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A graph G is called prime if the vertices of G can be assigned distinct labels
1, 2, . . . , |V (G)| such that the labels on any two adjacent vertices are relatively
prime. By showing that for every even n ≤ 2.468× 109 there exists s ∈ [1, n− 1]
such that both n + s and 2n + s are prime, we prove the generalized Peterson
graph P(n, 1) is prime for all even n ∈ [4, 2.468× 109

]. Moreover, for a fixed n
we describe a method for labeling P(n, k) that is a prime labeling for multiple
values of k. Using this method, we prove P(n, k) is prime for all even n ≤ 50
and all odd k ∈ [1, n/2).

1. Introduction

For a simple graph G with vertex set V = {v1, v2, . . . , vm} and edge set E , a prime
labeling of G is a bijection f : V → {1, 2, . . . ,m} such that f (vi ) and f (vj ) are
relatively prime for all {vi , vj } ∈ E . A graph is called prime if it admits a prime
labeling. This concept was proposed by Entringer, who conjectured that all trees are
prime, and the first appearance of this problem in print was due to Tout, Dabboucy,
and Howalla [Tout et al. 1982]. Since then, many families of graphs have been
shown to be prime, including all trees on m ≤ 50 vertices [Pikhurko 2002; 2007]
and the grid graph Pm × Pn when m ≤ n and n is prime [Sundaram et al. 2006].
More recently, Kh. Md. Mominul Haque, Lin Xiaohui, Yang Yuansheng and Zhao
Pingzhong have shown that the generalized Petersen graph P(n, k) is prime for
all even n ≤ 2500 when k = 1 [Haque et al. 2010] and for all even n ≤ 100 when
k = 3 [Haque et al. 2011]. Both Diefenderfer et al. [2015] and Prajapati and Gajjar
[2014] have shown that P(n, 1) is prime for an infinite family of values of n, the
former for n− 1 prime and the latter for n+ 1 prime. Their results are presented as
labelings of the prism graph Cn × P2, which is isomorphic to P(n, 1). For a more
thorough treatment of graph labeling, including prime labeling, see [Gallian 2015].

MSC2010: 05C78.
Keywords: graph labeling, generalized Petersen graph, prime graph.

109

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2017.10-1
http://dx.doi.org/10.2140/involve.2017.10.109


110 SCHLUCHTER, SCHROEDER, COKUS, ELLINGSON, HARRIS, RARITY AND WILSON

u2

u1
u0

u7

u6

u5 u4

u3

v2

v1v0

v7

v6

v5 v4

v3

3

121
16

7

14
11

10

2

56

13

8

15 4

9

Figure 1. The graph P(8, 3) and a prime labeling of P(8, 3).

We follow the notation of [Haque et al. 2010; 2011]. Since all edges under
consideration are undirected, we will write the edge {v,w} as vw or wv. For
integers n ≥ 3 and k ∈ [1, n/2), the generalized Petersen graph P(n, k) is de-
fined to be the graph with vertex set V = {vi , ui : i ∈ [0, n − 1]} and edge set
E = {vivi+1, vi ui , ui ui+k : i ∈ [0, n− 1]}, where all subscripts are reduced mod-
ulo n. We will refer to the vertices v0, v1, . . . , vn−1 as the v-vertices of P(n, k) and
the vertices u0, u1, . . . , un−1 as the u-vertices of P(n, k). An unlabeled P(8, 3)
and a prime labeling of P(8, 3) are shown in Figure 1.

An independent set in a graph G is a subset of the vertices of G, no two of
which are adjacent. Let α(G) denote the independence number of G, i.e., the size
of a maximum independent set in G. Given a prime labeling of a graph G with
m vertices, the vertices with even labels necessarily form an independent set; thus,
α(G)≥ bm/2c. It was shown in [Fox et al. 2012] that α(P(n, k)) < n if n is odd
or k is even, which leads immediately to the following result (an alternate proof is
given in [Prajapati and Gajjar 2015]).

Theorem 1.1. If n is odd or k is even, then P(n, k) is not prime.

