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We develop an averaging method, based on a modified Haar wavelet technique,
for identifying when transient features occur in a time signal. We call this method
the seaweed method and use it to identify different stages of bean beetle embryo
maturation. We use randomized simulations to evaluate the seaweed method for
accuracy and precision at different levels of noise. Our results support the efficacy
of the seaweed method as a means for analyzing time-lapse photographs of bean
beetle embryos and a wide variety of other time signals.

1. Introduction

Wavelets are commonly employed in signal processing for their usefulness in
detecting sudden changes in a signal. In this paper we introduce a new method
based on a modification of a Haar wavelet transform. This method, which we call
the “seaweed method,” is designed to identify points signifying the beginning of
a gradual change in the signal, indicating a change in the sign of the slope on a
range of time scales. We call such points “transition points,” as they often indicate
important transitions in the underlying signal. We show this method is effective
at identifying transitions in a noisy signal of pixel brightness values coming from
time-lapse photography. We believe this method will prove capable of analyzing
many kinds of noisy time signals, including audio signals, stock market data, and
electrical signals from sensors. Spatial signals, such as population density of a given
organism along a transect, may also benefit from analysis by the seaweed method.

The seaweed method was motivated by the need to identify biological markers
in developing bean beetle (Callosobruchus maculatus) embryos, for the purpose of
studying factors that influence insect development time. Ultimately, these studies
should yield insights into how climate change will impact insect phenology and,
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Figure 1. Graph of relative brightness of a particular bean beetle
egg over time between frames 200 and 400. Frames are 20 minutes
apart. The shaded region indicates the darkening of the embryo’s
head capsule, and arrows indicate the differences in identification
of this marker by eye versus using the seaweed method. Also note
that in this signal, the large spikes down are the spurious results of
beetles crossing the calibration region on the bean.

hence, population dynamics (see, e.g., [Logan and Powell 2001; Logan et al. 1976;
Yurk and Powell 2009]).

Bean beetles are agricultural pests native to Africa and Asia that infest legume
crops both in fields and storehouses [Beck and Blumer 2011]. These insects lay their
eggs on the surfaces of beans. Following the completion of embryonic development,
the larvae burrow into the bean, where they feed and complete development before
emerging as adults. In addition to being an important agricultural pest, bean beetles
are studied as model organisms, as they are readily obtainable and easy to work
with in a laboratory.

In order to better understand the timing of bean beetle embryonic development,
we use biological markers to distinguish between different stages of maturation.
The marker we use to signify the completion of embryonic development is the
formation and darkening of the larval head capsule, which appears as a darkening in
the eggs. Although this spot is visible to the naked eye, its formation is so gradual
that visual identification of its initial darkening is impossible. Figure 14 shows a
sequence of digital microscope images which demonstrates this darkening process.

Because of the difficulties posed by visually identifying the beginning of head-
capsule darkening, we used digital time-lapse microscopy to record changes in
color and brightness of the eggs at 20-minute intervals. Note that, unlike the images
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in Figure 14, these images include many different eggs rather than a single egg. For
each egg in the images, we focused on a small, fixed rectangular region of the images
containing the egg. We used these images to investigate embryonic development
time, and developed a method to pinpoint the precise time when maturation had
finished. In each image, the brightness level of an egg, relative to a calibration region
on the bean, can be extracted as the difference of two average grayscale values from
different regions of the image. In the same way, we can extract a signal consisting
of the relative brightness of a specific egg from a sequence of images. A portion
of one such signal is displayed in Figure 1. Note that these signals are scaled and
shifted for consistency, so the resulting quantities would be dimensionless. Based
on our visual observations, we know that the embryo’s head capsule darkens along
the decline in the shaded region of Figure 1. Whereas a purely visual analysis of the
eggs would identify the head-capsule darkening somewhere in the middle of this
shaded region, the extraction of this signal and application of the seaweed method
make it possible to accurately locate the beginning of this region. This allows for
more precise measurement of embryonic development time. In general, the shape
of the signal seen in Figure 1 is common to all the eggs we analyze.

The seaweed method is a graphical method based on a modification of the Haar
wavelet algorithm. Herein we present the seaweed method, as well as statistical
tests to validate it.

