235h̃2/(2γ̄2357x p3

−1) so that LT(h2)= y p3
+1.

Lemma 8.3. LM(h p
2 − h(p

3
+1)/2

1 )= z p4
x p.

Proof. A careful calculation shows that

LT(h p
2 − h(p

3
+1)/2

1 )=
γ̄

p
1235

2γ̄ p
2357

x pz p4
. �
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Theorem 8.4. If γ1234(M)= 0, γ1235(M) 6= 0 and γ1357(M)= 0, then the set B :=
{x, h1, h2, NM(y), NM(z)} is a SAGBI basis for F[VM ]

E. Furthermore, F[VM ]
E is

a complete intersection with relations coming from the subduction of the tête-à-têtes
(NM(y)2, h p2

1 ) and (h p
2 , h(p

3
+1)/2

1 ).

Proof. Use the subduction from Lemma 8.3 to construct an invariant h3 with
lead term z p4

. Define B′ := {x, NM(y), h1, h2, h3} and let A denote the alge-
bra generated by B′. The nontrivial tête-à-têtes for B′ subduct to zero using
Lemmas 8.2 and 8.3. Thus B′ is a SAGBI basis for A. From Lemma 8.1,
F[VM ]

E
[x−1
] = F[x, h1, NM(y)][x−1

]. Thus, using Theorem 1.1, A = F[VM ]
E.

Clearly LT(NM(z)) = z pk
for k ≤ 4. Since B′ is a SAGBI basis for F[VE ]

E, this
forces k = 4, giving LM(B)= LM(B′). �

9. The γ1234 6= 0, γ1235 = 0, γ1357 = 0 strata

In this section we consider representations VM with γ1235(M)= 0, γ1234(M) 6= 0
and γ1357(M) = 0. For convenience, we write γ̄i jk` for γi jk`(M). Using the
(1,3,5)(3,4,5,6,7) Plücker relation, γ̄1345 = 0. Thus

f̄1 = γ̄1234 y p2
+ γ̄1245 y px p2

−p
+ γ̄2345 yx p2

−1
∈ F[x, y].

Since γ̄1234 6=0, the orbit of y contains at least p2 elements. Thus NM(y)= f̄1/γ̄1234

(see Remark 1.2).

Lemma 9.1. F[VM ]
E
[x−1
] = F[x, NM(y), f̄12346][x−1

].

Proof. We argue as in the proof of Lemma 8.1 (and Theorem 4.4 of [Campbell
et al. 2013]). Since NM(y) and f̄12346/x p2

are algebraically independent elements
of F[x, y, δ/x]E with deg(NM(y)) deg( f̄12346/x p2

) = p4
= |E |, applying Theo-

rem 3.7.5 of [Derksen and Kemper 2002] gives

F[x, y, δ/x]E = F[x, NM(y), f̄12346/x p2
].

The result then follows from the observation that

F[x, y, z]E [x−1
] = F[x, y, δ/x]E [x−1

]. �

We first consider the case γ̄1245 6= 0. Define f̂2 := f̄2/(γ̄1234γ̄1245x p) so that
LT( f̂2)= y p2

+p. Subduct the tête-à-tête ( f̂ p
2 , NM(y)p+1) to get

h̃3 := NM(y)p+1
− f̂ p

2 −

(
γ̄1245

γ̄1234
−
γ̄

p
2345

γ̄
p

1245

)
f̂2 NM(y)p−1x p2

−p.

Lemma 9.2. LT(h̃3)=

(
γ̄

p+1
2345

γ̄
p+1

1245

)
x p2
−1 y p3

+1.

Proof. Expand and reduce modulo the ideal 〈x p2
〉. �
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Define

h3 :=
γ̄

p+1
1245

x p2−1γ̄
p+1

2345

h̃3

so that LT(h3)= y p3
+1.

Lemma 9.3. Subducting the tête-à-tête (h p
3 , NM(y)p2

−1 f̂2) gives an invariant with
lead monomial x pz p4

.

Proof. Work modulo the ideal 〈x p+1, x p y〉 and expand to get

h p
3 − f̂2 NM(y)p2

−1
+
γ̄2345

γ̄1234
x p−1h3 NM(y)p2

−p
≡

(
γ̄

p2

1234γ̄
p

1245

γ̄
p2+p

2345

)
z p4

x p. �

Theorem 9.4. If γ1234(M) 6= 0, γ1235(M)= γ1357(M)= 0 and γ1245(M) 6= 0, then
the set B := {x, NM(y), f̂2, h3, NM(z)} is a SAGBI basis for F[VM ]

E. Furthermore,
F[VM ]

E is a complete intersection with relations coming from the subduction of the
tête-à-têtes ( f̂ p

2 , NM(y)p+1) and (h p
3 , NM(y)p2

−1 f̂2).

Proof. Use the subduction given in Lemma 9.3 to construct an invariant h4 with
lead term z p4

. Define B′ := {x, NM(y), f̂2, h3, h4} and let A denote the algebra
generated by B′. The nontrivial tête-à-têtes for B′ subduct to zero using Lemmas 9.2
and 9.3. Thus B′ is a SAGBI basis for A. From Lemma 9.1, F[VM ]

E
[x−1
] =

F[x, NM(y), f̄12346][x−1
]. However, since f2 = ( f 2

1 + γ1234 f12346)/(2x p2
−2p), we

see that
F[x, NM(y), f̄12346][x−1

] = F[x, NM(y), f̂2][x−1
].

Thus, using Theorem 1.1, A = F[VM ]
E. Clearly LT(NM(z))= z pk

for k ≤ 4. Since
B′ is a SAGBI basis for F[VE ]

E, this forces k = 4, giving LM(B)= LM(B′). �

Suppose γ̄1245 = 0 and let ri denote row i of the matrix 0(M). Since γ̄1234 6= 0,
we see that {r1, r2, r3, r4} is linearly independent. Using the assumptions that
γ̄1235 = γ̄1245 = 0, we see that r5 ∈ Span(r1, r2, r3) ∩ Span(r1, r2, r4). Therefore
r5 ∈ Span(r1, r2). However, since γ̄1357 = 0, using a change of coordinates (see
[Campbell et al. 2013, §4]) and the GL4(Fp)-action, we may assume

M :=
(

1 c12 c13 0
0 c22 c23 c24

)
with c24 6= 0. Since r5 = r p2

1 , we conclude that r5 = r1. Thus γ̄2345 = −γ̄1234.
Hence NM(y)= f̄1/γ̄1234 = y p2

− yx p2
−1. Define ĥ2 := − f̄2/(γ̄

2
1234x2p−1) so that

LT(ĥ2)= y p2
+1.

Theorem 9.5. If γ1234(M) 6= 0 and γ1235(M) = γ1357(M) = γ1245(M) = 0, then
the set B := {x, NM(y), ĥ2, NM(z)} is a SAGBI basis for F[VM ]

E. Furthermore,
F[VM ]

E is a hypersurface with the relation coming from the subduction of the
tête-à-tête (ĥ p2

2 , NM(y)p2
+1).
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Proof. Using the definition of ĥ2 and the description given above of NM(y), we see
that

LT
(
ĥ p2

2 − NM(y)p2
+1
− ĥ2(x NM(y))p2

−1)
=−

1
2 z p4

x p2
.

Thus we can use the subduction of the tête-à-tête (ĥ p2

2 , NM(y)p2
+1) to construct

an invariant h4 with lead term z p4
. Define B′ := {x, NM(y), ĥ2, h4} and let A

denote the algebra generated by B′. The only nontrivial tête-à-tête subducts to
zero. Therefore B′ is a SAGBI basis for A. From Lemma 9.1, F[VM ]

E
[x−1
] =

F[x, NM(y), f̄12346][x−1
]. However, it follows from the definition of ĥ2 that

F[x, NM(y), f̄12346][x−1
] = F[x, NM(y), ĥ2][x−1

]. Thus, using Theorem 1.1, A =
F[VM ]

E. Clearly LT(NM(z))= z pk
for k ≤ 4. Since B′ is a SAGBI basis for F[VE ]

E,
this forces k = 4, giving LM(B)= LM(B′). �

10. The γ1234 = 0, γ1235 = 0, γ1357 = 0 strata

In this section we consider representations VM with γ1235(M)= 0, γ1234(M)= 0
and γ1357(M)= 0. For convenience, we write γ̄i jk` for γi jk`(M). We assume that
the first row of M is nonzero; otherwise, the representation is of type (2, 1) and the
calculation of F[VM ]

E can be found in Section 4 of [Campbell et al. 2013]. Using
a change of coordinates, see Proposition 4.3 of [loc. cit.], the GL4(Fp)-action, and
the hypothesis that γ̄1357 = 0, we may take

M =
(

1 c12 c13 0
0 c22 c23 c24

)
.

Since γ̄1235 = 0, either c24 = 0 or {1, c12, c13} is linearly dependent over Fp. We
assume c24 6= 0; otherwise the representation is not faithful and we can view VM as
a representation of a group of rank three. Using the GL4(Fp)-action, we replace the
third column by a linear combination of the first two columns to get(

1 c12 0 0
0 c22 c23 c24

)
.

Expanding gives

γ̄1234 = (c12− cp
12) det

(
c23 c24

cp
23 cp

24

)
.

Since γ̄1234= 0, either c12 ∈ Fp or {c23, c24} is linearly dependent over Fp. However,
if {c23, c24} is linearly dependent over Fp, then the representation is not faithful. So
we may assume c12 ∈ Fp. Using the GL4(Fp)-action to replace the second column
with a linear combination of the first two columns gives(

1 0 0 0
0 c22 c23 c24

)
.
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If γ̄1246 = 0, then {c22, c23, c24} is linearly dependent over Fp, and again the repre-
sentation is not faithful. Thus we may assume that γ̄1246 6= 0. Using the above form
for M , it is clear that γ̄1236 = 0, γ̄1346 = 0 and γ̄1246 =−γ̄2346. Thus

f̄12346 = γ̄1246(y px2p2
−p
− yx2p2

−1) ∈ F[x, y]E .

Since F[x, y]E = F[x, NM(y)], we have

NM(y)= f̄12346/(γ̄1246x2p2
−p)= y p

− yx p−1.

Lemma 10.1. F[VM ]
E
[x−1
] = F[x, NM(y), f̄12468][x−1

].

Proof. The proof is similar to the proof of Theorem 4.4 of [Campbell et al. 2013]
(and Lemmas 8.1 and 9.1). Since NM(y) and f̄12468/x p3

are algebraically inde-
pendent elements of F[x, y, δ/x]E with deg(NM(y)) deg( f̄12468/x p3

)= p4
= |E |,

applying Theorem 3.7.5 of [Derksen and Kemper 2002] gives

F[x, y, δ/x]E = F[x, NM(y), f̄12468/x p3
].

The result then follows from the observation that

F[x, y, z]E [x−1
] = F[x, y, δ/x]E [x−1

]. �

Subducting f̄12468 gives

h̃1 := f̄12468+ γ̄1246
(
NM(y)2p2

+ 2NM(y)p2
+px p3

−p2
+ 2NM(y)p2

+1x p3
−p).

Lemma 10.2. LT(h̃1)=−2γ̄1246x p3
−1 y p3

+1.

Proof. We work modulo the ideal 〈x p3
〉. Using the definition, f̄12468 ≡−γ̄1246 y2p3

.
Since NM(y)= y p

− yx p−1, we have

NM(y)2p2
= y2p3

− 2y p3
+p2

x p3
−p2
+ y2p2

x2p3
−2p2
≡ y2p3

− 2y p3
+p2

x p3
−p2
.

Expanding and simplifying gives

NM(y)p2
+px p3

−p2
+ NM(y)p2

+1x p3
−p
≡ y p3

+p2
x p3
−p2
− y p3

+1x p3
−1.

Thus

h̃1 = f̄12468+ γ̄1246
(
NM(y)2p2

+ 2NM(y)p2
+px p3

−p2
+ 2NM(y)p2

+1x p3
−p)

≡−2γ̄1246x p3
−1 y p3

+1. �

Define h1 := −h̃1/(2γ̄1246x p3
−1) so that LT(h1)= y p3

+1. Note that

F[x, NM(y), h1][x−1
] = F[x, NM(y), f̄12468][x−1

].

Lemma 10.3. Subducting the tête-à-tête (h p
1 , NM(y)p3

+1) gives an invariant with
lead monomial x pz p4

.
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Proof. Refining the calculation in the proof of the previous lemma gives

h̃1 ≡〈x p3+1, x p3 y〉 γ̄1246(−2y p3
+1x p3

−1
+ x p3

z p3
).

Thus

h1 ≡〈x2, xy〉 y p3
+1
−

1
2 z p3

x and h p
1 ≡〈x p+1, x p y〉 y p4

+p
−

1
2 z p4

x p.

Furthermore
NM(y)p3

+1
≡〈x p+1, x p y〉 y p4

+p
− y p4

+1x p−1

and
h1 NM(y)p3

−p2
x p−1

≡〈x p+1, x p y〉 y p4
+1x p−1.

Thus LT(h p
1 − N p3

+1
M − h1 NM(y)p3

−p2
)=− 1

2 x pz p4
. �

Theorem 10.4. If γ1234(M)= 0, γ1235(M)= 0, γ1357(M)= 0 and γ1246(M) 6= 0,
then the set B := {x, NM(y), h1, NM(z)} is a SAGBI basis for F[VM ]

E. Furthermore,
F[VM ]

E is a hypersurface with the relation coming from the subduction of the
tête-à-tête (h p

1 , NM(y)p3
+1).

Proof. Use the subduction given in Lemma 10.3 to construct an invariant h2

with lead term z p4
. Define B′ := {x, NM(y), h1, h2} and let A denote the alge-

bra generated by B′. The single nontrivial tête-à-tête for B′ subducts to zero
using Lemma 10.3. Thus B′ is a SAGBI basis for A. From Lemma 10.1,
F[VM ]

E
[x−1
] = F[x, NM(y), h1][x−1

]. Thus, using Theorem 1.1, A = F[VM ]
E.

Clearly LT(NM(z))= z pk
for k ≤ 4. Since B′ is a SAGBI basis for F[VE ]

E, this
forces k = 4, giving LM(B)= LM(B′). �
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Bootstrap techniques for measures of center
for three-dimensional rotation data

L. Katie Will and Melissa A. Bingham

(Communicated by Mary C. Meyer)

Bootstrapping is a nonparametric statistical technique that can be used to esti-
mate the sampling distribution of a statistic of interest. This paper focuses on
implementation of bootstrapping in a new setting, where the data of interest are
3-dimensional rotations. Two measures of center, the mean rotation and spatial
average, are considered, and bootstrap confidence regions for these measures
are proposed. The developed techniques are then used in a materials science
application, where precision is explored for measurements of crystal orientations
obtained via electron backscatter diffraction.

1. Introduction

Three-dimensional rotation data is common in the field of materials science, where
electron backscatter diffraction (EBSD) can be used to study the microtexture of
metals, including the orientation of crystals within the metal. Using EBSD, a fixed
beam of electrons is diffracted off of a metal sample, creating an image on a focal
plane of sensors. These images reveal information about crystal structure and
orientation in the metal [Randle 2003]. One area of interest in regards to EBSD
measurements is precision. As Bingham, Nordman, and Vardeman [Bingham et al.
2009a] point out, methods used for quantifying EBSD precision in the materials
science literature are not standard, with ad hoc precision estimates often reported
(see, for example, [Demirel et al. 2000; Wilson and Spanos 2001]). This led
Bingham et al. [2009a] to investigate the precision of measurements obtained
via EBSD by developing new statistical distributions for 3-dimensional rotations.
While the distributions developed by Bingham et al. [2009a] do allow for some
flexibility in modeling, our intent here is development of nonparametric techniques,
namely bootstrap confidence regions, that can be used without the need for any
distributional assumptions. While bootstrapping techniques are commonly used in

MSC2010: 62G09, 62P30.
Keywords: bootstrap, 3-D rotations, mean matrix, spatial average.
This research was supported by NSF grant DMS-1104409.

583

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2016.9-4
http://dx.doi.org/10.2140/involve.2016.9.583


584 L. KATIE WILL AND MELISSA A. BINGHAM

one-dimensional nonparametric statistics, these techniques have not been applied
to 3-dimensional rotation data.

Suppose that O1, . . . , On ∈ SO(3) represent orientations at n scanned locations
on a metal specimen as measured by EBSD, where SO(3) denotes the set of all 3×3
orthogonal rotation matrices. When adjacent locations produce similar EBSD crystal
orientations, those locations are considered to be part of the same grain. We are inter-
ested in estimating the central rotation of a set of orientations from within the same
grain, since the true central orientation would represent the actual grain orientation,
with random scatter in O1, . . . , On due to measurement error in the EBSD process.
We will investigate two different measures of center for 3-dimensional rotation data.

The mean rotation, M , is a commonly used measure of center [León et al. 2006;
Bingham et al. 2009a; Khatri and Mardia 1977] that is defined to be the rotation
that maximizes trace(MT O), where O = 1

n

∑n
i=1 Oi for O1, . . . , On ∈ SO(3). The

mean rotation M can be found by using M = V W , where O = V6W is the singular
value decomposition of O . It is necessary to use these components from the singular
value decomposition since O may not be an element of SO(3), but M is.

The second measure of center considered is the spatial average of Ball and
Greiner [2012]. The spatial average of a set of rotations O1, . . . , On ∈ SO(3) is
obtained through an iterative procedure that uses what is referred to as the axis-angle
representation of a matrix. For a given matrix, the axis and angle are such that if
you rotate the 3× 3 identity matrix about the axis by the angle, you will arrive at
the specified matrix. The steps to find the spatial average are outlined below, where
the end result is the matrix S found in step (4) in the final iteration. The procedure
begins by looking at just the first two matrices, O1 and O2. Starting at O1, we
rotate half of the way towards O2, resulting in a matrix S. Then we consider the
third matrix in the data set O3 and rotate S one-third of the way towards this matrix,
giving an updated matrix S. We then rotate S one-fourth of the way towards O4,
again updating S. This process continues until we have been through all n matrices
in the data set. Note that for large samples both the mean rotation and spatial
average converge to the population central matrix.

(1) Let S = O1 and let i = 2.

(2) Compute G = ST Oi .

(3) Let u be the axis of G, let θ be the angle of G, and let p = θ/ i .

(4) Compute S = S P , where P is the matrix form of (u, p), and let i = i + 1.

(5) If i ≤ n, return to step (2).

In Section 2, development of bootstrap confidence regions for these measures
of center for 3-dimensional rotations will be discussed. Accuracy of the bootstrap
techniques will be explored through a simulation study in Section 3. Finally, the
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bootstrap procedure will be applied to data from a nickel specimen to evaluate
EBSD precision in Section 4.

2. Development of bootstrapping technique

Bootstrapping is a nonparametric statistical technique that uses resampling with
replacement. It can be used to estimate the sampling distribution of almost any
statistic, e.g., mean, proportion, variance. It is commonly used to find confidence
regions for population parameters. To find a 95% confidence interval in one-
dimension, a large number (say 1000) of samples of size n are drawn from the
original sample of size n with replacement and the statistic of interest is computed
for each bootstrap sample. This creates a sampling distribution for the statistic of
interest. Under the bootstrap percentile method, a 95% confidence interval is then
obtained by using the 2.5th and 97.5th percentiles as confidence bounds.

Although bootstrapping has been used to create confidence regions in a wide
variety of settings, including analyzing directional data such as p-dimensional
unit vectors [Fisher and Hall 1989], we introduce the concept of bootstrapping for
measures of center in the 3-dimensional setting, where the data can be represented by
3×3 orthogonal rotation matrices. To estimate measures of center for 3-dimensional
rotation data by bootstrapping, we sample with replacement from the original sample
of n matrices 1000 times. Each sample is a bootstrap sample, for which we compute
a measure of center (mean rotation or spatial average). We will refer to these
1000 matrices as bootstrap central matrices. To provide an estimate of center for
the 3-dimensional rotation data, the mean rotation of the 1000 bootstrap central
matrices can be computed. Since this matrix is analogous to what we would consider
a “point estimate” when considering 1-dimensional data, we also refer to it as a
point estimate here.

After obtaining the point estimate for our central rotation, we want to find a
confidence region around this matrix. Because rotation matrices do not have a
natural ordering, the percentile bootstrap method of using the 2.5th and 97.5th
percentiles as confidence bounds does not translate directly to 3-dimensional rotation
data. Instead, we will use a set of three cones centered at the point estimate to give
a confidence region for the true central rotation in a similar fashion to Bingham
et al. [2009a]. Figure 1 illustrates this concept for two different-sized sets of cones.
To determine the size of the cones needed to give a 95% confidence region, we
first think of each matrix as a set of three axes (x , y, and z) and consider the angles
between the axes of the point estimate and the bootstrap central matrices. For each
bootstrap central matrix, we find three angles. Each one is the angle between an
axis and the corresponding axis of the point estimate. We then take the maximum of
these three angles, so that moving a distance of that angle away from all three axes
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Figure 1. Plot of confidence cones around a point estimate (rep-
resented as three axes) with an angle of 0.2 radians (left) and
0.6 radians (right).

of the point estimate would contain all three axes of the bootstrap central matrix.
Once these maximum angles are computed for all 1000 bootstrap central matrices,
we take the 95th percentile and use this as the cone size. Since this set of three cones
centered at the point estimate will capture 95% of the bootstrap central matrices,
we think of it as a 95% bootstrap percentile region for the true central matrix.

3. A simulation study

To examine the accuracy of the bootstrap technique developed in Section 2, a
simulation study was performed. Data sets were simulated from both the von Mises
version of the uniform axis random spin (vM-UARS) distributions [Bingham et al.
2009a] and the matrix Fisher distribution [Khatri and Mardia 1977]. A vM-UARS
or matrix Fisher distribution is characterized by a central rotation S ∈ SO(3) and
a spread parameter κ ∈ (0, ∞). The spread parameter κ is best described as a
concentration parameter since larger values of κ yield rotations with less variability.

For this simulation study we used κ values of 1, 5, 20, and 500 and sample size n
of 10, 30, and 100. For each combination of κ and n both the mean rotation and
spatial average were considered and the bootstrapping procedure was replicated
1000 times (i.e., 1000 different samples were drawn from each of the vM-UARS
and matrix Fisher distributions) with 1000 bootstrap samples taken from the original
sample each time. For each of the 1000 replications a 95% confidence region as
a set of three cones was found. The coverage rates of the confidence cones were
then found as the proportion of times out of 1000 that the true central rotation S
was captured. Note that our choice of S for simulation purposes was arbitrary, as
results are the same regardless of what true central rotation is used. Tables 1 and 2
show the coverage rates along with the median cone size, in radians, for each case.

The coverage rates fluctuate closely around 95%, which validates that the boot-
strapping procedure is behaving as desired for the two distributions considered here.
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(κ, n)
Mean rotation Spatial average

Coverage rate Median cone size Coverage rate Median cone size

(1, 10) 0.966 0.63441 0.944 0.72272
(1, 30) 0.962 0.32435 0.980 0.51034
(1, 100) 0.948 0.16934 0.979 0.26583

(5, 10) 0.944 0.22523 0.924 0.22695
(5, 30) 0.932 0.13152 0.947 0.13726
(5, 100) 0.954 0.07147 0.965 0.07526

(20, 10) 0.944 0.10876 0.943 0.10816
(20, 30) 0.946 0.06436 0.945 0.06500
(20, 100) 0.956 0.03512 0.959 0.03535

(500, 10) 0.944 0.02157 0.927 0.02176
(500, 30) 0.963 0.01269 0.945 0.01271
(500, 100) 0.949 0.00697 0.961 0.00702

Table 1. Coverage rates and median cone sizes (in radians) for
estimating the center of the vM-UARS distribution using the mean
rotation and the spatial average.

(κ, n)
Mean rotation Spatial average

Coverage rate Median cone size Coverage rate Median cone size

(1, 10) 0.957 1.05138 0.951 1.35648
(1, 30) 0.950 0.55232 0.995 0.88534
(1, 100) 0.942 0.29247 0.991 0.43596

(5, 10) 0.922 0.27921 0.909 0.27613
(5, 30) 0.945 0.16369 0.939 0.16325
(5, 100) 0.954 0.09025 0.947 0.09023

(20, 10) 0.919 0.13289 0.920 0.13365
(20, 30) 0.932 0.07896 0.952 0.07891
(20, 100) 0.950 0.04319 0.939 0.04318

(500, 10) 0.918 0.02629 0.925 0.02633
(500, 30) 0.940 0.01556 0.948 0.01544
(500, 100) 0.947 0.00851 0.948 0.00851

Table 2. Coverage rates and median cone sizes (in radians) for
estimating the center of the matrix Fisher distribution using the
mean rotation and the spatial average.
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We also see that the values of κ and n impact the median confidence region sizes as
expected, with larger κ (less spread) and larger n resulting in smaller regions. It is
also important to compare the nonparametric bootstrap techniques developed here
to existing parametric methods for the vM-UARS and matrix Fisher distributions.
Bingham, Vardeman, and Nordman [Bingham et al. 2009b, Table 5, page 618]
provide median cone sizes for the central rotation of the vM-UARS distributions
obtained by maximum quasi-likelihood estimation using the same κ and n values
considered here. Bingham, Nordman, and Vardeman [Bingham et al. 2010b, Table 5,
page 1325] use maximum likelihood estimation to provide similar results for the
matrix Fisher distribution. To compare the cone sizes of these works to the results
given in Tables 1 and 2 presented here, we calculated the relative difference between
the sizes as d(ap, ab) = |ap − ab|/ap, where ap is the angle from the parametric
approach and ab is the angle from the bootstrap approach. For the vM-UARS distri-
bution, the largest relative difference was 0.1360 (for κ = 1 and n = 100). For the
matrix Fisher distribution, the largest relative difference was 0.1441 (for κ = 1 and
n= 10). Both of these differences are small, indicating that the bootstrap techniques
developed here produce results that are equivalent to existing parametric approaches.

4. Application to electron backscatter diffraction data

Now that the bootstrapping technique developed in Section 2 has been shown to keep
coverage rates as expected and perform similarly to existing parametric methods, we
use it to investigate precision of measurements obtained through EBSD. A high-iron-
concentration nickel specimen of size 40µm × 40µm was scanned using EBSD.
The scanning was done over a regularly spaced grid with 0.2µm step size across
the top of the specimen, resulting in 4121 crystal orientations. See [Bingham et al.
2010a] for more details regarding the machinery used and data collection process.

For two orientations P and Q, the misorientation angle between them is the
smallest angle of rotation needed to get from P to Q when rotating about some axis.
When using EBSD, orientations close in proximity are classified as composing
a grain when the misorientation angle between them is small, so that a grain is
thought of as a homogeneous piece of material that produces observations which
generally share a common orientation. Figure 2 gives the grain map that resulted
from using EBSD on the nickel specimen [Bingham et al. 2010a]. The grain map
can be viewed as if one was looking down on the piece of nickel, so that the axes
give the x- and y-locations on a rectangular grid. Each dot in the figure corresponds
to a single measured orientation from the total 4121 orientations in this scan. Similar
orientations are classified into grains, with each colored block on the map indicating
a different grain. The similarity of color within grains makes some of the 4121 dots
indistinguishable from others. Dots that clearly stand out represent locations on
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Figure 2. EBSD grain map for the nickel specimen, with grains
represented by blocks of similar color.

Grain Sample size (n) Original cone size Reported EBSD precision

1 49 0.0647◦ 0.4531◦

2 31 0.1742◦ 0.9699◦

3 21 0.0876◦ 0.4016◦

4 44 0.0823◦ 0.5461◦

5 22 0.1054◦ 0.4942◦

Table 3. Size of 95% confidence regions for central rotations and
reported precision of EBSD measurements (in degrees).

the scan with deformities. Although there are over ten grains present, we will use
subsets of data from five of these grains in the analysis here.

For each of the five grains considered, we applied the bootstrapping technique
to the 3× 3 matrices representing crystal orientations. Using the mean rotation
as our measure of center, 95% confidence regions for the central rotation were
found. The sizes of the confidence cones are provided in Table 3, in degrees.
Because confidence region sizes decrease at a rate of 1/

√
n (which can be verified

by examining the cone sizes presented in Tables 1 and 2), before reporting the
degree of precision we multiply each of the five cone sizes by

√
n. The reported

precision estimates are also provided in Table 3. We find EBSD precision estimates
comparable to the 1◦ reported by Demirel, El-Dasher, Adams, and Rollett [Demirel
et al. 2000] and the 0.5◦ reported by Wilson and Spanos [2001] by using methods
that are much more statistically sound than the methods employed in these works.

5. Conclusion

The study of precision for EBSD measurements considered here is just one of
many applications that could benefit from the bootstrapping techniques developed.
These bootstrapping techniques, while simple to implement, have been shown
to perform as well as existing parametric approaches. Given the complexity of
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existing parametric methods, they are likely not easily accessible to practitioners
(such as materials scientists) who often collect 3-dimensional rotation data. Further,
statistical methods that do not rely on distributional assumptions are important in
the area of 3-dimensional rotation data since there are relatively few developed
distributions for which parametric methods are even available [Bingham et al. 2009a;
Khatri and Mardia 1977; León et al. 2006]. Therefore, the bootstrapping techniques
presented here could play an important role in the field of statistics, as well as in
areas of study where 3-dimensional rotations are commonly found.
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Graphs on 21 edges that are not 2-apex
Jamison Barsotti and Thomas W. Mattman

(Communicated by Joel Foisy)

We show that the 20-graph Heawood family, obtained by a combination of ∇Y
and Y∇ moves on K7, is precisely the set of graphs of at most 21 edges that are
minor-minimal with respect to the property “not 2-apex”. As a corollary, this
gives a new proof that the 14 graphs obtained by ∇Y moves on K7 are the minor-
minimal intrinsically knotted graphs of 21 or fewer edges. Similarly, we argue
that the seven-graph Petersen family, obtained from K6, is the set of graphs of at
most 17 edges that are minor-minimal with respect to the property “not apex”.

1. Introduction

A graph is n-apex if there is a set of n or fewer vertices whose deletion results in
a planar graph. As this property is closed under taking minors, it follows from
Robertson and Seymour’s graph minor theorem [2004] that, for each n, the n-apex
graphs are characterized by a finite set of forbidden minors. For example, 0-apex is
equivalent to planarity, which Wagner [1937] showed is characterized by K5 and
K3,3. For the property 1-apex, which we simply call apex, there are several hundred
forbidden minors (see [Ding and Dziobak 2016], which refers to work of a team
led by Kézdy). Since there are likely even more forbidden minors for the 2-apex
property, we divide the problem into more manageable pieces by graph size. In an
earlier paper [Mattman 2011], the second author showed that every graph on 20 or
fewer edges is 2-apex. This means there are no forbidden minors with 20 or fewer
edges. In the current paper, we show that there are exactly 20 obstruction graphs
for 2-apex of size at most 21.

Following [Hanaki et al. 2011], the Heawood family will denote the set of
20 graphs obtained from K7 by a sequence of zero or more ∇Y or Y∇ moves.
Recall that a ∇Y move consists of deleting the edges of a 3-cycle abc of graph G
and adding a new degree-3 vertex adjacent to the vertices a, b, and c. The reverse,
deleting a degree-3 vertex and making its neighbors adjacent, is a Y∇ move. The
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Figure 1. The Heawood family (figure taken from [Goldberg et al.
2014]). Edges represent ∇Y moves.

Heawood family is illustrated schematically in Figure 1, where K7 is graph 1 at the
top of the figure and the (14, 21) Heawood graph is graph 18 at the bottom.

Our main theorem is that the Heawood family is precisely the obstruction set for
the property 2-apex among graphs of size at most 21. We will state this in terms of
minor-minimality. We say H is a minor of graph G if H is obtained by contracting
edges in a subgraph of G. The graph G is minor-minimal with respect to a graph
property P if G has P , but no proper minor of G does. We call obstruction graphs
for the 2-apex property minor-minimal not 2-apex or MMN2A.

Theorem 1.1. The 20 Heawood family graphs are the only MMN2A graphs on
21 or fewer edges.

As there are no MMN2A graphs of size 20 or less [Mattman 2011] and one
easily verifies that the Heawood family graphs are MMN2A, the argument comes
down to showing no other 21-edge graph enjoys this property. We give a more
complete outline of our proof at the end of this introduction.

Our interest in 2-apex stems from the close connection with intrinsic knotting.
A graph is intrinsically knotted or IK if every tame embedding of the graph in R3

contains a nontrivially knotted cycle. Then, a minor-minimal IK, or MMIK, graph is
one that is IK, but such that no proper minor has this property. Again, Robertson and
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Seymour’s graph minor theorem [2004] implies a finite list of MMIK graphs, but
determining this list or even bounding its size has proved very difficult. Restricting
by order, it follows from Conway and Gordon’s seminal paper [1983] that K7 is the
only MMIK graph on seven or fewer vertices; two groups, Campbell et al. [2008]
and Blain et al. [2007], independently determined the MMIK graphs of order 8;
and we have announced (see [Morris 2008; Goldberg et al. 2014]) a classification
of nine-vertex graphs, based on a computer search. In terms of edges, we know
([Johnson et al. 2010] and, independently, [Mattman 2011]) that a graph of size 20
or less is not IK. Using the following lemma (due, independently, to two research
teams), this follows from the lack of MMN2A graphs of that size.

Lemma 1.2 [Blain et al. 2007; Ozawa and Tsutsumi 2007]. If G is IK, then G is
not 2-apex.

The current authors [Barsotti and Mattman 2013] and, independently, Lee et al.
[2015] classified the 21-edge MMIK graphs. These are the 14 KS graphs obtained
by ∇Y moves on K7, first described by Kohara and Suzuki [1992]. In other words,
these are the Heawood family graphs except those labeled 9, 14, 16, 17, 19, and 20
in Figure 1. In light of Lemma 1.2, we have a new proof as a corollary to our
main theorem.

Corollary 1.3. The 14 KS graphs are the only MMIK graphs on 21 or fewer edges.

Proof. Kohara and Suzuki [1992] showed that the KS graphs are MMIK. Suppose G
is MMIK of at most 21 edges. Then G is connected. By Lemma 1.2, G has an
MMN2A minor and, by Theorem 1.1, this means a Heawood family graph minor.
As G has at most 21 edges and is connected, G is a Heawood family graph. Finally,
Goldberg et al. [2014] and Hanaki, Nikkuni, Taniyama, and Yamazaki [2011],
independently, showed that in the Heawood family only the KS graphs are IK.
Therefore, G is a KS graph. �

We remark that there is considerable overlap in the current paper and our
preprint [Barsotti and Mattman 2013]. We have opted for a self-contained presenta-
tion here as we will not be publishing the above preprint elsewhere.

The proof of our main theorem relies on our classification of MMNA graphs
(i.e., obstructions to the 1-apex, or apex, property) of small size, a result that may
be of independent interest. Recall that, in analogy with the Heawood family, the
Petersen family is the set of the seven graphs obtained from the Petersen graph by
a sequence of ∇Y or Y∇ moves.

Theorem 1.4. The seven Petersen family graphs are the only MMNA graphs on
16 or fewer edges.

Famously, the Petersen family is precisely the obstruction set to intrinsic link-
ing [Robertson et al. 1995]. It would be nice to have a similar description of the
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Heawood family. Theorem 1.1 is one such characterization. As a second corollary to
our main theorem, we give a characterization of similar flavor. Hanaki et al. [2011]
showed that the Heawood family graphs are minor-minimal with respect to the
property “intrinsically knotted or completely 3-linked”; that is, Heawood family
graphs are MMI(K or C3L).