In this paper, we build on the work appearing in [Diefenderfer et al. 2015; Haque
et al. 2010; 2011; Prajapati and Gajjar 2014] by considering prime labelings of
P(n, 1) for n> 2500 and P(n, k) for small n and k> 3. In Section 2, we conjecture
that for every even n there exists s ∈ [1, n − 1] such that both n + s and 2n + s
are prime. In Section 3, we demonstrate a labeling scheme that relies on this
conjecture and use computer-generated results to establish that P(n, 1) is prime for
all even n ∈ [4, 2.468× 109

], which improves considerably upon the upper bound
given in [Haque et al. 2010]. In Section 4, we fix n ≤ 50 and describe a method that
produces a labeling of P(n, k) that is prime for multiple values of k; with some
minor ad hoc switching, this labeling method is used to show P(n, k) is prime for
all even n ∈ [4, 50] and all odd k ∈ [1, n/2). Together the results of Sections 3 and 4
provide evidence that P(n, k) is prime precisely when n is even and k is odd (as
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conjectured in [Prajapati and Gajjar 2015]). Since this is a necessary and sufficient
condition for P(n, k) to be bipartite, we reformulate the conjecture as follows.

Conjecture 1.2. P(n, k) is prime if and only if it is bipartite.

The property of being bipartite is, in general, neither a necessary nor a sufficient
condition for a graph to be prime. The cycle Cn is prime but not bipartite for odd
n ≥ 3, and the complete bipartite graph Kn,n is bipartite but not prime for all n ≥ 3.

For positive integers a and b, we let gcd(a, b) denote the greatest common
divisor of a and b. Then a and b are relatively prime if and only if gcd(a, b)= 1.
Note that if d |a and d |b, then d |(a+ b) and d |(a− b). From this we make the
following observation.

Lemma 1.3. Let a and b be positive integers. Then gcd(a, b) = 1 if any of the
following hold:

(1) a = 1;

(2) b = a+ 1;

(3) a+ b is prime;

(4) a− b = p is prime and a and b are not multiples of p;

(5) a = n+ 1, b = 2n for some even n.

2. On the distribution of prime numbers

In a letter to Euler in 1742, Goldbach conjectured that every integer greater than 2
could be written as the sum of three primes (note that he was including 1 as a prime).
Euler then reformulated this conjecture in the form in which it is now famous; see
[Dickson 2005, pp. 421–424].

Goldbach conjecture. Every even number greater than 2 can be written as the
sum of two primes.

A closely related conjecture, whose first appearance is due to Maillet [1905],
states that every even number can be written as the difference of two primes; both
this and the Goldbach conjecture remain unsolved. For more information on these
conjectures, see [Dickson 2005].

We are going to strengthen Maillet’s conjecture by requiring that the two primes
be taken from specific intervals. Namely, we conjecture that every even integer n
can be written as the difference of primes p1 and p2, where n < p1 < 2n and
2n < p2 < 3n. We reformulate this as follows.

Conjecture 2.1. For every even integer n ≥ 2, there exists s ∈ [1, n− 1] such that
n+ s and 2n+ s are prime.
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n s Sn n s Sn n s Sn n s Sn

2 1 1 52 9 3 102 7 10 152 27 6
4 3 1 54 5 5 104 3 5 154 3 7
6 1 2 56 15 4 106 21 5 156 1 16
8 3 1 58 15 3 108 23 5 158 15 7

10 3 2 60 7 8 110 3 5 160 33 8
12 5 2 62 27 2 112 15 6 162 29 11
14 3 2 64 3 5 114 13 11 164 3 6
16 15 1 66 5 9 116 51 3 166 15 6
18 1 3 68 3 5 118 21 6 168 11 15
20 3 1 70 9 5 120 11 15 170 9 9
22 9 2 72 7 6 122 27 3 172 9 8
24 5 4 74 9 4 124 3 6 174 5 12
26 15 2 76 21 3 126 5 12 176 15 8
28 3 2 78 1 7 128 21 4 178 3 8
30 1 6 80 3 5 130 9 6 180 13 13
32 9 2 82 15 4 132 5 11 182 9 9
34 3 2 84 5 10 134 3 8 184 15 5
36 1 7 86 21 3 136 21 4 186 7 14
38 3 3 88 15 5 138 1 11 188 3 7
40 3 4 90 11 11 140 27 9 190 3 12
42 5 5 92 9 6 142 9 4 192 5 15
44 9 3 94 3 5 144 5 10 194 33 8
46 15 2 96 1 9 146 21 6 196 27 7
48 5 6 98 3 5 148 15 6 198 1 16
50 3 3 100 27 7 150 7 16 200 33 5

Table 1. The minimum value of s such that n+ s and 2n+ s are
prime for even n ∈ [2, 200]. Additionally, the number of good
s-values Sn is given for each even n ∈ [2, 200].

