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Given a simple graph 0, we describe a “lifting” to a 3-uniform hypergraph
ϕ(0) that sends the complement of 0 to the complement of ϕ(0). We consider
the effects of this lifting on cycles, complete subhypergraphs, and complete
subhypergraphs missing a single hyperedge. Our results lead to natural lower
bounds for some hypergraph Ramsey numbers.

1. Introduction

The subject of extremal graph theory arose from the observation that as the car-
dinality of a set increases, one becomes able to predict the existence of specific
complex structures within the set. In particular, Ramsey theory provides a plentiful
garden, ripe with open problems for all extremal graph theorists. In Ramsey theory,
mathematicians focus their attention on the determination of the Ramsey number
R(Ks, Kt), defined to the be least natural number n with the following property:
if a graph G has order at least n, then G contains a Ks-subgraph (a subgraph
isomorphic to the complete graph Ks on s vertices), or the complement G contains
a Kt -subgraph. While only a handful of Ramsey numbers are known, many Ramsey
numbers can be found to live within certain bounds (see Radziszowski’s dynamic
survey [1994] for a current list of known values and restrictions). Since determining
exact values for Ramsey numbers is very difficult, we often shift our attention
to finding a specific graph H that does not contain a Ks-subgraph and whose
complement H does not contain a Kt -subgraph to improve upon known lower
bounds for these elusive numbers.

The self-complementary graphs known as Paley graphs provide a natural lower
bound for the diagonal Ramsey numbers, which take the form R(Ks, Ks). To define
the Paley graph Gq , let

q = p f
≡ 1 (mod 4)
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be a power of the prime number p and let Fq denote the finite field containing
exactly q elements. Then Gq has vertex set V (Gq) := Fq and edge set

E(Gq) := {ab | b− a ∈ F×2
q },

where F×2
q denotes the subgroup of the multiplicative group F×q consisting of squares:

F×2
q := {y ∈ F×q | y = x2 for some x ∈ F×}.

Note that the assumed congruence q ≡ 1 (mod 4) implies that −1 ∈ F×2
q and hence,

a− b ∈ F×2
q if and only if b− a ∈ F×2

q .
Determining the aforementioned lower bound for a Ramsey number coincides

with finding the clique number of a graph G, which we shall denote by ω(G)

throughout this paper, along with the clique number of its complement G. The
clique number of a hypergraph is denoted analogously. Early discovery of lower
bounds for Ramsey numbers hinged upon the results ω(G5)= 2 and ω(G17)= 3,
which gave us R(K3, K3) ≥ 6 and R(K4, K4) ≥ 18. In fact, these bounds are
optimal since R(K3, K3) = 6 and R(K4, K4) = 18. With the algebraic structure
of Paley graphs providing a methodology for the determination of certain clique
numbers, numerous generalizations of the concept of a Paley graph have been
introduced (see [Budden et al. 2011; 2013] and [Su et al. 2002; Wu et al. 2010],
where new lower bounds for several Ramsey numbers resulted).

One generalization of Ramsey theory worth considering is the corresponding
theory in the context of 3-uniform hypergraphs. With Paley graphs playing such a
vital role in the determination of the diagonal Ramsey numbers, we wish to determine
the analogues of Paley graphs in this context. After some investigation, we noticed
that the Paley graph Gq can be used to define an analogous hypergraph G(3)

q by
setting V (G(3)

q ) := Fq and defining the hyperedge set

E(G(3)
q ) := {abc | (b− a)(c− b)(a− c) ∈ F×2

q }.

