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Stability analysis for numerical methods
applied to an inner ear model

Kimberley Lindenberg, Kees Vuik and Pieter W. J. van Hengel

(Communicated by Kenneth S. Berenhaut)

Diependaal, Duifhuis, Hoogstraten and Viergever investigated three time-integration
methods to solve a simplified one-dimensional model of the human cochlea. Two
of these time-integration methods are dealt with in this paper, namely fourth-
order Runge–Kutta and modified Sielecki. The stability of these two methods
is examined, both theoretically and experimentally. This leads to the conclusion
that in the case of the fourth-order Runge–Kutta method, a bigger time step can
be used in comparison to the modified Sielecki method. This corresponds with
the conclusion drawn in the article by Diependaal, Duifhuis, Hoogstraten and
Viergever.

1. Introduction

1.1. Motivation. Deafness can be caused by a problem with the mechanical part
of the human ear, which consists of three parts, namely the outer ear, the middle
ear and the inner ear. The inner ear includes the cochlea (the organ of hearing)
and the vestibular system (balance). The cochlea converts incoming sounds into
electrochemical (nerve) impulses.

Almost always, it is possible to improve the hearing of those who are hearing
impaired. Therefore it is important that deafness or hearing impairment is detected as
early as possible. To test the functioning of the hearing system, subjective thresholds
are determined at standardised frequencies and are related to standardised average
thresholds. However, in general these tests cannot be performed on everyone. For
example, they cannot be administered to people who are incapable of responding,
such as babies and young children. Besides that, this method tests the functioning of
the entire hearing system, not only of the cochlea. This leads to a different problem,
because to improve the diagnosis of a hearing deficit it would be useful to separate
the functioning of the cochlea from the neural processing [van Hengel 1996].

MSC2010: primary 65L06, 65L07, 65L20, 65M12; secondary 65L05, 65L10.
Keywords: inner ear model, numerical time-integration method, modified Sielecki, fourth-order

Runge–Kutta, numerically stable, numerically unstable .
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There is an objective test (diagnosing cochlear dysfunction) which has the po-
tential to detect deafness or hearing impairment as early as possible. In this test
otoacoustic emissions play an important role. Otoacoustic emissions are very
weak sounds produced by the cochlea, in response to stimulation or spontaneously.
These sounds can be measured with a sensitive microphone in the ear canal. These
otoacoustic emissions give directly measurable information about the condition
of the cochlea, and thus can be used when diagnosing cochlear dysfunction. It
is known that subjects with cochlear hearing deficits have emissions that differ
from those found in people with normal hearing. Since otoacoustic emissions can
be directly linked to cochlear functioning, it is possible for objective tests to be
carried out on anyone, including babies and small children. The problem is that
it remains difficult to link otoacoustic emission levels to cochlear functioning. A
deeper understanding of the generative mechanism(s) is thus required. Since the
cochlea is extremely vulnerable and difficult to access, in vivo studies on otoacoustic
emissions cannot be performed in humans. However, these studies are performed
in animals to help understand the phenomenon. Additionally, cochlea models are
used to study otoacoustic emissions [van Hengel 1996].

1.2. Early work. The model used in this paper is obtained from an internal report
by Marc van den Raadt, in which the numerical treatment of motion equations is
described in detail and which is partly based on the paper by Diependaal et al. [1987],
where they examined three time-integration methods (Heun, fourth-order Runge–
Kutta and modified Sielecki) in order to solve their model. They also dealt with the
numerical stability of these three methods. The time-integration methods have to be
numerically stable and this limits the size of the time step used for a given problem.

1.3. What is new in this paper? There exist two kinds of stability, analytical and
numerical. It is possible that a second-order differential equation is analytically
stable (positive damping), but at the same time the used numerical method can
be unstable, because too large a step size is used or an improper time-integration
method is applied. While most authors examine only the analytical stability, we
consider the numerical stability as well and realize that these two kinds of stability
are not the same. Diependaal et al. seem to make this distinction between analytical
and numerical stability as well. However, their stability analysis is limited to a
numerical test (determining the bounds in an experimental way), and they obtain a
conservative guess of the step-size limit for each time-integration method by testing
different step sizes. Using these numerical tests, Diependaal et al. conclude that in
the fourth-order Runge–Kutta method, a bigger time step can be used in comparison
with Heun and modified Sielecki methods. In this paper we only examine two
time-integration methods, fourth order Runge–Kutta and modified Sielecki, and a
real numerical stability analysis is conducted. So, the theoretical bounds for the
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time steps are derived and verified with a numerical test. As far as the authors know,
the method used to investigate the stability of the modified Sielecki method is not
known in the literature, and therefore a new contribution of this paper.