2. Background

2A. Wavelets. Discrete and continuous wavelet transforms have been used exten-
sively over the last few decades to analyze time signals, as discussed in [Aboufadel
and Schlicker 1999; Bénéteau and Van Fleet 2011; Mulcahy 1996]. They provide a
way to express a time signal as a sum of component waves. Each component wave
has a fixed frequency (or, equivalently, a fixed period) and is a sum of wavelets
obtained from a “mother” wavelet by time shifting, time dilation, and amplitude
scaling. These wavelet transforms measure changes in amplitude of all component
waves over time and frequency simultaneously, thereby allowing signal features to
be identified. Signal features include changes in amplitude over a range of time that
identifies when an event occurred, changes in amplitude over a range of frequencies
that identify the frequency signature of an event, or a combination of the two. This
paper will focus on step detection (or change detection) in a time signal using a
variation of the Haar wavelet transform.

The discrete wavelet transform separates a signal into a direct sum of wavelets by
requiring that amplitude measurements for component waves occur over rectangles
of equal area that tile the time-frequency plane but do not overlap, as shown in
Figure 2. The width of the rectangles in the top row of Figure 2 is determined by
the sampling rate of the signal.
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Figure 2. An example of the tiling of the time-frequency plane
used for the discrete wavelet transform (DWT). The DWT expresses
the signal as a sum of wavelets with one wavelet for each rectangle.

In contrast, the continuous wavelet transform performs more amplitude calcula-
tions by increasing the number of rectangular tiles in the time-frequency plane and
allowing them to overlap. This overlap in the continuous wavelet transform allows
for amplitude measurements in the time-frequency plane to vary continuously both
in the time direction and in the frequency direction.

The Haar wavelet transform will be used as the basis for signal processing by
wavelets in this paper. The prototype Haar wavelet and Haar scaling function are
defined as follows. The Haar “mother” wavelet is the function ψ :R→R defined by

ψ(t)=


−1 if 0≤ t < 1

2 ,

1 if 1
2 ≤ t < 1,

0 otherwise.
(2-1)

Contrary to standard convention, we have chosen ψ(t) to be an increasing, rather
than decreasing, step function over 0≤ t < 1. This choice will make interpreting
amplitude coefficients for Haar wavelets easier since positive coefficients will
indicate an increasing function and negative coefficients a decreasing function. The
Haar scaling function is the function φ : R→ R defined by

φ(t)=
{

1 if 0≤ t < 1,
0 otherwise.

(2-2)

2B. Averaging and differencing. In [Bénéteau and Van Fleet 2011; Mulcahy
1996], the discrete Haar wavelet transformation is described as a process of averaging
and “differencing” as follows. Suppose a discrete, real-valued time signal is sampled
at a constant rate, that 1t is the time between consecutive signal measurements,
and that sn denotes the n-th signal value (n ≥ 1). The process of averaging and
differencing starts by setting α0,n = sn . Then, for each j = 1, 2, 3, . . . and each
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averages

j \n 1 2 3 4 5 6 7 8

0 8 20 32 36 32 20 8 4
1 14 34 26 6
2 24 16
3 20

differences

j \n 1 2 3 4 5 6 7 8

0
1 6 2 −6 −2
2 10 −10
3 −4

Table 1. Averages and differences arrays.

n = 2 j , 2 · 2 j , 3 · 2 j , . . . , averages αj,n and “differences” δj,n are defined by

αj,n =
αj−1,n−2 j−1 +αj−1,n

2
, δj,n =

αj−1,n −αj−1,n−2 j−1

2
. (2-3)

Each αj,n is the average of 2 j signal samples, while each δj,n is half of the difference
between two average values of the signal, where each average is of 2 j−1 signal
values. Thus, each δj,n measures changes in the average value of the signal. The
averages αj,n and differences δj,n are amplitude coefficients for time-shifted and
time-dilated Haar scaling functions φj,n(t) and Haar wavelets ψj,n(t), defined as

φj,n(t)= φ
(

t − (n− 2 j
+ 1)1t

2 j1t

)
, ψj,n(t)= ψ

(
t − (n− 2 j

+ 1)1t
2 j1t

)
. (2-4)

The time window over which φj,n(t) and ψj,n(t) are nonzero has length 2 j1t .