Then G(3)
q is self-complementary and maintains much of the algebraic structure

inherent in Paley graphs. In fact, using a character sum similar to the one used to
enumerate triangles in character difference graphs in [Budden et al. 2011; 2013],
one can easily show that G(3)

q contains exactly

1
192 q(q − 1)(q − 3)(q − 5)

subhypergraphs isomorphic to K (3)
4 (where K (3)

n denotes the complete 3-uniform
hypergraph on n vertices). From this calculation, we see that the first 3-uniform
Paley graph that contains a K (3)

4 -subhypergraph is G(3)
13 , and it is well-known that

R(K (3)
4 , K (3)

4 ;3)=13 (see [McKay and Radziszowski 1991]). Here, R(K (r)
s , K (r)

t ;r)

is the Ramsey number for r -uniform hypergraphs.
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The observation that G(3)
q seems to be the appropriate analogue for Paley graphs

in the 3-uniform setting led us to consider how an arbitrary graph might naturally
be lifted to form a 3-uniform hypergraph, while maintaining properties that are
useful to Ramsey theory. In Section 2, we describe a natural way to lift a graph to
a 3-uniform hypergraph, show that our lifting preserves complements, and consider
the lifting of cycles. In Section 3, we consider which graphs map to complete
subhypergraphs and complete subhypergraphs missing a single hyperedge, allowing
us to relate the clique number of a graph to that of its 3-uniform lifting.

In Section 4, we focus on applications of our results to generalized Ramsey
theory. One of the more well-known results in hypergraph Ramsey theory is the
“stepping-up” lemma, usually credited to Erdős and Hajnal (see [Graham et al.
1990]). It states that if s > r ≥ 3, then

R(K (r)
s , K (r)

s ; r) > m =⇒ R(K (r+1)
2s+r−4, K (r+1)

2s+r−4; r + 1) > 2m.

Despite the strength of this result, it begins with r = 3, for which there exist only a
small number of known lower bounds. In fact, the only known 3-uniform Ramsey
number for complete hypergraphs is R(K (3)

4 , K (3)
4 ; 3) = 13 (see [Radziszowski

1994]), but many new bounds have recently been determined for Ramsey numbers
of various hypergraphs that are not complete; see [Budden et al. 2015]. A weak
version of Theorem 9 in Section 4 implies that when s ≥ 3 and t ≥ 3, we have

R(K (3)
2s−1, K (3)

2t−1; 3)≥ R(Ks, Kt).

This allows one to use known lower bounds for diagonal Ramsey numbers to deduce
bounds for corresponding higher-uniform Ramsey numbers via the stepping-up
lemma.

2. Lifting graphs to 3-uniform hypergraphs

Let G2 denote the set of all (simple) graphs of order at least three and let G3 denote
the set of all 3-uniform (simple) hypergraphs of order at least three. Define the
map ϕ : G2 → G3 to send a graph 0 to a 3-uniform hypergraph ϕ(0) satisfying
V (ϕ(0)) = V (0), and letting E(ϕ(0)) consist of all unordered 3-tuples abc of
distinct vertices in V (ϕ(0)) such that exactly one or all of ab, bc, and ac are
in E(0). We easily confirm that ϕ(Gq) = G(3)

q , as we defined in the previous
section. One can also check that if two graphs in G2 are isomorphic, then their
images under the lifting ϕ must also be isomorphic. It is easily demonstrated that
the converse is not true.

Denoting the complement of a graph (or hypergraph) 0 by 0, we note that
abc ∈ E(ϕ(0)) if and only if all three of ab, bc, and ac are edges in 0 (and hence,
none of them form edges in 0) or if exactly one of ab, bc, and ac is an edge in 0 (in
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which case, exactly two of them form edges in 0). Observing that ϕ(0) consists of
hyperedges abc such that exactly zero or two of ab, bc, and ac are in 0, it follows that

ϕ(0)∼= ϕ(0).

In particular, if 0 is self-complementary, then ϕ(0) is self-complementary. The
preservation of complements under the map ϕ further emphasizes this choice of
lifting for its potential implications in Ramsey theory.