The goal is also to derive a method for stability analysis on the model with
parameter variations to simulate hearing loss.

1.4. Structure of the paper. In Section 2, the biological background, the mathe-
matical model and the discretisation of this model are dealt with. The numerical
methods used during the project and their properties are examined in Section 3.
The numerical experiments are examined in Section 4. Finally, in Section 5 various
conclusions are drawn.

2. Problem definition

2.1. Biological background. The cochlea plays an important part in the processing
of incoming sounds. The incoming sound waves behave like pressure waves
in the ear. The pressure waves, which reach the eardrum, are transmitted via
vibrations of the middle ear ossicles to the oval window at the base of the cochlea.
These vibrations move the cochlear fluids, which stimulate tiny hair cells on the
cochlear partition. Individual hair cells respond to specific sound frequencies so
that, depending on the frequency of the sound, only certain hair cells are stimulated
[Robles and Ruggero 2001; Bell 2004].

The cochlea looks like a coiled tube. Mechanically this tube is divided into two
compartments by the cochlear partition, consisting of the basilar membrane and the
organ of Corti (the unfolded cochlea is shown in Figure 1). The two compartments
are filled with fluid, which will have equivalent mechanical properties to water in
this proposed model. The organ of Corti, which is a cellular layer on the basilar
membrane, contains the hair cells that start to move when sound waves enter the

basiliar membrane

high frequencies low frequenciesregion most sensitive to

Reissner’s membrane scala vestibuli

helicotremascala tympani

scala media

stapes

round
window

oval
window

Figure 1. The unfolded cochlea.
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ear. The part of the cochlear partition situated at the base will resonate at higher
frequencies and the part at the apex will resonate at lower frequencies [Robles and
Ruggero 2001; Bell 2004].

2.2. Mathematical model. In our model, the cochlea will be viewed as a straight
cylinder. The cochlea will be divided by the cochlear partition into two fluid
channels of the same height and the same width. We will also assume that the
basilar membrane has the same width from the base to the apex. It is assumed that
the base is located at the left side of the cylinder and the apex at the right side.

The one-dimensional cochlea model [Diependaal et al. 1987] is defined by

∂2 p
∂x2 (x, t)−

2ρ
h
∂2 y
∂t2 (x, t)= 0, 0≤ x ≤ L , t ≥ 0, (1)

where the transmembrane fluid pressure p(x, t) can be written as

p(x, t)= ms ÿ(x, t)+ ds(x)ẏ(x, t)+ ss(x)y(x, t).

For simplicity, this pressure is assumed to be equal to zero at the helicotrema (at
x = L). Note that this assumption is an approximation because in reality there
can be a small fluid flow as a result of the remaining pressure difference and some
damping that affects the flow. For high frequencies, this is almost negligible, but it
can play an important role for frequencies below 1 kHz. Equation (1) describes the
movement of a cochlear section, and in this equation ρ stands for the density of the
cochlear fluid and h is the height of a scala. Here y(x, t) is the excitation in the
oscillators, ms the specific acoustic mass of the basilar membrane, ds the specific
acoustic damping of the basilar membrane and ss the specific acoustic stiffness of
the basilar membrane. Both ds and ss vary with the placement of an oscillator.

2.3. Spatial discretisation. If we define G(x, t)=ds(x)ẏ(x, t)+ss(x)y(x, t), then
p(x, t)−G(x, t)= ms ÿ(x, t). The differential equation (1) can be written as

−
∂2 p
∂x2 (x, t)+

2ρ
hm

p(x, t)=
2ρ
hm

G(x, t), 0≤ x ≤ L , t ≥ 0. (2)

This model is used to describe N+1 individual cochlear sections. These sections
behave as harmonic oscillators. We assume that we have N + 1 oscillators and
therefore we divide the interval [0, L] into N + 1 equidistant subintervals (with
length 1X ). The oscillator at n = 0 is part of the middle ear, the oscillator at n = 1
has the highest frequency in the cochlea and the oscillator at n = N , at the right the
helicotrema, has the lowest frequency in the cochlea.