Corollary 1.5. The 20 Heawood family graphs are the only MMI(K or C3L) graphs
on 21 or fewer edges.

Proof. Hanaki et al. [2011] proved these graphs are MMI(K or C3L). Let G be
MMI(K or C3L) on 21 or fewer edges. Then G is connected. By [Hanaki et al.
2011, Remark 4.5], I(K or C3L) implies N2A, so G must have an MMN2A minor.
By Theorem 1.1, this means a Heawood minor. It follows that G has 21 edges and
is a Heawood family graph, as required. �

This gives two characterizations of the Heawood family. However, like our
Theorem 1.4, they are less than ideal due to the hypothesis on graph size. Is there
a “natural” description of the Heawood family analogous to the way the Petersen
family is precisely the obstruction set for intrinsic linking?

Note that the condition on graph size in these three results is necessary. Indeed,
for Theorem 1.4, the disjoint union K3,3tK3,3 is an 18-edge MMNA graph outside
the Petersen family. On the other hand, a computer search [Pierce 2014] shows
that Theorem 1.4 could be extended to 17 edges: there are no MMNA graphs of
size 17. Since IK implies both N2A (Lemma 1.2) and I(K or C3L) (see [Hanaki
et al. 2011]) there are many examples of MMN2A and MMI(K or C3L) graphs
on 22 edges, including K3,3,1,1. Foisy [2002] showed this graph is MMIK, which
means it is also N2A and I(K or C3L). As any proper minor of K3,3,1,1 would
have at most 21 edges, and no Heawood family graph is a minor, it follows from
Theorem 1.1 and Corollary 1.5, that K3,3,1,1 is both MMN2A and MMI(K or C3L).
So, the hypothesis on size is necessary for both the theorem and its corollary.

Thus, K3,3,1,1 and the 14 KS graphs are examples of graphs that enjoy all
three properties: MMN2A, MMIK, and MMI(K or C3L). On the other hand, the
remaining six Heawood graphs show that a graph can be MMN2A and not MMIK.
This includes the graph that we have called E9 [Mattman 2011] and that Hanaki et al.
[2011] label N9. In [Goldberg et al. 2014] we showed that adding an edge to this
graph makes it MMIK. In other words, E9+e is MMIK and not MMN2A (as it has
the N2A graph E9 as a subgraph). On the other hand, since IK implies I(K or C3L),
every MMIK graph has a minor that is MMI(K or C3L); although E9, for example,
shows that the set of I(K or C3L) graphs is a strictly larger class than IK. Similarly,
I(K or C3L) implies N2A [Hanaki et al. 2011], which means every MMI(K or C3L)
has an MMN2A minor, while the disjoint union of three K3,3 graphs is an example
of a graph that is N2A but not I(K or C3L).
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All six of the Heawood graphs that are not MMIK are MMI(K or C3L) and we
can ask if a graph that is MMN2A and not MMIK need be I(K or C3L). However,
the disjoint union G = K6 t K5 is a counterexample. Since K6 is MMNA and K5

is nonplanar, G is N2A and, since any proper minor is 2-apex, it is in fact MMN2A.
On the other hand, G is neither IK nor I(K or C3L) as each component has fewer
than 21 edges.

We conclude this overview of connections between apex graphs and intrinsic
knotting with a question. In [Goldberg et al. 2014] we describe the known 263 exam-
ples of MMIK graphs. By Lemma 1.2, none of these graphs are 2-apex. However,
it is straightforward to verify that each is 3-apex. Does this hold more generally?

Question 1.6. Is every MMIK graph 3-apex?

The remainder of our paper is a proof of Theorem 1.1. Let G be an MMN2A
graph of size 21. We must show that G is a Heawood family graph. We can
assume δ(G), the minimum degree, is at least 3. Indeed, in an N2A graph, deleting
a degree-0 vertex or contracting an edge of a vertex of degree 1 or 2 will result
in an N2A minor. We can also bound the number of vertices. As G has 21 edges
and minimum degree of at least 3, it has at most 14 vertices. On the other hand,
we classified MMN2A graphs on nine or fewer vertices in [Mattman 2011]. So we
can assume 10≤ |V (G)| ≤ 14. After introducing some preliminary lemmas, and
proving Theorem 1.4, in the next section, we devote one section each to the five
cases where the number of vertices runs from 14 down to ten. We opted for this
reverse ordering as it roughly corresponds to the increasing lengths of the proofs.

2. Preliminaries

We denote the order of a graph G by |G| and its size by ‖G‖ and frequently use
the pair (|G|, ‖G‖) as a way of describing the graph. For ai ∈ V (G), we will
use G − a1, . . . , an to denote the induced subgraph on V (G) \ {a1, . . . , an}. We
will write G + a to denote a graph with vertices V (G) ∪ {a} that includes G as
the induced subgraph on V (G). In the case where V (G) and {a} are included
in the vertex set of some larger graph, G + a will mean the induced subgraph
on V (G)∪ {a}. We use N (a) to denote the neighborhood of vertex a, the set of
vertices adjacent to a. We will write NA, MMNA, N2A, and MMN2A for “not
apex” (equivalently, “not 1-apex”), “minor-minimal not apex”, “not 2-apex”, and
“minor-minimal not 2-apex” respectively.

Vertices of degree less than 3 do not participate in determining whether or not a
graph is n-apex, so we next describe a systematic way of deleting those vertices.
Recall that in a multigraph the edge set is a multiset, so that edges may be repeated.
In addition, there may be loops, edges that are incident to the same vertex twice.
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Definition 2.1. The simplification Gs of a graph G is the multigraph obtained by
the following procedure:

(1) Delete all degree-0 vertices.

(2) Delete all degree-1 vertices and their edges.

(3) If there remain vertices of degree 0 or 1, go to step (1).

(4) For each degree-2 vertex v with distinct edges va and vb, delete v and those
edges and add the edge ab.

(5) If there remain any vertices of degree 0 or 1, go to step (1).

The procedure allows us to recognize V (Gs) as a subset of V (G). We call these
vertices of G the branch vertices.

In step (4), the procedure leaves loops on degree-2 vertices unchanged. On
the other hand, it may be that a = b so that va is a doubled edge. In this case,
step (4) replaces the doubled edge with a loop on vertex a and deletes vertex v. It’s
straightforward to verify that Gs is unique, up to isomorphism.

Lemma 2.2. The graph G is n-apex if and only if Gs is.

Proof. Just as for a graph, we say that a multigraph is n-apex if there are n or
fewer vertices whose deletion results in a planar multigraph. The lemma follows as
n-apex is preserved by each step in the definition. �

This means that graphs where Gs is nonplanar will be of particular interest. An
important class is that of split K3,3 graphs: graphs G such that Gs

= K3,3.
In this section, we will prove Theorem 1.4: the Petersen family graphs are the

MMNA graphs with ‖G‖ ≤ 16. Recall that the Petersen family is the set of seven
graphs obtained by ∇Y and Y∇ moves on the (10, 15) Petersen graph P10. In
addition to P10, the set includes K6, K3,3,1, K4,4− e, and, by definition, is closed
under ∇Y and Y∇ moves. We first observe that each graph in the family is MMNA.

Lemma 2.3. The seven graphs in the Petersen family are all MMNA.

Proof. Aside from describing what is to be checked, we omit most of the details.
Let G be a graph in the Petersen family. It’s enough to verify that for all v ∈ V (G),
G − v is nonplanar and that for all e ∈ E(G), deletion and contraction of e both
result in apex graphs. �

The proof of Theorem 1.4 depends on the following lemma that characterizes
NA graphs using the idea of a vertex near a branch vertex. If G is a graph and
w ∈ V (G) is such that there is a path from w to a branch vertex, a, of G that
contains no other branch vertices of G, then we say w is near a. Similarly, if w is a
vertex in some G+ v, then w is near a branch vertex a of G if there is a w-a path
independent of the other branch vertices.
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For the lemma, we assume that either G is a Kuratowski graph or else it is a
multigraph, which we will call a K3,3 with a fat edge, denoted by K3,3+ ē. This
means the multigraph is a K3,3 graph but for a single edge that is repeated (possibly
many times). Figure 13 (left) is an example. We consider the graph K3,3 to be a
K3,3+ ē. Note that we will use K3,3+ e to refer to the graph obtained by adding
an edge to K3,3; see Figure 13 (right).

Lemma 2.4. Suppose G simplifies to K5 or a K3,3+ ē. Then G + v is NA if and
only if v is near every branch vertex of G.

Proof. As in the definition above, forming Gs , the simplification of G, determines
a set of branch vertices.

First, assume that G + v is NA and v is not near a branch vertex a of G. If
we remove a branch vertex b near a, then, we claim, G + v− b is planar, which
contradicts that G+ v is NA. In the case of a K3,3+ ē, choose b to be a vertex of
the fat edge, so that it is incident to every repeated edge. To verify the claim, note
that (G−b)s is a Kuratowski graph with one vertex deleted, either K4 or K3,2. The
only way that G+ v− b could be nonplanar would be for v to take the place of b
in the Kuratowski graph. This would require independent paths from v to each of
the branch vertices near b. As there is no such v-a path, G+ v− b is planar.

Now assume that, in G+ v, the vertex v is near every branch vertex of G. Then
G∗ = (G+v)s is of the form H +v, where H is a subdivision of Gs and, by abuse
of notation, we again refer to the vertices of H of degree 3 or more as branch
vertices (of G). In G∗, the neighbors of v are either branch vertices of G or on
edges of Gs that were subdivided to form H . In particular, v is near the same
branch vertices in H + v as it was in G+ v. We wish to show that G∗ can, through
a series of Y∇ moves, be transformed into an NA graph. If, in G∗, we have that v
is adjacent to all the branch vertices of G, we are done, since if Gs

= K5, then G∗

has a K6 minor, and if Gs is a K3,3+ ē, then G∗ has K3,3,1 as a minor. As K6 and
K3,3,1 are both NA (see the previous lemma), G+ v is as well.

Next, choose a branch vertex a from G. Suppose v is not adjacent to a in G∗.
However, we’ve assumed v is near every branch vertex, including a. Hence there is
a vertex w of degree 3 that has both a and v as neighbors. Performing a Y∇ move
on w makes a and v neighbors and will not change the nearness of v to any branch
vertices. Repeating this process for the rest of the branch vertices results in a graph
where v is adjacent to each branch vertex of G. Again, if Gs

= K5, then this series
of Y∇ moves on G∗ gives a graph that has a K6 minor. If Gs is a K3,3+ ē then a
series of Y∇ moves on G∗ gives us a graph that has K3,3,1 as a minor. Since Y∇
and ∇Y preserve the Petersen family, we conclude that G+v has a minor from the
Petersen family and is, therefore, NA. �
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The proof shows that, not only is G+ v NA, it has a Petersen family graph as
a minor. On the other hand, if G + v has a Petersen family graph minor, then it
is NA by Lemma 2.3. Also, Petersen family graph minors characterize intrinsic
linking [Robertson et al. 1995]. The following lemma combines these observations.

Lemma 2.5. Let G be a graph with vertex v such that (G−v)s is K5 or a K3,3+ ē.
Then the following are equivalent:

• The vertex v is near every branch vertex of G− v.

• G is NA.

• G has a Petersen family graph minor.

• G is intrinsically linked.

Lemma 2.6. Suppose G is NA and there is a vertex a such that (G−a)s = K3,3+e.
Then G has a minor in the Petersen family.

Proof. We use the notation provided by Figure 13 (right). If a is not near v2 or v3

then G−w3 is planar. On the other hand, if a is not near one ofw1, w2, andw3, then
G−v3 is planar. So a is near v2, v3, w1, w2, andw3. If {v2, v3, w1, w2, w3}⊂ N (a),
then G has the Petersen family graph P7 (obtained by a single ∇Y on K6) as a
minor, as required.

Suppose one of these vertices is not in N (a), say v2 /∈ N (a). Then, as in the
proof of Lemma 2.4, there is some minor of G in which a Y∇ move produces a
graph that has v2 ∈ N (a) (where a and v2 are the induced vertices from a and v2

after finding such a minor of G and performing the Y∇ move) and a is still near
each vertex in {v3, w1, w2, w3}. Repeat this process for each of those remaining
vertices and we see that G has a minor that, following a sequence of Y∇ moves,
becomes P7. Since the Petersen family is closed under Y∇ and ∇Y moves, G has
a minor in the Petersen family. �

Lemma 2.7. Suppose G is NA and there is a vertex a such that ‖(G − a)s‖ ≤ 10.
Then G has a minor in the Petersen family.

Proof. By assumption, G− a is nonplanar, and by Lemma 2.2, (G− a)s is as well.
So, K5 or K3,3 is a minor, (G − a)s is either K5, K3,3+ e, or a K3,3+ ē, and we
can apply Lemma 2.5 or Lemma 2.6. �

Lemma 2.8. If G+a is formed by adding a degree-3 vertex a to a split K3,3 graph G
and G+ a is NA, then (G+ a)s is the Petersen graph.

Proof. By Lemma 2.4, there are paths from a to each branch vertex that avoid all
other branch vertices. Up to isomorphism, the only way to arrange this is as in the
graph of Figure 2, which is the Petersen graph. �
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Figure 2. Adding a degree-3 vertex to a split K3,3 yields the Pe-
tersen graph.

Figure 2 illustrates the idea of a vertex being near an edge. Let G be such that
Gs
= K3,3 or K5. As in the proof of Lemma 2.4, if we add a vertex v, then, in

general, (G+v)s will be of the form H+v, where H is a subdivision of Gs . We say
that v is near the edge xy in Gs , where x and y are branch vertices, if, in (G+ v)s ,
v has a neighbor interior to the (subdivided) edge xy of Gs . In Figure 2, a is near
the edges viwi with i = 1, 2, 3.

Lemma 2.9. If G + a is formed by adding a vertex a of degree 4 to a split K3,3

graph G and G+ a is NA, then (G+ a)s is one of the seven graphs in Figure 3.

Proof. By Lemma 2.4, there are paths from a to each branch vertex that avoid all
other branch vertices. Let N (a) = {n1, n2, n3, n4}. As there are six vertices and
d(a)= 4, there is an ni , say n1, that has an edge, say v1w1, as its nearest part. Since
there are four branch vertices left and three neighbors of a, another ni , say n2, must
have an edge as its nearest part with vertices disjoint from {v1, w1}; call it v2w2.
There are three graphs generated when a has a neighbor whose nearest part is a
branch vertex of G and four more when a has no such neighbor. Figure 3 shows
the graphs that result from this condition. �

We conclude this section with a proof of Theorem 1.4. The proof requires one
additional lemma. Let δ(G) and 1(G) denote the minimum and maximum degrees
of a graph G.

Lemma 2.10. Suppose G has δ(G) = 3, 1(G) = 4, and 13 ≤ ‖G‖ ≤ 16. Then
either there is a degree-4 vertex with a degree-3 neighbor or else G is the disjoint
union K5 t K4.

Proof. For a contradiction, suppose no degree-4 vertex has a degree-3 neighbor.
Then G is disconnected with cubic and quartic components. The smallest quartic
graph is K5 with ten edges and the smallest cubic graph is K4 with six. So, the size
of G is at least 16 and K5 t K4 is the only way to realize that minimum. �

Proof of Theorem 1.4. As stated in Lemma 2.3, the Petersen family graphs are all
MMNA. What is left is to show that they are the only such graphs on 16 or fewer
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Figure 3. Adding a degree-4 vertex to a split K3,3.

edges. Suppose G is an MMNA graph with 16 or fewer edges. Our goal is to show
that G is in the Petersen family. If δ(G) < 3, then contracting an edge of a vertex
of small degree or deleting an isolated vertex results in a proper minor that is still
NA, contradicting minor-minimality. So we assume δ(G)≥ 3.

Further, we can assume that, for every vertex a, we have ‖(G − a)s‖ ≥ 11.
Otherwise, by Lemma 2.7, G has a minor in the Petersen family. Since the Petersen
family graphs are NA and we’re assuming G is MMNA, G must be a Petersen
family graph, as required.
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Figure 4. Nonplanar (6, 11) graphs with δ(G)≥ 3.

Combining the assumptions δ(G)≥ 3 and ‖(G− a)s‖ ≥ 11, we see that G has
size 14, at least. However, if ‖G‖ = 14, then a minimum degree of 3 and each
G− a having size 11 or more imply that G is cubic, which is not possible. In fact,
G must have at least 15 edges.

If ‖G‖ = 15, then 1(G) ≤ 4 since we’re assuming each (G − a)s has at least
11 edges. Suppose 1(G)= 4. Since there are no quartic graphs with 15 edges, by
Lemma 2.10, there is a degree-4 vertex a with at least one neighbor of degree 3.
Then ‖(G − a)s‖ ≤ 10, contradicting our assumption. So, we can assume G is
cubic. In this case, apply Lemma 2.8 to see that G is the Petersen graph.

This leaves the case where ‖G‖ = 16. The assumption that each (G− a)s has at
least 11 edges implies1(G)≤5. If1(G)=5, let a be a vertex of top degree. We can
assume a has no degree-3 neighbor since ‖(G−a)s‖≥11. Then G−a is a nonplanar
simple graph of size 11 and minimum degree 3. The only possibilities are the (6, 11)
graphs of Figure 4 or the (7, 11) graph of Figure 16 (top center). As is the case with a,
we can assume that no degree-5 vertices have degree-3 neighbors in G. Suppose
first that G− a is the (6, 11) graph of Figure 4 (left). Then N (a) must include v3

and w3, the degree-3 vertices of G−a, as otherwise there will be a degree-5 vertex
with a degree-3 neighbor. Without loss of generality, w1 is the vertex of G − a
missing from N (a). Then G− v1 is planar, a contradiction. Similarly, if G− a is
the (6, 11) graph of Figure 4 (right), then, since we assumed 1(G)= 5, it’s v2 that
is missing from N (a), in which case G−w2 is planar. Finally, suppose G− a is
the (7, 11) graph of Figure 16 (top center). We see that v2 ∈ N (a) as otherwise
G−w3 is planar. But then v2 is a degree-5 vertex in G and can have no degree-3
neighbors. Thus N (a)= {u, v2, w1, w2, w3} and contracting uv1 gives the Petersen
family graph P7 as a minor. (Recall that P7 is the result of a ∇Y move on K6.)

Next assume 1(G) = 4. If G is quartic, it is one of the six quartic graphs of
order 8 (see [Meringer 1999]). Only two of these are NA. One is K4,4, which has
the Petersen family graph K4,4− e as a subgraph. The other comes from splitting
the degree-6 vertex of the Petersen family graph K3,3,1.

Thus we can assume δ(G) = 3 and since each (G − a)s has at least 11 edges,
each degree-4 vertex has at most one degree-3 neighbor. By Lemma 2.10 (note
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that K5 t K4 is not NA), there is a degree-4 vertex b with a degree-3 neighbor for
which ‖(G− b)s‖ = 11.

Since δ(G) = 3, we have that |G| ≥ 9. Since (G − b)s is formed by deleting
vertex b and its degree-3 neighbor (which becomes degree-2 and is lost through
simplification), it has order 7 at least. Thus, (G − b)s is either the (7, 11) graph
of Figure 16 (top center) or one of the (7, 10) graphs of Figure 15 with a doubled
edge, and G− b is formed by a single subdivision.

Suppose G− b is the (7, 11) graph with a single subdivision. Recall that each
degree-4 vertex has at most one degree-3 neighbor. So that both G−w2 and G−w3

are nonplanar, the subdivision must be of an edge incident to v2. This constitutes a
degree-3 neighbor of v2 and its remaining neighbors must all be adjacent to b. How-
ever, this results in a degree-4 vertex with two degree-3 neighbors, a contradiction.

If (G−b)s is a graph of Figure 15 with a doubled edge, one of those repeated edges
is subdivided to form G−b. This introduces a new vertex x that must be adjacent to
b since δ(G)=3. If (G−b)s is the graph of Figure 15 (left), then, since δ(G−b)≥2,
it must be the edge uv1 that is doubled. Both u and x are degree-2 in G − b. So,
both are in N (b) and become degree-3 in G. However, this means the degree-4
vertex b has two degree-3 neighbors in G, which is a contradiction. Similarly, if
(G−b)s is the graph of Figure 15 (right), the doubled edge must be adjacent to u as
otherwise u, x ∈ N (b), which gives b two degree-3 neighbors. So, we can assume
it’s uv1 that is doubled. As v1 is degree-4 in G and x is degree-3, v1 can have no
other degree-3 neighbors. Then N (b)={u, x, w2, w3}. However, this leaves several
degree-4 vertices in G that have two degree-3 neighbors, which is a contradiction.

Having size 16, G is not cubic, so we’ve completed the argument for graphs of
this size, and with it the proof. �

3. 14-vertex graphs

We now show the following (originally proved in [Barsotti and Mattman 2013]):

Proposition 3.1. If G is a (14, 21)MMN2A graph, then G is in the Heawood family.

Proof. Let G be a (14, 21) MMN2A graph. We can assume δ(G)≥ 3 as otherwise
a vertex deletion or edge contraction on a small-degree vertex will give a proper
minor that is also N2A. Then G must have the degree sequence (314) and for any
a ∈ V (G), we know that G − a has the sequence (310, 23). Now choose another
vertex, b, such that G∗ = G− a, b has the sequence (36, 26) (i.e., a and b have no
common neighbors). There are enough degree-3 vertices in G− a to assure we can
always choose such a b.

Since G is N2A and G∗ has the sequence (36, 26), we have that G∗ must be
a split K3,3. By Lemma 2.8, (G∗ + a)s is the Petersen graph of Figure 2. Then
G ′ = (G∗+ a)−w3 is another split K3,3.
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Figure 5. Two possibilities for G ′+ b.

By Lemma 2.4, b must have a path to a that avoids v3, w1, w2, y, and z. Since a
and b have no common neighbors, this means b has a neighbor b1 that is adjacent
to x . So, there are two cases: in G ′+ b, either b1 is of degree 2, or else it has v3 as
a third neighbor. (See Figure 5.)

In either case, b1 gives paths from b to the branch vertices a and v3 and there are
three ways to split the remaining four branch vertices into two pairs. However, we
see that G−w2, z is planar (and G is 2-apex), unless we make the choices shown
in Figure 5. In both cases, adding w3 back will give us the Heawood graph. Hence
the only (14,21) MMN2A graph is the Heawood graph. �

4. 13-vertex graphs

In this section we prove the following:

Proposition 4.1. If G is a (13, 21)MMN2A graph, then G is in the Heawood family.

Proof. Let G be an MMN2A (13, 21) graph. Consider the degree sequences
(312, 6) and (311, 4, 5). If we remove the vertex of highest degree, the resulting
graph simplifies to a graph with fewer than 14 edges, hence (by Theorem 1.4) to an
apex graph. So G does not have such a degree sequence.

Then G has the sequence (310, 43). Again, if a is a vertex of degree 4 that has
three neighbors of degree 3, then (G− a)s is apex, so this cannot be the case. We
conclude that the degree-4 vertices form a triangle in G and that there is a degree-3
vertex a in G whose neighbors all have degree 3. This means that G− a simplifies
to a graph G∗ = (G − a)s with degree sequence (36, 43). Since G∗ must be NA,
and has 15 edges, by Theorem 1.4 it is in the Petersen family. There is a unique
nine-vertex graph in the family, which we call P9; see Figure 6.

Note that in Figure 6 there is a unique triangle, which we’ll denote by xyz and
label the corresponding vertices in G− a and G as x , y, and z as well. Notice also
that x , y, and z all have degree 4 in G∗ so none of them are neighbors of a in G.
Moreover, we assumed x , y, and z form a triangle in G, and since the triangle is
clearly preserved in G∗, it must also be preserved in G−a. In particular, this implies
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Figure 6. The Petersen family graph P9.

that a is not near any of the edges that form this triangle; i.e., none of the degree-2
vertices deleted in simplifying from G− a to G∗ are on the edges of the triangle.

Observe that (G− a, y)s = K3,3 and that the induced graph after adding a back
must be NA. Hence, by Lemma 2.4, a must have a path to each branch vertex that
does not go through any other branch vertex. Since a is not near the edge xz, it
must be near either edges xw1 or xv1 and zw3 or zv3. Similarly, (G−a, x)s shows
that a must also be near yw2 or yv2.

We claim that a is near xw1, yw2, and zw3 or near xv1, yv2, and zv3, in which
case G is the Heawood family graph C13. (See [Hanaki et al. 2011] for the names,
like C13, of the Heawood family graphs. This is the unique order-13 graph in the
Heawood family and corresponds to graph 15 in Figure 1). Otherwise, either a is
near xv1 and yw2 or near xw1 and yv2, in which case G− v3, w3 is planar, or else
a is near zv3 and yw2 or near zw3 and yv2 in which case G− v1, w1 is planar. �

5. 12-vertex graphs

In this section we prove that a (12, 21) MMN2A graph G is in the Heawood family.
This means G is one of three graphs that are called H12, C12, and N ′12 by Hanaki et al.
[2011] and are represented as graphs 12, 13, and 19, respectively, in Figure 1. We
first observe that if G is triangle-free and of the correct degree sequence, it must
be H12. This was originally proved in [Barsotti and Mattman 2013].

Lemma 5.1. Let G be MMN2A of degree sequence (36, 46) and triangle-free.
Then G is H12.

Proof. Note that if any of the vertices of degree 4 have three or more neighbors of
degree 3, removing such a vertex results in an apex graph by Theorem 1.4, so we
may assume this doesn’t happen. We also notice that we can either single out a
degree-3 vertex, all of whose neighbors are degree-3 vertices, or a degree-4 vertex
that has two degree-3 neighbors. To see this, suppose it is not the case. Since G
has no triangles, the subgraph induced by the degree-4 vertices is K3,3 and each of
the vertices has a unique neighbor of degree 3. Hence, removing two nonadjacent
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vertices of degree 4 results in a graph that simplifies to a graph of size 8, and thus
is planar. Hence G would not be 2-apex.

Now assume that we do not have a vertex of degree 4 with two degree-3 neighbors.
Say that a is a degree-3 vertex whose neighbors are all of degree 3. Then (G− a)s

has degree sequence (32, 46). Theorem 1.4 implies that it is K4,4−e. Because G has
no degree-4 vertex with two degree-3 neighbors, we know that the edge subdivisions
from (G−a)s to G−a are all on edges incident to the degree-3 vertices of (G−a)s .
Also, since G is triangle-free, there is at most one subdivision on each edge. Since
there are exactly three subdivisions from (G− a)s to G− a, there is one vertex of
degree 3 in (G−a)s that gets at least two subdivisions; call it a1. So, a1 has degree-4
neighbors v1, v2 in (G−a)s so that a1v1 and a1v2 are subdivided in forming (G−a).
Then G− v1, v2 is planar; indeed (G− v1, v2)

s is K4,2, and G is 2-apex.
So we may assume that a has degree 4 and there exist b, c ∈ N (a) such that

d(b)= d(c)= 3 and c 6= b. Then (G−a)s has degree sequence (36, 43), which tells
us, by Theorem 1.4, that it is P9. Furthermore, since G does not have a triangle,
we know that one of the subdivisions from (G − a)s to G − a is on the triangle
xyz of Figure 6; say it’s xy that is subdivided. Removing either x or y, Lemma 2.4
tells us that the other subdivision from (G − a)s to G − a must be on an edge
incident to z. (Note that z /∈ N (a) as it would be a degree-5 vertex.) The subdivision
cannot be on the edge yz or xz, otherwise one of x , y, or z would have more than
two neighbors of degree 3. Furthermore, we need that either w1, w2 ∈ N (a) or
v1, v2 ∈ N (a), since x and y are allowed at most two neighbors of degree 3 and G
has no triangles. If w1, w2 ∈ N (a) then considering (G− a, z)s shows us that a is
near w3 by Lemma 2.4, hence the subdivision is on w3z. Similarly, if v1, v2 ∈ N (a)
the subdivision is on v3z. Both cases yield H12. �

Proposition 5.2. If G is a (12, 21)MMN2A graph, then G is in the Heawood family.

Proof. We assume again that G is MMN2A and that G is a (12, 21) graph. We can
assume the maximum degree 1(G) is at most 5. A vertex a with d(a) ≥ 6 in a
(12, 21) graph with δ(G) ≥ 3 will have at least one neighbor of degree 3. Then
(G− a)s has at most 14 edges and is apex, by Theorem 1.4. This implies G− a is
apex and G is 2-apex, a contradiction.

This leaves four possible degree sequences: (39, 53), (38, 42, 52), (37, 44, 5), and
(36, 46).

Let G have the degree sequence (39, 53) or (38, 42, 52). Then any a with d(a)=5
has at least two neighbors of degree 3. This means (G− a)s simplifies to a graph
with fewer than 15 edges and so it is apex (Theorem 1.4), whence G is 2-apex, a
contradiction.

We now focus our attention on the case where G has the degree sequence
(37, 44, 5) and show that the only MMN2A graph with this degree sequence is C12.
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a

Figure 7. Graph near the degree-5 vertex a. The dotted edge
indicates that the degree-4 vertices may form a path.

(See [Hanaki et al. 2011] for the name. This is graph 12 in Figure 1.) Let a denote
the vertex of degree 5. Note that a has at most one neighbor of degree 3, as otherwise
‖(G−a)s‖≤ 14, meaning G−a is apex (Theorem 1.4) and G is 2-apex. Hence, the
neighbors of a are all the vertices of degree 4 and one vertex of degree 3. Moreover,
each vertex of degree 4 has at most two neighbors of degree 3. This is illustrated
in Figure 7 . This implies that (G − a)s is an NA 3-regular graph with 15 edges,
i.e., the Petersen graph (see Figure 2). Since the Petersen graph has no triangles or
4-cycles, we see that G−a has no 4-cycles. This implies that the vertices of degree 4
do not form a triangle or 4-cycle in G. This justifies the specifics of Figure 7.

Then there is a b∈ V (G) of degree 4 with exactly two degree-3 neighbors, so that
(G−b)s is a (9, 15) graph with degree sequence (36, 43). This implies that (G−b)s

is the Petersen family graph P9 illustrated in Figure 6 (the unique Petersen family
graph on nine vertices). In G−b, vertex a has degree 4 and without loss of generality
is vertex y in the figure. We have deduced that b is adjacent to a as well as to either
w2 or v2, say v2. At this stage, we see that, in fact, the degree-4 vertices do not form
a path. Note that b is not near the edge xz; otherwise both x and y will have three
neighbors of degree 3. In order for G− a to be NA, by Lemma 2.4, b must be near
the edges v1x and v3z. Adding both a and b back in shows that this graph is C12.

Now let G have the degree sequence (36, 46). We will show G is either H12 or
else N ′12. (See [Hanaki et al. 2011] for these names. These are graphs 12 and 19
respectively in Figure 1.) By Lemma 5.1, the only triangle-free MMN2A graph
with degree sequence (36, 46) is H12, so we will assume that G has a triangle and
show that this implies it is N ′12. By Theorem 1.4, each degree-4 vertex in G can
have at most two neighbors of degree 3. Notice that in N ′12, each degree-4 vertex
has exactly one neighbor of degree 3 and vice versa. We argue that G must also
share this property in order to be MMN2A.

First, assume there is an a ∈ V (G) such that a has degree 3 and three degree-3
neighbors. Hence G∗= (G−a)s has degree sequence (46, 32) and is an (8, 15) graph.
Since G being MMN2A implies that G∗ is NA, by Theorem 1.4 it is in the Petersen
family. By the degree sequence (46, 32), we can identify G∗ as K4,4− e, drawn in
Figure 8. Since G∗ has no triangles, the triangle of G is formed in reattaching a.
Hence there is at least one edge in G∗ that is subdivided twice in returning to G−a.
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Figure 8. The Petersen family graph K4,4− e.

Because of the symmetry of G∗, we may assume without loss of generality that
these subdivisions are on the edges v1w1 or yv1. In the first case, G − v1, w1 is
planar, and the second splits into two cases: either the other subdivision from G∗

to G − a occurs on an edge incident to x in G∗ or it does not. In the case where
it does not, G− vi , w j is planar, where vi and w j are the vertices in G∗ between
which the subdivision occurs or v1 and w1 if it’s on an edge incident to y. In the
other case, G− x, v1 is planar since it is essentially the same as the planar graph
G∗ − x, v1 with an extra path from y to a wi . So, in an MMN2A graph, every
degree-3 vertex has at least one degree-4 neighbor.

Now suppose a ∈ V (G) is a degree-4 vertex with exactly two neighbors of
degree 3. Then G∗ = (G − a)s has degree sequence (43, 36). Since G∗ must be
NA, by Theorem 1.4 it is in the Petersen family and hence is the graph P9 shown
in Figure 6. In the following, we use the labeling of that figure.

When we remove x , y, or z separately from G∗, each induced subgraph shows
us (by Lemma 2.4) that a must have paths to x , y, and z in G that do not include
any of their neighbors in G∗. As these three vertices already have degree 4, the
neighborhood of a includes vertices adjacent to x , y, z created by edge subdivisions.

Since there are only two edge subdivisions from G∗ to G− a, this implies that
one has to be on the xyz triangle. By the symmetry of G∗, we can assume without
loss of generality that xy is subdivided. The other subdivision is on an edge incident
to z in G∗. Since we assume that G contains a triangle, a must be part of that
triangle. Observe that (G∗− y)s = K3,3. By Lemma 2.4, a must have paths in G− y
to the vertices v1, v3, w1, w3, x , and z that exclude the others from that list. Now, a
is adjacent to exactly two vertices in G∗− y (as the two other neighbors appear only
after additional edge subdivisions) and since we have already established that a is
near both x and z and possibly v3 or w3, the remaining neighbors of a are either
w2 and v2, v1 and v2, or w1 and w2. Recalling that a is not actually adjacent to x ,
just simply near it by way of a subdivision of xy in G∗, and since G must have a
triangle, none of these cases can be G.

To summarize, we established that if G is MMN2A with degree sequence (36, 46)

and contains a triangle, then each vertex of degree 4 has at most one neighbor of
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Figure 9. Graph after removing a degree-4 vertex leaving a triangle.

degree 3 and each vertex of degree 3 has at least one neighbor of degree 4. Hence,
there is a one-to-one correspondence between the degree-4 vertices and the degree-3
vertices by the relation of being neighbors in G. Note that degree-3 vertices cannot
occur on triangles that include degree 4 vertices. Otherwise either the degree-3
vertex is adjacent to two degree-4 vertices, or else there is a degree-4 vertex with two
degree-3 neighbors. If the degree-3 vertices form two disjoint triangles, G is 2-apex.
Indeed, let a and b be two degree-4 vertices whose neighbors of degree 3 are on
distinct triangles. Then (G− a, b)s is basically a subgraph of the planar graph K4.
The vertices of the K4 are the remaining degree-4 vertices of G (besides a and b). In
addition to edges between these that were in G, the remnants of the degree-3 vertices
contribute two additional paths of length three with the central edge doubled.