In order to gain an understanding of the map ϕ, we begin by considering its
effects on cycles. For any (hyper)graph G and subset S ⊆ V (G), we shall use G[S]
to denote the sub(hyper)graph of G induced by S. We employ the standard notation
of writing

x1− x2− x3− · · ·− xn − x1

to indicate that the vertices x1, x2, x3, . . . , xn in a graph 0∈ G2 form a cycle of
length n. There are two possible concepts of cycles in the 3-uniform case: loose
and tight cycles. We say that x1, x2, x3, . . . , xn form a loose cycle in ϕ(0) if

x1x2 x3, x3 x4 x5, x5 x6 x7, . . . , xn−1 xn x1

are all hyperedges. We say that x1, x2, x3, . . . , xn form a tight cycle in ϕ(0) if

x1x2 x3, x2 x3 x4, x3 x4 x5, . . . , xn x1 x2

are all hyperedges. Note that for loose cycles, it is necessary that n be even and
every even tight cycle is also a loose cycle (having fewer hyperedges). Given a
cycle x1− x2− x3− · · ·− xn − x1 in 0∈ G2, we first focus on when its image

ϕ(0)[x1, x2, x3, . . . , xn]

forms a loose or tight cycle in ϕ(0). The liftings of cycles when n = 3, 4 are easy
to work out and the following two theorems handle the remaining cases.

Theorem 1. Let x1− x2− x3− · · ·− xn − x1 be a cycle in 0∈ G2 with n > 5. If n
is even and

x1− x3− x5− · · ·− xn−1− x1

is a cycle in 0, then x1, x2, x3, . . . , xn form a loose cycle in ϕ(0), and if it is a cycle
in 0, then x1, x2, x3, . . . , xn form a loose cycle in ϕ(0).

Proof. Assuming that x1− x2− x3− · · · − xn − x1 is a cycle in 0, it follows that
for each potential hyperedge xi−1 xi xi+1, both xi−1 xi and xi xi+1 form edges in 0.
Thus, xi−1 xi xi+1 is a hyperedge in ϕ(0) if and only if xi−1 xi+1 is an edge in 0

and it is a hyperedge in ϕ(0) if and only if xi−1 xi+1 is an edge in 0. �
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Figure 1. Parallel cycles when n = 7.

Theorem 2. Let x1− x2− x3− · · ·− xn − x1 be a cycle in 0∈ G2 with n ≥ 5. If n
is odd and

x1− x3− x5− · · ·− xn − x2− x4− x6− · · ·− xn−1− x1

is a cycle in 0, then x1, x2, x3, . . . , xn form a tight cycle in ϕ(0), and if it is a cycle
in 0, then x1, x2, x3, . . . , xn form a tight cycle in ϕ(0). If n is even and both

x1− x3− x5− · · ·− xn−1− x1 and x2− x4− x6− · · ·− xn − x2

form cycles in 0, then x1, x2, x3, . . . , xn form a tight cycle in ϕ(0), and if they are
both cycles in 0, then x1, x2, x3, . . . , xn form a tight cycle in ϕ(0).

Proof. This theorem follows from a similar argument to the one that was used in
the proof of the previous theorem. The details are left to the reader. �

Figures 1 and 2 provide visual representations for the underlying cycles in
Theorem 2 when n = 7 and n = 16, respectively. In each graph, the cycle

x1− x2− x3− · · ·− xn − x1
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Figure 2. Parallel cycles when n = 16.
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uses solid edges and all other cycles are represented with dashed edges. Whether
or not dashed edges appear in 0 or 0 determines the location of the corresponding
tight cycles in the lifting.

Although we are able to understand how cycles may lift, the subgraphs which
map to loose and tight hypergraph cycles have a much less predictable structure,
preventing such a nice characterization. So, we turn our attention to complete
subhypergraphs and those that are missing a single hyperedge.

3. Complete hypergraphs and complete hypergraphs missing
a single hyperedge

From the definition of ϕ, it is clear that if H is a complete subgraph of 0∈ G2

having order at least three, then its image ϕ(H) is a complete subhypergraph of the
same order in ϕ(0). Now we turn our attention to understanding which subgraphs
map to complete subhypergraphs under ϕ.