Example 2.1. Suppose s(t) is a time signal with amplitude measurements 8, 20,
32, 36, 32, 20, 8, 4 sampled uniformly over the time interval 0 ≤ t ≤ 8, so that
1t = 1. By (2-3), the averages and differences for this signal are given by the
values in Table 1.

The signal can be written as a sum of Haar scaling functions and Haar wavelets
over disjoint time intervals of length 2 by using the row j = 1 averages and
differences as coefficients:

s(t)=
∑

n=2,4,6,8

α1,nφ1,n(t)+
∑

n=2,4,6,8

δ1,nψ1,n(t). (2-5)

Graphs of the signal, the Haar scaling functions, and the Haar wavelets from
(2-5) are shown in the rows j = 0, 1 of Figure 3. Just as the signal was split into a
sum of Haar scaling functions and Haar wavelets, the average values in (2-5) can
be treated as a time signal and split into a sum of Haar scaling functions and Haar
wavelets:

s(t)=
∑

n=4,8

α2,nφ2,n(t)+
∑

n=4,8

δ2,nψ2,n(t)+
∑

n=2,4,6,8

δ1,nψ1,n(t). (2-6)
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Figure 3. Plot of the signal (row j = 0), Haar scaling functions
or average values of the signal (left graphs in rows j = 1, 2, 3),
and Haar wavelets or component waves (right graphs in rows
j = 1, 2, 3). The amplitudes of the Haar scaling functions and
the Haar wavelets come from the coefficients in the averages array
and differences array, respectively.

Equation (2-6) shows that the signal is a sum of Haar scaling functions and Haar
wavelets over disjoint time intervals of length 4 plus Haar wavelets over disjoint time
intervals of length 2, as shown in the rows j=1, 2 of Figure 3. Similarly, the average
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Figure 4. A plot of the Haar wavelet amplitude coefficients δj,n

in the time-frequency plane can be used to identify features in the
signal. For instance, the amplitudes change from positive values
(2, 10) to negative values (−6, −10, −4) at time t = 4, indicating
that the signal changes from increasing to decreasing across multi-
ple frequencies at the same time. Note: the amplitude coefficients
in the plot are horizontally centered in each time window (rectangle)
to facilitate identifying the time at which a signal feature occurs.

values in (2-6) can be treated as a time signal and split into a sum of Haar scaling
functions and Haar wavelets as in (2-7) and in the rows j = 1, 2, 3 of Figure 3:

s(t)=
∑
n=8

α3,nφ3,n(t)+
∑
n=8

δ3,nψ3,n(t)+
∑

n=4,8

δ2,nψ2,n(t)+
∑

n=2,4,6,8

δ1,nψ1,n(t).

(2-7)
Since each difference δj,n represents the amplitude of a Haar wavelet ψj,n(t) that

has frequency 1/(2 j1t), the differences δj,n can be plotted in the time-frequency
plane as a means to identify signal features, as shown in Figure 4.

2C. Redefining the differences. The Haar wavelet coefficients δj,n are defined
recursively in (2-3), but they can be defined explicitly in terms of the signal values:

δj,n =
1
2 j

( 2 j−1
−1∑

i=0

sn−i −

2 j
−1∑

i=2 j−1

sn−i

)
. (2-8)

By writing 1/2 j as 1
2(1/2

j−1) and distributing the factor 1/2 j−1 to each term in
the sum in (2-8), we see that (2-8) succinctly states that δj,n is half of the difference
between the average of the 2 j−1 signal values between sn−2 j+1 and sn−2 j−1 and the
average of the 2 j−1 signal values between sn−2 j−1+1 and sn . In other words, δj,n

is one half of the difference between two average values of the signal over two
adjacent time intervals. Each δj,n is the amplitude of a Haar wavelet ψj,n(t) of
wavelength 2 j1t and frequency 1/(2 j1t).
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3. Methods