For a fixed n, call s good if both n+ s and 2n+ s are prime. Table 1 lists good
s-values for even n ∈ [2, 200], and we have obtained good s-values for all even
n ∈ [2, 2.468× 109

] by computer.
Some interesting patterns also occur when we consider Sn , the number of good

s-values for each n. The first 100 values of Sn are shown in Table 1. Note that Sn= 1
for half of the first 10 values of n, but then Sn > 1 for all n up to at least 300 million.
Moreover, the graph of Sn appears to almost always have a peak at each multiple
of 6 and higher peaks at multiples of 30, indicating a strong correlation between
Sn and the number of distinct prime factors of n. The portion of this graph from
n= 190,100 to n= 190,200, with straight line segments joining discrete data points,
appears in Figure 2 (note that S190,190 is a peak that does not occur at a multiple of 6).
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Figure 2. The graph of Sn from n = 190,100 to n = 190,200.

3. Prime labelings of P(n, 1)

The following labeling scheme for P(n, 1) is an expansion and generalization of one
employed in [Diefenderfer et al. 2015; Haque et al. 2010; Prajapati and Gajjar 2014].

For any value of k, we know v-vertices with consecutive indices are adjacent.
Thus, if we set f (vi )= i + 1 for all i ∈ [0, n− 1], adjacent v-vertices will either
have consecutive integer labels or be labeled with 1 and n; these labels will be
relatively prime by Lemma 1.3(2) or (1), respectively. Without loss of generality,
we refer to this as a clockwise labeling of the v-vertices (see Figure 3).

If k = 1, then u-vertices with consecutive indices are also adjacent, so we label
the u-vertices consecutively with n + 1, n + 2, . . . , 2n. Now adjacent u-vertices
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Figure 3. Prime labelings of P(10, 1) using both a clockwise
labeling and a counterclockwise labeling for the u-vertices. Note
that the difference of inner and outer labels in the clockwise labeling
is always 1 or 11, and the sum of inner and outer labels in the
counterclockwise labeling is always 13 or 23.
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will either have consecutive integer labels or be labeled with n+ 1 and 2n; since n
is even, these labels will be relatively prime by Lemma 1.3(2) or (5), respectively.

If we apply a clockwise labeling to the u-vertices as well, then labels on each
adjacent vu-pair will have a constant difference d (modulo n). By varying our
starting point (i.e., where we place the label n+ 1), we can obtain different values
of d. The prime labeling of P(10, 1) in Figure 3 employs a clockwise labeling
on the u-vertices starting at u9. For each i the labels on vi and ui differ by 1 or
11 (d ≡ 1 (mod 10)), and since d = 1 implies consecutive integers and d = 11 is
prime, these labels are relatively prime by Lemma 1.3(2) or (4), respectively.

If, instead, we apply a counterclockwise labeling to the u-vertices, then labels on
each adjacent vu-pair will have a constant sum s (modulo n). Once again, varying
the starting point will lead to different values of s. The prime labeling of P(10, 1)
in Figure 3 employs a counterclockwise labeling on the u-vertices starting at u1.
For each i the labels on vi and ui sum to 13 or 23 (s ≡ 3 (mod 10)), and since both
13 and 23 are prime, these labels are relatively prime by Lemma 1.3(3).

The value of s in the preceding paragraph corresponds to a good s-value from
Conjecture 2.1. Let Ns = {n : n+ s is prime} and N ∗s = {n : 2n+ s is prime}.

Theorem 3.1 [Diefenderfer et al. 2015, Theorem 4.1]. If n ∈N−1, then P(n, 1) is
prime.