Lemma 3. Suppose that 0∈ G2, S ⊆ V (0) is a subset containing at least three
elements, and K := 0[S]. If ϕ(K ) is complete and C is a component of K, then C
is complete.

Proof. Suppose that C is a component of K that is not complete (which necessarily
requires the order of C to be at least two). Then there exist vertices b1, b2 ∈ V (C)

that do not form an edge in C . If x ∈ V (K )−V (C), then neither b1x nor b2 x form
edges in K, and b1b2 x is not a hyperedge in ϕ(K ), contradicting the assumption
that ϕ(K ) is complete. If no such x exists, then V (K )= V (C), and for every vertex
y ∈ V (C)− {b1, b2}, exactly one of b1 y and b2 y must be in E(K ). Since C is
assumed to be connected, it must have order at least four. Let Nb1 and Nb2 denote
the sets of neighbors of b1 and b2, respectively, in V (C). Note that each Nbj is
nonempty or else bj would be disconnected from the rest of C . Also, since C is
connected, it follows that Nb1 ∩ Nb2 6=∅. So, let z ∈ Nb1 ∩ Nb2 . Then b1b2 z is not
a hyperedge in ϕ(K ), contradicting the assumption that ϕ(K ) is complete. Thus,
we find that C must be complete. �

Lemma 3 greatly restricts the structure of the possible subgraphs of a graph 0 that
can map to a complete subhypergraph of ϕ(0). The following theorem completely
classifies the relevant subgraphs.

Theorem 4. Suppose that 0∈ G2, S ⊆ V (0) is a subset containing at least three
elements, and K := 0[S]. Then ϕ(K ) is complete if and only if K is complete or K
is the union of exactly two disjoint complete subgraphs.

Proof. From Lemma 3, it suffices to prove that ϕ(K ) is complete if and only
if K contains at most two components. To prove the forward implication, assume
that ϕ(K ) is complete and K consists of at least three components. Suppose that
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C1, C2, C3 are three components of K and for each 1 ≤ i ≤ 3, choose a vertex
ai ∈ V (Ci ). Since the components are disconnected from one another, it follows
that ϕ(K ) lacks the hyperedge a1a2a3, contradicting our assumption that ϕ(K )

is complete. Hence, K contains at most two components. Now we consider the
converse. Clearly, if K is a complete subgraph of order at least three, then ϕ(K ) must
also be complete. Otherwise, assume that K is the disjoint union of two complete
subgraphs having vertex sets S1 and S2. For every three vertices a, b, c ∈ V (K ),
either all three are in one of S1 or S2, and hence form a hyperedge in ϕ(K ), or they
are divided up between S1 and S2. Without loss of generality, assume that a ∈ S1

and b, c∈ S2. Exactly one of ab, bc, and ac are edges in K, making abc∈ E(ϕ(K )).
It follows that ϕ(K ) is complete. �

The previous theorem gives us an immediate corollary pertaining to the lifting
of a complete bipartite graph.

Corollary 5. For the complete bipartite graph Km,n where either m or n is greater
than 2, we have ϕ(Km,n) is isomorphic to the empty 3-uniform hypergraph of
order m+ n.

Proof. Recall that Km,n ' Km ∪ Kn . Since the lifting ϕ preserves complements, we
just apply the previous theorem to obtain our desired result. �

Since every complete subgraph with at least three vertices in 0∈ G2 maps to a
complete subhypergraph of ϕ(0), we have

ω(ϕ(0))= m ≥ 3 =⇒ ω(0)≤ m,

and the previous theorem implies that

ω(0)= n ≥ 3 =⇒ ω(ϕ(0))≤ 2n.

From these observations, we obtain the following corollary.