Thus, we can assume there is a triangle of vertices of degree 4 in G. Choose some
vertex of degree 4 not on this triangle; call it a. Then G∗ = (G − a)s has degree
sequence (38, 42) and contains a triangle. We claim that G∗ is the graph illustrated
in Figure 9. Note that the two degree-4 vertices in G∗ are adjacent. So, if we delete
one of them, denote it by y, then (G∗− y)s has nine edges and must be nonplanar
since G∗ is NA. Thus (G∗− y)s = K3,3 and, using Lemma 2.9, and the fact that G∗

has a triangle and degree sequence (38, 42), we deduce G∗ is as shown in Figure 9.
Now that we have established what G∗ looks like (Figure 9), we can determine

where a goes. Since both y and z are adjacent to x , we know that x cannot have
degree 3 due to the one-to-one correspondence between vertices of degrees 3 and 4.
So a is adjacent to x . Then a is adjacent to either v1 or w1 since y is adjacent
to only one vertex of degree 3, say w1. Then, for the same reason x and a were
adjacent, a and v2 are adjacent. Since G− z is NA, by Lemma 2.4, a is near w2v3

or v1w2. Similarly, G− y is NA and Lemma 2.4 shows a is near v1w2 or v1w3. So
a is near v1w2. This graph is N ′12. Therefore, the only MMN2A graph with degree
sequence (36, 46) that contains a triangle is N ′12. �

6. 11-vertex graphs

In this section we prove that an (11, 21) MMN2A graph is in the Heawood family.
We begin with five lemmas, one for each Heawood family graph of this order: E11,
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C11, H11, N ′11, and N11. (See [Hanaki et al. 2011] for the names. These correspond
to graphs 8, 10, 11, 16, and 17 respectively in Figure 1.)

Lemma 6.1. Let G be an (11, 21) MMN2A graph with degree sequence (34, 46, 6).
Then G is C11.

Proof. Consider b ∈ V (G) such that deg(b)= 6. Notice that for any v ∈ N (b) we
must have deg(v)= 4; otherwise, by Theorem 1.4, G− b is not NA. This implies
that G− b must be the Petersen graph (see Figure 2). Without loss of generality,
we can assume that the vertex a in Figure 2 is not a neighbor of b in G. Since
(G− b, x)s = K3,3, we have that in G− x , by Lemma 2.4, b must be adjacent to z
and y. Similarly, if we consider G− b, z we see that b is adjacent to x . Consider
again G − x . Since b has degree 5 in G − x , is adjacent to y and z, and must
have paths to v1, v2, w1, and w2 that do not go through v1, v2, w1, w2, x , or y,
we see that b is adjacent to either v3 or w3 or both. Similarly, considering G− y
and G − z, we see that b is adjacent to either v2 or w2 and v1 or w1. We claim
that b is adjacent to v1, v2, and v3 or w1, w2, and w3, in which case we have C11.
Otherwise, if v2 ∈ N (b) and w1 ∈ N (b) then G− v3, w3 is planar, or if v2 ∈ N (b)
and w3 ∈ N (b) then G −w1, v1 is planar. Similarly, if w2 ∈ N (b) and v1 ∈ N (b)
then G−v3, w3 is planar, or if w2 ∈ N (b) and v3 ∈ N (b) then G−w1, v1 is planar.
Therefore G must be C11. �

Lemma 6.2. Let G be an (11, 21)MMN2A graph with degree sequence (35, 43, 53).
Then G is E11.

Proof. We may assume that there exists a ∈ V (G) such that deg(a)= 5 and there
exists u ∈ N (a) such that deg(u)= 3. If not, then removing any two of the degree-4
vertices results in a K4 graph with a bridge to a graph of at most seven edges, which
is clearly planar. On the other hand, by Theorem 1.4, G∗ = (G− a)s has at least
15 edges, so u is the only degree-3 neighbor. Then G∗ has nine vertices.

This means that G∗ is the Petersen family graph P9 shown in Figure 6, the only
order-9 graph in the family. By the degree sequence of the original G, we may
assume, without loss of generality, that a is adjacent to x and y (referring again
to Figure 6), and hence is not adjacent to z. Removing either x or y, Lemma 2.4
shows us that a is near an edge incident to z. If a is near the edge yz or xz, then a
is also adjacent to two more vertices in Figure 6. Removing both of these results in
a planar graph. Thus a is near the edge v3z or the edge w3z. By symmetry, we will
assume v3z.

Applying Lemma 2.4 to G− y shows that a must be adjacent to v2 and, similarly,
considering G − x shows us that a must be adjacent to v1. Reassembling G
gives E11. �

Lemma 6.3. Let G be an (11, 21)MMN2A graph with degree sequence (34, 45, 52).
Then G is H11.



610 JAMISON BARSOTTI AND THOMAS W. MATTMAN

v1

w2

v3

x

y

z

w1

v2

w3

a
v1

w2

v3

y

z

x
w1

v2

w3

a

Figure 10. Graphs with degree sequence (38, 42) by adding a
degree-4 vertex a to a split K3,3.

Proof. Assume that there exists a ∈ V (G) such that deg(a) = 5 and there exists
u ∈ N (a) such that deg(u)=3. Then G∗= (G−a)s is a (9, 15)NA graph, hence the
graph illustrated in Figure 6, with degree sequence (36, 43). Since G has only two
vertices of degree 5, vertex a is adjacent to at most one of x , y, and z in Figure 6. We
will assume that it is x and hence y, z /∈ N (a). By Lemma 2.4, a must be near edges
incident to both y and z (consider G− z and G− y, respectively). However, as a
has a unique neighbor of degree 2 in G−a, it is near only one edge. Therefore, a is
near the edge yz. If a is adjacent to v1, v2, and v3 or w1, w2, and w3 then G is H11.

We next verify that this must be the case. Note that there are exactly three
vertices in N (a)∩{v1, v2, v3, w1, w2, w3}. Let us first examine the intersection with
{v2, v3, w2, w3}. Lemma 2.4 applied to G−z shows that a has at least one neighbor
in each of the pairs {v2, w3}, {v3, w2}, and {v3, w3}. The same lemma with G− x
shows that N (a)∩ {v2, v3, w2, w3} is not simply {v3, w3}. We conclude that a is
adjacent tow2 andw3 or v2 and v3, and, by symmetry, we can assume v2 and v3. The
last neighbor of a must be v1, as otherwise G−v3, w3 or G−v2, w2 will be planar.

Let a and b be the degree-5 vertices and suppose neither has a degree-3 neighbor.
If a and b are not adjacent, then (G−a, b)s is a (34)multigraph that is clearly planar.
Further, a and b can have at most three common neighbors, as otherwise (G−a, b)s

has fewer than nine edges and is therefore planar. On the other hand, since there are
only five degree-4 vertices, a and b must share at least three neighbors. This means
(G− a, b)s = K3,3. By Lemma 2.9, G− b must be one of the graphs in Figure 10.
By our assumption, b is adjacent to a, x , y, and z, with one other neighbor from
the set {w1, w2, w3, v2, v3}. In the case where G− b looks like Figure 10 (left) we
see that G− v1, w1 is planar. For the case of the right graph in the figure, observe
that G − v1, x is planar. Hence if a and b have no degree-3 neighbors, then G is
2-apex. Therefore G must be H11. �

Lemma 6.4. Let G be an (11, 21) MMN2A graph with degree sequence (33, 47, 5).
Then G is N ′11.

Proof. Let us begin by assuming that the degree-5 vertex b is adjacent to some vertex
of degree 3. Then G∗ = (G− b)s has degree sequence (36, 43) and is therefore the
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Figure 11. Remove v1 and v2 from K4,4− e.

P9 graph of Figure 6. Note that b is not adjacent to x , y, or z, since going from G
to G∗ did not change their degree. However, observing the graphs we obtain when
removing x , y, or z, by Lemma 2.4 we see that b needs a path to all of them that does
not utilize any of their neighbors in G∗. This is clearly impossible since there is at
most one subdivision from G∗ to G−b. Hence for all v ∈ N (b), we have deg(v)= 4.

Then G− b must have the degree sequence (38, 42). If the vertices of degree 4
in G− b are not adjacent, then if v is one of those, (G− b, v)s has eight edges and
is therefore planar, which is a contradiction. So choose a ∈ V (G − b) such that
deg(a) = 4. Then if G is N2A, (G − a, b)s is K3,3. When we add a back in, by
Lemma 2.9, there are two cases, shown in Figure 10. However, for Figure 10 (right),
we notice that b is not adjacent to v1 since it can only be adjacent to vertices of
degree 3 in G−b. This means that it is not near v1, which is required by Lemma 2.4.
So G−b is isomorphic to the graph illustrated in Figure 10 (left). As above, since b
must be near v1, it must be adjacent to x . Now, G−v1, w1 will be planar unless N (b)
includes either {v2, v3} or {w2, w3}. We will argue that it must be the latter. Suppose
instead that {x, v2, v3} is in N (b) and {w2, w3} is not. In particular, if w2 /∈ N (b),
then G−v3, w3 is planar, a contradiction. Similarly, if w3 /∈ N (b), then G−v2, w2

gives a contradiction. This shows that it is not possible that {w2, w3} 6⊂ N (b), and
so we can assume {w2, w3} ⊂ N (b). Now G− v2, w2 is planar unless b is adjacent
to y and G− v3, w3 shows z is adjacent to b as well, which means G is N ′11. �

Lemma 6.5. Let G be an (11, 21) MMN2A graph with degree sequence (32, 49).
Then G is N11.

Proof. First assume that there exists a v ∈ V (G) such that deg(v)= 4 and the two
vertices of degree 3 are neighbors of v. Then (G−v)s has degree sequence (32, 46)

and is the Petersen family graph K4,4− e, illustrated in Figure 8. Thus G− v is a
subdivision of K4,4− e. Note that in G, vertex v is adjacent to both x and y. The
graph obtained from K4,4− e when we remove v1 and v2 is illustrated in Figure 11.
Since v is adjacent to both x and y and the graph G − v, v1, v2 can be obtained
from Figure 11 by only two subdivisions (the other neighbors of v), we see that
G− v1, v2 is planar.
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Figure 12. There are two or four edges between V3 and V4.

We can now assume that the two degree-3 vertices of G have no common
degree-4 neighbors. Let a be a degree-4 vertex that has a degree-3 neighbor. Then
G∗ = (G− a)s has degree sequence (34, 45).

If G∗ is not a simple graph, then, since it must be NA, by Theorem 1.4, it is a
Petersen family graph with an edge doubled. This means the Petersen family graph
is P9 (Figure 6), the only one of order 9. The doubled edge is between two degree-3
vertices in that figure. Using symmetry, we can assume it’s v1w2 that’s doubled.
In G one of these edges is subdivided to give a degree-3 vertex whose neighbors
are a, v1, and w2. None of these three are adjacent to the other degree-3 vertex,
which is therefore w1 or v2. By symmetry, we can assume w1 is the other vertex of
degree 3. In other words, G is formed from P9 by adding a vertex b adjacent to v1

and w2, and a vertex a with N (a)= {b, v2, v3, w3}. Then G − v1, w1 is planar, a
contradiction. So we can assume G∗ is a simple graph and G − a differs from it
only by subdivision of an edge.

Notice first that if G∗ has a degree-4 vertex v that has three or more degree-3
neighbors, then (G∗− v)s has at most nine edges and five vertices and is planar.
We claim that there is a degree-4 vertex in G∗ that has two neighbors of degree 3.
Suppose not and let V3 denote the set of degree-3 vertices of G∗ and V4 those of
degree 4. As the degree sums in the two parts are even, there are an even number
of edges between V3 and V4. If there were six or more, then, by the pigeonhole
principle, one of the degree-4 vertices would have two degree-3 neighbors, which is
what we are trying to establish. If there were no edges in between, G∗ = K4 t K5

would be apex, a contradiction. So there are two or four edges between V3 and V4.
(See Figure 12.) In either case, removing a degree-4 vertex that has a degree-3
neighbor will result in a planar graph.

So, let b ∈ V (G∗) be a degree-4 vertex with two degree-3 neighbors. Moreover,
a and b have a common neighbor, as otherwise b has two degree-3 neighbors in G.
Now, G∗−b will be formed by subdividing two edges of a (6, 10) graph G ′ having
degree sequence (34, 42). Since our assumption implies that G ′ is nonplanar, G ′ is
one of the two graphs obtained by adding an edge to K3,3 (see Figure 13).

Assume that G ′ is the K3,3+ ē shown in Figure 13 (left). Since G was a simple
graph, there is at least one subdivision on one of the paired edges. This means b
is adjacent to the vertex resulting from that subdivision. Notice that G− v3, w3 is
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Figure 13. Two nonplanar (6, 10) graphs.

essentially a subdivision of the 4-cycle v1w1v2w2 along with two more vertices that
are not adjacent to one another. This graph is planar unless a and b are near the same
edge, which is incident to either v3 or w3 in G ′. On the other hand, by Lemma 2.4,
b must have independent paths to each of the branch vertices of G ′ and this cannot
happen if it is near two different edges adjacent to v3 or w3. In other words, a and b
are adjacent to the same edge, which is one of the pair between v3 and w3.

Next, suppose a and b are adjacent to the same edge in the pair, but attached to the
edge at two different vertices formed by subdividing that edge twice. By Lemma 2.4,
b must have independent paths to each of the branch vertices of G ′. Now, b is
adjacent to two vertices formed by subdivisions of G ′ as well as two degree-3
vertices in that graph. This means that, in addition to one of the v3w3-edges, b is
near an edge between two other vertices, say v1w1. This gives b paths to four of the
branch vertices and shows that the other two vertices, v2 and w2, are the remaining
neighbors of b.

Recall that G− a, b is obtained from G ′ by exactly three edge subdivisions. If
a and b do not share a vertex on the v3w3 edge, it must be the vertex resulting
from subdividing v1w1 that is common. But this means there is no way to attach
a to G ′ so that it will have independent paths to all the branch vertices. So far, we
have subdivisions that show a is near a v3w3 edge and v1w1. The remaining two
neighbors would have to be v2 and w2. However, these vertices then have degree 5
in G, contradicting its (32, 49) degree sequence.

We conclude that a and b attach at the same vertex of one of the paired edges
of G ′. Then as above, we can assume that b is near the edge v1w1 and adjacent to
v2 and w2. Then those two vertices have degree 4 and are not adjacent to a. As
there remains a single subdivision of G ′, it must be on the edge v2w2. So, a is near
that edge, which forces a to be adjacent to v1 and w1. This graph is N11.

Now assume that G ′ is the simple graph K3,3+ e illustrated in Figure 13 (right).
The graph G ′− v3, shows us that both a and b are near w1, w2, and w3. Similarly,
G ′−w3 shows us that they are near v3 and v2. Recall that b is adjacent to two of the
degree-3 vertices of G ′ as well as two vertices formed by subdividing edges of G ′.
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Suppose b is adjacent to v1 in G − a. Then b is adjacent to one of the wi for
i ∈ {1, 2, 3}, and by symmetry, we may assume w1. Since b is also near the other
four vertices in G ′, we may assume b’s other neighbors are vertices resulting from
subdivisions of the edges w2v2 and v3w3. Since a and b share at least one neighbor,
we may assume (without loss of generality) that a is adjacent to the same vertex
formed by subdividing w3v3 of G ′.

There must be an additional subdivision of G ′ giving a neighbor of a. Since
1(G)= 4, the remaining two neighbors of a are drawn from {w2, w3} and the vertex
on v2w2 resulting from its subdivision. Suppose a is adjacent to w2 and w3. As it
must also be near v2 and w1, it is also adjacent to a vertex formed by a subdivision
of the edge v2w1 in G ′. However, in this case v2 has two neighbors of degree 3,
a possibility ruled out at the beginning of the proof. This shows that, if a and b
share exactly one neighbor, then b is not adjacent to v1. A similar argument starting
with a instead of b shows that a is also not adjacent to v1, at least in the case where
a and b share exactly one neighbor.

On the other hand, if we assume that a shares two neighbors with b, we can
continue our search for a contradiction to the assertion that b is adjacent to v1. In
this case, the common neighbors are the two vertices formed by subdividing v2w2

and v3w3 and a is adjacent to exactly one of w2 and w3, say w3. Now, a must be
near w1 but if it is adjacent to a vertex formed by the subdivision of v1w1 or v3w1,
we again have the case of a degree-4 vertex with two degree-3 neighbors (v1 and v3

respectively). So it must be that a is adjacent to a vertex resulting from subdivision
of the edge w1v2. In this case, let x denote the common neighbor of a and b that
is also a neighbor of v3 and w3. Then G− x, w3 is planar. This shows that b is not
adjacent to v1.

So we know that b is not adjacent to v1 in G ′. Then without loss of generality it
is adjacent to w2 and w3. So, a is adjacent to w1 or v1. If a is adjacent to v1, then
a shares two neighbors with b. In other words, the vertices created by subdivisions
in going from G ′ to G− a, b that are neighbors of b are also neighbors of a. Since
both a and b are near w1, suppose they are adjacent to a vertex resulting from
subdivision of the edge v1w1. Then since a is near w2, w3, v2, and v3, we may
assume a is adjacent to vertices resulting from subdivisions of the edges w2v2

and v3w3 and that b is adjacent to one of these. However, in either case G has a
degree-4 vertex with two degree-3 neighbors (v3 and v2 respectively).

Suppose instead that a and b are adjacent to a vertex produced by a subdivision of
the edge v2w1. (The symmetric case using the edge v3w1 will be similar.) Since a
is near v3, it must be adjacent to a vertex formed by subdivision of the edge w2v3 or
w3v3 (the other two options will not allow a to be near bothw2 andw3). Without loss
of generality it isw3v3. Moreover, this forces b to share this neighbor as otherwise v3

will have two degree-3 neighbors in G. The final neighbor of a makes a near w2
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but cannot lie on v1w2 or v3w2 lest we again have a vertex of degree 4 with two
degree-3 neighbors. So a is adjacent to a vertex on the w2v2 edge. This is again N11.

Finally, assume that neither a nor b is adjacent to v1 in G ′, that b is adjacent
to w2 and w3, and that a is adjacent to w1. The degree-3 vertices in G are then v1

and the one adjacent to a formed by a subdivision of an edge in G ′. Then the two
subdivision vertices adjacent to b must also be adjacent to a. Since b is near w1,
assume first that b is adjacent to a subdivision on the edge v1w1 in G ′. Then the
only way to make b near both v2 and v3 is by making it adjacent to a vertex formed
by subdividing that edge. As a is also adjacent to that vertex, there is no way to
make a near both w2 and w3. So without loss of generality b (hence a) must be
adjacent to a subdivision vertex on the edge v2w1 (as the symmetric case where
a and b are adjacent to v3w1 is similar). Notice now that since a is near both w2

and w3, either w2 or w3 will share a degree-3 neighbor with a. However, since they
are both also neighbors of v1, we know that G will have a degree-4 vertex with two
degree-3 neighbors and cannot be 2-apex. �

Proposition 6.6. If G is (11, 21) MMN2A, then G is in the Heawood family.

Proof. Assume that G is an (11, 21) MMN2A graph. As we did in the previous
cases, we may assume that the maximum vertex degree of G is 6 or less. Further,
if G has more than one vertex of degree 6, then G is not MMN2A, since it must be
the case that one of the degree-6 vertices has a degree-3 neighbor and removing
such a vertex leaves one with a graph that simplifies to a graph that has no more
than 14 edges, hence is not NA by Theorem 1.4. This leaves us with the following
degree sequences to consider: (37, 53, 6), (36, 42, 52, 6), (35, 44, 5, 6), (34, 46, 6),
(36, 4, 54), (35, 43, 53), (34, 45, 52), (33, 47, 5), and (32, 49).

We can throw out the first three sequences, since it is clear that the degree-6
vertex must have a neighbor of degree 3 and we find ourselves in the same situation
as we were in at the beginning of this proof. Five of the remaining six sequences
do in fact lead to an MMN2A graph and are treated in the five lemmas above.

This leaves only the degree sequence (36, 4, 54). Suppose G is an MMN2A
graph with this degree sequence. Each degree-5 vertex v has at most one degree-3
neighbor as otherwise G−v simplifies to a graph of at most 14 edges and is not NA
by Theorem 1.4. This implies that the vertices of degrees 4 and 5, when considered
separately, induce a K5 subgraph, with four of the vertices having other neighbors
in G. Choose a, b ∈ V (G) such that deg(a)= deg(b)= 5, and consider G− a, b.
Observe that the induced K5 subgraph becomes a K3 subgraph when a and b are
removed and only two of its three vertices have neighbors in the rest of G− a, b.
This means (G−a, b)s has nine edges, of which two are a double edge between the
two remaining K3 vertices. This graph is planar, which is a contradiction. Therefore
there is no (11, 21) MMN2A graph G with degree sequence (36, 4, 54). �



616 JAMISON BARSOTTI AND THOMAS W. MATTMAN

7. 10-vertex graphs

We prove that a (10, 21)MMN2A graph is in the Heawood family. This is a corollary
of the following proposition, originally proved in [Barsotti and Mattman 2013].

Proposition 7.1. Let G be a graph with either |V (G)| ≤ 8 or else |V (G)| ≤ 10 and
|E(G)| ≤ 21. If G is N2A and a Y∇ move takes G to G ′, then G ′ is also N2A.

Proof. Since a graph of 20 or fewer edges is 2-apex [Mattman 2011], the only N2A
graph with |G| ≤ 7 is K7, which has no degree-3 vertices. So, the proposition is
vacuously true for graphs of order 7 or less.

Suppose G is N2A with |G| = 8. As discussed in [Mattman 2011], G must be
IK and we refer to the classification of such graphs due independently to Campbell
et al. [2008] and Blain et al. [2007]. There are 23 IK graphs on eight vertices, but
only four have a vertex of degree 3. In each case, a Y∇ move on that vertex results
in K7, which is also N2A.

Again, graphs of size 20 or smaller are 2-apex. So, we can assume ‖G‖ = 21
and |G| ≥ 9. If G is of order 9 and N2A, then, by [Mattman 2011, Proposition 1.6],
G is a Heawood family graph (possibly with the addition of one or two isolated
vertices). A Y∇ move results in the Heawood family graph H8 or K7 t K1, both of
which are N2A.

This leaves the case where |G| = 10. Assume G is a (10, 21) N2A graph that
admits a Y∇ move to G ′. For a contradiction, suppose G ′ is 2-apex with vertices a
and b so that G ′−a, b is planar. Let v0 be the degree-3 vertex in G at the center of
the Y∇ move and v1, v2, v3 the vertices of the resultant triangle in G ′. Since G is
N2A, it must be that {v1, v2, v3} is disjoint from {a, b}. Fix a planar representation
of G ′ − a, b. The triangle v1v2v3 divides the plane into two regions. Let H1 be
the induced subgraph on the vertices interior to the triangle and H2 that of the
vertices exterior. Then |H1| + |H2| = 4. Since G is N2A, there is an obstruction
to converting the planar representation of G ′− a, b into a planar representation of
G− a, b. This means that both H1 and H2 contain vertices adjacent to each of the
triangle vertices {v1, v2, v3}. In particular, H1 and H2 each have at least one vertex.

Suppose |H1| = |H2| = 2. The graph G − b, v1 is nonplanar, but its subgraph
G− a, b, v1 is essentially a subgraph of G ′− a, b (with the addition of a degree-2
vertex v0 on the edge v2v3) and we will use the same planar representation for
G− a, b, v1 that we have for G ′− a, b.

Since G − b, v1 is not planar, there’s an obstruction to placing a in the same
plane. If we imagine putting a outside of a disk in the plane that covers G−a, b, v1,
we see that there is some vertex w in an Hi that is hidden from a. That is, although
there’s an edge aw ∈ E(G), there is no path from a to w in the plane that avoids
G− b, v1. It follows that there’s a cycle in G− b, v1 with w in the interior and a
on the exterior of the cycle.



GRAPHS ON 21 EDGES THAT ARE NOT 2-APEX 617

Without loss of generality, the hidden vertexw is in V (H1)={c1, d1}, sayw= c1.
This means we can assume that c1v2d1v3 is a 4-cycle in G, which, in the planar
embedding of G ′− a, b, is arranged with c1 interior to the cycle v2d1v3. However,
since G ′− a, b is planar, this means c1 is also hidden from v1 and c1v1 is not an
edge of the graph.

A similar argument using G−b, v2 allows us to deduce a 4-cycle c2v1d2v3 using
the vertices c2 and d2 of H2 while showing c2v2 /∈ E(G). However, it follows that
G− b, v3 is planar, a contradiction.

So, we can assume |H1|=3, while H2 consists of the vertex c2 with {v1, v2, v3}⊂

N (c2). Suppose H1 also has a vertex, c1, that is adjacent to all three triangle vertices.
As G − b, v1 is nonplanar, there’s a vertex d1 of H1 that is hidden from a such
that c1v2d1v3 is a cycle in G and d1v1 /∈ E(G). Similarly, G − b, v2 shows that
c1v1e1v3 is in G and e1v2 is not, e1 being the third vertex of H1. Now, G − b, v3

will be planar unless d1e1 ∈ E(G). However, in that case, contracting d1e1 shows
that G ′− a, b has a K3,3 minor and is nonplanar, a contradiction.

In fact, the argument just given shows that there must be such a vertex c1 ∈V (H1)

adjacent to all triangle vertices. That is, for G − b, v1 to be nonplanar requires
x1, x2 ∈ V (H1) so that x1v2x2v3 is a cycle, while G − b, v2 gives vertices y1, y2

that form a cycle y1v1 y2v3. Since |H1| = 3, there are i, j so that xi = y j and that
vertex is adjacent to all vi with i = 1, 2, 3.

We’ve shown that assuming G ′ is 2-apex leads to a contradiction. Thus, the
proposition also holds in the case |G| = 10, which completes the proof. �

Corollary 7.2. If G is a (10, 21) MMN2A graph, then G is in the Heawood family.

Proof. Suppose G is (10, 21) MMN2A. Recall that δ(G)≥ 3 as otherwise a vertex
deletion or edge contraction on a small-degree vertex gives a proper minor that is
also N2A.

In [Mattman 2011], we showed that a graph of order 9 is MMN2A if and
only if it is in the Heawood family. So, if G has a degree-3 vertex, then apply
a Y∇ move at that vertex to get a graph G ′. Then, by Proposition 7.1 and the
classification of MMN2A graphs of order 9, G ′ is Heawood, whence G is too. So,
we can assume δ(G)≥ 4, which means the degree sequence of G is either (48, 52)

or (49, 6).
Suppose there are vertices a and b such that ‖G− a, b‖ = 11. Then at least one

of a and b has degree 5 or 6. Since δ(G) = 4, we have that δ(G − a, b) ≥ 2 and
G − a, b is one of the graphs of Figure 14. In all three cases, both a and b must
be adjacent to both v3 and w3. For if, for example, a and v3 are not adjacent, then
G − b, w3 would be planar. But, if a and b are adjacent to both, then v3 and w3

also have degree 5 in G, which contradicts the two given degree sequences for G.
We conclude there is no choice of a and b such that ‖G− a, b‖ = 11.
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v3

w2

v1

w3

v2

w1

v3

w2

v1

w3

v2

w1

v3

w2

v1

w3

v2

w1

Figure 14. The three nonplanar (8,11) graphs of minimum degree
at least 2.

This means G must have degree sequence (48, 52) with the two vertices of
degree 5 adjacent and G−a, b an (8, 12) graph. There are two cases depending on
whether or not a and b have a common neighbor in G. Suppose first that c is adjacent
to both a and b. In G−a, b, vertex c will have degree 2 and we can contract an edge
on c to arrive at either a (7, 11) graph or else a multigraph with a doubled edge. Re-
moving the extra edge if needed, let H denote the resulting (7, 11) or (7, 10) graph.

If H is (7, 10), it is one of the two graphs of Figure 15. In the case of the
graph on the left, the doubled edge must be that incident on the degree-1 vertex as
δ(G− a, b)≥ 2. But then the vertex labeled v1 in the figure will have degree 5 in
G−a, b, contradicting our assumption that a and b were the only vertices of degree
greater than 4. So, we can assume H is the graph to the right in the figure. Up
to symmetry, the doubled edge of H is either uv1, v1w2, or v2w2. We’ll examine
the first case; the others are similar. Doubling uv1 and adding back c leaves v1 of
degree 4 in G−a, b. Then G−a, b, v1 simplifies to K3,3−v1. Sincew1, w2, andw3

all have degree 3 in G− a, b, they each have exactly one of a and b as a neighbor
in G. Suppose a is adjacent to w2. Then G − a, v1 is planar, contradicting G
being N2A. For the other two choices of edge doubling, one can again delete a
resulting degree-4 vertex along with a or b to achieve a planar graph. So H being
(7, 10) leads to a contradiction.

v3 w3

w2 v2

v1 w1

u

v3

w2

v1 u

w3

v2

w1

Figure 15. The two nonplanar (7,10) graphs of minimum degree
at least 1.
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v2
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u

v3
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v1
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v3 w3

w2 v2

v1 w1u

Figure 16. The five nonplanar (7,11) graphs of minimum degree
at least 2.

If H is (7, 11), then δ(H)= δ(G− a, b)≥ 2 and H is one of the five graphs of
Figure 16. Here we use a similar approach. Deleting one of the degree-4 vertices
of H , call it x , results in a graph G − a, b, x that simplifies to K3,3 − v1. Since
each of the degree-3 vertices of H is adjacent to exactly one of a and b, there will
be an appropriate choice from those two, say a, such that G− a, x is planar, which
is a contradiction. So, H being (7, 11) is not possible and we conclude that there
is no such vertex c that is adjacent to both a and b.

This means that G − a, b is a nonplanar cubic graph (i.e., 3-regular) on eight
vertices. There are two such graphs, shown in Figure 17. If G− a, b is the graph
to the left in Figure 17, note that the vertex labeled v is adjacent to exactly one of
a and b, say a. Then G− a, w is planar.

v w

v1 v2

v3

v4

v5v6

v7

v8

Figure 17. The two nonplanar cubic graphs of order 8.
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Finally, assume that G − a, b is the graph to the right in Figure 17. Note that
each vertex of G− a, b is adjacent to exactly one of a and b in G. If a and b are
adjacent to alternate vertices in the 8-cycle (for example if {v1, v3, v5, v7} ⊂ N (a)
and {v2, v4, v6, v8} ⊂ N (b)), we obtain graph 20 of Figure 1, a Heawood family
graph. If not, then we must have two consecutive vertices, say v1 and v2, that share
the same neighbor in {a, b}, say a. That is, we can assume av1, av2 ∈ E(G). Then
G− a, v3 is planar, contradicting G being N2A.

In summary, if G of order 10 is N2A with δ(G) > 3, it must be graph 20 of the
Heawood family. �
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a surface morphological instability of

a thin monocrystal film in a strong electric field
Aaron Wingo, Selahittin Cinar, Kurt Woods and Mikhail Khenner

(Communicated by Natalia Hritonenko)

A partial differential equation (PDE)-based model combining the effects of
surface electromigration and substrate wetting is developed for the analysis of the
morphological instability of a monocrystalline metal film in a high temperature
environment typical to operational conditions of microelectronic interconnects
and nanoscale devices. The model accounts for the anisotropies of the atomic
mobility and surface energy. The goal is to describe and understand the time-
evolution of the shape of the film surface. The formulation of a nonlinear parabolic
PDE problem for the height function h(x, t) of the film in the electric field is
presented, followed by the results of the linear stability analysis of a planar surface.
Computations of a fully nonlinear evolution equation are presented and discussed.

1. Introduction

The drift of ionized adsorbed atoms (adatoms) on a metal or semiconductor crys-
tal surface due to their interaction with the “electron wind” is termed surface
electromigration. The “wind” force on adatoms is the effect of a high-density
direct current through the bulk of a crystal, which also heats up the surface —
thus increasing the adatoms’ own kinetic energy. It is this combination that makes
adatoms drift. Surface electromigration was studied theoretically in connection to the
grain-boundary grooving in polycrystalline films [Averbuch et al. 2001; Maroudas
1995], the kinetic instabilities of crystal steps [Chang et al. 2006; Debierre et al.
2007; Stoyanov 1997], morphological stability of thin films [Dobbs and Krug 1994;
Krug and Schimschak 1997; Barakat et al. 2012; Khenner 2013], and recently, as a
way to fabricate nanometer-sized gaps in metallic films — suitable for testing of the
conductive properties of single molecules and control of their functionalities [Barnes
et al. 2010; Bolotin et al. 2007; Block et al. 2006]. Although the phenomenon of
electromigration has been known for over 100 years, it became of practical interest
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in 1966 when the first integrated circuits became commercially available. It is
considered a key factor in determining the reliability of integrated circuits.

As we just mentioned, one recent technological application of electromigration
is the fabrication of the nanoscale contacts (gaps) that are manufactured from the
thin Ag films wetting the Si substrate [Barnes et al. 2010; Bolotin et al. 2007; Block
et al. 2006]. The gap between contacts can be cyclically opened and closed. To
open the contact, a strong electric current is applied at a low temperature of the
film (∼80 K), which enables the surface mass flow of adatoms across the narrow
bridge, thus connecting the anode and the cathode, until the bridge breaks. To close
the contact, the natural surface diffusion of adatoms across the gap is enabled by
heating the film to the room temperature, all the while keeping the electric current.

Another example, more relevant to the present study, is a faceting of the initially
planar surface of a crystalline thin film upon passing the current along the substrate.
This way the so-called quantum wires can be fabricated [Dai et al. 2014]. Since the
cross-section of a quantum wire is only a few nanometers, it possesses very special
electronic properties, which makes it desirable for integration into nanoscale devices.

Here we further develop the PDE-based mathematical model of the film-surface
morphological instability and evolution driven by the electromigration [Khenner
2013]. The very special feature of the presented model is that it accounts both for
the wetting and the surface energy anisotropy effects. The surface morphological
instability and evolution in a thin film system where the wetting, anisotropy, and elec-
tromigration are active have not been addressed theoretically, although PDE-based
models of wetting and anisotropy [Davis et al. 2004; Gill and Wang 2008; Khenner
2008a; 2008b; Khenner et al. 2011], wetting and electromigration [Khenner 2013],
and electromigration and anisotropy [Barakat et al. 2012] have been published.

The wetting effect emerges due to the existence of the attractive force between the
adatoms and the substrate atoms; this force is nonnegligible because of the very small
thickness of the film (h∼ 10 nm). The surface-energy anisotropy effect emerges due
to the crystal nature of the film surface. The combination of the two effects results
in a complicated nonlinear evolution PDE. We use the approach of [Khenner 2013]
to build and analyze the model with the added anisotropy effect; first, the governing
PDE is derived, and then we analytically obtain the stability regions of the planar
surface in the space of the physical parameters and, for the values of the parameters
such that the planar surface is unstable, compute the evolution of the small, one-
wavelength surface perturbation on a periodic domain. The typical evolution scenar-
ios, such as the evolution to a steady-state or the lateral surface drift, are presented.

2. Problem statement

We assume a simple one-dimensional geometry, where the surface is an open curve
(without overhangs) in the xz-plane, described by a function z = h(x). Since the
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Figure 1. Sketch of the film surface h(x, t) in the horizontal, constant
electric field E. Here Eloc = E cos θ is the projection of E on the
surface. The surface atomic flux j is in the direction opposite to Eloc.

curve deforms with time, h is also a function of time t ; that is, z = h(x, t). As is
common in physics literature, the curve h(x, t) is termed the film surface in the
following, despite being a one-dimensional object.

Following [Khenner 2013], we focus on the case of the horizontal electric field
(directed along the substrate and the initially planar film surface h(x, 0)= const.).
As was stated in the Introduction, we will incorporate the effects of substrate wetting
by the film [Khenner 2008a], the anisotropy of the diffusional mobility M(θ) [Krug
and Schimschak 1997], and weak anisotropy of the surface energy γ (θ) [Liu and
Metiu 1993], where θ is the angle that the unit normal n to the surface makes with
the vertical coordinate axis z. From the mathematical standpoint, these effects will
manifest in our model through various linear and nonlinear terms in the parabolic
PDE for h(x, t). The physicomathematical framework in which our model is
firmly rooted has been established, beginning in 1960s, through the efforts of many
prominent materials scientists, physicists, and mathematicians [Mullins 1963; Cahn
et al. 1992; Cahn and Taylor 1994; Di Carlo et al. 1992; Dobbs and Krug 1994;
Liu and Metiu 1993; Davis et al. 2004]. The mathematics of the accounting for the
relevant physical effects are summarized below, and the physical foundations, as
well as further mathematical detail, can be found in the cited papers. To illustrate the
effects of the electromigration on film morphology, Figure 1 depicts two directions
of the electric field. In Figure 1 (left), the electric current forces the adatoms
downhill (from the crest to the trough); thus the surface becomes more planar with
time. In Figure 1 (right), the field in the opposite direction forces the adatoms uphill
(from the trough to the crest) and thus the surface becomes less planar. This is the
instability mechanism that we are investigating in this paper.