3A. Modified algorithm. We now modify the traditional Haar wavelet algorithm
by adding more rows to the differences array thereby making it dense, rather than
sparse. Adding more rows means having a higher resolution in the frequency domain,
while making it dense means using a sliding time window. A sliding window can
provide a better resolution in time and is accomplished by allowing n to be any
integer, not just a multiple of a power of 2. In this regard, our modified algorithm
provides a discrete approximation to the continuous Haar wavelet transform. We
define dj,n to be the difference

dj,n =
1
j

( j−1∑
i=0

sn−i −

2 j−1∑
i= j

sn−i

)
. (3-1)

In this definition, 2 j is the size of the window being considered, and with each
increase of n, this window is shifted to the right by one time step. Equation (3-1)
states that each dj,n is the difference between the average of the j signal values
between sn− j+1 and sn and the average of the j signal values between sn−2 j+1

and sn− j .
There are several benefits of this modified algorithm. This algorithm examines

differences in the average values of the signal, making it is easy to describe concep-
tually. Due to the addition of a sliding window, this method has a higher resolution
for detecting signal features than the discrete Haar wavelet transform, as presented
in Section 2B. One drawback is that this method is specific to the Haar wavelet and
does not immediately generalize to other types of wavelets. Another drawback is
that it is more computationally intensive than the discrete Haar wavelet transform,
and may even be more computationally intensive than a continuous Haar wavelet
transform that has been optimized for speed using the fast Fourier transform.

3B. Related work. The modified Haar wavelet algorithm in (3-1) is perhaps best
thought of as a discrete approximation to the continuous Haar wavelet transform. It
also has some similarities with wavelet frame theory [Christensen 2001; Daubechies
et al. 2003; Teolis 1998] and overcomplete discrete wavelet transforms (OCDWT)
[Auscher 1992; Bayram and Selesnick 2009; Selesnick 2011; Teolis 1998].

Using Haar wavelet frames, a signal can be represented as a linear combina-
tion of wavelets from a frame, which consists of a set of wavelets that span the
function space (such as L1([a, b])) but are not necessarily linearly independent,
which means the coefficients in the linear combination are not necessarily uniquely
determined. Using the modified Haar wavelet algorithm in (3-1), however, the
signal is represented uniquely relative to a Haar wavelet basis within each time
window of length 2 j1t , and time windows are allowed to slide (and overlap) by
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changing the value of n. A frame could be formed by taking the union of all wavelet
bases over all time windows. However, in this study we choose to interpret the
wavelet coefficients provided by (3-1) relative to individual time windows that slide
through time, rather than relative to the union of all time windows.

The OCDWT and the modified Haar wavelet algorithm in (3-1) are both charac-
terized by denser time-frequency lattices arising from increasing the resolution in
the frequency domain, as can be seen in Figure 2 in [Bayram and Selesnick 2009].
The OCDWT has an inherent degree of noise robustness due to redundancy in its
representation [Teolis 1998, p. 134], and the modified Haar wavelet algorithm also
has this noise robustness due to redundancy. The modified Haar wavelet algorithm
has a sliding time window that the OCDWT does not, which means that its time-
frequency lattice is more dense than the OCDWT because its time windows slide
and are allowed to overlap.

3C. Identifying transition points. At this point, we employ the modified algorithm
introduced in Section 3A and look for transition points in the signal by locating
sign changes between dj,n−1 and dj,n . When the sign function (the function which
takes a number and returns its sign as ±1 or 0) of the product,

pj,n = sgn(dj,n−1 · dj,n) (3-2)

is nonpositive, either a sign change has occurred or the signal is constant (which in
practice is a rare occurrence). A sign change indicates that the corresponding Haar
wavelets dj,n−1ψj,n−1(t) and dj,nψj,n(t) changed from either constant or increasing
to decreasing or that they changed from either constant or decreasing to increasing
at time index n. This process of identifying transitions occurs across multiple time
scales as the size of the sliding window increases.

When a transition point is identified, we plot a point at (n, 2 j). The type of point
we plot depends on the kind of transition that occurs. If the transition signifies an
increase in the signal, a closed circle is plotted. If the transition signifies a decrease,
an open circle is used. Finally, if the transition signifies that the signal is constant,
an open triangle is used. We illustrate this process with the following example.

Example 3.1. Consider the time signal s(t) defined in Example 2.1. The new
difference array and corresponding array of product signs for this signal are displayed
in Table 2.