Theorem 3.2 [Prajapati and Gajjar 2014, Theorem 2.10]. If n ∈N1, then P(n, 1)
is prime.

Theorem 3.1 can be obtained by first applying a clockwise labeling to the
v-vertices and a clockwise labeling to the u-vertices starting at u1. Then, switching
the labels 1 and n− 1 on the vertices v0 and vn−2 results in a prime labeling. Note
that in [Diefenderfer et al. 2015] the labels n and 2n were also switched, but this is
not necessary to obtain a prime labeling. Theorem 3.2 was obtained by applying
a clockwise labeling to the v-vertices and a clockwise labeling to the u-vertices
starting at un−1.

The following result utilizes a counterclockwise labeling on the u-vertices.

Theorem 3.3. Let n ≥ 4 be even, and suppose n ∈ N ∗1 or n ∈ Ns ∩N ∗s for some
s ∈ [3, n− 1]. Then P(n, 1) is prime.

Proof. Throughout this proof, we apply a clockwise labeling to the v-vertices
starting at v0 (given by f (vi )= i + 1 for all i ∈ [0, n− 1]) and a counterclockwise
labeling to the u-vertices starting at some uj . We have already shown that adjacent
v-vertices and adjacent u-vertices will have relatively prime labels, so it remains to
consider the labels on vi and ui for each i .

If n ∈ N ∗1 , then apply a counterclockwise labeling to the u-vertices starting
at un−1. Formally, let f (ui )= 2n− i for all i ∈ [0, n− 1]. Then the sum of labels
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on the edge vi ui is i + 1+ 2n− i = 2n+ 1 for all i ∈ [0, n− 1]. Since 2n+ 1 is
prime, these labels are relatively prime by Lemma 1.3(3).

If n ∈Ns ∩N ∗s for some s ∈ [3, n− 1], then apply a counterclockwise labeling
to the u-vertices starting at us−2. Formally, let

f (ui )=

{
n+ s− i − 1 if i ∈ [0, s− 2],
2n+ s− i − 1 if i ∈ [s− 1, n− 1].

Then the sum of labels on the edge vi ui is either i + 1+ n+ s− i − 1= n+ s (if
i ∈ [0, s− 2]) or i + 1+ 2n+ s− i − 1= 2n+ s (if i ∈ [s− 1, n− 1]). Since both
n+ s and 2n+ s are prime, these labels are relatively prime by Lemma 1.3(3). �

For an example of the counterclockwise labeling used in Theorem 3.3, see
Figure 3. Since n = 10 ∈ N3 ∩N ∗3 , we apply a counterclockwise labeling to the
u-vertices starting at u1. The sum of labels on the edge vi ui is n + s = 13 for
i = 0, 1 and 2n+ s = 23 for i ∈ [2, 9].

We have verified Conjecture 2.1 for n ∈ [4, 2.468× 109
] by computer, and so

we have the following result, which further supports the conjecture made in [Haque
et al. 2010] that P(n, 1) is prime for all even n ≥ 4.

Corollary 3.4. P(n, 1) is prime for all even n ∈ [4, 2.468× 109
].

In addition to this bound, note that N−1∪N1 yields an infinite family of general-
ized Petersen graphs P(n, 1) that are prime.

4. Prime labelings of P(n, k) for even n ≤ 50 and odd k > 1

Here we will give an example of how we produce a labeling of P(n, k) that is
a prime labeling for multiple values of k > 1. Specifically, we will describe a
method of labeling P(18, k) that is prime for k ∈ {3, 5} and show that swapping
just two labels also produces a prime labeling of P(18, 7). The tables at the end
of this section contain prime labelings of P(n, k) for all even n ≤ 50 and all odd
k ∈ [5, n/2) obtained using slight variations on the method for P(18, k) (the case
k = 3 is handled in [Haque et al. 2011]).

If k > 1, then u-vertices with consecutive indices are no longer adjacent, so
we abandon the clockwise and counterclockwise labeling schemes altogether. In-
stead, we seek to harness the structure of a bipartition of the vertices of P(n, k).
Let A = {u0, v1, u2, v3, . . . , un−2, vn−1} and B = {v0, u1, v2, u3, . . . , vn−2, un−1}

denote the blocks of a bipartition of the vertices of P(n, k); in Figure 4, the top row
of vertices forms A while the bottom row forms B. We will place the odd labels
on A and the even labels on B in such a way that the resulting labeling is prime for
several different values of k.