The dimensionless PDE governing the evolution of h(x, t) has the form

ht = B
[
M(hx)(1+ h2

x)
−1/2µx

]
x + A

[
M(hx)(1+ h2

x)
−1/2]

x . (1)

In (1), B > 0 is the effective diffusivity of adatoms and A ≥ 0 is the strength of the
electric field. The first term on the right-hand side stems from the natural diffusion
of adatoms (in the absence of the electric current) on a heated crystal surface. The
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meaning of this term is that relocation of adatoms through diffusion changes the
shape of the surface. It was first derived by Mullins [1963] in what is now considered
the classical work. Similarly, the second term stems from the forced diffusion (drift)
of adatoms caused by the electromigration force. It was derived in several papers,
including [Dobbs and Krug 1994; Krug and Schimschak 1997; Khenner 2013]. The
surface chemical potential µ(x, t) entering the Mullins term contains, in our model,
the contributions from wetting (through the dependence of the surface energy γ on
the film thickness h; see (3) below) and anisotropy. The expression for µ(x, t) reads

µ= (γ+γθθ )κ+(γh−hxγhθ )cosθ, cosθ= (1+h2
x)
−1/2, κ=−hxx(1+h2

x)
−3/2.

(2)
Here κ is the curvature, and γ (h, θ) is the weakly anisotropic film-surface energy
(tension):

γ (h, θ)= 1+ εγ cos 4θ + (G− 1− εγ cos 4θ)e−h, θ = arctan hx , (3)

where G > 1 and 0≤ εγ < 1
15 are the parameters; G is the ratio of the (dimensional)

substrate energy to the (dimensional) surface energy, and εγ is the strength of the
anisotropy. The interval for εγ implies that the “stiffness” γ+γθθ is larger than 0 for
all θ in (2) when γ = γ (θ)= 1+εγ cos 4θ (the four-fold anisotropy typical for most
semiconductor and metal crystals). This implies a negative effective “diffusivity” α1

in the linearized PDE (1) (for A = 0): ht = α1hxxxx , where α1 < 0. Such a linear
PDE is well-posed; i.e., it is forward parabolic. If εγ ≥ 1

15 (strong anisotropy, typical
at comparatively low temperatures), then the PDE is backward parabolic for some
θ-intervals and the regularization is required; usually the curvature-squared term
is added to γ (θ) [Di Carlo et al. 1992], which raises the PDE order from the fourth
to the sixth. In the presence of the electric current, the crystal temperature is high
due to Joule heating, which justifies the restriction of the consideration to mild
anisotropy. The choice G > 1 means that only wetting films are considered; i.e.,
the substrate energy is larger than the surface energy. Thus dewetting, meaning the
substrate exposure, may occur only through the application of the external force,
such as the electromigration.

The form of (3) results from the consideration of the conventional “two-layer”
model for the film energy; for the discussion of that model see, for instance, [Davis
et al. 2004] and the references therein. The parameters and their typical range of
values are displayed in Table 1. Notice that the classical Mullins model assumes
γ = const. (the isotropic case without the wetting effect); thus the chemical potential
reduces to µ= γ κ . The form of the wetting potential contribution to the surface
energy, (γh−hxγhθ ) cos θ , is well established and is taken from [Davis et al. 2004].

In reference to the electromigration term in (1),

M(hx)=
1+β cos2(N (arctan hx +φ))

1+β cos2(Nφ)
, where β, N, φ = const., (4)
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Physical Typical
Range Physical meaningparameters values

B 8 fixed effective adatoms diffusivity
M(0) 1 fixed adatoms mobility on the horiz. surface

h0 3 0≤ h0 ≤ 20 initial height of the film (same for all x)
A 72 10≤ A ≤ 1000 strength of the electric field
G 2 1< G ≤ 100 ratio of the substrate energy to the surface energy

M ′(0) −3 −10≤ M ′(0)≤ 0 derivative of adatoms’ mobility on the horiz. surface

Table 1. Values of the dimensionless physical parameters. The def-
initions of these parameters in terms of the dimensional quantities
can be found in [Khenner 2013; 2008b; Khenner et al. 2011]. The
typical values in the second column result from the substitutions in
these expressions of the published standard values of the dimensional
parameters [Mullins 1963; Maroudas 1995; Dobbs and Krug 1994;
Krug and Schimschak 1997; Davis et al. 2004; Liu and Metiu 1993],
which have been measured in the experiments.

is the anisotropic diffusional mobility (notice that the denominator of the fraction
is a constant value for the given nonnegative parameters β, N and φ); here β is
the anisotropy strength, N is the number of crystallographic symmetry axes and
φ is the angle between a symmetry direction and the average surface orientation.
In this paper, β varies (resulting in a variation of M ′(0); see Table 1), N = 4, and
φ= π/16. Notice that M(0)= 1 for any β, N , φ. Equation (4) is taken from [Krug
and Schimschak 1997].

Next, we begin by linearizing M(hx) about hx = 0; i.e., we write M(hx) =

M(0)+M ′(0)hx , where M(0) and M ′(0) will be later calculated from (4) for given
β, N and φ (see [Khenner 2013]). Then

∂M(hx)

∂x
=
∂M(hx)

∂hx
hxx = M ′(0)hxx , (5)

and (1) now reads

ht = B M ′(0)hxx(1+ h2
x)
−1/2µx + B(M(0)+M ′(0)hx)

[
(1+ h2

x)
−1/2µx

]
x

+ AM ′(0)hxx(1+ h2
x)
−1/2
+ A(M(0)+M ′(0)hx)

[
(1+ h2

x)
−1/2]

x . (6)

In order to compute µx in (6), we first calculate γθθ , γh , γhθ using (3). Then we
substitute these expressions in (2), use the trigonometric identities

cos 4θ = 8(cos4θ − cos2θ)+ 1, sin 4θ = 4 sin θ cos θ(2 cos2θ − 1),

(where cos θ = (1+ h2
x)
−1/2 and sin θ = hx(1+ h2

x)
−1/2) and obtain µ(x, t) in

terms of hx , h2
x , hxx , etc. We then substitute µ(x, t) into (6) and the remaining

differentiations are performed.
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Finally, we employ the small-slope approximation. The spatial derivatives are
replaced as ∂/∂xk

→ εk∂/∂xk , the coefficients of the powers of ε are collected,
and all but the coefficients of εk , k = 1, 2, 3, 4, are set to zero. Then, ε is set equal
to 1. This results in the fourth-order, nonlinear PDE for h(x, t):

ht = B M(0)
(
15εγ − 1+ (1−G− 15εγ )e−h)hxxxx

+
(

AM ′(0)− B M(0)(1−G+ εγ )e−h)hxx

− Ahxx
(
M(0)hx +

3
2 h2

x M ′(0)
)
+ Be−h F,

(7)

where

F = M ′(0)h3
x(1−G+ εγ )− 2M ′(0)hx hxx(1−G+ εγ )−M(0)h4

x(1−G− 7εγ )

+M(0)h2
x(1−G+ εγ )+ 5M(0)h2

x hxx
(
1−G− 51

5 εγ
)

− 3M(0)hx hxxx(1−G− 15εγ )− 2M(0)h2
xx(1−G− 15εγ ). (8)

The first and second lines of (7) are composed of the linear contributions, while
all terms in the third line are nonlinear (i.e., they are proportional to the products
of the spatial derivatives of h). The terms in the first line emerge due to the natural
diffusions of adatoms, mediated by a surface/substrate-interaction force, on a heated
crystal surface with anisotropic surface energy. In the second line, the linear term that
is proportional to B is also due to the natural diffusion mediated by the wetting effect,
while another linear term there that is proportional to A is due to the electromigration
drift of adatoms. In the third line, the two terms that are proportional to A also are
due to the electromigration. Finally, the last contribution in the third line, Be−h F , is
the nonlinearity produced by the substrate wetting effect. This contribution, as well
as the linear terms that are proportional to e−h in the first and second lines of (7), drop
out in the limit of a thick film, h→∞, where the film surface/substrate-interaction
force vanishes. When εγ = 0, equations (7) and (8) are reduced to [Khenner 2013,
(15)]. In the following, it is important that the coefficients of the linear terms are
negative, due to negativity of M ′(0) and weak anisotropy, 0< εγ < 1

15 .

2.1. Example: analysis of a linear second-order PDE. Equation (7) is a well-
posed, fourth-order, nonlinear parabolic PDE. The prototype linear fourth-order
parabolic PDE is

ht = α1hxxxx +α2hxx , α1, α2 < 0. (9)

This equation has the trivial solution h(x, t)= h0 = const. In the physical context,
this solution corresponds to a constant-height film for all values of x and t , that is, a
film with a planar stationary surface. We call such a solution an equilibrium surface.
The key issue is whether the equilibrium is stable or unstable with respect to small
perturbations ξ(x, t). This can be settled by substituting h = h0+ ξ(x, t) and then
assuming ξ(x, t) is a single Fourier mode: ξ(x, t) = ξ0eωt eikx , where ξ0 is the
amplitude, ω(k) is the growth rate, and k is the wavenumber. (The wavelength, or
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ωmax

kmax kc0

ω ω

0

k k

Figure 2. Two cases of the typical growth rate ω(k). Left: long-
wave instability. Right: stability, ω(k) < 0 for all k.

the spatial period, is λ=2π/k.) Then one obtains the expression for the perturbation
growth rate as a function of the wavenumber, the so-called dispersion relation

ω(k)= α1k4
−α2k2. (10)

For small k, the second term is dominant in this expression. For large k, it is the
first term. Since α2 < 0, perturbations with small wavenumbers (large wavelengths)
grow (ω(k) > 0); because α1 < 0, perturbations with large wavenumbers (small
wavelengths) decay (ω(k) < 0). This is reflected in the shape of the curve ω(k) (see
Figure 2 (left)), and correspondingly the instability is termed the long-wavelength
instability. All perturbations with wavenumbers in the interval 0< k < kc grow, and
all perturbations with wavenumbers greater than kc decay; kc is termed the instability
cut-off wavenumber. The surface is unstable with respect to long-wavelength
perturbations, and it is stable with respect to small-wavelength perturbations. In
practice, the perturbation (induced, for instance, by a thermal noise) is not a single
Fourier mode. However, most perturbations can be represented by a superposition
of Fourier modes. Thus some modes grow and some decay. Among the unstable
modes, there is a mode with the largest growth rate, ωmax. This most dangerous
mode will dominate over other modes shortly after the surface is destabilized,
resulting in a surface deformation of the form h(x, t) = h0 + ξ0eωmaxt cos kmaxx .
Here, kmax is the wavenumber for which ω = ωmax, i.e., the maximum of ω(k) on
the interval 0≤ k ≤ kc. In other words, kmax is the positive solution of dω/dk = 0.

It is easy to show that for (10), we have kmax= kc/
√

2. First, we set the right-hand
side of (10) to zero and solve for k:

ω(k)=−α2k2
+α1k4

=0 =⇒ k2(−α2+α1k2)=0 =⇒ k=0 or k=±
√
α2/α1.

Since we need a positive solution, kc =
√
α2/α1. To determine kmax, we solve

dω/dk = 0 for k; that is,

−2α2k+4α1k3
= 0 =⇒ 2k(−α2+2α1k2)= 0 =⇒ k= 0 or k=±

√
α2/2α1.

Again we take the positive solution. Thus, kmax =
√
α2/2α1 = kc/

√
2.
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Notice that the parameter α1 in (9) cannot be positive. Otherwise, the short-
wavelength perturbations will grow, which is not physically permissible, since
in this case the surface is always unstable — such perturbations would be always
present in the spectrum. However, an instability is not universal, and most material
surfaces remain planar. Mathematically, (9) in the case of α1> 0 is ill-posed; despite
its higher order, it is similar to the (ill-posed) backward heat equation ht =−hxx .
However, the parameter α2 may be positive for some physical parameters’ values.
Then ω(k) is negative for all k (Figure 2 (right)), meaning that all perturbations
decay and the surface restores its initial planar shape.

Equations such as (7) are nonlinear; thus the exponential growth of the most
dangerous mode will not continue forever. Nonlinear terms in the equation will
dampen growth, which usually results in a stationary, nontrivial solution which has
the spatial form resembling the large-amplitude cosine curve. Determination of the
stability of (7) and the form of the stationary solution will be discussed next.

3. Linear stability analysis

The dynamics of the film surface are governed by the nonlinear PDE (7). Toward
our goal of determining stability of the surface with respect to small perturbations,
we notice that (7) has the equilibrium solution h = h0 = const., and we linearize
about this solution along the lines described above for (9). First, using the general
small perturbation ξ(x, t), we substitute h = h0+ ξ(x, t) in (7) and retain only the
linear terms in ξ . Then, we substitute ξ = ξ0eωt eikx , calculate the partial derivatives
and divide out the factor ξ0eωt . This results in the dispersion relation

ω(k)=−B M(0)
(
(G− 1+ 15εγ )e−h0 + 1− 15εγ

)
k4

−
(
B M(0)(G− 1− εγ )e−h0 + AM ′(0)

)
k2. (11)

3.1. Analysis of the dispersion relation (11). In this section we determine how
the physical parameters of the problem affect the surface instability.

As we explained in Section 2, if ω(k) < 0 for all k, then the surface is stable
with respect to the perturbations of any wavenumber (Figure 2 (right)). When
this condition does not hold, the surface is long-wave unstable (Figure 2 (left)).
The degree of the instability is measured by the width of the domain under the
dispersion curve ω(k). That is, the larger the cut-off wavenumber kc is, the stronger
the instability.

We notice that the dispersion relation (11) has the form of (10) and thus we
identify

α1 =−B M(0)
(
(G− 1+ 15εγ )e−h0 + 1− 15εγ

)
,

α2 = B M(0)(G− 1− εγ )e−h0 + AM ′(0).
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Figure 3. Characterization of the film linear stability. (a) kc vs. h0;
(b) kc vs. A; (c) kc vs. G; (d) kc vs. M ′(0); (e) kc vs. εγ . In (f)–(j),
ωmax is plotted vs. the same variables. In each panel, all parameters
except the single one that is varied are fixed to the typical values
from the second column of Table 1. In (a)–(j), εγ is chosen equal
to zero (isotropic evolution). The same strategy with regard to
parameters is followed in Figures 4 and 5.
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Then the expressions for kc, kmax and ωmax are

kc =

√
Aeh0 M ′(0)+ B M(0)(G− 1− εγ )

B M(0)
(
1−G− 15εγ + (15εγ − 1)eh0

) , kmax =
kc
√

2
,

ωmax =
1
4

(
Aeh0 M ′(0)+ B M(0)(G− 1)− B M(0)εγ

)2

B M(0)eh0
(
G− 1+ 15εγ + (1− 15εγ )eh0

) .
(12)

The wavelength of the most dangerous perturbation is λmax = 2π/kmax.
The expressions for kc, kmax and ωmax include new contributions due to the

surface energy anisotropy (the terms proportional to εγ ).
The film stability decreases with increasing h0, and this trend saturates around

h0 = 5.12 nm (Figure 3(a)). This is because the film wets the substrate and thus the
attractive, cohesive force between the adatoms and the substrate atoms is stronger for
thinner films (smaller h0). Increasing the electric field strength A also makes the film
less stable, but increasing G makes it more stable, since the substrate energy provides
a stabilizing effect (Figures 3(b)–(c)). The stability of the film decreases with increas-
ing |M ′(0)| and εγ (Figures 3(d)–(e)). The results in the panels (a)–(d) and (f)–(i)
were obtained also in [Khenner 2013]; here these results are recomputed from (7).
The results in the panels (e) and (j) are new; they stem from the new feature of the
extended model: the accounting for the mild anisotropy of the film-surface energy.

4. Numerical solution of equation (7)

Using the information from the previous section on how the physical parameters
affect the surface stability, in this section we compute the full nonlinear PDE (7) by
implementing the method of lines (MOL) [Verwer and Sanz-Serna 1984; Schiesser
1994] in Mathematica [Wolfram 2016]. The MOL is a technique for solving partial
differential equations by discretizing in all but one dimension, and then integrating
the semidiscrete problem as a system of ordinary differential equations (ODEs).
A significant advantage of the method is that it allows us to use the sophisticated
general-purpose software [Hairer and Wanner 1999; Brown et al. 1989] that has been
developed for numerically integrating large systems of ODEs. For the parabolic
initial-boundary-value problems, the MOL typically is very efficient and accurate.
Sophisticated adaptive MOL methods were also developed for some hyperbolic
equations [Saucez et al. 2001].

The initial condition is the perturbation of h = h0, and the boundary conditions
are periodic:

h(x, 0)= h0+δ cos(kmaxx), h(0, t)= h(λmax, t), h′(0, t)= h′(λmax, t), (13)

where δ is a small amplitude (we take δ = 0.01). Periodic boundary conditions
are used since the goal is to compute the evolution of a finite section of a periodic,
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laterally unbounded surface. Notice that h(x, 0) is the most dangerous (fastest
growing) unstable perturbation according to the linear stability analysis in Section 3.

Evolution of the perturbation is computed until the steady-state solution emerges.
The steady-state solution is either a stationary or a traveling wave of wavelength λmax

and constant amplitude. The amplitude and wave speed are studied as a function
of the parameters A, h0, G, M ′(0), and εγ . It is important to emphasize here that
the traveling wave is a nonlinear effect (which was overlooked in [Khenner 2013]);
indeed, the perturbation growth rate ω(k) is real-valued (see (11)), indicating the
absence of a linear traveling wave. In computations, the profile started to shift
laterally only when the amplitude of a cosine-like perturbation became fairly large,
indicating that nonlinearities in (7) are responsible. Another important observation
is that for thick films, h� 1, the wave speed is zero; thus the traveling wave solution
is caused by the nonlinear effect of substrate wetting, which is described by the term
Be−h F in (7). The lateral drift of surface perturbations has been noted previously
in surface electromigration problems; for instance, the drift is the hallmark of [Krug
and Schimschak 1997], where it is caused by the nonlocality of the electric field.

Two sets of simulations are conducted, at different film heights: h0 = 3 and
h0 = 10; when one parameter is varied, other parameters are fixed to their typical
values in Table 1. In addition, the height is also varied with all other parameters
fixed. The results are displayed in Figures 4 and 5.

Figures 4(a)–(b) show the effect of varying the film height on the amplitude and
the wave speed. Both graphs show the sharp decreases and then the amplitude levels
off, while the wave speed vanishes at h0 ≈ 7. The decrease of the wave amplitude
and speed is expected, since the wetting potential and the corresponding driving
force decay exponentially as the film thickness increases.

As seen in Figures 4(e) and 5(e), as the electric field parameter A is increased, the
amplitude is decreased and then it levels off. As the graph is the same, we conclude
that the dependence of the amplitude on A is unaffected (or is affected very weakly)
by the height changes and by the traveling surface wave. Changing A affects the
wave speed in a more complicated manner. As Figure 5(f) shows, increasing the
strength of the field initially dampened the wave speed, but with further increase of
the field, the wave speed also increases. The latter behavior is expected, since the
strong field implies a fast adatoms drift. We will be looking into the reason for the
initial wave speed decrease.

Figures 4(c) and 5(a) show that increasing the anisotropy strength εγ makes the
amplitude smaller. The wave speed, however, increases with the increase of εγ , as
shown in Figure 5(b). The amplitude variation is primarily affected by εγ and the
simultaneous height changes make little difference.

In Figure 5(g), the amplitude increases only very little as the ratio of the ener-
gies G increases. (At h0 = 10, the amplitude value stays constant (≈ 0.65) as G is
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Figure 4. Graphs (a)–(b) show the effects of varying h0 on the
traveling wave amplitude and speed. Graphs (c)–(e) show the ef-
fects of varying εγ , M ′(0) and A on the stationary wave amplitude;
here h0 = 10, i.e., the film is thick. As is displayed in (b), for thick
films the wave speed is zero.

varied; thus this graph is not shown in Figure 4.) In Figure 5(h), the wave speed
increases as G increases.

Increasing the absolute value of the diffusional mobility derivative, |M ′(0)|,
results in the decrease of the amplitude and wave speed, as shown in Figures 4(d),
5(c) and 5(d). Once again we notice that the height variation does not seem to affect
the trends that M ′(0) places on these characteristics.

Notice from the graphs of the amplitude in Figures 4 and 5 that the amplitude
never reaches the value of h0, that is, 3 or 10. This means that the film’s local
height is not zero, and therefore the film does not dewet the substrate. In other
words, the film continuously covers the substrate at all times — the substrate is
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Figure 5. The effects of the parameters’ variation on the traveling
wave amplitude and speed (the first and second column, respec-
tively), for the thin film (h0 = 3).

not exposed, despite the application of the electromigration. This can be expected,
since the electric field is applied along the substrate, rather than across it. In the
latter situation the film is more likely to dewet [Khenner 2013].

These results give insights into the complicated nonlinear dynamics of a film
surface. Importantly, even though increasing A, εγ and |M ′(0)| results in the
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decrease of the amplitude, the initial state of δ = 0.01 is never reached. Thus at all
times t > 0 the surface is always more deformed than it is initially.

The amplitude trends shown in Figures 4(a),(d),(e) and Figures 5(c),(e),(g)
confirm the results obtained previously in [Khenner 2013]. The results for the
amplitude and wave speed in other panels of these figures are new. As we noted
above, the traveling wave solution was overlooked in [Khenner 2013] and thus the
dependence of the traveling wave speed and amplitude on parameters, including
the new parameter, i.e., the strength of the anisotropy εγ , was not computed there.

5. Conclusions

We performed the analysis of the partial differential equation model of the surface
morphological evolution affected by electromigration, assuming a wetting solid
film with the mildly anisotropic surface energy.

The linear stability analysis shows that the stability of the base planar state of the
surface decreases with the increasing film thickness h0, the electric field strength A,
the derivative of the diffusional mobility |M ′(0)| and the anisotropy strength εγ .
The stability increases with increasing the ratio G of the substrate energy to the
film energy, or equivalently, increasing the strength of the intermolecular attractive
force between the adatoms and the atoms of the substrate.

We used the method of lines to numerically solve the fully nonlinear PDE. This
way we found two outcomes of the surface evolution: the stationary wave relief
for thick films, and the traveling surface wave (the surface drift) for thin films. We
illustrated how all other physical parameters affect the amplitude of either wave
(stationary or traveling), as well as the wave speed of the traveling wave. Our results
also hint that there is no combination of the physically admissible parameters’ values
for which the film dewets the substrate.

Our numerical studies are on the periodic one-wavelength domain x ∈ [0, λmax],
and we used the cosine curve with the small initial amplitude to perturb the (constant)
initial height. Future work will be focused on computing the evolution of a small
random perturbation on the large periodic domain comprising many wavelengths. In
this setup, the coarsening of the initial perturbation can be studied and predictions
can be made about the pattern formation on the surface.
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Jacobian varieties of Hurwitz curves with
automorphism group PSL(2, q)

Allison Fischer, Mouchen Liu and Jennifer Paulhus
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The size of the automorphism group of a compact Riemann surface of genus g> 1
is bounded by 84(g− 1). Curves with automorphism group of size equal to this
bound are called Hurwitz curves. In many cases the automorphism group of
these curves is the projective special linear group PSL(2, q). We present a
decomposition of the Jacobian varieties for all curves of this type and prove that
no such Jacobian variety is simple.

1. Introduction

Let X be a compact Riemann surface of genus g (henceforth called a “curve”),
and G its automorphism group with identity element denoted idG . A result of
Wedderburn gives the decomposition of the group ring QG,

QG ∼=
⊕

i

Mni (1i ),

where Mni (1i ) denotes ni × ni matrices with coefficients in a division ring 1i .
It is possible to decompose the Jacobian variety, JX , of the curve X into abelian
varieties, up to isogeny ∼, as

JX ∼
⊕

i

(ei (JX))ni , (1)

where ei are certain idempotents in End(JX)⊗Z Q. More details about this de-
composition may be found in [Paulhus 2008]. It is important to note here that this
decomposition may not be the finest possible decomposition. Some of the abelian
variety factors ei (JX) could decompose further.

Decomposable Jacobian varieties have applications to rank and torsion questions
in number theory [Howe et al. 2000; Rubin and Silverberg 2001]. In genus 2,

MSC2010: 14H40, 14H37, 20G05.
Keywords: Jacobian varieties, Hurwitz curves, projective special linear group, representation theory.

639

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2016.9-4
http://dx.doi.org/10.2140/involve.2016.9.639


640 ALLISON FISCHER, MOUCHEN LIU AND JENNIFER PAULHUS

the elliptic curve factors appearing in these decompositions have interesting arith-
metic properties (see [Cardona 2004; Earle 2006; Magaard et al. 2009], among
many others).

The dimension, as an abelian variety, of the factor ei (JX ) in (1) is 1
2〈ψi , χ〉,

where 〈ψi , χ〉 denotes the inner product of ψi , the i-th irreducible Q-character
labeled according to the Wedderburn decomposition, with χ , a character we define
below called the Hurwitz character. To define the character χ , we consider the
covering from X to its quotient Y = X/G, a curve with genus denoted gY . Let
h1, . . . , hs ∈ G be the monodromy of this covering. For any subgroup H of G,
define the character χH to be the trivial character of H induced to G, and 1G to be
the trivial character of G. In this paper H is a cyclic subgroup generated by one
element of the monodromy, which we write as 〈hi 〉. Note that with this notation
χ〈idG 〉 is the character associated to the regular representation. Define the Hurwitz
character as

χ = 2 · 1G + 2(gY − 1)χ〈idG 〉+

s∑
j=1

(χ〈idG 〉−χ〈h j 〉), (2)

which is the character of the representation of G on H 1
et(X,Q`) [Milne 1980,

Chapter V, §2]. To determine the dimensions of factors of JX from (1), we must
know the automorphism group of X , the irreducible Q-characters for that particular
group, and the monodromy of the covering X→ Y.

The upper bound on the size of the automorphism group of a curve of genus g> 1
is given by 84(g− 1). Curves whose automorphism groups attain this bound are
called Hurwitz curves and the groups themselves are called Hurwitz groups. Hurwitz
groups have a long history in the study of triangle groups, Riemann surfaces, and
hyperbolic geometry. See [Conder 1990] for a nice survey of these groups and
their significance.

For all Hurwitz curves, the quotient curve Y is the projective line, so gY = 0.
Since the quotient curve has genus 0, the monodromy of the covering is a set of
elements {h1, . . . , hs} in G such that h1 · · · hs= idG and the set of all hi generates G.
The monodromy for Hurwitz curves is always of type (2, 3, 7), meaning it consists
of an element of order 2, an element of order 3, and an element of order 7, denoted
in this paper by h2, h3, and h7, respectively. (Equivalently, a Hurwitz group is a
finite, nontrivial quotient of the (2, 3, 7)-triangle group.) For Hurwitz curves, (2)
may be simplified to

χ = 2 · 1G +χ〈idG 〉−χ〈h2〉−χ〈h3〉−χ〈h7〉. (3)

Let PSL(2, q) denote the projective special linear group with coefficients in the
finite field of order q. In this paper we will use (1) to decompose the Jacobian
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varieties of all Hurwitz curves with automorphism group PSL(2, q). This decom-
position may be found in Theorem 10 and, in particular, in Corollary 9 we prove
that the Jacobian variety of these curves is never simple.

While there is an infinite family of Hurwitz curves with automorphism group
PSL(2, q) (as we will see immediately below), there are many Hurwitz curves with
other automorphism groups. For example, the alternating group An is a Hurwitz
group for all n ≥ 168 as well as for many smaller n [Conder 1990]. It is likely that
a similar analysis would yield results about the decomposition of the Jacobians of
these families of curves too.

Macbeath determines for which q the group PSL(2, q) is a Hurwitz group.

Theorem 1 [Macbeath 1969]. The group PSL(2, q) is a Hurwitz group if and only if

(i) q = 7,

(ii) q is a prime and congruent to ±1 mod 7, or

(iii) q = p3 for a prime p ≡±2 or ±3 mod 7.

Note that in both cases (ii) and (iii), we have q ≡±1 mod 7. Case (i) occurs for
a Hurwitz curve of genus 3, and the Jacobian is known to decompose as JX ∼ E3,
where E is an elliptic curve [Kuwata 2005]. In case (ii), when q = 13 (and g = 14),
the technique above may be used to show that JX ∼ E14, again for E some elliptic
curve. Case (iii) includes the special case where q = 8. This corresponds to a
genus 7 curve sometimes called the Macbeath curve. It has long been known that
JX ∼ E7 [Wolfart 2002].

For odd q , PSL(2, q) has a well understood and relatively straightforward char-
acter table. Additionally, the monodromy of the coverings is not hard to find as (3)
only requires knowledge of the monodromy up to conjugation. It turns out that, as
we show below in Proposition 2, for almost all q satisfying Theorem 1, PSL(2, q)
has only one conjugacy class of elements of order 2, one of elements of order 3, and
three conjugacy classes of elements of order 7. This then allows us to compute the
inner product 〈ψi , χ〉 in all such examples and prove very general results about the
Jacobian decompositions of curves with these groups as automorphism groups. The
few exceptional q are either discussed above or at the end of the paper in Section 6.

We begin in Section 2 by reviewing known results about G = PSL(2, q). In
particular, in Section 2.3 we determine the irreducible Q-characters, a key piece in
our determination of the dimension of the factors in the Jacobian decompositions.
In Section 3 we compute the Hurwitz character χ , and in Section 4 we compute
the inner products. Finally we put the pieces together and present the Jacobian
decomposition in Section 5.

Using a different set of idempotents in QG and the fact that PSL(2, q) has a
partition (a set of subsets of G whose pairwise intersection is the identity and
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whose union is the whole group), Kani and Rosen [1989, Example 2] describe a
decomposition of a power of the Jacobian variety of curves with such automorphisms.
The factors are themselves Jacobians of quotients of the curve by p-Sylow subgroups
or Cartan subgroups of G.

2. Properties of PSL(2, q)

Here we collect the relevant information about the group G = PSL(2, q). More
details may be found in [Karpilovsky 1994] and we follow the notation in that
book. For the rest of the paper, assume q is odd, q > 27, and q satisfies case (ii) or
case (iii) in Theorem 1. All cases not covered by this are discussed above, except
for q = 27, which we cover in Section 6.

First, the size of PSL(2, q) is
1
2q(q + 1)(q − 1).

To describe the character table of PSL(2, q) we need several special elements of
SL(2, q). Let α be a generator of the group of units of the finite field with q2

elements, let β = αq+1, and define b as the element of SL(2, q) determined by the
map x→ αq−1x for x ∈ Fq2 . Additionally define elements of SL(2, q)

a =
[
β 0
0 β−1

]
, c =

[
1 0
1 1

]
, and d =

[
1 0
β 1

]
.

The images of the elements a, b, c, and d in the quotient PSL(2, q) are denoted
as ā, b̄, c̄, and d̄ . The element ā has order 1

2(q−1), the element b̄ has order 1
2(q+1)

and the elements c̄ and d̄ each have order q .

2.1. Conjugacy classes. To determine the monodromy of the covering, we need
to understand the conjugacy classes of elements of orders 2, 3, and 7. The rep-
resentatives of the conjugacy classes of PSL(2, q) are 1̄, c̄, d̄, ān , and b̄m , where
1≤ n,m ≤ 1

4(q−1) if q ≡ 1 mod 4, while 1≤ n ≤ 1
4(q−3) and 1≤m ≤ 1

4(q+1)
if q ≡−1 mod 4. We will write the conjugacy class of an element h ∈ G as [h].

Conjugacy classes with a representative ān have size q(q + 1), and conjugacy
classes with a representative b̄m have size q(q − 1), with the exception of the
conjugacy class containing elements of order 2 which has order half that size,

(
or

1
2q(q − 1)

)
[Karpilovsky 1994]. We will see in the proof of Proposition 2 that the

conjugacy class of elements of order 2 is [ā(q−1)/4
] if q ≡ 1 mod 4 and [b̄(q+1)/4

]

if q ≡−1 mod 4.
It turns out that χ as defined in (3) is 0 outside of the conjugacy classes of

elements of orders 1, 2, 3, and 7, as we will see in Section 3. So it will be sufficient
to only study these conjugacy classes of PSL(2, q) since any other conjugacy
class will not contribute to our goal of computing the inner product of χ with the
irreducible Q-characters. But how many such conjugacy classes are there?
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Proposition 2. If G = PSL(2, q) for q odd, greater than 27, and satisfying case (ii)
or case (iii) in Theorem 1, then G has three distinct conjugacy classes of elements
of order 7, and one each of elements of orders 2 and 3.

Proof. When q is as in the proposition, since elements of the conjugacy classes
represented by c̄ and d̄ have order q , the elements of order 7 can only lie in conjugacy
classes represented by some power of ā or b̄. (For q = 7 this need not be true as c̄
and d̄ both have order q = 7.)

Recall for a finite group G, the order of gk for any g ∈ G and positive integer k
is o(gk)= o(g)/ gcd(k, o(g)). Thus, 7 must divide the order of ā or the order of b̄
but not both, else it divides 1

2(q + 1)− 1
2(q − 1)= 1. Thus the conjugacy class(es)

of order 7 are either represented by some power(s) of ā or some power(s) of b̄.
First consider the case where q ≡ 1 mod 4. Suppose that the conjugacy classes of

elements of order 7 are represented by powers of ā (so q ≡ 1 mod 7). The number
of conjugacy classes will be the number of i such that 7= o(ā)/ gcd(o(ā), i), where
1≤ i ≤ 1

4(q−1). Since 7 divides the order of ā, we let o(ā)= 7 j for some positive
integer j . Then the number of i such that 7 = 7 j/ gcd(7 j, i) is the number of i
that satisfy gcd(7 j, i) = j and 1 ≤ i ≤ 7

2 j . Since o(ā) = 1
2(q − 1) and q > 13,

there are always three of them: i = j
(
or 1

14(q − 1)
)
, i = 2 j

(
or 1

7(q − 1)
)
, and

i = 3 j
(
or 3

14(q − 1)
)
. Hence the elements of order 7 are in the conjugacy classes

represented by ā(q−1)/14, ā(q−1)/7, and ā3(q−1)/14. A similar argument works if these
classes are represented by powers of b̄ (or q ≡−1 mod 7). The elements of order 7
are in the conjugacy classes represented by b̄(q+1)/14, b̄(q+1)/7, and b̄3(q+1)/14.

Now, when q ≡ −1 mod 4, the argument is identical except the bounds on i
change to 1≤ i ≤ 1

4(q−3) if q≡1 mod 7 and 1≤ i ≤ 1
4(q−1) if q≡−1 mod 7. The

rest of the argument does not change and so there are three conjugacy classes of ele-
ments of order 7, again defined as ā(q−1)/14, ā(q−1)/7, and ā3(q−1)/14 if q ≡ 1 mod 7
or b̄(q+1)/14, b̄(q+1)/7, and b̄3(q+1)/14 if q ≡−1 mod 7.