Based on the array of products in Table 2, it is clear that transition points have
been identified at n = 5, 6, 7 using windows of size 2 j = 2, 4, 6 respectively.
Figure 5 shows the signal as a piecewise-linear representation as well as the discrete
representation with all identified transition points overlaid. The strand of points in
Figure 5 identifies the region where the transition occurs in the signal. We call these
strands of points “seaweed” due to their visual appearance for more complicated
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differences

j\n 1 2 3 4 5 6 7 8

1 12 12 4 −4 −12 −12 −4
2 20 8 −8 −20 −20

3 28
3 −

28
3 −

68
3

4 −8

products

j\n 1 2 3 4 5 6 7 8

1 + + − + + +

2 + − + +

3 − +

4

Table 2. Array of differences between averages on each window
(2 j = 2, 4, 6, 8) as they slide across the time domain, and cor-
responding product sign array. A negative sign indicates that a
transition has occurred.

signals. The presence of multiple points in this strand reveals that this transition is
apparent across multiple scales, and that it is seen with the highest resolution at the
lowest point in the strand. For this reason, the transition point we are looking for is
the lowest point, (n, 2 j)= (5, 2). In Section 3D we will introduce guidelines for
identifying transition points in more general cases involving noisier signals.

Figure 6 depicts a more detailed look at the way in which the sign changes are
identified and marked using the algorithm. The first graph in each row shows the last
difference for a certain window that is positive; the second shows the first difference
at that scale that is negative. As the window shifts from a positive difference to
a negative difference, a point is plotted to indicate a transition has occurred. An
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Figure 5. Plot of piecewise-linear representation of the signal used
in Examples 2.1 and 3.1 as well as the discrete representation with
transition points at all time scales marked.
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Figure 6. Plots of the signal used in Examples 2.1 and 3.1 depict-
ing the differences in averages on three time scales and the transition
points identified as a result of a sign change. The column dj,n−1

shows the last positive difference in averages, and the column dj,n

shows the first negative difference in averages.

implementation of the seaweed algorithm to the signal in Example 3.1 is included
as seaweed_code.R in the online supplement, which can be obtained from this
article’s publication page.

3D. Graphical interpretation. To identify an important transition in the signal
with the graphical output, we locate a long branch of seaweed and follow it down
until it branches or becomes too hard to distinguish from other, generally shorter,
seaweed branches. This happens when the seaweed is being strongly affected by

http://msp.berkeley.edu/involve/2017/x-x/involve-vx-nx-x01-RSourceCode.zip
http://dx.doi.org/10.?
http://dx.doi.org/10.?
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Select a strand,
follow down to a point

Does the seaweed split?

Continue down
to a point

Follow branch
to right

Is the seaweed too
noisy below this point?

Select point
above noise

Continue down
to next point

no yes

yesno

Figure 7. The decision process in the seaweed analysis.

small-scale high-frequency noise, and is no longer being strongly influenced by the
global trend. In such a case we see that the seaweed itself becomes too noisy to
be reliable at such a small scale. If the branch does split, we follow the general
trend, typically on the right side. This is because the algorithm selects the right
endpoints of a window, and so selecting the left branch may be departing from a
particular strand of seaweed. The time index of the last distinguishable seaweed
point on that branch is identified as the time index of a transition point. A decision
tree representation of this process is seen in Figure 7.

Next, we examine three additional example signals with the seaweed method.
For this we use a simulated base signal, seen in Figure 8, designed to emulate the
signals observed in our bean beetle experiments, specifically the region of Figure 1
around frame 300. The equation for the base signal is given by

f (n)=



0 if 1≤ n < β − 25,
0.02n+ 0.5− 0.02β if β − 25≤ n < β − 10,
n+ 10.3−β if β − 10≤ n < β − 6,
4.3 if β − 6≤ n < β,
−0.5n+ 4.3+ 0.5β if β ≤ n < β + 10,
−0.25n+ 1.8+ 0.25β if β + 10≤ n < β + 15,
−1.95 if β + 15≤ n < 70,

(3-3)

where β + 1 is the initial large-scale drop in amplitude, which we call the primary
transition point, and n is the time index. In Example 3.2 we use the seaweed method
to identify the primary transition point in the base signal.
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Figure 8. Base signal from (3-3) with primary transition point at
β + 1= 40.