The following approximation of the second partial derivative of p(x, t) [Vuik
et al. 2006] is used:

∂2 p
∂x2 (x, t)≈

p(x +1X, t)− 2p(x, t)+ p(x −1X, t)
(1X)2

.
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Then (2) can be written as a matrix representation Ap(t)= b(t) [Vuik et al. 2006].
Here matrix A is a tridiagonal matrix (ai j ), vector p(t) is an unknown vector and
the vector b(t) consists of known terms like the stimulus pe(t) and the vector G(t):

ai j =



(
1+ 2mc01

mm

)
/1X if i = j = 1,(

2+ 2mc
m

)
/1X if i = j and i ∈ {2, 3, . . . , N },(

1+ 2mc
m +

2mc
mh+2mc

)
/1X if i = j = N + 1,

−1/1X if j = i + 1 and i ∈ {1, 2, . . . , N },

−1/1X if j = i − 1 and i ∈ {2, 3, . . . , N + 1},

pi = p(xi , t) for i ∈ {0, 1, . . . , N },

bj =

{
2mc01

mm

(
nt pe(t)+G(x j−1, t)

)
/1X if j = 1,

2mc
m G(x j−1, t)/1X if j ∈ {2, 3, . . . , N + 1}.

This almost corresponds with the system derived by Diependaal et al., but the
equation associated with the oscillator at n = 0 (first equation of Ap(t) = b(t))
differs. This deviation is a result of the fact that the oscillator at n = 0 is part of the
middle ear. The other equations do correspond with that of Diependaal et al. for
equidistant subintervals (1X is constant), except the notation deviates:

2mc

m
=

2ρbB M

ms Ssc
(1X)2 and

2mc

mh + 2mc
≈ 0.999999999102402≈ 1.

2.4. System of equations for the time. Consider the functions ẏ(x, t) and ÿ(x, t).
These lead to a second-order system of time equations. This second-order system
can be transformed into a first-order system if we define ẏ(x, t) = u(x, t). Then
it holds that ÿ(x, t) = u̇(x, t) [Diependaal et al. 1987] and u̇(x, t) = ÿ(x, t) =
(p(x, t)−G(x, t))/ms .

So this system is given by{
ẏ(x, t)= u(x, t),

u̇(x, t)=
(

p(x, t)−G(x, t)
)
/ms,

{
y(x, 0)= 0, 0≤ x ≤ L ,

u(x, 0)= 0, t ≥ 0.

It is transformed into a system consisting of vectors after spatial discretisation has
taken place because the vector p(t) can be determined from Ap(t)= b(t).

Consider the system{
ẏ(t)= u(t),
u̇(t)= Q · [ p(t)− c(t)],

t ≥ 0,

{
y(0)= 0,
u(0)= 0,

(3)
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where the matrix Q is a diagonal matrix (qi i ) and the vector c(t) consists of known
terms like the stimulus pe(t) and the vector G(t):

qi i =

{
1/msm if i = 1,
1/ms if i ∈ {2, 3, . . . , N + 1},

cj =

{
nt pe(t)+G(x j−1, t) if j = 1,
G(x j−1, t) if j ∈ {2, 3, . . . , N + 1}.

Because of the oscillator in the middle ear, this system deviates a little bit for n = 0
(first equation of Q[ p(t)− c(t)]) with respect to [Diependaal et al. 1987]. However,
in this case the influence of the middle ear is taken into account.

The vector p(t) is determined by

p(t)= A−1b(t)= A−1


−

2mc01
mm

G(x0, t)

−
2mc
m G(x1, t)

...

−
2mc
m G(xN , t)

− A−1


−

2mc01
mm

nt pe(t)

0
...

0

.
3. Numerical methods

3.1. System of first-order differential equations. We consider system (3). In the
following definition of the vector G(t), it can be seen that the properties of the
middle ear are again taken into account for the first oscillator, and therefore it differs
from the vector g(t) in the paper of Diependaal et al.:

G(t)=


G(x0, t)
G(x1, t)

...

G(xN , t)

=


SST ·n2
t ·Za ·u(x0, t)+ssm ·y(x0, t)

ds(x1)·u(x1, t)+ss(x1)·y(x1, t)
...

ds(xN )·u(xN , t)+ss(xN )·y(xN , t)

= Du(t)+Sy(t).