The cases with orders 2 and 3 follow similarly. When q ≡ 1 mod 4, the elements
of order 2 are in the conjugacy class [ā(q−1)/4

]; when q ≡−1 mod 4, the elements
of order 2 are in the conjugacy class [b̄(q+1)/4

]. For elements of order 3, the
conjugacy class is [ā(q−1)/6

] if q ≡ 1 mod 3 and [b̄(q+1)/6
] if q ≡ −1 mod 3. (If

q = 27 there are two conjugacy classes of elements of order 3. See Section 6 for
this special case.) �

2.2. Character tables. Let ε be a primitive (q−1)-th root of unity and let δ be a prim-
itive (q+1)-th root of unity, where εkn = ε

2kn
+ε−2kn and δtm =−(δ

2tm
+δ−2tm).

When q ≡ 1 mod 4, the character table of G = PSL(2, q) is given in Table 1 for
1≤ m, n, t ≤ 1

4(q − 1) and 1≤ k ≤ 1
4(q − 5) [Karpilovsky 1994, Theorem 8.9].

When q ≡−1 mod 4, the character table of G = PSL(2, q) is given in Table 2
for 1≤ n, k, t ≤ 1

4(q−3) and 1≤m ≤ 1
4(q+1) [Karpilovsky 1994, Theorem 8.11].
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[1̄] [ān] [b̄m
] [c̄ ] [d̄ ]

1G 1 1 1 1 1
λ q 1 −1 0 0
µk q+1 εkn 0 1 1
θt q−1 0 δtm −1 −1
χ1

1
2(q+1) (−1)n 0 1

2(1+
√

q ) 1
2(1−

√
q )

χ2
1
2(q+1) (−1)n 0 1

2(1−
√

q ) 1
2(1+

√
q )

Table 1. The character table of G = PSL(2, q) for q ≡ 1 mod 4.

[1̄] [ān
] [b̄m

] [c̄ ] [d̄ ]
1G 1 1 1 1 1
λ q 1 −1 0 0
µk q+1 εkn 0 1 1
θt q−1 0 δtm −1 −1
γ1

1
2(q−1) 0 (−1)m+1 1

2(−1+
√
−q ) 1

2(−1−
√
−q )

γ2
1
2(q−1) 0 (−1)m+1 1

2(−1−
√
−q ) 1

2(−1+
√
−q )

Table 2. The character table of G = PSL(2, q) for q ≡−1 mod 4.

2.3. Irreducible Q-characters. The character tables above give the irreducible
C-characters of PSL(2, q) but we need Q-characters to compute the dimensions
of the factors of the Jacobian decompositions. Since all irreducible C-characters
of PSL(2, q) have Schur index 1 [Janusz 1974], it is sufficient to find the Galois
conjugates of all C-characters.

The characters 1G and λ are already Q-characters, and it is clear that χ1+ χ2

and γ1+γ2 are Q-characters as their noninteger entries are Galois conjugates. This
leaves the µk and θt characters.

Proposition 3. (a) Let r be a divisor of 1
2(q − 1) and define the set

Mr =

{{
µi | 1≤ i ≤ 1

4(q − 5) and gcd
(
i, 1

2(q − 1)
)
= r

}
if q ≡ 1 mod 4,{

µi | 1≤ i ≤ 1
4(q − 3) and gcd

(
i, 1

2(q − 1)
)
= r

}
if q ≡−1 mod 4.

The sum of the characters in each Mr is an irreducible Q-character of PSL(2, q).

(b) Let s be a divisor of 1
2(q + 1) and define the set

2s =

{{
θi | 1≤ i ≤ 1

4(q − 1) and gcd
(
i, 1

2(q − 1)
)
= s

}
if q ≡ 1 mod 4,{

θi | 1≤ i ≤ 1
4(q − 3) and gcd

(
i, 1

2(q − 1)
)
= s

}
if q ≡−1 mod 4.

The sum of the characters in each 2s is an irreducible Q-character of PSL(2, q).
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[ā] [ā2
] · · · [ā(q−1)/4

]

µ1 ρ+ρ−1 ρ2
+ρ−2

· · · ρ(q−1)/4
+ρ−(q−1)/4

µ2 ρ2
+ρ−2 ρ4

+ρ−4
· · · ρ(q−1)/2

+ρ−(q−1)/2

...
...

...
. . .

...

µ(q−5)/4 ρ(q−5)/4
+ρ−(q−5)/4 ρ(q−5)/2

+ρ−(q−5)/2
· · · ρ(q−5)(q−1)/16

+ρ−(q−5)(q−1)/16

Table 3. Values of µk on conjugacy classes of elements ān when
q ≡ 1 mod 4.

Proof. We prove (a) below. The argument for (b) is almost identical. Since the only
nonrational values of the µk characters are their values on the [ān

], we only need
to consider the values on these conjugacy classes. For simplicity of notation, we
define ρ to be ε2, so ρ is a primitive 1

2(q−1)-th root of unity. Then the values of
the µk on the conjugacy classes [ān

] in the case where q ≡ 1 mod 4 are given in
Table 3.

(
For q ≡ −1 mod 4, replace 1

4(q − 5) in the last row with 1
4(q − 3) and

change the exponent in the last column from 1
4(q − 1) to 1

4(q − 3).
)

Fix a particular µk with gcd
(
k, 1

2(q − 1)
)
= r . The Galois orbit is completely

determined by µk([ā]) since the values of µk on the conjugacy classes with represen-
tative powers of ā are sums of powers of the summand ofµk([ā]) (as seen in Table 3).
So it is enough to find the Galois conjugates of µk([ā]). Now µk([ā])= ρk

+ ρ−k ,
where ρk is a primitive 1

2r (q−1)-th root of unity. The Galois conjugates of this
will be sums of the other primitive 1

2r (q−1)-th roots of unity. By a simple or-
der argument, we determine that ρi is a primitive

( 1
2(q − 1)/ gcd

(
i, 1

2(q − 1)
))

-th
root of unity. So the other primitive 1

2r (q−1)-th roots of unity appear for ex-
actly those µi such that gcd

(
i, 1

2(q − 1)
)
= r . So the irreducible Q-character

associated with µk will be the sum of µk with the other characters µi such that
gcd

(
i, 1

2(q − 1)
)
= gcd

(
k, 1

2(q − 1)
)
= r . �

Example. We demonstrate the previous proposition with an example. Consider
q=29≡1 mod 4. Here 1

2(q−1)=14, 1
2(q+1)=15, 1

4(q−5)=6, and 1
4(q−1)=7

and so there are 6 µk characters and 7 θt characters. The only divisors of 1
2(q − 1)

less than 6 are 1 and 2. From Proposition 3(a) we have two distinct sets

M1 = {µi | gcd(i, 14)= 1} = {µ1, µ3, µ5},

M2 = {µi | gcd(i, 14)= 2} = {µ2, µ4, µ6}.

The divisors of 1
2(q + 1) less than 7 are 1, 3, and 5, so from Proposition 3(b) there

are three distinct sets
21 = {θi | gcd(i, 15)= 1} = {θ1, θ2, θ4, θ7},

23 = {θi | gcd(i, 15)= 3} = {θ3, θ6},

25 = {θi | gcd(i, 15)= 5} = {θ5}.



646 ALLISON FISCHER, MOUCHEN LIU AND JENNIFER PAULHUS

Therefore when q = 29, there are two irreducible Q-characters of degree q + 1
(µ1+µ3+µ5 and µ2+µ4+µ6) and three irreducible Q-characters of degree q−1
(θ1+ θ2+ θ4+ θ7, θ3+ θ6, and θ5).

We also need the values of the irreducible Q-characters from Proposition 3 for
the inner product computation of the dimensions of the factors in (1). In the rest of
the paper, for any character µk , we denote by r the gcd

(
k, 1

2(q − 1)
)
, and for any

character θt , we denote by s the gcd
(
t, 1

2(q + 1)
)
. Thus Mr from Proposition 3(a)

will contain the characterµk and2s from Proposition 3(b) will contain θt . The value
of the characters in Proposition 3 will be the value of µk (or θt ) times the number of
irreducible C-characters in the set Mr (or2s). The size of Mr is half the number of i
such that gcd

(
i, 1

2(q−1)
)
= r , or half the number of i such that gcd

(
i, 1

2r (q−1)
)
=1.

This is 1
2φ
( 1

2r (q − 1)
)
, where φ(x) is the Euler phi function. Similarly, the size of

2s is equal to 1
2φ
( 1

2s (q+1)
)
. Additionally for our computations, we will only need

the values of the characters on conjugacy classes of orders 1, 2, 3, and 7, as it turns
out that the Hurwitz character χ is 0 outside these conjugacy classes. This means
the inner product we use to compute the dimension of the factors of the Jacobian
will not be impacted by the values outside of these conjugacy classes. Again, see
Section 3 and (5).

Determining the value of each µk or θt on the relevant conjugacy classes boils
down to whether elements of that order are powers of ā or b̄. The next three
propositions give the values of these characters on conjugacy classes of elements
of orders 2, 3, and 7, respectively.

Proposition 4. Consider the conjugacy class of elements of order 2 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When q ≡ 1 mod 4, the irreducible Q-characters from Proposition 3(a) evaluate
to (−1)kφ

( 1
2r (q − 1)

)
, while the irreducible Q-characters from Proposition 3(b)

evaluate to 0.

(b) When q ≡−1 mod 4, the irreducible Q-characters from Proposition 3(a) eval-
uate to 0, while the irreducible Q-characters from Proposition 3(b) evaluate to
(−1)t+1φ

( 1
2s (q + 1)

)
.

Proof. (a) As we saw in the proof of Proposition 2, the conjugacy class of elements
of order 2 is represented by a power of either ā or b̄, depending on whether
q ≡±1 mod 4. In the first case, it is [ā(q−1)/4

]. Consider the value of one µk on
this conjugacy class:

εk(q−1)/4 = ε
k(q−1)/2

+ ε−k(q−1)/2.

Since ε is a primitive (q−1)-th root of unity, ε(q−1)/2 is a primitive second root
of unity, i.e., −1. Thus εk(q−1)/4 = (−1)k + (−1)−k . When k is odd, this value



JACOBIAN VARIETIES OF HURWITZ CURVES 647

is −2, and when k is even, this value is 2. Combining this value with the number
of characters in the set Mr yields the value of

(−1)kφ
(

q − 1
2r

)
.

The Q-characters which are sums of the characters in 2s (as in Proposition 3(b))
are 0 on this class in this case. From the character table for this case, it is clear that
each θt has a value of 0 on any conjugacy class of the form [ān

] and hence the sum
of such characters also has a value of 0.

(b) When q ≡−1 mod 4, the conjugacy class is represented by b̄(q+1)/4 and so the
Q-characters in Proposition 3(a) are 0 on that class since each µk evaluates to 0. A
similar argument as for q ≡ 1 mod 4 gives that θt will be 2 when t is odd and −2
when t is even. Then the irreducible Q-characters in Proposition 3(b) evaluate to
this value multiplied by the size of 2s . This gives

(−1)t+1φ

(
q + 1

2s

)
. �

Proposition 5. Consider the conjugacy class of elements of order 3 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When q ≡ 1 mod 3 the irreducible Q-characters in Proposition 3(a) evaluate to{
φ
( 1

2r (q − 1)
)

if k ≡ 0 mod 3,

−
1
2φ
( 1

2r (q − 1)
)

otherwise,

while the irreducible Q-characters from Proposition 3(b) evaluate to 0.

(b) When q ≡−1 mod 3, the characters described in Proposition 3(a) evaluate to 0,
while the irreducible Q-characters in Proposition 3(b) evaluate to{

−φ
( 1

2s (q + 1)
)

if t ≡ 0 mod 3,
1
2φ
( 1

2s (q + 1)
)

otherwise.

Proof. As was discussed in the proof of Proposition 2, the conjugacy class of
elements of order 3 is represented by ā(q−1)/6 or b̄(q+1)/6.

(a) Consider the value of µk :

εk(q−1)/6 = ε
k(q−1)/3

+ ε−k(q−1)/3.

Since ε is a primitive (q−1)-th root of unity, ε(q−1)/3 is a third root of unity, which
we call ω. Thus, εk(q−1)/4 = ω

k
+ω−k . When 3 | k, this is 2 and when 3 -k, this is

εk(q−1)/4 = ω+ω
2
=−1. This value, together with the size of Mr gives the value

of the irreducible Q-characters in Proposition 3(a) on elements of order 3. Since
each θt evaluates to 0 on the conjugacy classes represented by powers of ā, the
irreducible Q-characters from Proposition 3(b) also evaluate to 0.
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(b) A similar argument may be used when q ≡−1 mod 3 (or the elements of order 3
are in the conjugacy class represented by b̄(q+1)/6). �

Proposition 6. Consider the conjugacy classes of elements of order 7 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When q ≡ 1 mod 7, the characters in Proposition 3(b) evaluate to 0, while the
irreducible Q-characters from Proposition 3(a) evaluate to{

φ
( 1

2r (q − 1)
)

if k ≡ 0 mod 7,

−
1
2φ
( 1

2r (q − 1)
)

otherwise.

(b) When q ≡−1 mod 7, the irreducible Q-characters in Proposition 3(a) evaluate
to 0, while the irreducible Q-characters from Proposition 3(b) evaluate to{

−φ
( 1

2s (q + 1)
)

if t ≡ 0 mod 7,
1
2φ
( 1

2s (q + 1)
)

otherwise.

Proof. From the proof of Proposition 2 we know that the three conjugacy classes of
order 7 are represented by ā(q−1)/14, ā(q−1)/7, and ā3(q−1)/14 or b̄(q+1)/14, b̄(q+1)/7,
and b̄3(q+1)/14.

(a) If q ≡ 1 mod 7 (equivalently the conjugacy classes of elements of order 7 are
represented by powers of ā) thenµk evaluates to ζ k

+ζ−k on these conjugacy classes,
where ζ is a primitive 7th root of unity. If 7 | k, then ζ k

+ ζ−k is 2 and if 7-k, then
ζ k
+ ζ−k is −1. Combining this with the size of the set Mr or 2s gives the result.

(b) A similar argument follows for q ≡ −1 mod 7 except we are considering
conjugacy classes represented by powers of b̄. �

3. Computation of the Hurwitz character

Recall from (3) that in order to compute χ , we need to determine χ〈idG 〉, χ〈h2〉, χ〈h3〉,
and χ〈h7〉. Let H be a subgroup of G. By the definition of χH , the induced character
of the trivial character of H is

χH (g)=
1
H

∑
x∈G

χo(xgx−1), where χo(g)=
{

1 if g ∈ H,
0 if g /∈ H.

Note that χ〈idG 〉 is just the regular representation

χ〈idG 〉(g)=
{
|G| if g = idG,

0 if g 6= idG .

To compute the remaining three characters, we need several facts from Section 2.1
and a lemma, which is an immediate consequence of the orbit-stabilizer theorem
considering the group action of conjugation.
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Lemma 7. Let G be a group and g, h ∈ G with g not the identity. The number
of x ∈ G such that xgx−1

= h is the size of the centralizer of h if g ∈ [h] and 0
otherwise.

Consider χ〈h2〉. We know

χ〈h2〉(g)=
1
2

∑
x∈G

χo(xgx−1). (4)

For each g ∈ G, we must determine the number of x ∈ G such that xgx−1
= idG

or h2, since 〈h2〉 = {idG, h2}. The case of xgx−1
= idG follows from the fact that,

for any group G and g ∈ G not the identity, there is no x ∈ G so that xgx−1
= idG .

Thus the number of x ∈G such that xgx−1
= idG or h2 is the size of G when g is the

identity and 0 otherwise. For χ〈h2〉(g)when g 6= idG , if g /∈[h2] then this number is 0,
else we must determine the number of x ∈G so that xgx−1

= h2. By Lemma 7, this
is the size of the centralizer of h2. Recall that under the action of conjugation, orbits
are conjugacy classes. By the orbit-stabilizer theorem, |CG(h2)| = |G|/|[h2]|. For
h2 of order 2, we have |[h2]|=

1
2q(q+1) when q≡ 1 mod 4, and |[h2]|=

1
2q(q−1)

when q ≡−1 mod 4, hence |CG(h2)| = q−1 if q ≡ 1 mod 4 and |CG(h2)| = q+1
if q ≡−1 mod 4. Plugging these values into (4) gives

χ〈h2〉(g)=


1
2 |G| if g = idG,

1
2(q − 1) if g ∈ [h2] and q ≡ 1 mod 4,
1
2(q + 1) if g ∈ [h2] and q ≡−1 mod 4,

0 otherwise.

Now, we calculate χ〈h3〉. As before, for each g ∈ G, we need to find the number
of x ∈ G so that xgx−1

∈ 〈h3〉 = {1, h3, h2
3}, and the formula in this case is

χ〈h3〉(g)=
1
3

∑
x∈G

χo(xgx−1).

When g = idG , we have χ〈h3〉(idG) =
1
3 |G|. Else by Lemma 7 and the fact that

h2
3 ∈ [h3], we have χ〈h3〉(g) =

2
3 |CG(h3)| if g ∈ [h3] and 0 otherwise. From

Section 2.1 we know |[h3]| = q(q − 1) if 3 | 1
2(q + 1) and |[h3]| = q(q + 1)

if 3 | 1
2(q−1). Then |CG(h3)| =

1
2(q+1) if 3 | 1

2(q+1) and |CG(h3)| =
1
2(q−1) if

3 | 1
2(q − 1), and

χ〈h3〉(g)=


1
3 |G| if g = idG,

1
3(q − 1) if g ∈ [h3] and q ≡ 1 mod 3,
1
3(q + 1) if g ∈ [h3] and q ≡ 2 mod 3,

0 otherwise.
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Value for elements of orderq mod 84
1 2 3 7

±1 1
42 |G| −

1
2(q ∓ 1) −1

3(q ∓ 1) −1
7(q ∓ 1)

±13 1
42 |G| −

1
2(q ∓ 1) −1

3(q ∓ 1) −1
7(q ± 1)

±29 1
42 |G| −

1
2(q ∓ 1) −1

3(q ± 1) −1
7(q ∓ 1)

±43 1
42 |G| −

1
2(q ± 1) −1

3(q ∓ 1) −1
7(q ∓ 1)

Table 4. Values of χ ′ on conjugacy classes of elements of orders 1,
2, 3, and 7.

For χ〈h7〉, as with the proof of the other characters, χ〈h7〉(idG)=
1
7 |G|. To compute

the value on other elements, observe that for any g of order 7, we know that g and g−1

are in the same conjugacy class [Karpilovsky 1994, Corollary 8.3] but g, g2, and g3

are all in distinct conjugacy classes. Combining Lemma 7 with this information
gives us that χ〈h7〉(g)=

2
7 |CG(h7)|, and we know the sizes of the conjugacy classes

by Section 2.1. Putting all this information together, the value of χ〈h7〉(g) is

χ〈h7〉(g)=


1
7 |G| if g = idG,

1
7(q − 1) if g ∈ [h7] and q ≡ 1 mod 7,
1
7(q + 1) if g ∈ [h7] and q ≡−1 mod 7,

0 otherwise.

Note that the values of χ are invariant under the three conjugacy classes of elements
of order 7. This means we do not have to find in which conjugacy class of elements
of order 7 the monodromy exists in order to compute (3) (i.e., we do not have to
explicitly find h7, we can just use the formula above for any element of order 7).

We will use χ to calculate inner products with irreducible Q-characters to find the
dimensions of the factors in the Jacobian variety decomposition. To simplify later
calculations, we rewrite χ as χ = 2·1G+χ

′, where χ ′=χ〈1G 〉−χ〈h2〉−χ〈h3〉−χ〈h7〉.
Then, the inner product of an irreducible Q-character ψi and χ will be 〈ψi , χ〉 =

2〈ψi , 1G〉+ 〈ψi , χ
′
〉. But since ψi and 1G are orthogonal when ψi 6= 1G , we have

that 〈ψi , χ〉 is simply 〈ψi , χ
′
〉 in all cases except for the trivial character.

Table 4 gives the values of χ ′ on the conjugacy classes of elements of orders
1, 2, 3, and 7, computed by combining all the data in this section. Additionally,
χ ′(g)= 0 if g is not in one of these conjugacy classes.

4. Inner product computations

Our next goal is to use our computation of χ ′ in Section 3 and the irreducible
Q-characters in Section 2.3 to compute the inner products 〈ψi , χ

′
〉. Consider
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〈ψi , χ
′
〉, where ψi is an irreducible Q-character of PSL(2, q). The formula for the

inner product is

〈ψi , χ
′
〉 =

1
|G|

∑
g∈G

ψi (g)χ ′(g−1).

Since g and g−1 are in the same conjugacy class and χ ′ is 0 for all elements that
are not of order 1, 2, 3, or 7, we have the formula

〈ψi , χ
′
〉 =

1
|G|

(
ψi (idG)χ

′(idG)+ |[h2]|ψi (h2)χ
′(h2)

+ |[h3]|ψi (h3)χ
′(h3)+ 3|[h7]|ψi (h7)χ

′(h7)
)
.

In Section 3 we saw that

|[h2]|χ
′(h2)=−

1
2 |G|, |[h3]|χ

′(h3)=−
2
3 |G|, 3|[h7]|χ

′(h7)=−
6
7 |G|.

The formula for the inner product reduces to

〈ψi , χ
′
〉 =

1
42ψi (idG)−

1
2ψi (h2)−

2
3ψi (h3)−

6
7ψi (h7). (5)

Since the values of the irreducible Q-characters are based on whether the con-
jugacy classes of elements of orders 2, 3 and 7 are represented by ā or b̄ (which
depends on the residue of q modulo 3, 4, or 7), the values of these characters, and
the subsequent inner products, will depend on what q is modulo 3 · 4 · 7= 84.

4.1. Trivial character. Recall that χ is the Hurwitz character, and χ = 2 ·1G +χ
′.

Proposition 8. 〈1G, χ〉 = 0.

Proof. By the calculation of χ , we have that 〈1G, χ〉 = 2〈1G, 1G〉+ 〈1G, χ
′
〉 and

〈1G, 1G〉 = 1. Consider 〈1G, χ
′
〉. We use (5) to get

〈1G, χ
′
〉 =

1
42 ·1G(1)− 1

2 ·1G(h2)−
2
3 ·1G(h3)−

6
7 ·1G(h7)=

1
42−

1
2−

2
3−

6
7 =−2.

Thus, 〈1G, χ
′
〉 = 2− 2= 0. �

All other irreducible Q-characters of PSL(2, q) have degree greater than 1. Hence
by (1), where the ni correspond to the degree of the i-th irreducible Q-character,
the decomposition of JX must have more than one factor.

Corollary 9. No Hurwitz curve with automorphism group PSL(2, q) has a simple
Jacobian variety.

4.2. Character of degree q. Recall λ is the character of degree q. We again
apply (5). Since the value of λ is either 1 or −1 depending on whether the element
is in a conjugacy class represented by powers of ā or b̄, we get that 〈λ, χ ′〉 =
1
42(q − u), where u is given in Table 5 and the positive u-values correspond to
positive q mod 84 values and the same holds for the negative values.
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q mod 84 Value of u

±1 ±85
±13 ±13
±29 ±29
±43 ±43

Table 5. Values for u in 〈λ, χ ′〉.

4.3. Characters of degree 1
2(q±1). For q ≡ 1 mod 4, this irreducible Q-character

is χ1+χ2 and evaluates to q+1 on the identity, 2(−1)n on the conjugacy classes [ān
],

and 0 on the conjugacy classes [b̄m
]. Furthermore, the conjugacy class of elements

of order 2 will always be in the set of conjugacy classes [ān
]. We use (5) again,

which becomes

〈χ1+χ2, χ
′
〉 =

q + 1
42
−
(χ1+χ2)(h2)

2
−

2(χ1+χ2)(h3)

3
−

6(χ1+χ2)(h7)

7
.

Determining these values depends on whether q ≡±1 mod 3 and whether q ≡
±1 mod 7 (as we have discussed above, this distinguishes the cases where the
elements of orders 3 and 7 are in conjugacy classes represented by powers of ā
or b̄). But additionally we need to determine if n is even or odd to determine the
sign of χ1+χ2. Recall n is given by 1

6(q−1) for elements of order 3 and 1
14(q−1)

for elements of order 7. This requires us to consider values modulo 3 ·4 ·7 ·2= 168.
Similar arguments will give us the values for γ1+ γ2 when q ≡−1 mod 4. In

all cases, the inner product is given by 1
42(q − v), where v is given in Table 6. In

the table, the positive values of q mod 168 correspond to the positive v-values and
the same holds for the negative values.

4.4. Characters of degree q ± 1. The computations for the inner products of χ ′

with sums of µk or θt are similar. We recall the values of these Q-characters

q mod 168 Values of v

±1 ±169
±13 ±13
±29 ±29
±41 ±41
±43 ±43
±85 ±85
±97 ±97
±113 ±113

Table 6. Values for v in 〈χ1+χ2, χ
′
〉 or 〈γ1+ γ2, χ

′
〉.
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q ≡ 1 mod 4 q ≡−1 mod 4

µk z+( f −1)·84 z− f ·84
θt z+ f ·84 z−( f −1)·84

Table 7. Values of w for the inner products of χ ′ with characters
of degree q±1.

on the conjugacy classes of orders 1, 2, 3, and 7 from Section 2.3. The values
depend on whether the conjugacy classes are powers of ā or b̄. To describe the
value in all cases, we define two additional values. For r = gcd

(
k, 1

2(q − 1)
)

and
s = gcd

(
t, 1

2(q+1)
)
, define f to be the number of 2, 3, and 7 which divide r (or s).

Also define z to be the least residue of q modulo 84. Then the inner product with
irreducible Q-characters from Proposition 3(a) is

1
2
φ

(
q − 1

2r

)
q −w

42
,

and the inner product with irreducible Q-characters from Proposition 3(b) is

1
2
φ

(
q + 1

2s

)
q −w

42
,

where w is given in Table 7.

Example. Continuing from the example in Section 2.3, let q = 29, so z also
is 29. When r = 1 (or s = 1 or 5) then f = 0 and when r = 2 (or s = 3)
we have f = 1. In this case (since q = z) if f = 1, then the value of the inner
product on the corresponding irreducible Q-character which is the sum of characters
in Mr (r = 2) will be 0 and if f = 0, the value on the inner product of the
corresponding irreducible Q-character which is the sum of characters in 2s (s = 1
or 5) will also be 0. This just leaves two nonzero values to compute (r = 1
and s = 3),

〈µ1+µ3+µ5, χ
′
〉 =

1
2φ
( 28

2

)
·
( 29+55

42

)
=

6
2 · 2= 6

and
〈θ3+ θ6, χ

′
〉 =

1
2φ
( 30

6

)
·
( 29+55

42

)
=

4
2 · 2= 4.

5. Decomposition of Jacobian varieties

As described in the introduction, Jacobian varieties may be factored into the direct
product of abelian varieties as in (1). The dimension of the factors is half of the
inner product computed in Section 4. Collecting the information in the previous
section we get the following result.
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Theorem 10. Let X be a Hurwitz curve with full automorphism group PSL(2, q),
where q is odd and q > 27. Let u, v, and w be as given in Tables 5, 6, and 7,
respectively.

When q ≡ 1 mod 4, the Jacobian variety of X is isogenous to

Aq
⊕ B(q+1)/2

⊕

∏
r | (q−1)/2
r<(q−5)/4

Cq+1
r ⊕

∏
s | (q+1)/2
s<(q−1)/4

Dq−1
s ,

and when q ≡−1 mod 4, the Jacobian variety of X is isogenous to

Aq
⊕ B(q−1)/2

⊕

∏
r | (q−1)/2
r<(q−3)/4

Cq+1
r ⊕

∏
s | (q+1)/2
s<(q−3)/4

Dq−1
s ,

where the factors in the decomposition are abelian varieties and

• A has dimension 1
84(q − u),

• B has dimension 1
84(q − v),

• each Cr has dimension 1
168φ

( 1
2r (q − 1)

)
· (q −w),

• and each Ds has dimension 1
168φ

( 1
2s (q + 1)

)
· (q −w).

As mentioned in the introduction, the decomposition technique does not guarantee
that the factors are indecomposable. Also, when determining w, note that the
product indexed by r corresponds to inner products of characters which are sums
of µk characters, and the product indexed by s corresponds to inner products of
characters which are sums of the θt characters.

6. Special case

In the special case when q = 27 = 33, there are still three conjugacy classes of
elements of order 7 and one of elements of order 2; however, there are now two
conjugacy classes of elements of order 3. When we apply the decomposition
technique to this special case we find

JX ∼ E13
1 × A26

3 × E27
2 ,

where the Ei are elliptic curves and A3 is a dimension-3 abelian variety. These
factors correspond to nonzero inner products of χ with the character γ1+γ2, a sum
of θt , and λ, respectively.
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Avoiding approximate repetitions with respect to
the longest common subsequence distance

Serina Camungol and Narad Rampersad

(Communicated by Joshua Cooper)

Ochem, Rampersad, and Shallit gave various examples of infinite words avoiding
what they called approximate repetitions. An approximate repetition is a factor
of the form xx ′, where x and x ′ are close to being identical. In their work, they
measured the similarity of x and x ′ using either the Hamming distance or the edit
distance. In this paper, we show the existence of words avoiding approximate
repetitions, where the measure of similarity between adjacent factors is based
on the length of the longest common subsequence. Our principal technique is
the so-called “entropy compression” method, which has its origins in Moser and
Tardos’s algorithmic version of the Lovász local lemma.

1. Introduction

A now classical result of Thue [1906] showed the existence of an infinite word
over a 3-letter alphabet avoiding squares, that is, factors of the form xx . Ochem,
Rampersad, and Shallit [Ochem et al. 2008] generalized the work of Thue by
constructing infinite words over a finite alphabet that avoid factors of the form xx ′,
where x and x ′ are close to being identical. In most of their work, the closeness of
x and x ′ was measured using the Hamming distance; they also have some results
where the edit distance was used instead. Here, we measure the closeness of two
words based on the length of their longest common subsequence.

The most common metrics used to measure the distance between strings are
the edit distance, the Hamming distance, and the longest common subsequence
metric. The edit distance is the most general: it is defined as the smallest number of
single-letter insertions, deletions, and substitutions needed to transform one string
into the other. The other two distances can be viewed as restricted versions of the
edit distance: the Hamming distance (between strings of the same length) is the edit
distance where only the substitution operation is permitted; the longest common
subsequence metric allows only insertions and deletions.

MSC2010: 68R15.
Keywords: approximate repetition, longest common subsequence, entropy compression.
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The study of the longest common subsequence of two (or several) sequences
has a lengthy history (which, at least initially, was motivated by the biological
problem of comparing long protein or genomic sequences). For example, Chvátal
and Sankoff [1975] explored the following question: given two random sequences
of length n over a k-letter alphabet, what is the expected length of their longest
common subsequence? Questions concerning longest common subsequences in
words continue to be studied to this day (see the recent preprint [Bukh and Zhou
2016], for example).

Ochem, Rampersad, and Shallit [2008] previously studied the avoidability of
approximate squares with respect to Hamming distance and edit distance. Using
the longest common subsequence metric has not yet been done, so it is the aim of
this paper to consider the avoidability of approximate squares with respect to this
measure of distance.

Our main result is nonconstructive—indeed it seems to be quite difficult to find
explicit constructions for words avoiding the kinds of repetitions we consider here—
and is based on the so-called “entropy compression” method, which originates from
Moser and Tardos’s algorithmic version [2010] of the Lovász local lemma. This
method has recently been applied very successfully in combinatorics on words, for
instance in [Grytczuk et al. 2013; 2011]. Ochem and Pinlou [2014] also recently
resolved a longstanding conjecture of Cassaigne using this method (this was also
accomplished independently by Blanchet-Sadri and Woodhouse [2013] using a
different method).

2. Measuring similarity

The definitions given in this section are essentially those of Ochem et al. except
that they are based on the longest common subsequence distance rather than the
Hamming distance.

For words x and x ′, let lcs(x, x ′) denote the length of a longest common subse-
quence of x and x ′. For example,

lcs(0120, 1220)= 3.

Given two words x, x ′ of the same length, we define their similarity, s(x, x ′), by

s(x, x ′) :=
lcs(x, x ′)
|x |

.

For example,
s(20120121, 02102012)= 3

4 .

The similarity coefficient sc(z) of a finite word z is defined to be

sc(z) :=max{s(x, x ′) : xx ′ a subword of z and |x | = |x ′|}.
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If sc(z)= α, we say that z is α-similar. If z is an infinite word, then its similarity
coefficient is defined by

sc(z) := sup{s(x, x ′) : xx ′ a subword of z and |x | = |x ′|}.

Again, if sc(z)= α then we say that z is α-similar.

3. Infinite words with low similarity

Our main result is the following:

Theorem 1. Let 0 < α < 1 and let k > 161/α be an integer. Then there exists an
infinite word z over an alphabet of size k such that sc(z)≤ α.

To prove this, we follow the method of Grytczuk, Kozik, and Witkowski [Grytczuk
et al. 2011]. We begin by defining a randomized algorithm which attempts to
construct a word S of length n with similarity coefficient at most α by a sort of
backtracking procedure. Let si denote the i-th element of S.

Input : n, k, α
1: S =∅, i = 1
2: while i ≤ n do
3: randomly choose a ∈ {1, . . . , k} and set si = a
4: if sc(s1s2 · · · si )≤ α then set i to i + 1
5: else s1s2 · · · si is β-similar, β > α, and contains a subword xx ′ such

that |x | = |x ′| = `, ` ≤ i/2 and s(x, x ′) = β, say x = st+1st+2 · · · st+` and
x ′ = st+`+1st+`+2 · · · st+2`, where t + 2`= i .

6: for t + `+ 1≤ j ≤ t + 2` do
7: delete s j

8: end for
9: set i = t + `+ 1
10: end if
11: end while

Algorithm 1. Choosing a sequence with similarity coefficient at
most α.

The algorithm generates consecutive terms of a sequence S by choosing symbols
at random (uniformly and independently). Every time a β-similar subword xx ′ is
created, where β > α, the algorithm erases x ′, to ensure that the β-similar subword
is deleted. Note that in line 6 the subword xx ′ must occur as a suffix of s1s2 · · · si

(i.e., t + 2`= i), since if it occurred elsewhere it would have been detected at an
earlier stage of the algorithm and its second half would have been deleted.
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It is easy to see that the algorithm terminates after a word of length n with
similarity coefficient at most α has been produced. The general idea is to prove
the algorithm cannot continue forever with all possible evaluations of the random
inputs.

Fix a real number α. We will show that for every positive integer n there exists a
word of length n with similarity coefficient at most α. The existence of an infinite
word with the same property then follows by a standard compactness argument.

Let n be a positive integer, and suppose for the sake of contradiction that every
possible execution of the algorithm fails to produce a sequence of length n. We are
going to count the possible executions of the algorithm in two ways.

Suppose the algorithm runs for M steps. By “step” we mean appending a letter to
the sequence S (which only happens in line 3). Let a1, a2, . . . , aM be the sequence
of values chosen randomly and independently in the first M steps of the algorithm.
Each a j , 1≤ j ≤ M , can take k different values; thus there are k M such sequences.

The second way of counting involves analyzing the behavior of the algorithm.
For a fixed evaluation of the first M random choices of the algorithm we define a
4-tuple (R, X, Y, S), called a log, whose elements consist of the following:

• A route R in the upper right quadrant of the Cartesian plane, going from
coordinate (0, 0) to coordinate (2M, 0), with possible moves (1, 1) and (1,−1),
which never goes below the axis y = 0.