Example 3.2. Consider the signal displayed in Figure 9. The primary transition
point is located by following the long strand of solid-circle seaweed down. In fol-
lowing the right branch at the split, we end at the point (n, 2 j)= (40, 2), signifying
that the transition occurs at n= 40. It is also interesting to note the stacks of triangle
seaweed concentrated near the beginning and end of the signal. In each case, this
behavior is the result of the constant amplitude of the signal, and the shape of these
stacks is due to the changing size of the sliding window. Furthermore, in each case
the stack is bordered by a strand of open-circle seaweed, which corresponds to the
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Figure 9. Base signal from (3-3) with primary transition point
β + 1= 40.
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Figure 10. Example of a signal with low noise and limited seaweed
branching. The primary transition point for this signal is β+1= 40,
and the noise was sampled from a normal distribution with mean 0
and standard deviation 0.1.

first initial transition in the signal from constant to increasing, at n = 15, and the
last transition in the signal from decreasing to constant, at n = 55.

We follow this example with another involving a slightly noisier signal with low
levels of seaweed branching.

Example 3.3. Consider the signal displayed in Figure 10, which was obtained
by adding noise to the base signal which was randomly sampled from a normal
distribution with mean 0 and standard deviation 0.1. This example proceeds nearly
identically to Example 3.2. We follow the largest strand of solid-circle seaweed
down, following the right branch to the point (n, 2 j) = (40, 2). As before, this
means that the primary transition point occurs at n = 40. Additionally, the window
level corresponding to this point, 2 j = 2, indicates that the algorithm was able to
recognize the transition point even at the highest possible resolution. Note that
in this example, the presence of noise eliminates the constant behavior seen in
Figure 9, and therefore we do not observe any open triangles being plotted in the
output. Instead, we see branching strands of open- and closed-circle seaweed which
appear on either side of localized perturbations due to noise.

Next, we consider an example with more noise and seaweed branching.

Example 3.4. Consider the signal displayed in Figure 11, which was obtained by
adding noise to the base signal which was randomly sampled from a normal distri-
bution with mean 0 and standard deviation 1.2. We begin again as in Example 3.2;
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Figure 11. Example of a signal with a higher level of noise and
seaweed branching. The primary transition point for this signal is
β + 1= 40, and the noise was sampled from a normal distribution
with mean 0 and standard deviation 1.2.

however, in this case we can only follow the right strand to (n, 2 j) = (40, 4), as
the seaweed below this point is focusing on high-frequency noise. Therefore, the
primary transition occurs at n = 40.

3E. Evaluating the seaweed method. We designed experiments to test the accu-
racy and precision of the seaweed method, using the base signal shown in Figure 8
and defined in (3-3). The first experiment explores a broad range of noise levels
with a small number of signals at each level. The second experiment explores a
smaller range of noise levels with a larger number of signals at each level.

3E.1. Experiment 1. Noise was generated by randomly sampling from normal
distributions with mean 0 and standard deviations 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1.8, 2. We injected this noise into base signals by adding it to base signal.
The primary transition point, β + 1, had been randomly selected from the interval
26 ≤ n ≤ 56. Examples of this sort of signal can be seen in Examples 3.2, 3.3,
and 3.4.

For each of the eleven standard deviations, 30 signals were generated with
randomly generated noise and a randomly positioned primary transition point. Each
of the 330 signals was stored in a file in random order, and the true primary transition
point and noise level for each were stored in a separate file. This second file was kept
hidden while we used seaweed plots to identify the primary transition points in the
synthetic signals. These primary transition points were then compared to those in the
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hidden file. The script seaweed_test1.R used to generate the signals and guarantee
the conditions required for a blind trial is included in the online supplement.

3E.2. Experiment 2. Noise with standard deviations of 0.1, 0.2, 0.3, 0.4, 0.5 was in-
jected into the base signal. Additionally, in this experiment we generated 200 signals
for each standard deviation. With the exception of these two changes, everything
else proceeded as in the first experiment. The script seaweed_test2.R for this
experiment is also included in the online supplement.