Corollary 6. Every graph 0∈ G2 with ω(0)≥ 3 satisfies

ω(0)≤ ω(ϕ(0))≤ 2ω(0),

1
2ω(ϕ(0))≤ ω(0)≤ ω(ϕ(0)).

Now let H be a subgraph of 0∈ G2 of order at least three that is isomorphic to a
complete graph with a single edge missing. Without loss of generality, assume that
V (H)= {a1, a2, . . . , ak} with a1a2 6∈ E(H). Then for every x ∈ {a3, . . . , ak}, we
have a1a2 x 6∈ E(ϕ(H)). However, every unordered 3-tuple of distinct elements in
{a3, . . . , ak} forms a hyperedge in ϕ(H) as does any 3-tuple of vertices from V (H)

that contains exactly one of a1 and a2. So, ϕ(H) is isomorphic to a complete
3-uniform hypergraph with exactly k − 2 hyperedges missing (those containing
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a1 and a2). Now we consider which graphs (if any) lift under ϕ to hypergraphs
isomorphic to complete hypergraphs missing a single hyperedge.

Theorem 7. Suppose n ≥ 4 and 0∈ G2. The lifting ϕ(0) cannot contain an induced
subhypergraph isomorphic to K (3)

n − e (i.e., a complete 3-uniform hypergraph on
n vertices that is missing a single hyperedge).

Proof. Assume ϕ(0) contains an induced subhypergraph isomorphic to K (3)
n − e.

Let S={b1, b2, . . . , bn} denote the vertices of the (K (3)
n −e)-subhypergraph of ϕ(0).

Without loss of generality, let b1b2b3 be the missing hyperedge. There exist two
possibilities. Either none of b1b2, b2b3, and b1b3 are in E(0) or exactly two of the
aforementioned edges exist in 0. In the former case, note that b1b2b4 ∈ E(ϕ(0)),
from which we see that exactly one of b1b4 and b2b4 must be in E(0). Without loss
of generality, assume that b1b4 ∈ E(0). In a similar manner, it can be shown that
b2b3b4 ∈ E(ϕ(0)) implies that b3b4 ∈ E(0). Then b1b3b4 cannot be contained in
E(ϕ(0)), contradicting the assumption that b1b2b3 was the only missing hyperedge.
In the latter case, exactly two of b1b2, b2b3, and b1b3 are in E(0). Without loss of
generality, assume that b1b2 and b2b3 are in E(0). Then b1b3b4 ∈ E(ϕ(0)) implies
that exactly one of b1b4 and b3b4 is in E(0). Without loss of generality, assume
that b1b4 ∈ E(0). Then b1b2b4 ∈ E(ϕ(0)) implies that b2b4 ∈ E(0). Similarly,
b2b3b4 ∈ E(ϕ(0)) implies that b3b4 ∈ E(0), contradicting our assumption. Hence,
we have shown in both cases that if ϕ(0) contains a (K (3)

n −e)-subhypergraph, then
it must contain a K (3)

n -subhypergraph. �

4. Applications to Ramsey theory

From the specific subhypergraphs that we have chosen to consider under the lift-
ing ϕ, it should be obvious that our interests lie in applications to extremal graph
theory. In particular, our focus on the behavior of complete sub(hyper)graphs
indicates an underlying interest in Ramsey theory. The multicolor Ramsey number
R(G1, G2, . . . , Gk) is defined to be the least natural number n such that for every
arbitrary coloring of the edges of Kn with k colors, there exists a subgraph in color i
isomorphic to Gi for some i . The multicolor 3-uniform hypergraph Ramsey number
R(G1, G2, . . . , Gk; 3) is defined analogously.