However, for the oscillators in the cochlea, G(t) equals g(t), but again a somewhat
different notation is used. Here the matrices D and S are diagonal matrices (di i )

and (si i ) respectively given by

di i =

{
SST · n2

t · Za if i = 1,
ds(xi−1) if i ∈ {2, 3, . . . , N + 1},

si i =

{
ssm if i = 1,
ss(xi−1) if i ∈ {2, 3, . . . , N + 1}.

Consider system (3) on the time interval [0, T ]. This time interval is divided into
M equidistant subintervals [t0, t1], [t1, t2], . . . , [tM−1, tM ] (with length 1t). After
dividing the time interval into subintervals, the following steps must be followed
from j = 1 to j = M [Diependaal et al. 1987]:
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(1) Calculate at time tj−1 the vectors c and b.

(2) Solve p by using Ap(t)= b(t).

(3) Calculate w[t, y(t), u(t)] = Q · [ p(t)− c(t)].

(4) Integrate the equations ẏ(t)= u(t) and u̇(t)=w[t, y(t), u(t)] from tj−1 to tj .

At step (4), the fourth-order Runge–Kutta and modified Sielecki methods are used.

3.2. Fourth-order Runge–Kutta method. The fourth-order Runge–Kutta method
is given in [Diependaal et al. 1987] by{ y(t +1t)= y(t)+ 1

6 [k1+ 2k2+ 2k3+ k4],

u(t +1t)= u(t)+ 1
6 [l1+ 2l2+ 2l3+ l4].

The following four steps are carried out:

(1) Determine the predictors k1 and l1.

(2) Determine the predictors k2 and l2.

(3) Determine the predictors k3 and l3.

(4) Determine the predictors k4 and l4.

At each step the vector p(t) has to be determined from Ap(t)= b(t) for the function
w[t, y(t), u(t)] = Q · [ p(t)− c(t)].

To apply the fourth-order Runge–Kutta method, system (3) must be written as
the matrix representation

ẏ(x0, t)
ẏ(x1, t)
...

ẏ(xN , t)
u̇(x0, t)
u̇(x1, t)
...

u̇(xN , t)


=

(
O I

M S M D

)


y(x0, t)
y(x1, t)
...

y(xN , t)
u(x0, t)
u(x1, t)
...

u(xN , t)


−

(
O O
O N

)


0
0
...

0
nt pe(t)

0
...

0


. (4)

The matrix O is an (N+1)× (N+1) null matrix, I is an (N+1)× (N+1) identity
matrix, M is determined by M= Q[A−1 R− I]with R an (N+1)×(N+1) diagonal
matrix with

ri i =

{
−

2mc01
mm

if i = 1,

−
2mc
m if i ∈ {2, 3, . . . , N + 1},

and N is an (N+1)× (N+1) matrix determined by N = Q
[
−

2mc01
mm
· A−1

+ I
]
.
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3.3. The properties of the fourth-order Runge–Kutta method. The Runge–Kutta
method we are using is a fourth-order method, which means that the total error is
of the fourth-order (with respect to the time step). This is an explicit method and it
is conditionally stable, which means that it is stable for a time step below a certain
bound.

In order to study the stability when using the time-integration fourth-order Runge–
Kutta method, the amplification factor associated with this method can be used and
it is given by

Q(hλ)= 1+ hλ+ 1
2(hλ)

2
+

1
6(hλ)

3
+

1
24(hλ)

4,

where h represents the time step used and λ is known from the test equation y′= λy.
A numerical time-integration method is termed stable if and only if |Q(hλ)| ≤ 1
for a given time step h [Vuik et al. 2006].

The amplification factor Q(hλ) given above is the amplification factor in the
scalar case, but here the method is used on a matrix representation (4). Now
this numerical time-integration method is termed stable if and only if for every
eigenvalue µ of the matrix

( O
M S

I
M D

)
, it holds that |Q(hµ)| ≤ 1 for a given time

step h [Vuik et al. 2006].

3.4. The modified Sielecki method. The modified Sielecki method is given in
[Diependaal et al. 1987] by{

u(t +1t)= u(t)+1t ·w[t, y(t), u(t)],
y(t +1t)= y(t)+1t · u(t +1t),

where the function w[t, y(t), u(t)] is defined as w[t, y(t), u(t)] = Q · [ p(t)− c(t)],
which can also be represented as

w[t, y(t), u(t)] = M Du(t)+M Sy(t)− N


nt pe(t)

0
...

0

.
3.5. The stability of the modified Sielecki method. The amplification factor of the
modified Sielecki numerical time-integration method is not known or given as far
as the authors know. This method is both an implicit and an explicit method and
this makes it harder to derive an amplification factor.