4. Results

4A. Experiment 1. The difference between the true primary transition points and
the primary transition points identified by the seaweed method were computed for
each signal, and the error distributions that resulted for each level of noise were ex-
amined. The standard deviations of errors for Experiment 1 are displayed in Table 3.

As can be seen from Table 3, the noisier the signal the greater the error in
identifying primary transition points. Furthermore, as can be seen in Figure 12, this
trend is approximately linear, with r2

= 0.728.

4B. Experiment 2. As in Experiment 1, the primary transition point identification
error and standard deviations for the resulting error distributions were calculated
for Experiment 2. These standard deviations are displayed in Table 4.

Again, it is apparent that as we add more noise to the signal, we observe more
error in the analysis. As can be seen in Figure 12, this trend is also approximately
linear, with r2

= 0.825. Histograms of each error distribution in this experiment
are displayed in Figure 13. Each has a mode at 0 and exhibits a higher standard
deviation of primary transition point identification error as the noise level increases.

4C. A bean beetle example. Recall the time signal for the relative brightness of
a bean beetle egg shown in Figure 1. This time signal is based on time-lapse

noise s.d. 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
error s.d.

(time steps) 0 1.106 1.375 1.137 1.574 1.907 2.369 2.128 1.846 2.132 2.273

Table 3. Standard deviation of primary transition point identifica-
tion error for each of the 11 levels of noise tested in Experiment 1.

noise s.d. 0.1 0.2 0.3 0.4 0.5

error s.d. (time steps) 0.615 0.808 0.845 0.990 0.941

Table 4. Standard deviation of primary transition point identifica-
tion error for each of the 5 levels of noise tested in Experiment 2.

http://msp.berkeley.edu/involve/2017/x-x/involve-vx-nx-x01-RSourceCode.zip
http://msp.berkeley.edu/involve/2017/x-x/involve-vx-nx-x01-RSourceCode.zip
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Figure 12. Scatterplot showing standard deviation of primary tran-
sition point identification error vs. standard deviation of noise for
both experiments, showing their approximately linear relationship
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= 0.728 for Experiment 1 and r2
= 0.825 for Experiment 2.

−3 −2 −1 0 1 2 3

0
5
0

1
0
0

1
5
0

fr
eq

ue
nc

y

error
(s.d.= 0.1)

−3 −2 −1 0 1 2 3

0
5
0

1
0
0

1
5
0

fr
eq

ue
nc

y

error
(s.d.= 0.25)

−3 −2 −1 0 1 2 3

0
5
0

1
0
0

1
5
0

fr
eq

ue
nc

y

error
(s.d.= 0.3)

−3 −2 −1 0 1 2 3

0
5
0

1
0
0

1
5
0

fr
eq

ue
nc

y

error
(s.d.= 0.4)

−3 −2 −1 0 1 2 3

0
5
0

1
0
0

1
5
0

fr
eq

ue
nc

y

error
(s.d.= 0.5)

Figure 13. Histograms of error distributions in Experiment 2. All
have a mode at 0 and exhibit a higher standard deviation of primary
transition point identification error as the noise level increases.
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Figure 14. Digital microscope images of an egg of a developing
bean beetle embryo. The image on the left was taken shortly after
the egg was laid, the image in the middle was taken near the end of
embryonic development, and the third image shows the embryo’s
darkened head capsule.

photographs of bean beetle eggs such as the ones shown in Figure 14. We used the
seaweed method to analyze this signal, and determine the frame number associated
with the beginning of head-capsule darkening. The signal with seaweed points is
shown in Figure 15. In this case we used the seaweed method to select the point
(n, 2 j) = (318, 4), meaning that the embryo’s head capsule began to darken in
frame 318. Furthermore, we know from experimental observations that this egg
was laid in frame 93, which combined with the fact that the frames are 20 minutes
apart, means that the embryo developed in approximately 3.125 days.
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Figure 15. Graph of relative brightness of a particular bean beetle
egg over time between frames 250 and 350 with seaweed overlaid.
All of the frames are 20 minutes apart.
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Figure 16. Base signal injected with noise sampled from a normal
distribution with mean 0 and standard deviation 2, with primary
transition point at β + 1= 40.