We begin by placing the even multiples of 3 from left to right in ascending order
on the vertices in B with the lowest index (whether v-vertices or u-vertices). We
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u0 v1 u2 v3 u4 v5 u6 v7 u8 v9 u10 v11 u12 v13 u14 v15 u16 v17
• • • • • • • • • • • • • • • • • •

9 27 15 3 21 33

6 12 18 24 30 36
• • • • • • • • • • • • • • • • • •

v0 u1 v2 u3 v4 u5 v6 u7 v8 u9 v10 u11 v12 u13 v14 u15 v16 u17

Figure 4. The graph P(18, k) (edges suppressed) labeled with the
multiples of 3.

will place the odd multiples of 3 only on v-vertices in A that are not adjacent to
any vertex in B labeled with a multiple of 3. However, a simple counting argument
shows there will always be one odd multiple of 3 that cannot be placed on a v-vertex;
we assume this label is 3 and place the remaining odd multiples of 3 from left to
right in ascending order based on the highest prime factor of the label (in the case
of a tie, we simply place the smallest integer first — thus 15 is placed before 45,
for example). To make this a prime labeling for small values of k, we place 3 on
the u-vertex in A whose index is the furthest from the index of any u-vertex in B
labeled with a multiple of 3. This first step for P(18, k) is shown in Figure 4.

We continue in a likewise manner for the multiples of 5 and 7, placing the even
multiples on the vertices in B with the lowest index and the odd multiples on the
available v-vertices in A. If n ≥ 18, then 35 — the only odd multiple of both 5
and 7 — is placed on vn−1. Placing these labels may yield adjacent v-vertices that
share 5 or 7 as divisors; to correct this, we rearrange the even multiples of 3. In
the partial labeling of P(18, k) shown in Figure 5, the labels 25 and 30 on the
edge v3v4 have a conflict which is fixed in Figure 6 by swapping the labels on v4

and u5. It is also possible for larger values of n to have some multiples of 5 or 7
that do not fit on v-vertices; in that case, some additional ad hoc label switching is
required.

The remaining even labels with an odd prime factor are placed on the unused
vertices in B from left to right in ascending order based on smallest odd prime
factor. If there is only one remaining label that is an even multiple of some prime p,

u0 v1 u2 v3 u4 v5 u6 v7 u8 v9 u10 v11 u12 v13 u14 v15 u16 v17
• • • • • • • • • • • • • • • • • •

5 25 7 9 27 15 3 21 33 35

6 12 18 24 30 36 10 20 14 28
• • • • • • • • • • • • • • • • • •

v0 u1 v2 u3 v4 u5 v6 u7 v8 u9 v10 u11 v12 u13 v14 u15 v16 u17

Figure 5. The graph P(18, k) (edges suppressed) labeled with the
multiples of 3, 5, and 7. Note that the labels 25 and 30 on the
edge v3v4 have a conflict, which is addressed in Figure 6.
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u0 v1 u2 v3 u4 v5 u6 v7 u8 v9 u10 v11 u12 v13 u14 v15 u16 v17
• • • • • • • • • • • • • • • • • •

5 25 7 9 27 15 3 21 33 35

6 12 18 24 36∗ 30∗ 10 20 14 28 2 22 4 26 8 34 16 32
• • • • • • • • • • • • • • • • • •

v0 u1 v2 u3 v4 u5 v6 u7 v8 u9 v10 u11 v12 u13 v14 u15 v16 u17

Figure 6. The graph P(18, k) (edges suppressed) labeled with all
available even labels and the odd multiples of 3, 5, and 7. Note
that the labels on v4 and u5 have been switched to fix the conflict
on the edge v3v4.

u0 v1 u2 v3 u4 v5 u6 v7 u8 v9 u10 v11 u12 v13 u14 v15 u16 v17
• • • • • • • • • • • • • • • • • •

1 5 19 25 23 7 29∗ 9 31 27 11 15 3∗ 21 13 33 17 35

6 12 18 24 36 30 10 20 14 28 2 22 4 26 8 34 16 32
• • • • • • • • • • • • • • • • • •

v0 u1 v2 u3 v4 u5 v6 u7 v8 u9 v10 u11 v12 u13 v14 u15 v16 u17

Figure 7. A prime labeling of P(18, k) (edges suppressed) for
k = 3 or 5. For a prime labeling of P(18, 7), swap the labels on
u6 and u12.

then it is placed on the next available u-vertex. Finally, the multiples of 2 are placed
on the unused B vertices, and any necessary label switching from earlier steps is
completed. The partial labeling that results for P(18, k) is shown in Figure 6.