When studying the behavior of cliques in graphs, a class of graphs known as
Turán graphs possess certain optimal parameters. Suppose n ≥ 3 and q ≥ 2 are
integers. By the division algorithm, there exist unique integers m ≥ 0 and 0≤ r < q
such that n=mq+r . The Turán graph Tq(n) is the complete q-partite graph whose
vertices are partitioned into balanced sets (i.e., sets with cardinalities as equal as
possible). Such graphs contain Kq -subgraphs but lack Kq+1-subgraphs. In fact,
Turán [1941] proved that out of all graphs of order n, they possess the maximum
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number of edges possible without containing a Kq+1-subgraph. When considering
the lifting of Turán graphs, we obtain the following theorem.

Theorem 8. Let n ≥ 3, q ≥ 2, and n = mq + r , where 0 ≤ r < q. Then we have
the following:

(1) If n = qm, then R(K (3)
q+1− e, K (3)

2m+1− e; 3) > n.

(2) If n = qm+ 1, then R(K (3)
q+1− e, K (3)

2m+2− e; 3) > n.

(3) If n = qm+ r with r ≥ 2, then R(K (3)
q+1− e, K (3)

2m+3− e; 3) > n.

Proof. Regardless of the value of r , note that Tq(n) contains a Kq -subgraph, but not
a Kq+1-subgraph. Also, at most one vertex of a complete subgraph can come from
any one connected set of vertices. So, ϕ(Tq(n)) contains a K (3)

q -subhypergraph,
but not a K (3)

q+1-subhypergraph. Note that Tq(n) consists of disconnected complete
subgraphs of orders m and m+ 1. By Theorem 4, we obtain the following cases. If
n = qm, then all of the sets of vertices have cardinality m and ϕ(Tq(n)) contains a
K (3)

2m -subhypergraph, but not a K (3)
2m+1-subhypergraph. If n = qm+ 1, then exactly

one vertex set has cardinality m+1 and ϕ(Tq(n)) contains a K (3)
2m+1-subhypergraph,

but not a K (3)
2m+2-subhypergraph. For the remaining cases, in which n= qm+r with

2≤ r < q , at least two vertex sets have cardinality m+1, and we find that ϕ(Tq(n))

contains a K (3)
2m+2-subhypergraph, but not a K (3)

2m+3-subhypergraph. These results,
along with the implication of Theorem 7, prove the theorem. �

Now we shift our attention to proving a relationship between standard Ram-
sey numbers and certain corresponding 3-uniform Ramsey numbers for complete
hypergraphs missing a single hyperedge.

Theorem 9. Let s, t ∈ N with s ≥ 3 and t ≥ 3. Then

R(K (3)
2s−1− e, K (3)

2t−1− e; 3)≥ R(Ks, Kt).

Proof. Assume m= R(Ks, Kt). Then there exists a graph G of order m− 1 that does
not contain a Ks-subgraph, and whose complement does not contain a Kt -subgraph.
From Theorem 4, it follows that ϕ(G) does not contain a K (3)

2s−1-subhypergraph, and
its complement does not contain a K (3)

2t−1-subhypergraph. Theorem 7 then implies
that ϕ(G) does not contain a (K (3)

2s−1−e)-subhypergraph, and its complement does
not contain a (K (3)

2t−1−e)-subhypergraph. Thus,

R(K (3)
2s−1− e, K (3)

2t−1− e; 3) > m− 1= R(Ks, Kt)− 1,

completing the proof of the theorem. �

Note that Theorem 9 implies

R(K (3)
2s−1, K (3)

2t−1; 3)≥ R(Ks, Kt),
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which can be used with the stepping-up lemma. Recently, Conlon, Fox, and Sudakov
[Conlon et al. 2013] also proved an analogue of the stepping-up lemma, which lifts
from graphs to 3-uniform hypergraphs. In the spirit of the original stepping-up
lemma, it focused on the diagonal case. Namely, they proved that

R(Ks, Ks) > m =⇒ R(K (3)
s+1, K (3)

s+1, K (3)
s+1, K (3)

s+1; 3) > 2m.

Of course since R(4, 4)= 18, this result implies R(5, 5, 5, 5; 3) > 131,072. The
following theorem handles some off-diagonal cases.