5. Discussion

5A. Experiment 1. Despite the lower resolution with which we examined varying
noise levels in Experiment 1, we were still able to glean a general idea of how
the seaweed method performs at a wide range of noise. The correlation observed
between noise level and primary transition point identification error seen in Table 3
and Figure 12 suggests that the seaweed method is most accurate at low levels
of noise. However, even at higher levels of noise, such as noise with a standard
deviation of 2, when it is difficult to visually recognize the presence of a signal
beneath the noise, our method was still able to detect the primary transition point.
An example of such a signal can be seen in Figure 16. For this level of noise, the
resulting error distribution had a standard deviation of 2.273, meaning that most of
the time the seaweed method is able to accurately identify the primary transition
point within three time steps, even at such an extreme level of noise.

For lower levels of noise the standard deviations of the error distributions were
closer to 1.5, meaning that at lower levels of noise this experiment suggested that
the method is generally capable of accurately identifying the primary transition
point within two time steps, or 40 minutes in our bean beetle experiments.

5B. Experiment 2. In Experiment 2 we chose to focus more closely on the range
of noise with standard deviations around 0.2, the level of noise observed in the
time signals from our bean beetle experiments. As can be seen from Table 4 and
Figure 12, the approximately linear trend observed in Experiment 1 is also apparent
at this scale, lending support to the conclusion that as more noise is introduced to the
signal, more error is apparent in detection of primary transition points. Additionally,
the increased sample size in this experiment resulted in a better representation of the
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standard deviations of primary transition point identification error for this method,
suggesting that the standard deviation of this error for low levels of noise is closer
to one time step, or 20 minutes in our bean beetle experiments.

These conclusions are further reinforced through the histograms in Figure 13.
All histograms exhibit a mode at 0 and standard deviations between 0 and 0.941,
meaning that at the levels of noise examined in this experiment, the seaweed method
is particularly accurate at identifying primary transition points. As the level of noise
increases, the standard deviation of primary transition point identification error
increases slightly, although the majority of the values fall between ±1, meaning
that our method is rarely more than one time step away in identifying the primary
transition point for those levels of noise. Furthermore, none of the histograms
include values more extreme than ±3, meaning that our method is very rarely more
than three time steps away from identifying the primary transition point.

We also observed a slight skew in the error distributions, in the form of a right
skew at lower levels of noise and a left skew at higher levels of noise. The right
skew may be the result of the asymmetry in the base signal, as seen in Figure 8, or
potentially human subjectivity. At low levels of noise there may be a tendency to
select the transition point without fully relying on the seaweed. This effect ought to
be negligible, however, due to the manner in which the experiment was conducted.
The left skew may be due to the fact that the algorithm selects the right endpoint
of the window being considered and therefore may occasionally overshoot the
transition point. Further experimentation, such as a replication of these experiments
with a different base signal, would be needed to identify the source of the skew.

5C. Conclusions. The error distributions found in Experiments 1 and 2 have a
mode at 0 and low standard deviations of primary transition point identification
error, from which we can conclude that the seaweed method is both accurate and
precise in identifying transition points. Although we have focused our discussion
on transitions from positive to negative averages, our results should generalize to
detecting other types of transition points. We have used the seaweed method to
detect transitions from negative to positive averages to identify other biological
markers in bean beetle development as well.

The conceptual transparency inherent to this method gives it the advantage of
being approachable by a wide audience, including those without any substantial
background in wavelets or signal processing. Its unique graphical representation of
transition points also makes it easy to learn and apply. Although this may seem to
imply a level of subjectivity, this can be avoided though careful adherence to the
guidelines laid out in Section 3D.

This method seeks to identify transition points whose influence reaches across
multiple time scales, localizing transitions of global importance. In addition, the
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seaweed method provides a higher resolution of detecting these types of transitions
when compared to the discrete wavelet transform.

The efficacy of this method also serves to support our analysis of bean beetle
development times, as this method was essential in determining these times from
signals like those discussed in Example 3.1. Furthermore, we believe that this
method will prove capable of analyzing a much wider range of time signals, such
as stock market data and audio signals, and may be used to analyze other types of
signals (e.g., spatial) as well. One such spatial signal that could benefit from this
type of analysis is population density of a given organism along a transect.
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