To examine the stability of the modified Sielecki method, the scalar-linear case
is first considered. For the (scalar) system{

ζ̇ (t)= ν(t),

ν̇(t)= ω[t, ζ(t), ν(t)],

{
ζ(0)= ζ0,

ν(0)= ν0,
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the modified Sielecki method is given by{
ν(t +1t)= ν(t)+1t ·ω[t, ζ(t), ν(t)],

ζ(t +1t)= ζ(t)+1t · ν(t +1t).

In the scalar-linear case the function ω[t, ζ(t), ν(t)] is given by ω[t, ζ(t), ν(t)] =
λ ·ζ(t)+µ ·ν(t)+c with λ,µ≤ 0 and a constant c ∈R. To examine the stability of
this method in the scalar-linear case, the function ω[t, ζ(t), ν(t)] = λ ·ζ(t)+µ ·ν(t)
can be considered because the constant c does not affect the stability.

Consider the (scalar-linear) system{
ν(t +1t)= ν(t)+1t · λ · ζ(t)+1t ·µ · ν(t),

ζ(t +1t)= ζ(t)+1t · ν(t +1t).
(5)

After substituting ν(t +1t) = ν(t)+1t · λ · ζ(t)+1t ·µ · ν(t) in ζ(t +1t) =
ζ(t)+1t ·ν(t+1t), the system (5) can be represented by the matrix representation
a(t +1t)= T · a(t). Here

a(t+1t)=
(
ν(t+1t)
ζ(t+1t)

)
, a(t)=

(
ν(t)
ζ(t)

)
, T =

(
1+1t ·µ 1t ·λ

1t+(1t)2·µ 1+(1t)2·λ

)
.

For a multiplicative norm, it holds for an+1 = T · an with an the numerical
solution that

‖an+1‖ = ‖T · an‖ = ‖T n
· a1‖

multiplicativity
≤ ‖T n

‖ · ‖a1‖.

Furthermore the following result is known [Golub and Van Loan 1996]:

T n
→ 0 as ρ(T ) < 1 with ρ(T )=max{|κ| : κ is an eigenvalue of T }.

The modified Sielecki numerical time-integration method is termed stable if and
only if |κ| ≤ 1 for every eigenvalue κ of T for a given time step 1t , because then
the inequality ρ(T ) < 1 is satisfied.

The same principle (as in the scalar-linear case) can be used for{
u(t +1t)= u(t)+1t ·w[t, y(t), u(t)],
y(t +1t)= y(t)+1t · u(t +1t),

where the function w[t, y(t), u(t)] = M Du(t)+M Sy(t) is considered to examine
the stability of the modified Sielecki method. So consider{

u(t +1t)= u(t)+1t ·M Sy(t)+1t ·M Du(t),
y(t +1t)= y(t)+1t · u(t +1t).

(6)
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After substituting u(t+1t)= u(t)+1t ·M Sy(t)+1t ·M Du(t) in y(t+1t)=
y(t)+1t · u(t +1t), the system (6) can be written as(

u(t +1t)
y(t +1t)

)
=

(
I +1t ·M D 1t ·M S

1t · I + (1t)2 ·M D I + (1t)2 ·M S

)
·

(
u(t)
y(t)

)
. (7)

The modified Sielecki method is stable if and only if |κ| ≤ 1 holds for every
eigenvalue κ of the matrix(

I +1t ·M D 1t ·M S
1t · I + (1t)2 ·M D I + (1t)2 ·M S

)
for a given time step 1t .

4. Numerical experiments

4.1. Problem. The one-dimensional cochlea model is given by (1) and this equation
can be written as a matrix representation (spatial discretisation) Ap(t)= b(t) [Vuik
et al. 2006], which is used to determine the vector p(t). The system of first-
order time equations (3) can be solved by determining the vector p(t) and using a
numerical time-integration method. In this paper the fourth-order Runge–Kutta and
modified Sielecki numerical time-integration methods are dealt with.

4.2. The stability of the two numerical time-integration methods. For the fourth-
order Runge–Kutta method, system (3) is written as the matrix representation (4).

The fourth-order Runge–Kutta method is termed stable if and only if for every
eigenvalue µi of the matrix

E =
(

O I
M S M D

)
,

it holds that |Q(1tµi )| ≤ 1 for a given time step 1t [Vuik et al. 2006], where the
amplification factor Q is given by

Q(1tµi )= 1+1tµi +
1
2(1tµi )

2
+

1
6(1tµi )

3
+

1
24(1tµi )

4.