Since 2n < 112, the only unused odd multiple of a prime p > 7 is p itself; thus,
the only odd labels remaining are 1 and the primes greater than 7 and less than 2n.
Each odd prime p less than n is placed on the u-vertex in A whose index is as
close as possible to the indices of the u-vertices in B labeled with multiples of p.
The remaining labels (1 and the primes greater than n) can be placed arbitrarily on
the unlabeled vertices in A. For some n, additional ad hoc label switching may be
required. However, for our example n= 18, the resulting labeling is prime for k = 3
and k = 5 (see Figure 7). To obtain a prime labeling for k = 7, simply swap the
labels on u6 and u12. For the sake of comparison, the prime labeling of P(18, 5) in
Figure 7 is also given in Table 2.

The following result covers the aforementioned ad hoc switching and establishes
that, for n ∈ [4, 50], we have P(n, k) prime precisely when n is even and k is odd
(recall from Theorem 1.1 that P(n, k) is not prime if n is odd or k is even).

Theorem 4.1. P(n, k) is prime for all even n ∈ [4, 50] and all odd k ∈ [1, n/2).

Proof. The case k = 1 was covered in [Haque et al. 2010] and k = 3 in [Haque
et al. 2011]. Tables 2 and 3 provide a prime labeling of P(n, k) for every even
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P(12, 5)

i vi ui

0 6 1
1 5 12
2 18 13
3 7 24
4 10 3
5 9 20
6 14 11
7 15 2
8 22 17
9 21 4

10 8 19
11 23 16

P(14, 5)

i vi ui

0 6 1
1 5 12
2 18 17
3 7 24
4 10 3
5 9 20
6 14 19
7 27 28
8 22 23
9 15 2

10 26 11
11 21 4
12 8 13
13 25 16

P(16, 5)

i vi ui

0 6 1
1 5 12
2 18 17
3 19 30
4 24 25
5 7 10
6 20 23∗
7 9 14
8 28 11
9 27 22

10 2 3∗
11 15 26
12 4 13
13 21 8
14 16 29
15 31 32

P(18, 5)

i vi ui

0 6 1
1 5 12
2 18 19
3 25 24
4 36 23
5 7 30
6 10 29∗
7 9 20
8 14 31
9 27 28

10 2 11
11 15 22
12 4 3∗
13 21 26
14 8 13
15 33 34
16 16 17
17 35 32

P(20, 5)

i vi ui

0 6 1
1 5 12
2 18 23
3 25 24
4 36 29
5 7 30
6 10 31∗
7 9 20
8 40 37
9 27 14

10 28 11
11 15 22
12 2 13
13 21 26
14 4 3∗
15 33 34
16 8 17
17 39 38
18 16 19
19 35 32

Table 2. A prime labeling of P(n, 5) for even n∈[12, 22]. A prime
labeling of P(n, k) for even n∈[16, 22] and odd k∈(n/3, n/2) can
be obtained by swapping the starred labels within a column.

n ∈ [12, 42] and every odd k ∈ [5, n/3). If k > n/3 is odd (note that n is even, so
n/3 is also even), then the u-vertex labeled with 3 is adjacent to another u-vertex
labeled with a multiple of 3 in the given labeling. Swapping the starred labels in the
prime labeling of P(n, 5) yields a prime labeling of P(n, k) for even n ∈ [16, 42]
and every odd k ∈ (n/3, n/2).