• A sequence X over {1, . . . , k} ∪ {∗} whose elements correspond to the peaks
on the route R, where a peak is defined as a move (1, 1) followed immediately
by a move (1,−1).

• A sequence Y over {0, ∗} whose elements also correspond to the peaks in R.

• A sequence S over {1, . . . , k} produced after M steps of the algorithm.

The values of R, X , Y , and S are determined as follows. Each time the algorithm
appends a letter to the sequence S, we append a move (1, 1) to the route R and every
time an si is deleted we append (1,−1). Every down-step (1,−1) corresponds to
an up-step (1, 1) so we never reach below the y-axis. At the end of computations
we add to the route R one down-step for each element of S which was not deleted
at any point in the algorithm, bringing us to the point (2M, 0). If a β-similar word
is created, say xx ′, we concatenate to X the word obtained from x ′ by replacing the
elements of the longest common subsequence of x and x ′ with the symbol star (∗).
We also concatenate to Y the word obtained from x by replacing the elements of the
longest common subsequence of x and x ′ with the star symbol and setting all other
positions equal to zero. At the end of computations we pad X and Y with enough
stars so that |X | = |Y | = M . Lastly, S is the sequence produced by Algorithm 1
after making M random selections from {1, . . . , k}.
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Example 2. For example, let us choose α = 37
50 . Then d16

50
37 e = 43 and we have

alphabet {1, . . . , 43} and log {R =∅, X =∅, Y =∅, S =∅}. Suppose we create
the word 12324541465 after 11 steps of the algorithm. Each of our steps avoids
creating a β-similar word, so at each step we append (1, 1) to R and the randomly
selected letter to S. Thus we have

{R = (1, 1)11, X =∅, Y =∅, S = 12324541465}.

Suppose in the 12th step of the algorithm we append 4 to S; then our log becomes

{R = (1, 1)12, X =∅, Y =∅, S = 123245414654}.

Observe that the factor xx ′ = 45414654 is 3
4 -similar, where x = 4541, x ′ = 4654

and the longest common subsequence of x and x ′ is 454. As 3
4 >

37
50 , we replace

the longest common subsequence elements of x and x ′ with stars and we append
∗6∗∗ to X and ∗∗∗0 to Y . We then delete x ′ and append to R a (1,−1) for each
deleted element. This results in the log

{R = (1, 1)12(1,−1)4, X = ∗6∗∗, Y = ∗∗∗0, S = 12324541}.

Lemma 3. Every log corresponding to an execution of the algorithm uniquely
determines the sequence a1, a2, . . . , aM of the first M values chosen randomly and
independently in this execution of Algorithm 1.

Proof. Let us fix some log (R, X, Y, S). Before we decode a1, a2, . . . , aM , we
do some preparatory analysis. We construct a sequence D = (d1, d2, . . . , dp),
corresponding to the lengths of consecutive down-steps, (1,−1), of R. Let N =
d1+ d2+ · · ·+ dp. Next we delete the last M − N stars from X and partition the
resulting sequence into blocks of lengths d1, d2, . . . , dp. Let X ′ be the sequence of
these blocks; i.e.,

X ′ = (x1x2 · · · xd1, xd1+1xd1+2 · · · xd1+d2, . . . , xN−dp+1xN−dp+2 · · · xN ).

We do the same for the sequence Y , obtaining a sequence of blocks

Y ′ = (y1 y2 · · · yd1, yd1+1 yd1+2 · · · yd1+d2, . . . , yN−dp+1 yN−dp+2 · · · yN ).

Next we use information from route R to determine which si , 1≤ i ≤ n, were not
deleted at each step of Algorithm 1 and to find the coordinates of the blocks which
were deleted at line 6 of the algorithm. Notice that appending some letter from
{1, . . . , k} to S corresponds to some up-step (1, 1) on the route R, while deleting an
si corresponds to some down-step (1,−1) on the route R. We analyze the route R,
starting from the point (0, 0) to the point (2M, 0). Assume the first peak occurs
between the j -th and ( j+1)-th step. As this is the first time that we erase elements,
we know that s1, . . . , s j are the only nondeleted elements at this point. From the
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number of down-steps on R we deduce the length of the deleted block, say there are
d1 down-steps, and remember that for this peak we deleted s j−d1+1, s j−d1+2, . . . , s j .
Now again each up-step on R denotes appending some value of {1, . . . , k} to S.
Continuing on in this manner, we are able to determine exactly which position was
set last as we reach the next peak. From this information it is easy to determine
which positions were deleted as a result of erasing the repetition. We repeat these
operations until we reach the end of the route R.

After these preparatory measures we are ready to decode a1, a2, . . . , aM . We
consider the sequence R in reverse order, from the point (2M, 0) to the point
(0, 0), modifying the sequences X ′ and Y ′ from the preparatory step and the final
sequence S. We use information encoded in S, X ′ and Y ′, as well as knowledge
from the preparatory step.

As we process the elements of R in reverse order, suppose we encounter an
up-step. Note that each up-step corresponds to some a j . In the preparatory analysis
we determined the indices of elements a j in S, so each time there is an up-step
of R we assign to a j a value from the appropriate si (where i was determined in
the preparatory step), and delete si .

Now we suppose that we encounter a down-step of R (or rather, a block of down-
steps of R). At the end of R there is some number of down-steps corresponding to the
last nondeleted elements of S (the elements added at the end of computations); we
skip these elements and move on. The first block of down-steps that follows an up-
step has length dp and corresponds to the last element of X ′, say X ′N , as well as the
last element of Y ′, say Y ′N . Let si , si+1, . . . , si+dp−1 be the elements of S that were
deleted at each down-step in this block of down-steps. We reconstruct the values of
these elements by using the information from si−dp , si−dp+1, . . . , si−1, Y ′N , and X ′N .

Together, the elements of si−dp , si−dp+1, . . . , si−1 that correspond to the star ele-
ments of Y ′N form the longest common subsequence of si−dp , si−dp+1, . . . , si−1 and
si , si+1, . . . , si+dp−1; call this sequence LCS. The values of si , si+1, . . . , si+dp−1

are obtained by replacing the stars in X ′N with the elements of LCS. We add
these elements to the end of S and repeat the process. Continuing in this manner,
we are able to reconstruct all deleted blocks, and therefore the entire sequence
a1, a2, . . . , aM . �

We have just shown that there is an injective mapping between the set of all
sequences of randomly chosen values during the execution of the algorithm and the
set of all logs. Consequently, the number of different logs is always greater than or
equal to the number of possible sequences a1, a2, a3, . . . , aM . We now derive an
upper bound for the number of possible logs.

The number of possible routes R, of length 2M and possible moves (1, 1) and
(1,−1), in the upper right quadrant of the Cartesian plane is the M-th Catalan
number CM .
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To count X we first note that |X |=M and that each deleted factor x ′ has (strictly)
more than α|x ′| star positions, so it follows that X has more than αM star positions.
Let j be the number of stars in X . There are k choices for the M − j nonstar
positions in X , so there are

(M
j

)
k M− j possibilities for X . Now if X has j positions

with stars, then so does Y , and the remaining positions in Y are 0’s. Thus, there
are

(M
j

)
possibilities for Y , and hence

(M
j

)2
k M− j possibilities for the pair (X, Y ).

Summing over all j , we conclude that there are

M∑
j=dαMe

(M
j

)2
k M− j

possibilities for the pair (X, Y ).
The sequence S consists of at most n elements of value between 1 and k, so

there are (kn+1
− 1)/(k− 1) possible sequences S.

Multiplying these individual bounds together brings us to the conclusion that the
number of possible logs is at most

kn+1
− 1

k− 1
CM

M∑
j=dαMe

(M
j

)2
k M− j .

Comparing with the number k M of possible choices for the sequence a1, . . . , aM

we get the inequality

k M
≤

kn+1
− 1

k− 1
CM

M∑
j=dαMe

(M
j

)2
k M− j .

Asymptotically, the Catalan numbers CM satisfy CM ∼ 4M/(M
√
πM), and(M

j

)
< 2M , which implies that

k M
�

kn+1
− 1

k− 1
4M

M
√
πM

M∑
j=dαMe

(2M)2k M− j .

Simplifying we get that

k M
�

kn+1
− 1

k− 1
4M

M
√
πM

4M
M∑

j=dαMe

k M− j

=
kn+1
− 1

k− 1
16M

M
√
πM

M−dαMe∑
j=0

k j

=
16M

M
√
πM

(kn+1
− 1)(k M−dαMe+1

− 1)
(k− 1)2

≤ kn+2 16M

M
√
πM

k M(1−α)

(k− 1)2
.
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It is easy to verify that when k>161/α , the last expression in the above calculation
is o(k M), which is a contradiction. This contradiction implies that for some specific
choices of a1, a2, . . . Algorithm 1 stops (i.e., produces a word of length n with
similarity coefficient at most α). This completes the proof of Theorem 1.

4. Similarity coefficients for small alphabets

Almost certainly, the bound of 161/α for the size of the alphabet needed to obtain an
infinite word with similarity coefficient at most α is far larger than the true optimal
alphabet size. For example, for α = 0.9 we get an alphabet size of 22, which is
surely much larger than necessary. In this section we investigate the following
question: given an alphabet 6 of size k, what is the smallest similarity coefficient
possible over all infinite words over 6? Implementing an algorithm similar to that
of Section 3 allows us to get an idea of which values of α, where 0< α < 1, are
avoidable and unavoidable. Given a similarity coefficient α to avoid, a length n,
and an alphabet size k, the algorithm starts at 0 and appends letters until a word of
length n with similarity coefficient less than α is obtained. If a factor with similarity
coefficient at least α is created, the last appended letter is deleted. If appending no
other letter avoids α, the algorithm deletes yet another letter, and so on and so forth.
The algorithm continues until a word of length n is produced. If no word of length n
avoids α, the algorithm returns the longest word avoiding α. If, on the other hand,
the algorithm produces words with similarity coefficient less than α for longer and
longer values of n, then we take this as evidence that there exists an infinite word
over a k-letter alphabet with similarity coefficient less than α. We performed this
computation for various alphabet sizes, and the results can be found in Table 1.

For each lower bound reported in the table, we are certain that there does not
exist an infinite word with this similarity coefficient. However, the upper bounds are
only conjectural: the backtracking algorithm described above produces long words
with similarity coefficient less than the stated bound, but we have no conclusive
proof that an infinite word exists.

alphabet size similarity coefficient

3 0.888< α < 0.901
4 0.690< α < 0.760
5 0.590< α < 0.700
6 0.500< α < 0.650
7 0.450< α < 0.650
8 0.400< α < 0.570

Table 1. Results of the backtracking algorithm. (Upper bounds are conjectural.)
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alphabet size similarity coefficient prefix length factor length

3 - 2401 500
4 11/12 912 500
5 16/19 9261 399
6 10/13 9261 312
7 - 5000 218
8 12/15 5000 445

Table 2. Results of computer calculations on Moulin Ollagnier’s
words.

In fact, we cannot produce a single explicit construction (with proof) of an
infinite word with similarity coefficient less than 1. However, computer calculations
suggest that the so-called Dejean words seem to have fairly low similarity (though
not nearly as low as the values given in Table 1). We now report the results of
our computer calculations on the words constructed by Moulin Ollagnier [1992]
in order to verify Dejean’s Conjecture for small alphabet sizes. For each alphabet
size k = 3, . . . , 11, Ollagnier constructed an infinite word over a k-letter alphabet.
Each such word verified a conjecture of Dejean [1972] concerning the repetitions
avoidable on a k-letter alphabet. See [Moulin Ollagnier 1992] for the precise nature
of the construction as well as the details of Dejean’s conjecture. In Table 2, we
report the largest similarity coefficient found among all factors of Moulin Ollagnier’s
words, up to a certain length. In the table, “prefix length” is the length of the prefix
of the infinite word that we examined, “factor length” is the maximum length of the
factors of this prefix that we examined, and a “-” signifies a continuous increase in
similarity coefficient as the lengths of the factors increase.

Two natural problems suggest themselves:

(1) Determine the similarity coefficients of Moulin Ollagnier’s words.

(2) For each alphabet size k, determine the least similarity coefficient among all
infinite words over a k-letter alphabet.

The second question is likely quite difficult. Even an answer just for the 3-letter
alphabet would be nice to have.
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A simple and connected n-vertex graph has a prime vertex labeling if the vertices
can be injectively labeled with the integers 1, 2, 3, . . . , n such that adjacent
vertices have relatively prime labels. We will present previously unknown prime
vertex labelings for new families of graphs, including cycle pendant stars, cycle
chains, prisms, and generalized books.

1. Introduction

The focus of this paper is prime vertex labelings, wherein adjacent vertices of simple,
connected graphs are assigned integer labels that are relatively prime. Currently,
the two most prominent open conjectures involving prime vertex labelings are:

• All tree graphs have a prime vertex labeling (Entringer–Tout conjecture).

• All unicyclic graphs have a prime vertex labeling [Seoud and Youssef 1999].

While we will address one infinite family that is unicyclic, our primary concern
will be nonunicyclic graphs.

A graph G is a set of vertices, V (G), together with a set of edges, E(G),
connecting some subset, possibly empty, of the vertices. If u, v ∈ V (G) are
connected by an edge, we say u and v are adjacent. The degree of a vertex u
is the number of edges incident to u. A subgraph H of a graph G is a graph whose
vertex set is a subset of that of G, and whose adjacency relation is a subset of that
of G restricted to this subset.

We will restrict our attention to graphs that are simple (i.e., graphs that do not have
multiple edges between pairs of vertices nor edges that connect a vertex to itself)
and connected (i.e., graphs that do not consist of two or more disjoint “pieces”).
For the remainder of this paper, all graphs are assumed to be simple and connected.
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Figure 1. The star S4.

Next, we define a few important families of graphs. For n ≥ 2, an n-path (or
simply path), denoted Pn , is a connected graph consisting of two vertices of degree
1 and n− 2 vertices of degree 2. For n ≥ 3, an n-cycle (or simply cycle), denoted
Cn , is a connected graph consisting of n vertices, each of degree 2. Note that both
Pn and Cn have n vertices, while Pn has n−1 edges and Cn has n edges. An n-star
(or simply star), denoted Sn , is a graph consisting of one vertex of degree n, called
the center, and n vertices of degree 1. Note that Sn consists of n+ 1 vertices and n
edges. The star S4 is shown in Figure 1.

A simple and connected n-vertex graph is said to have a prime vertex labeling
if the vertices can be injectively labeled with the integers 1, 2, 3, . . . , n such that
adjacent vertices have relatively prime labels. For brevity, if a graph has a prime
vertex labeling, we will say that the graph is prime. The many familiar families of
graphs that are known to be prime include paths, cycles, and stars.

In this paper, we will present previously unknown prime vertex labelings for
several infinite families of graphs, including cycle pendant stars (Section 2), cycle
chains (Section 3), prisms (Section 4), and generalized books (Section 5). Finally,
some conjectures and potential future work will be described in Section 6.

2. Cycle pendant stars

The focus of this section is on a type of unicyclic graph (i.e., a graph containing
exactly one cycle as a subgraph), which was inspired by Seoud and Youssef’s con-
jecture [1999] that all unicyclic graphs are prime. Instead of attempting to prove the
conjecture outright, which we anticipate would require advanced machinery from lin-
ear algebra, most authors concentrate on finding prime labelings for specific families
of unicyclic graphs. In particular, this was our endeavor in [Diefenderfer et al. 2015].

Every vertex lying on the cycle of a unicyclic graph will be referred to as a cycle
vertex. In a unicyclic graph, a spur is an edge with exactly one vertex on the cycle.
The noncycle vertex of a spur is called a spur vertex. For example, the graph shown
in Figure 2 is a unicyclic graph with five spurs. In this case, the vertices labeled
by c1, c2, c3, and c4 are cycle vertices, while the vertices labeled by p1, p2, p3, p4,
and p5 are spur vertices.
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c2c1

c4 c3

p1

p2p3

p4

p5

Figure 2. Example of a unicyclic graph with five spurs.

Seoud and Youssef [1999] investigated cycles with identical complete binary
trees attached to each cycle vertex. These unicyclic graphs can also be viewed as
cycles with various levels of the star S2 attached to one another. This observation
led to the following generalization, which features a single “level” of stars, but with
differing star sizes. A cycle pendant star, denoted Cn ? P2 ? Sm , is the graph that
results from attaching the path P2 to each vertex of Cn followed by attaching the
star Sm at its center to each spur vertex. For example, the graph C5 ? P2 ? S6 is
shown in Figure 3. Note that our ? notation is not a construction typically found in
the literature and refers to “selectively gluing” copies of one graph to another.

c1

p1

o1,1
o1,2

o1,3 o1,4 o1,5
o1,6

c2

p2

o2,1

o2,2

o2,3

o2,4

o2,5

o2,6c3

p3

o3,1

o3,2

o3,3
o3,4

o3,5o3,6

c4

p4

o4,1
o4,2

o4,3

o4,4

o4,5

o4,6

c5

p5

o5,1

o5,2

o5,3

o5,4

o5,5

o5,6

Figure 3. The graph C5 ? P2 ? S6.
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6i−5 6i−1

6i−2

6i−3

6i−4

6i

6i−11

6i+1

Figure 4. The generalized prime vertex labeling of Cn ? P2 ? S4.

Theorem 2.1. All Cn ? P2 ? Sm with 0≤ m ≤ 8 are prime.

Proof. The cases involving m = 0, 1, 2, 3 correspond to familiar graphs with known
prime vertex labelings. Seoud and Youssef [1999] showed that pendant graphs
(m = 0), double pendant graphs (m = 1), and graphs with identical complete binary
trees attached to the spur vertices of a pendant graph are prime (which includes
the case m = 2). Diefenderfer et al. [2015] showed that Cn ? P2 ? S3 has a prime
vertex labeling.

Now, consider Cn ? P2 ? Sm , with 4 ≤ m ≤ 8. Let c1, c2, . . . , cn denote the
consecutive cycle vertices of Cn , let pi denote the spur vertex adjacent to ci , and
let oi,k , with 1≤ k ≤ m, denote the outer vertices adjacent to pi . For example, see
the identification of vertices depicted in Figure 3. For each case, it is straightforward
and routine to verify that all adjacent vertices have relatively prime labels. However,
for the reader’s benefit, we will describe the case involving m = 6 in detail. Similar
reasoning is required for each of the remaining cases.

For the m = 4 case, the labeling function f : V → {1, 2, . . . , 6n} is given by

f (ci )= 6i − 5 if 1≤ i ≤ n,

f (pi )= 6i − 1 if 1≤ i ≤ n,

f (oi,1)= 6i − 2 if 1≤ i ≤ n,

f (oi,2)= 6i − 3 if 1≤ i ≤ n,

f (oi,3)= 6i − 4 if 1≤ i ≤ n,

f (oi,4)= 6i if 1≤ i ≤ n.

Figure 4 depicts the generalized labeling function in this case for Cn ? P2 ? S4. The
prime vertex labeling of C4 ? P2 ? S4 using this labeling appears in Figure 5.
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For the m = 5 case, the labeling function f : V → {1, 2, . . . , 7n} is given by

f (ci )= 7i − 6 if 1≤ i ≤ n,

f (pi )=



7i − 2 if i ≡6 1, 3,

7i − 3 if i ≡6 2, 4,

7i − 4 if i ≡6 5,

7i − 5 if i ≡6 0, i 6≡30 0,

7i − 1 if i ≡30 0,

f (oi,1)=

{
7i − 5 if i 6≡6 0 or i ≡30 0,

7i − 4 if i ≡6 0, i 6≡30 0,

f (oi,2)=

{
7i − 4 if i 6≡6 0, 5 or i ≡30 0,

7i − 3 if i ≡6 5 or i ≡6 0, i 6≡30 0,

f (oi,3)=

{
7i − 3 if i 6≡6 0, 2, 4, 5 or i ≡30 0,

7i − 2 if i 6≡6 1, 3,

f (oi,4)=

{
7i − 2 if i ≡30 0,

7i − 1 if i 6≡30 0,

f (oi,5)= 7i if 1≤ i ≤ n.

As an example, the prime vertex labeling of C3 ? P2 ? S5 using this labeling appears
in Figure 6.

For m = 6, the labeling function f : V → {1, 2, . . . , 8n} is given by

f (ci )= 8i − 7 if 1≤ i ≤ n,

f (pi )=


8i − 3 if i 6≡3 0,

8i − 5 if i ≡3 0, i 6≡15 0,

8i − 1 if i ≡15 0,

f (oi,1)= 8i − 6 if 1≤ i ≤ n,

f (oi,2)=

{
8i − 5 if i 6≡3 0 or i ≡15 0,

8i − 3 if i ≡3 0, i 6≡15 0,

f (oi,3)= 8i − 4 if 1≤ i ≤ n,

f (oi,4)=

{
8i − 3 if i ≡15 0,

8i − 1 if i 6≡15 0,

f (oi,5)= 8i − 2 if 1≤ i ≤ n,

f (oi,6)= 8i if 1≤ i ≤ n.
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Figure 5. A prime vertex labeling of C4 ? P2 ? S4.

As an example, the prime vertex labeling of C5 ? P2 ? S6 using this labeling appears
in Figure 7. When m = 6, the cycle vertex labels will be consecutive integers
congruent to 1 modulo 8. So, each pair of adjacent labels are odd integers that
differ by 8 and hence are relatively prime. The remaining adjacencies to consider
involve three cases. These cases refer to the three possible labelings for the spur
vertices and within each case there are seven adjacencies to check.

Case 1. Assume i 6≡3 0, so that f (pi ) = 8i − 3, and refer to Figure 8 for the
corresponding labeling. Then

(1) 8i − 7 and 8i − 3 are odd integers that differ by 4;

(2) 8i − 3 and 8i − 6 are not multiples of 3 and differ by 3;

(3) 8i − 3 and 8i − 5 are consecutive odd integers;

(4) 8i − 3 and 8i − 4 are consecutive integers;

(5) 8i − 3 and 8i − 2 are consecutive integers;

(6) 8i − 3 and 8i − 1 are consecutive odd integers;

(7) 8i − 3 and 8i are not multiples of 3 and differ by 3.

Case 2. Next, assume that i ≡3 0 and i 6≡15 0, so that f (pi )= 8i − 5, and refer to
Figure 9 for the corresponding labeling. Then

(1) 8i − 7 and 8i − 5 are consecutive odd integers;

(2) 8i − 5 and 8i − 6 are consecutive integers;

(3) 8i − 5 and 8i − 4 are consecutive integers;

(4) 8i − 5 and 8i − 3 are consecutive odd integers;

(5) 8i − 5 and 8i − 2 are not multiples of 3 and differ by 3;

(6) 8i − 5 and 8i − 1 are odd integers that differ by 4;

(7) 8i − 5 and 8i are not multiples of 5 and differ by 5.
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Figure 6. A prime vertex labeling of C3 ? P2 ? S5.
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Figure 7. A prime vertex labeling of C5 ? P2 ? S6.

Case 3. Lastly, assume i ≡15 0, so that f (pi )= 8i − 1, and refer to Figure 10 for
the corresponding labeling. Then

(1) 8i − 7 and 8i − 1 are odd integers that are not multiples of 3 and differ by 6;

(2) 8i − 1 and 8i − 6 are not multiples of 5 and differ by 5;

(3) 8i − 1 and 8i − 5 are odd integers that differ by 4;

(4) 8i − 1 and 8i − 4 are not multiples of 3 and differ by 3;

(5) 8i − 1 and 8i − 3 are consecutive odd integers;

(6) 8i − 1 and 8i − 2 are consecutive integers;

(7) 8i − 1 and 8i are consecutive integers.

In all cases, adjacent labels are relatively prime, showing that Cn ? P2?S6 is prime.
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8i−7 8i−3

8i−6
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8i−4

8i−2

8i−1

8i
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Figure 8. The generalized prime vertex labeling of Cn ? P2 ? S6

for i 6≡3 0 (Case 1).
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Figure 9. The generalized prime vertex labeling of Cn ? P2 ? S6

for i ≡3 0 and i 6≡15 0 (Case 2).

8i−7 8i−1

8i−6

8i−5

8i−4

8i−3

8i−2

8i

8i−15

8i + 1

Figure 10. The generalized prime vertex labeling of Cn ? P2 ? S6

for i ≡15 0 (Case 3).
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Figure 11. A prime vertex labeling of C4 ? P2 ? S7.

Next, for m = 7, the labeling function f : V → {1, 2, . . . , 9n} is given by

f (ci )= 9i − 8 if 1≤ i ≤ n,

f (pi )=


9i − 4 if i ≡2 1,

9i − 5 if i ≡2 0, i 6≡10 0,

9i − 7 if i ≡10 0, i 6≡70 0,

9i − 1 if i ≡70 0,

f (oi,1)=

{
9i − 7 if i 6≡10 0 or i ≡70 0,

9i − 5 if i ≡10 0, i 6≡70 0,

f (oi,2)= 9i − 6 if 1≤ i ≤ n,

f (oi,3)=

{
9i − 5 if i ≡2 1 or i ≡70 0,

9i − 4 if i ≡2 0, i 6≡70 0,

f (oi,4)=

{
9i − 4 if i ≡70 0,

9i − 1 if i 6≡70 0,

f (oi,5)= 9i − 3 if 1≤ i ≤ n,

f (oi,6)= 9i − 2 if 1≤ i ≤ n,

f (oi,7)= 9i if 1≤ i ≤ n.

Figure 11 shows the prime vertex labeling of C4 ? P2 ? S7 using this labeling.
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Figure 12. A prime vertex labeling of C3 ? P2 ? S8.

Finally, for the m = 8 case, the labeling function f : V → {1, 2, . . . , 10n} is
given by

f (ci )= 10i − 9 if 1≤ i ≤ n,

f (pi )=


10i − 3 if i 6≡3 0,

10i − 7 if i ≡3 0, i 6≡21 0,

10i − 1 if i ≡21 0,

f (oi,1)= 10i − 8 if 1≤ i ≤ n,

f (oi,2)=

{
10i − 7 if i ≡21 0 or i ≡3 1, 2,

10i − 3 if i ≡3 0, i 6≡21 0,

f (oi,3)= 10i − 6 if 1≤ i ≤ n,

f (oi,4)= 10i − 5 if 1≤ i ≤ n,

f (oi,5)= 10i − 4 if 1≤ i ≤ n,

f (oi,6)=

{
10i − 3 if i ≡21 0,

10i − 1 if i 6≡21 0,

f (oi,7)= 10i − 2 if 1≤ i ≤ n,

f (oi,8)= 10i if 1≤ i ≤ n.

The prime vertex labeling of C3 ? P2 ?S8 using this labeling appears in Figure 12. �

Given the relative simplicity of the labelings for the graphs in Theorem 2.1, it
might be surprising that determining prime vertex labelings for Cn ? P2 ? Sm with
m ≥ 9 appears to be more difficult. Consistent with Seoud and Youssef’s conjecture,
we expect that all cycle pendant stars are prime.
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Figure 13. An example of the cycle chain C5
6 .

3. Cycle chains

The “gluing together” of identical cycles appears in various guises in the literature.
But the construction of chains of cycles, with adjacent cycles sharing a single
common vertex, is not prevalent. For this reason, we require the following definition,
where we assume that n is even. The graph C2

n results from attaching two n-cycles
together at a single shared vertex. Continuing in this manner, we define C3

n by
attaching a third n-cycle to one of the n-cycles of C2

n in a similar fashion so that
the cycle containing two shared vertices consists of two identical (n/2)-paths.
Recursively, the graph Cm

n consists of a “chain” of m consecutive n-cycles. We
refer to each of the graphs in this family as a cycle chain. For example, the cycle
chain C5

6 consisting of five consecutive 6-cycles is shown in Figure 13.
In what follows, we will show that each Cm

n is prime for n = 4, 6, 8 and all m.
The labeling functions involved are all similar and relatively simple, which is a
consequence of the vertex identification employed on each family. We also show
that one of these labeling schemes generalizes in an obvious way, providing a prime
vertex labeling for a specific family of cycle chains associated with Mersenne primes.

Theorem 3.1. All Cm
4 are prime.

Proof. The vertices of Cm
4 are identified as follows. First, the vertices of C1 are

identified clockwise as c1,1, c1,2, c1,3, c1,4, where c1,4 is the vertex also belonging
to C2. The remaining vertex identifications are based on the parity of i .

If i is even, the vertices ci,1, ci,2, ci,3, ci,4 are identified clockwise from the
vertex that is clockwise adjacent to the common vertex of Ci and Ci−1. If i is odd
and greater than 1, the vertices ci,1 and ci,2 are identified clockwise from the vertex
that is clockwise adjacent to the common vertex of Ci and Ci−1, and the vertices
ci,3 and ci,4 are identified counterclockwise from the vertex that is counterclockwise
adjacent to the common vertex of Ci and Ci−1. Note that in both cases, ci,4 is the
common vertex of Ci and Ci+1.

The graph Cm
4 can now be prime labeled via

f (ci,k)=


k+ 1 if i = 1, 1≤ k ≤ 4,

3i + k− 1 if 2≤ i ≤ m, 1≤ k ≤ 3, except i = m and k = 3,

1 if i = m, k = 3.

It is simple to verify that all adjacent vertices receive relatively prime labels. �



678 DIEFENDERFER ET AL.

5

4

3

2

7

6

5

8

11

9

7

10

13

12

11

1

5

4

3

2

7

6

5

8

11

9

7

10

13

12

11

14

1

15

13

16

Figure 14. Prime vertex labelings of C 4
4 and C5

4 .

In Figure 14, we see two labeled examples of Cm
4 , one for each of the possible

locations of the integer 1, the last vertex label to be assigned.

Theorem 3.2. All Cm
6 are prime.

Proof. The vertices of Cm
6 are identified as follows. First, the vertices of C1 are

identified counterclockwise as c1,1, c1,2, . . . , c1,6, where c1,1 is the vertex also
belonging to C2. The remaining vertex identifications are based on the congruence
class modulo 3 to which i belongs.

If i ≡3 0, 2, the vertices ci,1 and ci,2 are identified clockwise from the ver-
tex that is clockwise adjacent to the common vertex of Ci and Ci−1, and the
vertices ci,3, ci,4, ci,5 are identified counterclockwise from the vertex that is coun-
terclockwise adjacent to the common vertex of Ci and Ci−1. If i ≡3 1, the vertices
ci,1, ci,2, . . . , ci,5 are identified clockwise from the vertex that is clockwise adjacent
to the common vertex of Ci and Ci−1. Note that in both cases, ci,5 is the common
vertex of Ci and Ci+1.

The graph of Cm
6 is then labeled using the function given by

f (ci,k)=

{
k if i = 1, 1≤ k ≤ 6,

5i + k− 4 if i > 1, 1≤ k ≤ 5.

Again, it is straightforward to verify that all adjacent vertices receive relatively
prime labels, and the result follows. �

A prime vertex labeling of C5
6 using Theorem 3.2 appears in Figure 15.

1
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5 6

11

87

1

9 10

16

1312

11

14 15
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1817
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21 20

26

2322

19

24 25

Figure 15. A prime vertex labeling of C5
6 .
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36
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Figure 16. A prime vertex labeling of C5
8 .

Theorem 3.3. All Cm
8 are prime.

Proof. The vertices of Cm
8 are identified as follows. The vertices of C1 are identified

counterclockwise as c1,1, c1,2, . . . , c1,8, where c1,1 is the vertex also belonging
to C2. The remaining vertex identifications are based on the parity of i .

If i is even, the vertices ci,1, ci,2, ci,3 are identified clockwise from the vertex
that is clockwise adjacent to the common vertex of Ci and Ci−1, and the vertices
ci,4, ci,5, ci,6, ci,7 are identified counterclockwise from the vertex that is counter-
clockwise adjacent to the common vertex of Ci and Ci−1. If i is odd and greater
than 1, the vertices ci,1, ci,2, . . . , ci,7 are identified clockwise from the vertex that
is clockwise adjacent to the common vertex of Ci and Ci−1. Note that in both cases,
ci,4 is the common vertex of Ci and Ci+1.

The graph of Cm
8 is then labeled using the function given by

f (ci,k)=

{
k if i = 1, 1≤ k ≤ 8,

7i + k− 6 if i > 1, 1≤ k ≤ 7.

It is simple to verify that all adjacent vertices receive relatively prime labels. �

An example of a prime vertex labeling of C5
8 using the labeling in Theorem 3.3

appears in Figure 16.
For any positive integer k, a Mersenne number is an integer of the form Mk =

2k
− 1. If Mk = 2k

− 1 is a prime number, then Mk is called a Mersenne prime.
The first few Mersenne primes are M2 = 22

− 1 = 3, M3 = 23
− 1 = 7, and

M5 = 25
− 1= 31. There are 49 known Mersenne primes.

Theorem 3.4. Let k ∈ N, k ≥ 3, and let n = 2k . If 2k
− 1 is a Mersenne prime,

then Cm
n has a prime vertex labeling.

Proof. Both the vertex identification and the labeling function follow from what
appeared in the proof of Theorem 3.3. It should be noted that these are different
from the machinery used to show that Cm

4 are prime. The vertices of C1 are identified
clockwise as c1,1, c1,2, . . . , c1,2k , where c1,1 is the vertex also belonging to C2. The
remaining vertex identifications are based on the parity of i .

If i is even, the vertices ci,1, ci,2, . . . , ci,2k−1−1 are identified clockwise from
the vertex that is clockwise adjacent to the common vertex of Ci and Ci−1, and
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Figure 17. A prime vertex labeling of the Fibonacci chain C5
F .

the vertices ci,2k−1, ci,2k−1+1, . . . , ci,2k−1 are identified counterclockwise from the
vertex that is counterclockwise adjacent to the common vertex of Ci and Ci−1. If i
is odd and greater than 1, the vertices ci,1, ci,2, . . . , ci,2k−1 are identified clockwise
from the vertex that is clockwise adjacent to the common vertex of Ci and Ci−1.
Note that ci,2k−1 is the common vertex of Ci and Ci+1 in both cases.

The graph Cm
n can be prime labeled using the function given by

f (ci,k)=

{
k if i = 1, 1≤ k ≤ n,

(n− 1)i + k− (n− 2) if i > 1, 1≤ k ≤ n− 1.

It is again relatively straightforward to verify that all adjacent vertices receive
relatively prime labels. �

Another historically significant sequence of integers that can be used to generate
prime chains of cycles is the sequence of Fibonacci numbers. However, in this case,
we will attach cycles of increasing size determined by the terms of the Fibonacci
sequence. Recall that the Fibonacci numbers are defined by the recurrence relation
Fi = Fi−1+Fi−2, where F1= 1 and F2= 1. The first several Fibonacci numbers are
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. To construct our graph, begin with a single
path consisting of m+ 2 vertices. Starting from one end of the path, identify the
vertices as p1, p2, . . . , pm+2. First, add an edge between p1 and p3. Next, for i ≥ 3,
build out a cycle by adding an additional Fi edges between pi and pi+1. The
resulting graph consists of m consecutive cycles, where the first cycle will consist
of three vertices and, for j ≥ 2, the j -th cycle will consist of F j+1+1 vertices. We
denote this graph by Cm

F and call it a Fibonacci cycle chain.
The well-known fact that consecutive Fibonacci numbers are relatively prime

leads directly to the following result.

Theorem 3.5. All Fibonacci cycle chains Cm
F are prime.
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Proof. To label a Fibonacci cycle chain, begin by consecutively labeling the path
initially used to construct the graph with the Fibonacci numbers starting with
the second 1 of the sequence. The remaining vertices can be labeled using the
complement of the Fibonacci sequence in the obvious way. �

Figure 17 shows a Fibonacci cycle chain with a prime vertex labeling. Note that
the colored vertices are those that are assigned Fibonacci numbers as labels, which
form a path within the graph.