Theorem 10. If q ≥ 3, then

R(K (3)
5 , K (3)

q+1− e, K (3)
2s−1− e, K (3)

2t−1− e; 3) > q(R(Ks, Kt)− 1).

Proof. Suppose m = R(Ks, Kt) and q ≥ 3, and let n = q(m− 1). Denote the parti-
tioned vertex sets in Tq(n) by V1, V2, . . . , Vk . We have already noted that ϕ(Tq(n))

contains a K (3)
q -subhypergraph, but not a K (3)

q+1-subhypergraph. From Theorem 7, it
follows that it does not contain a (K (3)

q+1−e)-subhypergraph. Color the hyperedges
in ϕ(Tq(n)) yellow. Note that Tq(n) consists of q disconnected Km−1-subgraphs.
Since R(s, t) = m, there exists a red/blue coloring of the edges of Km−1 that
does not contain a red Ks-subgraph or a blue Kt -subgraph. When lifting just
a single Km−1 colored in this way, the lifted hypergraph contains at most a red
K (3)

2s−2-subhypergraph or a blue K (3)
2t−2-subhypergraph by Theorem 4. In fact by

Theorem 9, the lifted hypergraph does not contain a red (K (3)
2s−1−e)-subhypergraph

or a blue (K (3)
2t−1−e)-subhypergraph. We apply this coloring to the hyperedges

in ϕ(Tq(n)) that arise from the individual liftings of the disjoint vertex sets. The
remaining hyperedges in ϕ(Tq(n)) are precisely those that include one vertex
from Vi and the other two vertices from Vj , where i 6= j . Color these hyperedges
green. A complete subhypergraph formed using only these edges includes at most
two vertices from any Vi and vertices from no more than two of the partitioned
vertex sets. Hence, the green hyperedges may contain a K (3)

4 -subhypergraph, but
not a K (3)

5 -subhypergraph. From this coloring, we find that

R(K (3)
5 , K (3)

q+1− e, K (3)
2s−1− e, K (3)

2t−1− e; 3) > n = q(m− 1),

from which the theorem follows. �

Although the result of [Conlon et al. 2013] is stronger than Theorem 10 for
diagonal Ramsey numbers, our results improve on many known lower bounds for
off-diagonal 4-color 3-uniform Ramsey numbers. For example, using the explicit
known lower bounds in Table IIc of [Radziszowski 1994], we obtain the following
bound on an off-diagonal Ramsey number:

R(22, 22) > 29,940 =⇒ R(K (3)
5 , K (3)

43 −e, K (3)
43 −e, K (3)

43 −e; 3) > 1,257,480.
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The main advantage to considering the lifting ϕ is that one is able to sufficiently
restrict the structure of hypergraphs in the image by knowing the structure of graphs
in the domain. Many open questions naturally arise from this construction. One
obvious question is whether or not analogous liftings can be constructed from graphs
to r -uniform hypergraphs. This question was recently considered in [Budden and
Rapp 2015], but since the liftings did not preserve complements when r > 3, it did
not lead to new implications in Ramsey theory. We conclude with a list of several
other avenues of potential inquiry:

(1) Besides cycles, complete hypergraphs, and complete hypergraphs missing a
single hyperedge, what other hypergraph images have predictable preimages?

(2) Can one classify the hypergraphs in G3 that are not in the range of ϕ?

(3) Is it possible to classify all graphs in the preimage of a particular hypergraph
in the range of ϕ?

(4) The fact that the lifting ϕ preserves complements means that it can be thought
of as mapping a 2-coloring of the edges of Kn to a 2-coloring of the hyperedges
in K (3)

n . Can ϕ be used to describe a mapping of a k-coloring of the edges in
Kn to a k-coloring of the hyperedges in K (3)

n ? If so, one may be able to use
known bounds for multicolor Ramsey numbers to obtain analogous results in
the setting of 3-uniform hypergraphs.
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