Prime labelings of P(n, k) for even n ∈ [44, 50] and all odd k ∈ [5, n/2) are
given in Tables 4–7. To check these tables, note that for any value of k the labels
on all vivi+1 edges are given by adjacent vertical pairs in the column labeled vi

and the labels on all vi ui edges are given by adjacent horizontal pairs. The labels
on all ui ui+k edges are given by vertical pairs at a distance of k in the column
labeled ui . �

Remark. If n is even one can expand the definition of generalized Petersen graphs
to include P(n, n/2). The result is a multigraph with two edges joining ui and
ui+n/2 for all i ∈ [0, n/2− 1]; for prime labeling purposes, these parallel edges can
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P(22, k),
k∈[5, 7]

i vi ui

0 6 1
1 5 12
2 18 23
3 25 24
4 30 29
5 7 36
6 42 31
7 37 10
8 20 41∗

9 9 40
10 14 43
11 27 28
12 26 11
13 15 44
14 22 3∗

15 21 2
16 34 13
17 33 4
18 38 17
19 39 8
20 16 19
21 35 32

P(24, k),
k∈[5, 7]

i vi ui

0 42 1
1 5 12
2 18 29
3 25 24
4 48 31
5 35 36
6 6 37
7 7 30
8 10 41∗

9 9 20
10 40 43
11 27 14
12 28 11
13 15 22
14 44 13
15 45 26
16 2 3∗

17 21 34
18 4 17
19 33 38
20 8 19
21 39 46
22 16 23
23 47 32

P(26, k),
k∈[5, 7]

i vi ui

0 6 1
1 5 12
2 18 29
3 25 42
4 48 31
5 7 36
6 24 37
7 49 30
8 10 41∗

9 9 20
10 40 43
11 27 50
12 14 47
13 15 28
14 26 11
15 45 44
16 22 3∗

17 21 52
18 2 13
19 33 34
20 4 17
21 39 38
22 8 19
23 51 46
24 16 23
25 35 32

P(28, k),
k∈[5, 9]

i vi ui

0 6 1
1 5 12
2 18 29
3 25 42
4 54 31
5 55 36
6 24 37
7 7 48
8 30 41
9 49 10

10 20 43∗

11 9 40
12 50 47
13 27 14
14 28 53
15 15 56
16 26 11
17 45 44
18 22 3∗

19 21 52
20 2 13
21 33 34
22 4 17
23 39 38
24 8 19
25 51 46
26 16 23
27 35 32

P(30, k),
k∈[5, 9]

i vi ui

0 6 1
1 5 12
2 18 31
3 25 42
4 54 37
5 55 36
6 24 41
7 7 48
8 30 43
9 49 60

10 10 47∗

11 9 20
12 40 53
13 27 50
14 14 59
15 15 28
16 56 11
17 45 22
18 44 13
19 21 26
20 52 3∗

21 33 34
22 2 17
23 39 38
24 4 19
25 51 46
26 8 23
27 57 58
28 16 29
29 35 32

P(32, k),
k∈[5, 9]

i vi ui

0 6 1
1 5 12
2 18 37
3 25 24
4 42 41
5 55 36
6 48 43
7 49 30
8 54 47
9 7 60

10 10 53∗

11 9 20
12 40 59
13 27 50
14 14 61
15 15 28
16 56 11
17 45 22
18 44 13
19 21 26
20 52 17
21 63 34
22 2 3∗

23 33 38
24 4 19
25 39 46
26 8 23
27 51 58
28 16 29
29 57 62
30 32 31
31 35 64

Table 3. A prime labeling of P(n, k) for even n∈[24, 42] and odd
k∈[5, n/3). A prime labeling of P(n, k) for even n∈[24, 42] and
odd k∈(n/3, n/2) can be obtained by swapping the starred labels
within a column.