4. Prisms

A prism graph is a graph of the form Cn × P2, which consists of an inner and an
outer n-cycle connected with spurs. Prajapati and Gajjar [2014] showed that if n+1
is prime, then Cn× P2 has a prime vertex labeling. Moreover, they also showed that
if n ≥ 3 is odd, then Cn × P2 does not have a prime vertex labeling. In this section,
we will prove that if n− 1 is prime, then Cn × P2 has a prime vertex labeling. The
remaining cases involving prism graphs are currently open.

When n is even, the initial strategy for labeling prism graphs is to divide the set
{1, 2, . . . , 2n} into two subsets, namely {1, 2, . . . , n} and {n + 1, n + 2, . . . , 2n}.
We then attempt to label the inner-cycle vertices clockwise using the consecutive
integers from 1 to n and label the outer-cycle vertices with consecutive integers from
n+ 1 to 2n in the same direction so that the vertex labeled n+ 1 is adjacent to the
vertex labeled 2. In this case, the difference between the labels assigned to adjacent
pairs of inner and outer vertices will be n−1 except between 1 and 2n. Since n−1
is prime, most pairs of labels for inner and outer vertices will be guaranteed to be
relatively prime. However, we have a problem with the labels n− 1 and 2(n− 1)

that the labeling in the next theorem will address by swapping the labels 1 and n
with n − 1 and 2n, respectively. It should be noted that our technique does not
generalize to arbitrary Cn × P2 (for n even).

Theorem 4.1. If n− 1 is a prime number and n ≥ 4, then Cn × P2 is prime.

Proof. Denote the vertices on the inner cycle by c1,1, c1,2, . . . , c1,n and their
corresponding vertices on the outer cycle by c2,1, c2,2, . . . , c2,n . The labeling
function f : V → {1, 2, . . . , 2n} is given by

f (c1,i )=


i if i = 2, 3, . . . , n− 2,

n− 1 if i = 1,

1 if i = n− 1,

2n if i = n,

and

f (c2,i )=

{
i + n− 1 if i = 2, 3, . . . , n,

n if i = 1.
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n−1 2

n−21

2n

n n+1

2n−32n−2

2n−1

Figure 18. The generalized labeling for the prism Cn × P2 when
n− 1 is prime.

Recall that consecutive integers are relatively prime, which forces most pairs of
adjacent inner-cycle vertices and most pairs of adjacent outer-cycle vertices to
receive relatively prime labels. To verify the relative primeness of the labels on the
remaining pairs of adjacent vertices, first note that, for i = 2, 3, . . . , n−2, we have

( f (c1,i ), f (c2,i ))= (i, i + n− 1)= 1.

Next, for i = 1, we see that

( f (c1,1), f (c2,1))= (n− 1, n)= 1.

Finally, observe that

( f (c1,1), f (c1,2))= (n− 1, 2)= 1,

( f (c1,1), f (c1,n))= (n− 1, 2n)= 1,

( f (c1,1), f (c1,2))= (n− 1, 2)= 1,

( f (c1,n−2), f (c2,n−2))= (n− 2, 2n− 3)= 1.

In Figure 18, we see a portion of the labeling of Cn× P2 (n−1 prime). Note that
vertices absent from the figure are labeled clockwise using consecutive integers.
Thus, Cn × P2 has a prime vertex labeling when n− 1 is a prime number. �

As an example, Figure 19 depicts the labeling of Theorem 4.1 for C6× P2.

52

3

4 1

12

67

8

9 10

11

Figure 19. A prime vertex labeling of C6× P2.
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c1 c2 c3

v1,1 v2,1 v3,1

v1,2 v2,2 v3,2

v1,3 v2,3 v3,3

v1,4 v2,4 v3,4

v1,5 v2,5 v3,5

v1,6 v2,6 v3,6

Figure 20. The generalized book S6× P3.

5. Generalized books

A book is a graph of the form Sn × P2, where Sn is the star with n spur vertices
and P2 is the path with two vertices. Using a simple parity argument, Seoud and
Youssef [1999] showed that all books have a prime vertex labeling. In this section,
we extend their work by providing a prime vertex labeling for some generalized
books, which are graphs of the form Sn × Pm . Observe that Sn × Pm looks like
m− 1 books glued together. The generalized book S6× P3 is shown in Figure 20.

Theorem 5.1. All Sn × Pm with 3≤ m ≤ 7 are prime.

Proof. We will handle each of the cases involving 3≤ m ≤ 7 separately. For each
3 ≤ m ≤ 7, let c1, c3, . . . , cm denote the vertices on the path through the center
of each star Sn . Next, let vi,1, vi,2, . . . , vi,n denote the vertices of degree 1 on the
i-th star so that vi,k in the i-th star is adjacent to vi+1,k in the (i+1)-th star. For an
example, see the identification of vertices depicted in Figure 20.

First, we consider the generalized book Sn× P3. We define our labeling function
f : V →{1, 2, . . . , 3n+ 3} as follows. Let f (c j )= j . For k odd, define f (vi,k)=

3k− i+4. For k even, let f (v1,k)= 3k+2, f (v2,k)= 3k+3, and f (v3,k)= 3k+1.
Using this labeling, one can quickly see that Sn × P3 has a prime vertex labeling.
For an example, see the labeling of S6× P3 given in Figure 21.

For Sn × P4, we define our labeling function f : V → {1, 2, . . . , 4n + 4} as
follows. Let f (c j ) = j . For k ≡3 1, let f (v1,k) = 4k + 2, f (v2,k) = 4k + 3,
f (v3,k) = 4k + 4, and f (v4,k) = 4k + 1. For k 6≡3 1, define f (vi,k) = 4k − i + 5.
It then follows that each Sn × P4 has a prime vertex labeling. An example of this
labeling for S6× P4 appears in Figure 22.
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1 2 3

6 5 4

8 9 7

12 11 10

14 15 13

18 17 16

20 21 19

Figure 21. A prime vertex labeling of S6× P3.

1 2 3 4

6 7 8 5

12 11 10 9

16 15 14 13

18 19 20 17

24 23 22 21

28 27 26 25

Figure 22. A prime vertex labeling of S6× P4.

Next, for Sn× P5, we define our labeling function f : V →{1, 2, . . . , 5n+5} in
the following manner. Let f (c j )= j . The rest of the labeling function is given by

f (vi,k)=



11− i if k = 1,

5k+ 1+ i if 1≤ i ≤ 4, k > 1, k− 1≡6 1, 5,

5k+ 1 if i = 5, k > 1, k− 1≡6 1, 5,

5k+ 2+ i if 1≤ i ≤ 3, k > 1, k− 1≡6 0, 2,

5k+ 6− i if i = 4, 5, k > 1, k− 1≡6 0, 2,

5k+ 5− i if 1≤ i ≤ 3, k > 1, k− 1≡6 3,

5k+ 5 if i = 4, k > 1, k− 1≡6 3,

5k+ 1 if i = 5, k > 1, k− 1≡6 3,

5k+ 6− i if k > 1, k− 1≡6 4.

It then follows that each Sn × P5 has a prime vertex labeling. For an example, see
the labeling of S7× P5 given in Figure 23.
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1 2 3 4 5

10 9 8 7 6

12 13 14 15 11

18 19 20 17 16

24 23 22 25 21

30 29 28 27 26

32 33 34 35 31

38 39 40 37 36

Figure 23. A prime vertex labeling of S7× P5.

For Sn × P6, we define our labeling function f : V → {1, 2, . . . , 6n + 6} as
follows. Let f (c j )= j and let

f (vi,k)=



6(k+ 1)+ 1− i if k = 1, 2,

6k+ 1+ i if 1≤ i ≤ 5, k = 3,

6k+ 1 if i = 6, k = 3,

6k+ 1− i if k > 3, k− 3≡5 1, 2, 3, 4,

6k+ 1+ i if 1≤ i ≤ 5, k > 3, k− 3≡5 0,

6k+ 1 if i = 6, k > 3, k− 3≡5 0.

Using this labeling, we see that each Sn × P6 has a prime vertex labeling. An
example of this labeling for S8× P6 appears in Figure 24.

1 2 3 4 5 6

12 11 10 9 8 7

18 17 16 15 14 13

20 21 22 23 24 19

30 29 28 27 26 25

36 35 34 33 32 31

42 41 40 39 38 37

48 47 46 45 44 43

50 51 52 53 54 49

Figure 24. A prime vertex labeling of S8× P6.
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Lastly, for Sn×P7, we define our labeling function f : V→{1, 2, . . . , 7n+7} as
follows. Let f (c j )= j . The remaining portion of the labeling function will involve
10 ordered “row” (i.e., set of corresponding positions in each star) permutation
patterns, which we will denote by A, B, C, D, E, F, G, H, I , and J . Each ordered
row permutation pattern takes the seven consecutive integers that will be used to
label the vertices in the k-th row (7k+ 1, . . . , 7k+ 7) and assigns them the labels
w1 = 7k + 1, w2 = 7k + 2, . . . , w7 = 7k + 7. For instance, if permutation A
is applied to the k-th row, then the first vertex in the k-th row is given the label
w2 = 7k+ 2, the second vertex in the k-th row is given the label w3 = 7k+ 3, etc.
Here are the 10 row permutations written in 1-line notation:

A = [w2, w3, w4, w5, w6, w7, w1],

B = [w2, w3, w6, w7, w4, w5, w1],

C = [w3, w2, w7, w6, w5, w4, w1],

D = [w5, w6, w7, w2, w3, w4, w1],

E = [w4, w5, w6, w7, w2, w3, w1],

F = [w3, w4, w5, w6, w7, w2, w1],

G = [w6, w7, w2, w3, w4, w5, w1],

H = [w2, w1, w3, w7, w6, w5, w4],

I = [w7, w6, w1, w2, w3, w4, w5],

J = [w7, w6, w5, w4, w3, w2, w1].

After assigning f (c j )= j to the center of each star, the labeling for Sn × P7 has
the following 30-row repeating pattern:

C, E, J, A, J, A, D, E, J, A, F, G, C, H, J, A, J, A, I, E, F, E, J, A, D, E, J, A, J, A.

It is straightforward to check that this “block” of 30 rows provides a prime vertex
labeling for S30× P7. To label the next block of 30 rows in the generalized book,
simply add 210 to each of the labels from the first block of 30 rows. Since any of
the vertices in this second block can only be adjacent to the center of its star and any
neighbors in its row, and since congruence classes modulo 2, 3, 4, 5, 6, and 7 are
invariant under addition of 210, all adjacent vertices in this second block must still
have relatively prime labels. Thus, this second block has a prime vertex labeling. It
then follows that the entire generalized book has a prime vertex labeling. �

We conjecture that all generalized books Sn × Pm have a prime vertex labeling;
however, it appears that extending our results using the current approach becomes
increasingly difficult as one increases the size of the path Pm .
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6. Conclusion

The prime vertex labeling functions included in this paper for cycle pendant stars
may be extended to somewhat larger sizes of stars. Specifically, we conjecture
that similar processes will work for cycle pendant stars up to stars of size 15. The
reasoning for this restriction on stars of size 15 is the following result of Pillai [1941].

Proposition 6.1. When k ≥ 17, we can find k consecutive integers such that no
integer in the set is relatively prime to all other integers in the set.

This implies that a new labeling scheme must be devised for finding prime vertex
labelings of Cn ? P2 ? Sm for m ≥ 15.

In Section 3, we constructed prime vertex labelings for cycle chains having
cycles of sizes 4, 6, and 8, respectively. We conjecture that all cycle chains are
prime. Using the fact that consecutive Fibonacci numbers are relatively prime, we
constructed a prime graph. One can likely construct similar graphs using other
well-known sequences that exhibit traits of relative primeness.

We conjecture that all prisms constructed from even-order cycles have prime
vertex labelings. We also have preliminary results implying that some families of
generalized prisms of the form Cn × Pm for m > 2 have prime vertex labelings.

In addition, we conjecture that every generalized book has a prime vertex labeling.
But our pairwise matching approach would need to be replaced in order for this
conjecture to be realized. For the interested reader, additional information can be
found in Gallian’s dynamic survey on graph labelings [1998].
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Presentations of Roger and Yang’s
Kauffman bracket arc algebra

Martin Bobb, Dylan Peifer, Stephen Kennedy and Helen Wong

(Communicated by Colin Adams)

The Jones polynomial for knots and links was a breakthrough discovery in the
early 1980s. Since then, it’s been generalized in many ways; in particular, by
considering knots and links which live in thickened surfaces and by allowing arcs
between punctures or marked points on the boundary of the surface. One such
generalization was recently introduced by Roger and Yang and has connections
with hyperbolic geometry. We provide generators and relations for Roger and
Yang’s Kauffman bracket arc algebra of the torus with one puncture and the
sphere with three or fewer punctures.

Roger and Yang’s Kauffman bracket arc algebra is a generalization of the well-
known Kauffman bracket skein algebra of a surface, whose definition in [Turaev
1988; Przytycki 1991] is based on Kauffman’s skein theoretic description of the
Jones polynomial for knots and links [Jones 1985; Kauffman 1987]. Later, the
skein algebra of a hyperbolic surface was interpreted as a quantization of the
surface’s Teichmüller space from hyperbolic geometry [Turaev 1991; Bullock et al.
1999; Przytycki and Sikora 2000]. Interest thus grew for the skein algebra, as a
construction important in the Jones polynomial skein theory but also deeply related
to Teichmüller theory.

Following this body of work on the skein algebra, Roger and Yang introduced a
“skein algebra of arcs” to be a skein theory version of Penner’s decorated Teichmüller
space. Penner [1987] defined the decorated Teichmüller space as an alternate way to
describe the hyperbolic structures of a surface using lengths of both simple closed
curves and arcs between punctures on the surface (each decorated with a choice of
horoball). Roger and Yang defined their arc algebra as a quantization of Penner’s
decorated Teichmüller space, roughly in the same way that the skein algebra is a
quantization of the usual Teichmüller space. The arc algebra includes both simple
closed curves and arcs between punctures on the surface. In addition to the two
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usual bracket skein relations for framed links, there are two extra relations for arcs
and loops near the punctures.

Understanding the algebraic structure of Roger and Yang’s arc algebra is an im-
portant first step to exploring its role as an intermediary between quantum topology
and hyperbolic geometry. Here, we seek finite presentations of the arc algebra for
some simple surfaces, namely for spheres with three or fewer punctures and for tori
with one or no punctures. In the companion paper [Bobb et al. 2016], we show that
the arc algebra is finitely generated. Our work is inspired by analogous statements
for the skein algebra found in [Bullock and Przytycki 2000; Bullock 1999].

1. The Kauffman bracket arc algebra

Let Fg,n denote a compact, orientable surface of genus g with n points p1, p2, . . . , pn

removed. The points removed are the punctures. Let A be an indeterminate, with
formal square roots A

1
2 and A−

1
2 . In addition, let there be an indeterminate vi

associated to each puncture pi , and let Rn = Z[A±
1
2 ][v±1

1 , v±1
2 , . . . , v±1

n ] denote
the ring of Laurent polynomials in the commuting variables A

1
2 and v1, . . . , vn .

A framed curve in the thickened surface Fg,n × [0, 1] is the union of framed
knots and framed arcs that go from puncture to puncture. (See [Roger and Yang
2014] for a precise definition.) Let G(Fg,n) be the Rn-module freely generated by
the framed curves in Fg,n ×[0, 1], up to isotopy, and let K(Fg,n) be the submodule
generated by terms of the following four forms:

(1) skein relation: −

(
A + A−1

)
,

(2) puncture-skein relation on i-th puncture: vi −

(
A

1
2 +A−

1
2

)
,

(3) framing relation: − (−A2
− A−2),

(4) puncture-framing relation: − (A+ A−1),

where the diagrams in each form are assumed to be identical outside of the small
balls depicted. Let A(Fg,n) denote the quotient G(Fg,n)/K(Fg,n).

There is a natural stacking operation for framed curves in the thickened sur-
face Fg,n × [0, 1] which extends to A(Fg,n). That is, if [L1], [L2] ∈ A(Fg,n) are
respectively represented by framed curves L1, L2 in Fg,n ×[0, 1], the product

[L1] ∗ [L2] = [L ′1 ∪ L ′2] ∈A(Fg,n)
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1

2

Figure 1. A framed curve with three components on F0,2.

is represented by the union of the framed curve L ′1 ⊂ Fg,n ×
[
0, 1

2

]
(obtained

by rescaling L1 in Fg,n × [0, 1]) and the framed curve L ′2 ⊂ Fg,n ×
[ 1

2 , 1
]

(ob-
tained by rescaling L2 in Fg,n × [0, 1]). This stacking operation makes A(Fg,n)

into an algebra, called the Kauffman bracket arc algebra of the surface Fg,n .
Diagrams in this paper represent projections of framed curves onto Fg,n with

over- and under-crossing information depicted by breaks in the projection at double-
points in the projection, and where the framing of curves is vertical, at right angles
to the plane of the paper. Although more than one component of a framed curve can
end at any puncture, they must do so at different heights. Diagrams will indicate
the order in height of the crossings as necessary. Figure 1 shows a framed curve
consisting of three components (two framed arcs and a framed knot) in a sphere
with two punctures. No further labeling at punctures is necessary in Figure 1 since
arcs intersect each puncture only twice.

Figure 2 shows a product of two framed curves on a twice-punctured torus. The
product can be simplified by using a Reidemeister 2 move followed by relation (2)
(puncture-skein relation) to “pull off” a pair of strands that meet at a puncture and

1 2 ∗ 1 2 = 1 2 = 1 2

= v−1
1

A
1
2 1 2 +A−

1
2 1 2



= v−1
1 (A+A−1)

A
1
2 1 2 +A−

1
2 1 2


Figure 2. Rewriting a framed curve in A(F1,2).
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relation (4) (puncture-framing relation) to “remove” trivial components enclosing
a puncture.

The Kauffman bracket skein algebra S(Fg,n) defined by Turaev [1988] and
Przytycki [1991] is closely related to the arc algebra A(Fg,n). Recall that the skein
algebra S(Fg,n) can be constructed by considering the quotient G0(Fg,n)/K0(Fg,n),
where G0(Fg,n) is the Z[A, A−1

]-module generated by the framed links in the
thickened surface Fg,n ×[0, 1] and K0(Fg,n) is the submodule generated by only
relation (1) (the skein relation) and relation (3) (the framing relation) from above.
Again, multiplication is induced by the stacking of framed links in the thickened
surface. Compared with the skein algebra S(Fg,n), the definition of the arc algebra
A(Fg,n) differs in two ways: in the choice of a larger ring and in the inclusion of
two extra relations.

Lemma 1.1. There exists a well-defined nontrivial algebra homomorphism

ψ : S(Fg,n)→A(Fg,n)

so that ψ([K ])= [K ] for a framed link K in Fg,n .

Proof. Consider the map i : G0(Fg,n)→ Rn ⊗ G0(Fg,n) with i(x) = 1⊗ x that
changes the scalars, and the map j : Rn⊗G0(Fg,n)→ G(Fg,n) with j (p⊗x)= p ·x
that includes the framed links into the framed curves. Let ψ̂ = j ◦ i . Notice
that ψ̂(K0(Fg,n)) ⊆ K(Fg,n). Thus ψ̂ : G0(Fg,n)→ G(Fg,n) descends to a map
ψ : G0(Fg,n)/K0(Fg,n)→ G(Fg,n)/K(Fg,n). �

We are interested in the image of ψ . In certain small cases, it generates A(Fg,n),
a fact we will exploit later on page 697.

2. Generators and relations for the arc algebra

A general strategy for finding generating sets for A(Fg,n) is to rewrite framed curves
using ones with fewer crossings. We say that a framed knot is a simple knot if it
allows a projection onto Fg,n ×{0} without any crossings and it does not bound a
disk containing one or no punctures. A framed arc is a simple arc if its endpoints
are at distinct punctures and it allows a projection without any crossings. A simple
curve is either a simple knot or a simple arc.

Lemma 2.1. If a set of elements {x1, x2, . . . , xm} generates the simple curves then
it generates all of A(Fg,n).

Proof. Suppose we have a basis element [L] ∈ A(Fg,n) represented by a framed
curve L ⊂ Fg,n×[0, 1]. By application of the skein relation and the puncture-skein
relation, [L]may be written as a linear combination of skeins represented by framed
curves each of which has no crossings and intersects a puncture at most once. In
particular, the connected components of each framed curve can be isotoped to be at
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...1 2 k

K
α

β

Figure 3. A neighborhood of K in F0,n .

different heights, so [L] is a linear combination of products of simple knots, simple
arcs, and possibly some loops that bound disks containing one or no punctures.
Those latter loops may be removed by application of the framing and puncture
relations. Thus [L] is a linear combination of simple curves. Since {x1, x2, . . . , xm}

generate the simple curves, [L] is also in the set generated by {x1, x2, . . . , xm}. �

Remark. Observe that if (A2
− 1) is invertible, then the puncture-skein relation

implies that

= vi A
1
2 (A2
− 1)−1

(
− + A

)
and

= vi A−
1
2 (A−2

− 1)−1

(
− + A−1

)
.

So when A2
−1 is invertible, if a set of elements generates only the simple arcs, then it

generates all of A(Fg,n) by Lemma 2.1. However, in the following examples, we will
work under the most general set-up, and we will not assume that A2

−1 is invertible.

Arc algebra of punctured spheres. We begin by a refinement of Lemma 2.1 in the
case of punctured spheres, F0,n with n ≥ 2.

Proposition 2.2. If a set of elements {x1, x2, . . . , xn} of the arc algebra A(F0,n)

generates the simple arcs, then it generates the entire algebra.

Proof. By Lemma 2.1, it suffices to show that any simple knot can be rewritten in
terms of simple arcs. Given a simple knot K ⊆ F0,n × [0, 1], notice that it has a
projection which separates F0,n into two punctured disks. Let D be the punctured
disk bounded by K with the smaller number of punctures, say p1, . . . , pk .

Since K is a simple knot, k ≥ 2. There exist two disjoint simple arcs from p1

to pk such that the union of their projections onto F0,n encloses the remaining
punctures p2, . . . , pk−1. Let α and β be the skeins represented by these two arcs,
respectively. See Figure 3.
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Consider the product α∗β ∈A(F0,n) and apply the puncture-skein relation twice:

α ∗β = ...1

α

β

2 k

=
1
v1vk

A ...1 2 k + ...1 2 k + ...1 2 k

K

+ A−1 ...1 2 k

 .
Thus [K ] can be rewritten as a linear combination involving the product of two
simple arcs (α and β) and three knots bounding disks with strictly fewer punctures.
Notice also that a knot bounding a disk with one or no punctures can be removed
using the puncture relation or the framing relation, respectively. Thus by induction,
we are done. �

Sphere with two punctures.

Theorem 2.3. A(F0,2)= R2
〈
α |α2

=−v−1
1 v−1

2 (A−A−1)2
〉
, where α is represented

by a simple arc between the two punctures of F0,2.

Proof. On F0,2, any simple arc must start at one puncture and end at the other
without intersecting itself. Up to isotopy, there is only one such arc, and let α be
the skein represented by that arc. By Proposition 2.2, α generates the algebra. Note
that in the arc algebra,

α2
= 1 2 =

1
v1v2

A 1 2 + 2 1 2 + A−1
1 2


= v−1

1 v−1
2

(
(A+ A−1)(A+ A−1)+ 2(−A2

− A−2)
)

=−v−1
1 v−1

2 (A− A−1)2.

In particular, this shows that α2 is not linearly independent from 1 and α. As α is
the only generator, this is the only relation of A(F0,2). �

Sphere with three punctures. To determine the arc algebra A(F0,3), we will need
the following lemma from algebra.

Lemma 2.4. Let A and B be R-algebras. Suppose x1, x2, . . . , xn are elements of
the algebra A and ρ is some algebra homomorphism of A to the algebra B. If the
elements ρ(x1), ρ(x2), . . . , ρ(xn) are linearly independent in B, then x1, x2, . . . , xn

are linearly independent in A.
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Proof. We prove the contrapositive. Suppose x1, x2, . . . , xn are linearly dependent
in A. Then there exist coefficients k1, k2, . . . , kn ∈ R so that

k1x1+ k2x2+ · · ·+ knxn = 0

and at least one ki is nonzero. Since ρ is an R-algebra homomorphism,

k1ρ(x1)+ k2ρ(x2)+ · · ·+ knρ(xn)= 0.

So ρ(x1), ρ(x2), . . . , ρ(xn) are linearly dependent in B as well. �

Theorem 2.5.

A(F0,3)= R3
〈
α1, α2, α3 | αiαi+1 = αi+1αi = v

−1
i+2δ αi+2, vi+1vi+2α

2
i = δ

2〉,
where αi is represented by the simple arc connecting the punctures pi+1 to pi+2 in
the thrice-punctured sphere F0,3, with i = 1, 2, 3 and indices interpreted modulo 3,
and where δ = (A

1
2 + A−

1
2 ).

Proof. Since the only simple arcs in F0,3 are those connecting distinct punctures, it
follows that α1, α2, and α3 generate the arc algebra K [F0,3]. Observe that

α2
i = i+1

i

i+2

= v−1
i+1v

−1
i+2

A
i+1

i

i+2
+

i+1

i

i+2
+

i+1

i

i+2
+ A−1

i+1

i

i+2


= v−1

i+1v
−1
i+2

(
A(A+ A−1)+ (−A2

− A−2)+ (A+ A−1)+ A−1(A+ A−1)
)

= v−1
i+1v

−1
i+2(A

1
2 + A−

1
2 )2

= v−1
i+1v

−1
i+2δ

2.

Also,

αi ∗αi+1 = i+1

i

i+2
= v−1

i+2

A
1
2

i+1

i

i+2
+ A−

1
2

i+1

i

i+2


= v−1

i+2(A
1
2 + A−

1
2 )αi+2

= v−1
i+2δαi+2
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and similarly

αi+1 ∗αi = i+1

i

i+2
= v−1

i+2

A
1
2

i+1

i

i+2
+ A−

1
2

i+1

i

i+2


= v−1

i+2(A
1
2 + A−

1
2 )αi+2

= v−1
i+2δαi+2.

We next show that these are the only relations. Notice that the relations above
imply that any product αi ∗ α j can be rewritten as either a scalar multiple when
i = j or as a multiple of the remaining αk for k 6= i, j . Thus any word in α1, α2,
and α3 can be rewritten in terms of a scalar multiple of one or zero generators. So
any other relation among the generators α1, α2, and α3 can be expressed in the form

k0+ k1α1+ k2α2+ k3α3 = 0,

where ki ∈ R3. We will show that 1, α1, α2, α3 are linearly independent, so that the
ki = 0.

Recall that a left regular representation of a group is the linear representation
provided by multiplication of group elements on the left. Based on the similarity of
the algebra elements 1, α1, α2, α3 from A(F0,3) with the group elements of Z2×Z2,
we define a left regular representation ρ for A(F0,3) by

ρ(1)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ρ(α1)=


0 v−1

2 v−1
3 δ2 0 0

1 0 0 0
0 0 0 v−1

2 δ

0 0 v−1
3 δ 0

 ,

ρ(α2)=


0 0 v−1

1 v−1
3 δ2 0

0 0 0 v−1
1 δ

1 0 0 0
0 v−1

3 δ 0 0

 , ρ(α3)=


0 0 0 v−1

1 v−1
2 δ2

0 0 v−1
1 δ 0

0 v−1
2 δ 0 0

1 0 0 0

 .
Note that the coefficients from each column are exactly those given by the equations
describing left multiplication by αi . In particular, they are the coefficients in the
equations αi ∗1=αi , αi ∗αi = v

−1
i+1v

−1
i+2δ

2, and αi ∗αi+1=αi+1∗αi = v
−1
i+2δαi+2 for

all i . The matrices ρ(1), ρ(α1), ρ(α2) and ρ(α3) are clearly linearly independent,
as can be determined by looking at their first columns. Thus by Lemma 2.4, we have
that 1, α1, α2, α3 are linearly independent. Hence there are no more relations to be
found in K (F0,3). This also shows that {α1, α2, α3} is a minimal set of generators. �
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Surfaces with zero or one punctures. Recall that R = Z[A, A−1
] is a subring of

Rn=Z[A
1
2 , A−

1
2 ][v±1

1 , v±1
2 , . . . , v±1

n ], and from Lemma 1.1, there exists an algebra
homomorphism ψ , which maps the R-algebra S(Fg,n) to the Rn-algebra A(Fg,n).

First observe that when n=0, the relations in S(Fg,0) are exactly those in A(Fg,0).
That is, R0⊗K0(Fg,0)∼=K(Fg,0). Moreover, the mapψ from the proof of Lemma 1.1
is injective when n = 0 and acts as the identity on simple knots. Since all simple
curves are simple knots in this case and the image of ψ contains all simple knots,
the image of ψ generates all of the arc algebra A(Fg,0) by Lemma 2.1. Thus
R0⊗S(Fg,0)∼=A(Fg,0), and any presentation of S(Fg,0) provides a presentation
of A(Fg,0).

When n = 1, again there are no simple arcs, so that the image of ψ generates all
of the arc algebra A(Fg,1). So any set generating S(Fg,1) also generates A(Fg,1).
However, the map ψ is no longer injective. Specifically, the relations for the
Kauffman skein algebra and the relations for the Kauffman arc algebra will differ;
the puncture-framing relation from the Kauffman arc algebra is not a relation
in the Kauffman skein algebra. However, this is the only difference. Hence
R1⊗S(Fg,1)/Kpfr(Fg,1)∼=A(Fg,1), where Kpfr(Fg,1) is the submodule generated
by only the puncture-framing relation. In summary, the generators of A(Fg,1) are
generators of S(Fg,1), but the relations of A(Fg,1) are relations of S(Fg,1) along
with one corresponding to the puncture-framing relation.

Torus with zero or one punctures. As an example, let us examine the cases of the
closed torus and the torus with one puncture. From [Bullock and Przytycki 2000],
we have that the Kauffman skein algebras S(F1,0) and S(F1,1) are both generated
as Z[A, A−1

]-modules by three simple closed curves γ1, γ2, γ3 such that γ1 and γ2

intersect once and γ3 is one of two curves that meet both γ1 and γ2 once. Moreover,
if ∂ represents a small loop around the puncture of F1,1, then

∂ = Aγ1γ2γ3− A2γ 2
1 − A−2γ 2

2 − A2γ 2
3 + A2

+ A−2. (1)

In the skein algebra S(F1,0), we have ∂ =−A2
− A−2. Up to a change in scalars

from R to R0, a presentation of the arc algebra A(F1,0) is the same as the presentation
of the skein algebra S(F1,0). That is,

A(F1,0)= R0
〈
γ1, γ2, γ3 | Aγiγi+1− A−1γi+1γi = (A2

− A−2)γi+1 and

−A2
− A−2

= Aγ1γ2γ3− A2γ 2
1 − A−2γ 2

2 − A2γ 2
3 + A2

+ A−2〉,
where the indices are interpreted modulo 3. On the other hand, in the once-punctured
torus, we have ∂ = A+ A−1 in the arc algebra. Thus

A(F1,1)= R1
〈
γ1, γ2, γ3 | Aγiγi+1− A−1γi+1γi = (A2

− A−2)γi+1 and

A+ A−1
= Aγ1γ2γ3− A2γ 2

1 − A−2γ 2
2 − A2γ 2

3 + A2
+ A−2〉.
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Arranging kings k-dependently
on hexagonal chessboards

Robert Doughty, Jessica Gonda, Adriana Morales, Berkeley Reiswig,
Josiah Reiswig, Katherine Slyman and Daniel Pritikin

(Communicated by Arthur T. Benjamin)

Tessellate the plane into rows of hexagons. Consider a subset of 2n rows of
these hexagons, each row containing 2n hexagons, forming a rhombus-shaped
chessboard of 4n2 spaces. Two kings placed on the board are said to “attack”
each other if their spaces share a side or corner. Placing kings in alternating
spaces of every other row results in an arrangement where no two of the n2 kings
are attacking each other. According to our specific distance metric, n2 is in
fact the largest number of kings that can be placed on such a board with no
two kings attacking one another, for a maximum “density” of 1

4 . We consider a
generalization of this maximum density problem, instead requiring that no king
attacks more than k other kings for 0 ≤ k ≤ 12. For instance when k = 2 the
density is at most 1

3 . For each k we give constructive lower bounds on the density,
and use systems of inequalities and discharging arguments to yield upper bounds,
where the bounds match in most cases.

1. Introduction

Consider the task of arranging as many king pieces as possible on a standard
8× 8 chessboard so that no two squares containing kings share a side or corner.
Note that the board partitions into sixteen 2× 2 patches, and at most one king
can reside in any patch. Yet placing a king in the upper left corner of each patch
satisfies our requirements. So, in an optimal placement we have sixteen kings
occupying 1

4 of the board. We can generalize this problem as follows. Consider
whole numbers k and n. What is the maximum number of kings that can be placed
on an n× n board such that each king-occupied space shares at most k edges and
corners with other king-occupied spaces? Note that in the previous example, k = 0
and n = 8. In fact, in [Ionascu et al. 2008] the following question is investigated:

MSC2010: 90C05, 90C27.
Keywords: k-dependence, combinatorial chessboard, optimization, discharging, linear programming.
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Given a whole number k ≤ 8 (8 being the maximum number of squares
a king can attack), what is the maximum number s of kings that can be
placed on an m×n board so that no king attacks more than k other kings?
When m and n are large, how large can the density s/(mn) be?

Similar problems have also been studied on alternate boards. For instance, [Bode
et al. 2003] studies a similar problem on triangular boards with k = 0, and [Bode
and Harborth 2003] looks at a similar problem for knights on both triangular and
hexagonal boards with k= 0. Other interesting articles on combinatorial chessboard
problems include [Fricke et al. 1995; Haynes et al. 1998; Hedetniemi et al. 1998;
Watkins 2004]. In this paper, we consider a board in which the spaces are regular
hexagons arranged into an n×n rhombus as in Figure 1. As in Władysław Gliński’s
hexagonal chess [Bodlaender 1996], a king occupying a hexagon will be said to
attack the 12 other hexagons “nearest” its hexagon (as shown in the left half of
Figure 2). In particular, we study the following:

Given a whole number k ≤ 12, what is the maximum number s of kings
that can be placed on an n×n hexagonal board so that no king attacks more
than k other kings? When n is large, how large can the density s/n2 be?

For most values of k, we find tight bounds on the optimal density s/n2 when n
is large. For those values of k where our bounds are not tight, the gaps between
our upper and lower bounds are reasonably close, and we conjecture that a limiting
density exists.

2. Notation and terminology

We establish some definitions and notation since we are not using the normal
n×n chessboard. Consider a tiling of the plane by regular hexagons, each hexagon
having two vertical sides. We call a finite collection of hexagons a hexagonal board
and call each hexagon in that tiling a space. For convenience we consider only
hexagonal boards Bn where the hexagons form an n × n rhombus in the plane
as in Figure 1, where n ≥ 5. We label the spaces on our board (as in Figure 1)

a1,1 a1,2 a1,3 a1, j a1,n

a2,1 a2,2 a2,3 a2,n

a3,1 a3,2 a3,3 a3,n

ai,1 ai,j ai,n

an,1 an,2 an,3 an,j an,n

Figure 1. An n× n hexagonal board in the shape of a rhombus.
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v

v

Figure 2. Some examples of R(v) shaded on a 5× 5 board.

from top to bottom, left to right, as ai, j , where i denotes the row the space is
in and j denotes the diagonal column the space is in. We make this assumption
since any finite set of spaces in the tiling will be contained in a suitably large
rhombus of hexagons. We use scripted capital letters (such as A) to name subsets
of a board Bn and nonscripted letters (such as a or A) to label individual spaces
of a board Bn . To avoid distinguishing between a space and a king occupying
that space, we introduce the following terminology. When a subset A of Bn is
specified, we refer to each space v ∈ Bn as being a king if v ∈ A. We define the
realm (or neighborhood) of a space v ∈ Bn , denoted R(v), to be the set of spaces
a king in space v attacks. In particular, we define the spaces in R(v) to create a
“wrap-around” property on the board as follows: Given a space ai, j ∈ Bn we define
g, g′, g′′, g′′′, h, h′, h′′, h′′′ ∈ (1, 2, . . . , n) as

g ≡ i − 2 (mod n),

g′ ≡ i − 1 (mod n),

g′′ ≡ i + 1 (mod n),

g′′′ ≡ i + 2 (mod n),

h ≡ j − 2 (mod n),

h′ ≡ j − 1 (mod n),

h′′ ≡ j + 1 (mod n),

h′′′ ≡ j + 2 (mod n).

Finally we define R(ai, j ) to be the set of spaces{
ag,h′, ag′,h, ag′,h′, ag′, j , ag′,h′′, ai,h′, ai,h′′, ag′′,h′, ag′′, j , ag′′,h′′, ag′′,h′′′, ag′′′,h′′

}
.

Note that if the board is less than 4× 4, the realm of a king overlaps itself. To
simplify matters, the theorems in this paper only address n×n boards where n ≥ 4,
so a king’s realm always contains 12 spaces. (This is because realm spaces that
are otherwise prevented by the boundary of the board are instead extended past
the boundary and associated with the opposite side. Additionally when n ≥ 4 it is
impossible for the realm to overlap itself.) As an example,

R(a1,1)=
{
a(n−1),n, an,(n−1), an,n, an,1, an,2, a1,n, a1,2, a2,n, a2,1, a2,2, a2,3, a3,2

}
.

A placement of kings on a hexagonal board Bn is a subset A of Bn , the members
of which we call kings. If u, v are kings, u is said to attack v if v ∈ R(u). A
placement of kings A is k-dependent if R(v) contains at most k kings for all v ∈A.
We denote the collection of all k-dependent placements of kings on Bn by Bn(k).
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Our notation of a k-dependent arrangement of kings relates to the following
graph-theoretic terminology. For a graph G = (V, E) and a vertex v ∈ V, the set
of vertices directly joined by an edge to v is denoted by N (v). A subset A of V
is called independent if N (a)∩A=∅ for each vertex a ∈A, and more generally,
A is called k-dependent (for a specified constant k) if |N (a) ∩ A| ≤ k for each
a ∈A. The k-dependence number of G= (V, E) is the maximum cardinality among
k-dependent subsets of V .

The maximum k-count on Bn , denoted by MNK(k, n), is the maximum size of a
k-dependent arrangement or placement of kings on Bn . That is,

MNK(k, n)=max{|A| :A ∈ Bn(k)}

when n ≥ 4. We let µ(k) denote the least upper bound of the density of kings in
k-dependent placements. That is,

µ(k)= sup
{
|A|
n2 :A ∈ Bn(k), n ≥ 4

}
.

Alternatively, µ(k)= sup{MNK(k, n)/n2
: n ≥ 4}.

3. Initial upper bounds

Following tradition, we refer to the following technique as linear programming,
even though we are not optimizing some objective function subject to constraints
in the standard sense. For each k, we produce a simple system of linear inequalities
valid for all A∈Bn(k). Summing these inequalities will yield upper bounds forµ(k).
Let T(k) be the maximum number of kings in R(v) for v ∈ Ac

= Bn \A over all
A ∈ Bn(k) for n ≥ 4. That is, if v is a non-king with respect to some k-dependent
placement, then the largest number of kings possible in R(v) is T (k). Given a
placement A⊆ Bn the indicator function of A over Bn is

χA(w)=

{
1 if w ∈A ,
0 if w ∈Ac.

Theorem 3.1. Given n ≥ 4, for all A ∈ Bn(k) we have

|A| ≤
T (k)

T (k)− k+ 12
n2.

Proof. Let A ∈ Bn(k). Then for each v ∈ Bn , we have that
∑

w∈R(v) χA(w) is the
number of kings that are in the realm of v. We consider the inequality

(T (k)− k)χA(v)+
∑

w∈R(v)

χA(w)≤ T (k). (1)
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If χA(v)= 0, then (1) holds by the definition of T (k). Suppose χA(v)= 1. Then∑
w∈R(v) χA(w) ≤ k because A is a k-dependent placement of kings. Therefore,

since (T (k)− k) · 1+ k ≤ T (k), inequality (1) holds whether or not χA(v) = 0.
Now, we sum the inequalities of form (1), over all choices of v ∈ Bn , and simplify
the result: ∑

v∈Bn

(
(T (k)− k)χA(v)+

∑
w∈R(v)

χA(w)
)
≤
∑
v∈Bn

T (k),(
(T (k)− k)

∑
v∈Bn

χA(v)
)
+ 12

∑
v∈Bn

χA(v)≤ T (k)n2,

(T (k)− k+ 12)
∑
v∈Bn

χA(v)≤ T (k)n2.

Hence,

|A| ≤
T (k)

T (k)− k+ 12
n2. �

Therefore, Theorem 3.1 establishes that

|A|
n2 ≤

T (k)
T (k)− k+ 12

for all k ∈ {0, 1, 2, . . . , 12} and n ≥ 4.

Finding T-values. For each k ∈ {0, 1, 2, . . . , 12}, Theorem 3.1 gives us an upper
bound for |A|/n2, the fraction of Bn that can be occupied by a k-dependent set
of kings. Since these upper bounds depend upon k and T (k), we must find the
exact values of T (k) for each separate choice of k. We refer to values of T (k) as
T -values.

The following illustrates our process for finding the T -values for each k. To
see why T (0)= 4, suppose A ∈ Bn(0) for some n ≥ 4 and consider some v ∈Ac.
We label the spaces in R(v) as in Figure 3. Partition R(v) into the sets {A, B,C},
{D, E, F}, {G, H, I }, and {J, K , L}. Since A is 0-dependent, the maximum
number of kings in each of {A, B,C}, {D, E, F}, {G, H, I }, and {J, K , L} is 1.
Therefore, T (0) ≤ 4. Also, since {A, D,G, J } is a 0-dependent placement, we
have T (0)≥ 4. Therefore T (0)= 4.

Figure 4 demonstrates lower bounds for all remaining T -values. The reader can
check by hand that T (k) equals the lower bound given below each picture.

Therefore, Theorem 3.1 establishes upper bounds for µ(k) as seen below:

k 0 1 2 3 4 5 6 7 8 9 10 11 12

Upper bound for µ(k) 1
4

5
16

3
8

8
17

5
9

10
17

2
3

12
17

3
4

4
5

6
7

12
13 1

A board consisting entirely of kings would be 12-dependent. Therefore, µ(12)= 1.
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C

L v F

A B D E

K J H G

I

Figure 3. R(v) partitioned into four subsets.

K K

K K

K

K KK

K

K K

K K

K K

K K

K

K

K

K

K

K KK

K

K

︸ ︷︷ ︸
T (2)= 6T (0)= 4 T (1)= 5

KK K

K K

K

K

K

K K

K KK

K

K K

K

K K

K K

K K

K︸ ︷︷ ︸
T (3)= 8

K

K K K K

K K K K

K

K K

K K

K

KK

K

K K

KK KK

K K

K

KK

K

K K
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6≤ k ≤ 12

Figure 4. Lower bounds for the T -values for 0≤ k ≤ 12.

4. Lower bounds

Ideally, we wish to find matching upper and lower bounds for µ(k) for each k, so
as to determine µ(k) exactly. In this section we give constructive lower bounds for
each such µ(k). To establish lower bounds for µ(k) we create patterns via “puzzle
pieces”. We use them to construct arbitrarily large k-dependent placements with
calculable density. To construct these placements, we “stamp” the puzzle piece

K K K

K K K

K K K

Figure 5. The shaded region represents the puzzle piece P(0),
which has been stamped nine times to create a 0-dependent place-
ment on a 6× 6 board.
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Figure 6. Puzzle pieces P(k) that result in a k-dependent placement.

(using translated copies) as many times as needed to fill large n× n boards. For
example, in Figure 5, the shaded region represents a 2× 2 puzzle piece, which
we stamped a total of nine times to create a 6× 6 placement. This results in a
0-dependent placement. We call this method of obtaining a k-dependent placement
the stamping method. For a given k, we define P(k) (as in Figure 6) to be a particular
s×l puzzle piece which results in a k-dependent placement. Additionally, for a given
P(k), we define K (k) to be the number of kings in P(k). We denote the number
of rows in P(k) by s(k) and the number of diagonal columns in P(k) by l(k).

Theorem 4.1. For a given k, puzzle piece P(k), and n ≥max{s, l, 4}, we have

µ(k)≥
K (k)

s(k)l(k)
.
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Proof. Let n = q1s(k) + r1 = q2l(k) + r2 for integers q1, q2, r1, r2 ≥ 0, where
r1 < s(k) and r2 < l(k). Consider a particular k and its corresponding puzzle piece
P(k) placed in the top-left of the n × n board. Let Z be the set of kings in the
n× n board at this stage. We define

Z ′ =
{
ai+cs, j+dl : ai, j ∈ Z, c ∈ {0, 1, 2, . . . , q1− 1}, d ∈ {0, 1, 2, . . . , q2− 1}

}
.

Therefore, Z ′ is the placement of kings arising from a specific stamp and the process
of stamping it in Bn .

Since q1q2 is the number of copies of the puzzle piece on the n × n board,
|Z| = K (k)q1q2. Thus, since MNK(k, n) is the maximum number of kings on a
k-dependent n×n board, we have MNK(k, n)≥ K (k)q1q2 for n≥max{s, l}. Also,
note that q1 = (n− r1)/s(k) and q2 = (n− r2)/ l(k). So it follows that

q1q2 =
(n− r1)(n− r2)

s(k)l(k)
.

Thus,
MNK(k, n)

n2 ≥
K (k)(n− r1)(n− r2)

s(k)l(k)n2 .

This implies

µ(k)≥ sup
{

K (k)(n− r1)(n− r2)

s(k)l(k)n2 : n ≥max{s, l, 4}
}
=

K (k)
s(k)l(k)

. �

Our choices of P(k) for 0 ≤ k ≤ 12 are shown in Figure 6. Each of these is
crafted carefully to optimize the maximum proportion of kings, yielding the best
lower bound we can manage. The following is a table of the lower bounds we
constructed for µ(k) using the stamping method:

k 0 1 2 3 4 5 6 7 8 9 10 11 12

Lower bound for µ(k) 1
4

7
25

1
3

2
5

1
2

1
2

4
7

2
3

3
4

7
9

6
7

12
13 1

5. Tightening the upper bounds

Although the upper and lower bounds for µ(k) were matched for some k using the
methods in Sections 3 and 4, we were unable to match others. In this section we
use two additional methods to attempt to bring down the upper bound for µ(k) to
match the lower bound.

Taxation. We now use a standard discharging method, which we refer to as taxation,
to improve the upper bound for µ(k) when k ∈ {1, 2, 3, 4}. In this method, we
call any non-king space a pawn. So, for a placement of kings A, the set of pawns
is Ac. To understand taxation, consider the following scenario. Initially, each pawn
starts with X dollars. Then each pawn pays all its money to the kings adjacent
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$10$10 P
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$12$12 P
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$15$15

$15 P

$20

$20

$20

P

$30

$30 P

$60

P

Figure 7. Examples of a taxation rule.

to it, following taxation rules. For example, each pawn could start with $60 and
distribute it evenly among all the kings adjacent to it. Some examples of a pawn
following this taxation rule can be seen in Figure 7, where the shaded spaces are
kings and the white spaces are pawns.

An $X taxation rule for A ∈ Bn(k) is a function f : Ac
× A→ [0, X ] such

that
∑

K∈A f (P, K ) = X for every P ∈ Ac. Note that in an $X taxation rule,∑
(P,K )∈Ac×A f (P, K ) = X |Ac

|. When f is understood, we denote the value of
funds a king K receives by F(K )=

∑
P∈Ac f (P, K ). In an $X taxation rule, we

know that the total amount of taxes paid, and also received, is $X |Ac
|. So if each

king receives a known minimum amount of money, $Y , we can calculate an upper
bound for |A|.

Theorem 5.1. Consider a placement of kings A∈Bn(k), where n≥ 4. If , following
an $X taxation rule, F(K )≥ Y for all K ∈A, then

|A| ≤
X

X + Y
n2.

Proof. Consider a placement A∈Bn(k). The number of kings is |A|, and the number
of pawns is n2

−|A|. Suppose for some $X taxation rule f , we have F(K )≥ Y for
each king K ∈A. Comparing the amounts paid by pawns and received by kings,
we see that

Y |A| ≤ X (n2
− |A|) =⇒ (X + Y )|A|≤ Xn2

=⇒ |A| ≤
X

X + Y
n2. �

For a given k, a general $X taxation plan (tax plan) G(A) is a function G that
assigns an $X taxation rule f to each A ∈ Bn(k). Given such a G, let

YG =min{F(K ) : K ∈A and A ∈ Bn(k)}.

Corollary 5.2. Suppose that YG ≥ Y for some $X taxation rule G. Then

µ(k)≤
X

X + Y
.

Proof. Suppose YG ≥ Y for some $X taxation rule G. For all A ∈ Bn(k),

|A| ≤
X

X +YG
n2
≤

X
X + Y

n2,
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where the first inequality follows from Theorem 5.1. So, (X/(X+Y ))n2 is an upper
bound on |A| for all A ∈ Bn(k). Thus, X/(X + Y ) is an upper bound for µ(k). �

For each k ∈ {1, 2, 3, 4}, we choose a convenient X and Y and show that there ex-
ists an $X tax plan G such that YG ≥Y . Thus, by Corollary 5.2, µ(k)≤ X/(X + Y ).
To achieve this, it is helpful to partition each placement A into parts and ana-
lyze how much funding each part receives collectively. We define a cluster in a
placement of kings A to be a nonempty set K ⊆ A such that for each v,w ∈ K,
there exists a sequence v = v1, v2, . . . , vs = w, where vi and vi+1 are adjacent
for each i ∈ {1, 2, . . . , s − 1}. When a tax plan is understood, we denote the
funds a cluster K ⊆A receives by F(K)=

∑
K∈K F(K ). Since each k-dependent

placement of kings is partitioned into clusters in our arguments, it suffices to show
that $Y |K| ≤ F(K) for each cluster K ∈ Bn(k) we consider.

Corollary 5.3. Consider an $X tax plan for a given k and n ≥ 4. Suppose for each
A ∈ Bn(k) that A partitions into clusters where $Y |K| ≤ F(K) for each cluster K
in that partition. Then µ(k)≤ X/(X + Y ).

In all of our tax plans, any pawn with no adjacent kings is assumed to divide its
money equally between all the kings in A. Since we are looking for a maximum
number of kings on Bn(k) for some k with n ≥ 4, we need not worry about the case
A=∅, so there will always be at least one king in any relevant arrangement. In
the remainder of this subsection the following notation is used in the diagrams. A
white hexagon denotes a pawn. A shaded hexagon denotes a king. We omit proofs
of the following four propositions, as they took many pages of case analysis.

Tax plan for k = 1. We show that µ(1)≤ 7
25 using a taxation argument. We employ

a tax plan where each pawn starts with $14 and distributes it evenly among kings
adjacent to it unless the pawn and king arrangement is one shown in Figure 8.
When the arrangement is as in Figure 8(a), the pawn P1 pays $6 to K1 and $8 to K2.
When the arrangement is as in Figure 8(b)–(c) the pawn P2 pays $8 to K1 and $6
to K2. When the arrangement is as in Figure 8(d)–(e) the pawn P3 pays $8 to K1

and $6 to K2. Note that the orientation of these figures is arbitrary, with respect to
rotation and reflection.

Proposition 5.4. Every king in a 1-dependent arrangement on Bn receives at least
$36 using the aforementioned tax plan.

By Proposition 5.4, µ(1)≤ 7
25 .

Tax plan for k= 2. We show that µ(2)≤ 1
3 using a taxation argument. We employ a

tax plan where each pawn starts with $6 and distributes it evenly among kings adja-
cent to it unless the pawn and king arrangement is as shown in Figure 9. When the ar-
rangement is as in Figure 9, the pawn P1 pays $3 to K1 and $1.50 each to K2 and K3.
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K1 1 2P K K1 2 2P K K1 2 2P K K2 3 1P K K2 3 1P K

(a) (b) (c) (d) (e)

Figure 8. Pawn and king arrangements for the tax plan for k = 1.

Proposition 5.5. Every king in a 2-dependent arrangement on Bn receives at least
$12 using the aforementioned tax plan.

By Proposition 5.5, µ(2)≤ 1
3 .

Tax plan for k = 3. We show that µ(3)≤ 2
5 using a taxation argument. We employ

a tax plan where each pawn starts with $4 and distributes it evenly among kings ad-
jacent to it unless the pawn and king arrangement is as shown in Figure 9. When the
arrangement is as in Figure 9, the pawn P1 pays $2 to K3 and $1 each to K1 and K2.

Proposition 5.6. Every king in a 3-dependent arrangement on Bn receives at least
$6 using the aforementioned tax plan.

By Proposition 5.6, µ(3)≤ 2
5 .

Tax plan for k = 4. We show that µ(4)≤ 1
2 using a taxation argument. We employ

a tax plan where each pawn starts with $60 and distributes it evenly amongst all
kings adjacent to it.

Proposition 5.7. Every king in a 4-dependent arrangement on Bn receives at least
$60 using the aforementioned tax plan.

By Proposition 5.7, µ(4)≤ 1
2 .

Further linear programming. We improve our bounds using a more general form
of linear programming we call weighting patterns. In this method, we seek more
complicated linear inequality constraints that are valid for all k-dependent sets.

K2 K3

1

1

P

K

Figure 9. The special case for k = 2 and k = 3.
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Given n ≥ 4 and a weighting function $ : Bn→ [0,∞), not everywhere zero,
let W ($) denote the total weight,

∑
v∈Bn

$(v), of $ . Given k and $ on Bn , let
Mk(n,$) denote the maximum value of

∑
v∈Bn

$(v)χA(v) over all A ∈ Bn(k).
So, for any such $ and any A ∈ Bn(k), we always have∑

v∈Bn

$(v)χA(v)≤ Mk(n,$).

To define a weighting function $ we refer to a figure with mapped values in
their corresponding spaces. For example, if we defined $ by Figure 10(a), then
$(a5,4) = 10740. Given a weighting function $ , we define the shifted function
$x,y :Bn→[0,∞) by$x,y(ai, j )=$(a(i+x)mod n,( j+y)mod n). Note that$0,0=$ .

Theorem 5.8. Consider any weighting function $ on Bn . Then

µ(k)≤
Mk(n,$)

W ($)

whenever n≥ n0≥ 4, where n0 is the minimum value such that the weighting pattern
$ fits within an n0× n0 rhombus.

Proof. Given n ≥ n0 ≥ 4, let A ∈ Bn(k), and let 0 = {0, 1, 2, . . . , n− 1}. For any
x, y ∈ 0, we know that $x,y is also a weighting function on Bn . Thus we have∑

ai, j∈Bn

$x,y(ai, j )χA(ai, j )≤ Mk(n,$).

Therefore ∑
x,y∈0

( ∑
ai, j∈Bn

$x,y(ai, j )χA(ai, j )

)
≤

∑
x,y∈0

Mk(n,$),

∑
ai, j∈Bn

(
χA(ai, j )

( ∑
x,y∈0

$x,y(ai, j )

))
≤ n2 Mk(n,$),

∑
ai, j∈Bn

(
χA(ai, j )

( ∑
x,y∈0

$(a(i+x) mod n,( j+y) mod n)

))
≤ n2 Mk(n,$),

∑
ai, j∈Bn

(χA(ai, j )W ($))≤ n2 Mk(n,$),

and thus

|A| ·W ($)≤ n2 Mk(n,$) =⇒
|A|
n2 ≤

Mk(n,$)
W ($)

.

Since n ≥ 4 and A ∈ Bn(k) were arbitrary, we have

µ(k)≤
Mk(n,$)

W ($)
. �
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1 8 28 56 70 95 67 8 1

9 73 261 540 714 708 456 156 45 9 1

34 311 1150 2462 3440 3378 2312 1081 369 82 9

94 859 3254 7260 10740 11139 8190 4247 1540 351 38

191 1726 6727 15684 24467 26669 20560 11163 4146 951 102

295 2691 10809 26182 42720 48672 38452 21364 8053 1859 199

368 3370 13871 34609 58175 69718 55493 31421 12044 2816 303

372 3422 14374 36735 63712 76682 63712 36735 14374 3422 372

303 2816 12044 31421 55493 69718 58175 34609 13871 3370 368

199 1859 8053 21364 38452 48672 42720 26182 10809 2691 295

102 951 4146 11163 20560 26669 24467 15684 6727 1726 191

38 351 1540 4247 8190 11139 10740 7260 3254 859 94

9 82 369 1081 2312 3378 3440 2462 1150 311 34

1 9 45 156 456 708 714 540 261 73 9

1 8 67 95 70 56 28 8 1

(a) k = 5

1 5 10 10 5 1

1 11 41 76 80 51 21 6 1

5 41 140 266 315 245 126 40 6

10 76 266 571 776 679 379 125 21 1

10 80 314 768 1242 1138 677 243 51 5

5 51 243 677 1138 1242 768 314 80 10

211 125 379 679 776 571 266 76 10

6 40 126 245 315 266 140 41

1 5 10 10 5 1

5

2161 51 80 76 41 11 1

1 6 16 26 30 26 16 6 1

1 10 40 89 130 141 120 77 34 9 1

2 19 78 186 303 350 283 162 66 17 2

2 19 82 214 405 534 405 214 82 19 2

2 17 66 162 283 350 303 186 78 19 2

1 9 34 77 120 141 130 89 40 10 1

1 6 16 26 30 26 16 6 1

(b) k = 6 (c) k = 7

2 14 42 70 70 42 14 2

2 20 86 212 336 364 280 156 62 16 2

4 36 150 384 672 840 756 480 204 52 6

2 22 114 358 744 1064 1063 744 358 114 22 2

6 52 204 480 756 840 672 384 150 36

2 16 62 156 280 364 336 212 86 20

4

2

2 14 42 70 70 42 14 2

(d) k = 9

Figure 10. Weighting functions $ for k ∈ {5, 6, 7, 9}.

Using Theorem 5.8, we improve our upper bounds for some µ(k) values by conve-
niently choosing the weighting patterns in Figure 10 to define $ for k ∈ {5, 6, 7, 9}.
The shaded hexagons represent a k-dependent placement of kings resulting in the
largest Mk(n,$).
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Applying four weighting functions and employing a tedious case analysis yields
the following upper bounds for µ(k):

k 5 6 7 9

Upper bound for µ(k) 902416
1636944

11099
17872

4520
6474

12287
15359

6. Conclusion

When the upper and lower bounds for µ(k) match, we know

lim
n→∞

(
MNK(k, n)

n2

)
= µ(k).

In the cases where the upper and lower bounds for µ(k) do not match, it remains
to determine the values of limn→∞(MNK(k, n)/n2), if indeed these limits exist.
In summary, combining results from various methods, the best results we found
concerning the values of µ(k) are

µ(0)= 1
4 , µ(1)= 7

25 , µ(2)= 1
3 , µ(3)= 2

5 , µ(4)= 1
2 ,

8
15 ≤ µ(5)≤

902416
1636944 ,

3
5 ≤ µ(6)≤

11099
17872 ,

2
3 ≤ µ(7)≤

4520
6474 , µ(8)= 3

4 ,

7
9 ≤ µ(9)≤

12287
15359 , µ(10)= 6

7 , µ(11)= 12
13 , µ(12)= 1.

Although our bounds for µ(k) are tight for most values of k, we were unable to
match the bounds for k ∈ {5, 6, 7, 9}. The tightness of these bounds can perhaps
be improved through computer programming and other mathematical methods.
For example, one could try a “reverse taxation” process to lower the upper bound
for µ(9). In such a process the kings would be given money to distribute to the
pawns, potentially limiting the number of cases in the case analysis. Additionally, a
computer could be used to test larger weighting patterns, although we have reason
to believe that it is unlikely they will lead to a tight bound. Finally, by computer
search or by hand, one could search for patterns which raise the lower bound.

To create a new problem, one can investigateµ(k) on similar boards with a change
in the realm of a king. Moreover, one can consider boards consisting of other shapes,
or in higher dimensions. For example, one could examine the k-dependence of kings
on an n×n rhombus tiled with equilateral triangles, a parallelepiped whose surface
is tiled with equilateral triangles, or a parallelepiped internally tiled with regular
tetrahedra. A similar type of problem one might investigate is the domination
number as in [Haynes et al. 1998] of an n× n hexagonal board on a torus using
our king’s realm. One could also examine the domination number of a board
with respect to different realms or of a different board altogether. We encourage
the investigation of these problems, because they seem to us ideal problems for
upper-level undergraduates with backgrounds or interests in discrete mathematics.
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Gonality of random graphs
Andrew Deveau, David Jensen, Jenna Kainic and Dan Mitropolsky

(Communicated by Ravi Vakil)

The gonality of a graph is a discrete analogue of the similarly named geometric
invariant of algebraic curves. Motivated by recent progress in Brill–Noether
theory for graphs, we study the gonality of random graphs. In particular, we show
that the gonality of a random graph is asymptotic to the number of vertices.

1. Introduction

In the moduli space of curves, the locus of Brill–Noether general curves is a dense
open subset [Griffiths and Harris 1980]. In the moduli space of tropical curves,
however, the Brill–Noether general locus is open [Lim et al. 2012; Len 2014] and
nonempty [Cools et al. 2012], but it is not dense [Jensen 2014]. A natural question,
therefore, is how likely is it that a graph is Brill–Noether general?

In this paper, we approach this question by studying the gonality of Erdős–Rényi
random graphs. Recall that an Erdős–Rényi random graph G(n, p) is obtained by
fixing n vertices and, for each pair of vertices, introducing an edge between them
with probability p. We will often refer to such graphs simply as random graphs,
where the probability distribution is understood to be that of Erdős–Rényi. It is
common to define the probability p as a function of n, and to consider the expected
value of combinatorial invariants as n increases. Throughout, we use P and E to
denote the probability and expected value, respectively.

The current article is a natural follow-up to other recent work on the divisor theory
of random graphs. Most notably, Lorenzini [2008] asked about the distribution of
divisor class groups of random graphs, and in [Clancy et al. 2015b] it is conjectured
that they are distributed according to a variation of the Cohen–Lenstra heuristics.
This conjecture is proved in [Wood 2014], expanding on the preliminary work of
[Clancy et al. 2015a].

Before stating our main result, we briefly recall the basic theory of divisors on
graphs. For a more detailed account, see [Baker and Norine 2007] and [Baker
2008]. A divisor on a simple graph G is an element of the free abelian group on the

MSC2010: 05C80, 14H51, 14T05.
Keywords: random graphs, gonality, chip-firing, Brill–Noether theory.

715
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vertices of G, and a divisor D =
∑

v∈V (G) avv is said to be effective if av ≥ 0 for
all v. Given a divisor D =

∑
v∈V (G) avv and a vertex v′, we may fire v′ to obtain a

new divisor D′ =
∑

v∈V (G) bvv, where

bv =


av − val(v) if v = v′,
av + 1 if v is adjacent to v′,
av otherwise,

where val(v) is the valence of the vertex v. Two divisors are equivalent if one can be
obtained from the other by firing a sequence of vertices, and we say that a divisor D
has positive rank if D−v is equivalent to an effective divisor for all vertices v in G.
The gonality gon(G) is the smallest degree of a divisor with positive rank. Our
main result is the following.

Theorem 1.1. Let p(n)= c(n)/n, and suppose that log(n)� c(n)� n. Then

E(gon(G(n, p)))∼ n.

Theorem 1.1 essentially says that the expected gonality of a random graph
is as high as possible. We note, however, that the gonality of random graphs
nevertheless falls short of that for a general curve, as the genus of a random graph is
asymptotically 1

2 c(n)n, and if c(n) is unbounded, this grows faster than n. From this
perspective, it may be more natural to study the gonality of random regular graphs,
as the genus of such graphs grows in proportion to the number of vertices. The case
of 3-regular graphs would be particularly interesting, as such graphs correspond to
top-dimensional strata of the moduli space of tropical curves.

Although Theorem 1.1 follows directly from the earlier work of de Bruyn and
Gijswijt [2014] and Wang et al. [2011], it appears to be unknown to experts in trop-
ical Brill–Noether theory. At the time of writing, we became aware of simultaneous
work by Amini and Kool [2016], in which they use an improvement on the spectral
methods of [Cornelissen et al. 2015] to show that the gonality of a random graph is
bounded above and below by constant multiples of n. Our results are essentially
a tightening of these bounds, so that both upper and lower bounds are asymptotic
to n, which indeed is conjectured in [Amini and Kool 2016, Section 5.2]. Their
techniques apply additionally to metric graphs, which we do not discuss here, and
to the case of random regular graphs, which they show to have gonality bounded
above and below by constant multiples of n as well.

Also of note is the bound that we provide on the error term n−E(gon(G(n, p)))
(see Theorem 3.3). In the future, it would be interesting to explore with what
precision we can bound this term.

A more complete study of the Brill–Noether theory of random graphs would
involve divisors of rank greater than one. A natural generalization of the current
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line of inquiry would be to study the Clifford index of random graphs, defined as

Cliff(G) := min
D∈Jac(G)

{
deg(D)− 2r(D) | r(D) > 0 and r(KG − D) > 0

}
.

Note that if the minimum in this expression is obtained by a divisor of rank one,
then Cliff(G)= gon(G)− 2. The Clifford index of an algebraic curve C is known
to always be either gon(C)− 2 or gon(C)− 3 [Coppens and Martens 1991]. The
corresponding statement remains open for graphs, but if true, it would imply that the
Clifford index of a random graph is asymptotic to the number of vertices as well.

2. A lower bound

In this section, we obtain a lower bound on the expected gonality of a random graph.
The first step is to identify a lower bound for the gonality of an arbitrary graph.
This is done in [de Bruyn and Gijswijt 2014], where it is shown that the treewidth
of a graph is a lower bound for the gonality.

Definition 2.1. A tree decomposition of a graph G is a tree T whose nodes are
subsets of the vertices of G, satisfying the following properties:

(1) Each vertex of G is contained in at least one node of T .

(2) If two nodes of T both contain a given vertex v, then all nodes of the tree in
the unique path between these two nodes must contain v as well.

(3) If two vertices v andw are adjacent in G, then there is a node of T that contains
both v and w.

The width of a tree decomposition is one less than the number of vertices in its
largest node. The treewidth tw(G) of a graph G is the minimum width among all
possible tree decompositions of G.

Proposition 2.2 [de Bruyn and Gijswijt 2014]. Let G be a simple connected graph.
Then

gon(G)≥ tw(G).

Although we will not use it, we note the following simple consequence.

Corollary 2.2.1. For a simple connected graph G,

gon(G)≥min{val(v) | v ∈ V (G)}.

Proof. The result follows immediately from Proposition 2.2 and the fact that
tw(G)≥min{val(v) | v ∈ V (G)} (see [Bodlaender and Koster 2011]). �

The treewidth of random graphs has been studied extensively in [Wang et al.
2011; Gao 2012].
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Lemma 2.3 [Wang et al. 2011]. Let p(n)= c(n)/n, and suppose that c(n)� n is
unbounded. Then

lim
n→∞

P
(
tw(G(n, p))≥ n−o(n)

)
= 1.

Theorem 2.4. Let p(n)= c(n)/n, and suppose that log(n)� c(n)� n. Then

lim
n→∞

P
(
gon(G(n, p))≥ n−o(n)

)
= 1.

Proof. A random graph is always simple, and by a well-known result of Erdős and
Rényi [1959], the assumption c(n)� log(n) implies that such a graph is connected
with probability approaching 1. It follows that

lim
n→∞

P
(
gon(G(n, p))≥ n−o(n) and G(n, p) is connected

)
= lim

n→∞
P
(
gon(G(n, p))≥ n−o(n)

)
.

By Proposition 2.2, if G(n, p) is connected, then gon(G(n, p))≥ tw(G(n, p)), and
it follows that

lim
n→∞

P
(
gon(G(n, p))≥ n−o(n)

)
≥ lim

n→∞
P
(
tw(G(n, p))≥ n−o(n)

)
= 1,

where the final equality follows from Lemma 2.3. �

3. An upper bound

In this section, we obtain an upper bound on the expected gonality of a random
graph. Together with the results of the previous section, this will imply that the
gonality of a random graph is asymptotically equal to the number of vertices. We
note that the number of vertices n is a very simple upper bound for the gonality of
a graph and, together with Theorem 2.4, this would be enough to establish the main
theorem. We actually go a bit further and obtain a bound on the expected value of
n− gon(G(n, p)). In the future, it would be interesting to explore this with higher
precision.

Recall that an independent set in a graph is a set of vertices, no pair of which
are connected by an edge. The independence number α(G) of a graph G is defined
to be the maximal size of an independent set.

Proposition 3.1. If G is a simple connected graph with n vertices, then gon(G)≤
n−α(G).

Proof. Let I be a maximal independent set, and let D be the sum of the vertices in
the complement of I. We will show that D has positive rank. If v /∈ I, then D−v is
effective by definition. On the other hand, if v ∈ I, then since all of the neighbors
of v are not in I and the graph is simple, by firing all of the vertices other than v
we obtain an effective divisor equivalent to D with at least one chip on v. It follows
that D has rank at least one, hence gon(G)≤ deg(D)= n−α(G). �
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Note that gonality n− 1 is achieved by the complete graph Kn , so this bound is
sharp. Note further that the complete graph is the only simple graph with n vertices
whose gonality is n− 1.

The expected independence number of a random graph has been studied in
[Frieze 1990].

Lemma 3.2 [Frieze 1990]. Let p(n) = c(n)/n, and suppose that c(n) � n is
unbounded. For any ε > 0, we have

lim
n→∞

P
(∣∣∣α(G(n, p))− 2

p(n)
(log c(n)−log log c(n)−log 2+1)

∣∣∣≤ ε

p(n)

)
= 1.

From this, we can conclude the following.

Theorem 3.3. Let p(n)= c(n)/n, and suppose that log(n)� c(n)� n. Then

lim
n→∞

P
(

gon(G(n, p))≤ n− 2
p(n)

(log c(n)−log log c(n)−log 2+1)
)
= 1.

Proof. By Lemma 3.2, for any ε > 0, we have

α(G(n, p)) > 2
p(n)

(log c(n)− log log c(n)− log 2+ 1− ε)

with probability 1 as n approaches infinity. By Proposition 3.1, the number
n−α(G(n, p)) is an upper bound for the gonality of G(n, p). �

Proof of Theorem 1.1. Again, the assumption that c(n)� log(n) implies that the
random graph is connected with high probability. By Theorem 3.3, the gonality
of a random graph is bounded above by n− o(n). Similarly, by Theorem 2.4, the
gonality of a random graph is bounded below by n− o(n). It follows that

lim
n→∞

1
n

E
(
gon(G(n, p))

)
= lim

n→∞

n− o(n)
n

= 1. �
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