(Continued on next page.)
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P(34, k),
k∈[5, 11]

i vi ui

0 6 1
1 5 12
2 18 37
3 25 24
4 66 41
5 65 36
6 42 43
7 55 48
8 54 47
9 7 60

10 30 53
11 49 10
12 20 59∗
13 9 40
14 50 61
15 27 14
16 28 67
17 15 56
18 26 11
19 45 44
20 22 13
21 21 52
22 34 3∗
23 63 68
24 2 17
25 33 38
26 4 19
27 39 46
28 8 23
29 51 58
30 16 29
31 57 62
32 32 31
33 35 64

P(36, k),
k∈[5, 11]

i vi ui

0 6 1
1 5 12
2 18 37
3 25 24
4 36 41
5 55 48
6 42 43
7 65 54
8 66 47
9 7 72

10 30 53
11 49 60
12 10 59∗
13 9 20
14 40 61
15 27 50
16 70 67
17 39 14
18 28 71
19 45 56
20 26 11
21 21 44
22 22 13
23 63 52
24 34 3∗
25 33 68
26 38 17
27 15 2
28 46 19
29 51 4
30 58 23
31 57 8
32 62 29
33 69 16
34 32 31
35 35 64

P(38, k),
k∈[5, 11]

i vi ui

0 6 1
1 5 12
2 18 41
3 25 24
4 36 43
5 55 48
6 42 47
7 65 54
8 66 53
9 7 72

10 30 59
11 49 60
12 10 61∗
13 9 20
14 40 67
15 27 50
16 70 71
17 39 14
18 28 73
19 45 56
20 26 11
21 75 44
22 22 13
23 21 52
24 34 3∗
25 63 68
26 38 17
27 33 76
28 46 19
29 15 2
30 58 23
31 51 4
32 62 29
33 57 8
34 74 31
35 69 16
36 32 37
37 35 64

P(40, k),
k∈[5, 13]

i vi ui

0 6 41
1 5 12
2 18 43
3 25 42
4 78 47
5 55 36
6 24 53
7 65 48
8 54 59
9 7 60

10 66 61
11 49 72
12 30 67
13 77 10
14 20 71∗
15 9 40
16 50 73
17 27 70
18 2 79
19 15 14
20 28 11
21 45 56
22 22 13
23 75 44
24 26 17
25 21 52
26 34 3∗
27 63 68
28 38 23
29 33 76
30 80 19
31 39 46
32 4 29
33 17 58
34 8 31
35 57 62
36 16 37
37 69 74
38 32 1
39 35 64

P(42, k),
k∈[5, 13]

i vi ui

0 6 1
1 5 12
2 18 43
3 25 24
4 42 47
5 55 36
6 84 53
7 65 48
8 66 59
9 7 54

10 78 61
11 49 72
12 30 67
13 77 60
14 10 71∗
15 9 20
16 40 73
17 27 50
18 70 79
19 81 80
20 14 83
21 15 28
22 56 11
23 45 22
24 44 13
25 75 26
26 52 17
27 63 34
28 68 3∗
29 21 38
30 20 19
31 33 46
32 76 23
33 39 58
34 4 29
35 51 62
36 8 31
37 57 74
38 16 37
39 69 82
40 32 41
41 35 64Table 3. (Continued from previous page.)
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i vi ui departures

0 6 1
1 5 12
2 18 47
3 55 84
4 78 53
5 85 36
6 42 59
7 65 48
8 54 61
9 25 72

10 66 67
11 7 60
12 30 71
13 49 24
14 10 73 u14=3 for k∈[15, 21]
15 77 20 v15=9 for k=15
16 40 79
17 27 50
18 70 83
19 81 80
20 14 23
21 15 28

i vi ui departures

22 56 11
23 45 22
24 44 13
25 75 88
26 26 17
27 21 52
28 34 3 u28=73 for k∈[15, 21]
29 63 68
30 38 9 u30=77 for k=15,

u30=43 for k∈[17, 21]
31 33 76
32 46 19
33 39 2
34 4 29
35 51 58
36 8 31
37 57 62
38 16 37
39 69 74
40 32 41
41 87 82
42 64 43 u42=9 for k∈[17, 21]
43 35 86

Table 4. A prime labeling of P(44, k) for all odd k∈[15, 21].

be suppressed to a single edge. When n ∈ [14, 50] and n/2 is odd, the prime labeling
of P(n, n/2− 2) given in Theorem 4.1 is also a prime labeling of P(n, n/2). It
is a simple exercise to show that P(6, 3) and P(10, 5) are prime, and additional
results concerning prime labelings of P(n, n/2) can be found in [Prajapati and
Gajjar 2015].
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Table 7. A prime labeling of P(50, k) for all odd k∈[15, 23].
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