For the modified Sielecki method, w[t, y(t), u(t)] = M Du(t) + M Sy(t) is
considered to examine the stability. Consider the system (6) and write this as the
matrix representation given in (7).

The modified Sielecki method will be stable if and only if |κj | ≤ 1 holds for
every eigenvalue κj of the matrix

F =
(

I +1t ·M D 1t ·M S
1t · I + (1t)2 ·M D I + (1t)2 ·M S

)
for a given time step 1t .
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Figure 2. The plot of the eigenvalues of E.
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Figure 3. The stability locus of the fourth-order Runge–Kutta method.

4.3. Numerical experiments to determine a restriction on the time step 1t. To
perform these numerical experiments, Matlab is used.

4.3.1. Fourth-order Runge–Kutta. The eigenvalues µi of the matrix E can be
calculated and plotted (see Figure 2).

For the fourth-order Runge–Kutta method to be stable for a given 1t , the in-
equality

|Q(1tµi )| =
∣∣1+1tµi +

1
2(1tµi )

2
+

1
6(1tµi )

3
+

1
24(1tµi )

4∣∣≤ 1

has to be satisfied for all µi (i = 1, . . . , 2N +2). In other words, all eigenvalues µi

multiplied by a time step 1t must lie within the range of the stability locus of the
fourth-order Runge–Kutta method. Figure 3 shows this stability locus.

This consideration determines a restriction on the time step 1t . The result of
this numerical experiment is the following:

• For 1t = 2.08 · 10−5s, it holds that |Q(1tµi )| ≤ 1 for all eigenvalues µi , and
thus this numerical scheme is stable.
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Figure 4. The norms of u(t) and y(t), divided by
√

N + 1, with
1t = 2.08 · 10−5s.
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Figure 5. The norms of u(t) and y(t), divided by
√

N + 1, with
1t = 2.09 · 10−5s.

• For 1t = 2.09 · 10−5 s it holds that |Q(1tµi )|> 1 for two eigenvalues, and
thus this numerical scheme is no longer stable.

The determined time steps (1t = 2.08 · 10−5s and 1t = 2.09 · 10−5s) can also
be tested on the fourth-order Runge–Kutta numerical time-integration method. The
initial conditions u(0) = 1, y(0) = 1 are used instead of u(0) = 0, y(0) = 0. A
small change of the initial conditions causes a perturbation.

If this perturbation is bounded, then the fourth-order Runge–Kutta method is
stable. The expectation is that the perturbation is bounded by using the time step
1t = 2.08 · 10−5s and unbounded by using the time step 1t = 2.09 · 10−5s. To
investigate this, the norms of the vectors u(t) and y(t) divided by

√
N + 1 are

calculated and plotted (see Figure 4 for time step 1t = 2.08 · 10−5s and Figure 5
for time step 1t = 2.09 · 10−5s).

From Figure 4, it can be seen that the perturbation remains bounded. For
1t = 2.08 · 10−5s, the numerical scheme is indeed stable.
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Figure 6. The eigenvalues of F with 1t = 1.41 · 10−5s (left) and
1t = 1.42 · 10−5s (right).

From Figure 5, it can be concluded that the perturbation is unbounded. For
1t = 2.09 · 10−5s, it holds that the numerical scheme is unstable.

4.3.2. Modified Sielecki. By trying different values for the time step 1t , we can
determine for which time step the modified Sielecki numerical time-integration
method is stable or unstable. It can be seen that for the time step 1t = 1.41 ·10−5s,
the inequality |κj |< 1 holds for all eigenvalues κj of the matrix F (see Figure 6).
It can also be seen that for the time step 1t = 1.42 · 10−5s, the inequality |κj |> 1
holds for one eigenvalue (see Figure 6).

The determined time steps (1t = 1.41 · 10−5s and 1t = 1.42 · 10−5s) can also
be tested on the modified Sielecki numerical time-integration method. The initial
conditions u(0)= 1, y(0)= 1 instead of u(0)= 0, y(0)= 0 are used, causing a
perturbation.

If this perturbation is bounded, then the modified Sielecki method is stable.
The expectation is that the perturbation is bounded by using the time step 1t =
1.41 · 10−5s and unbounded by using the time step 1t = 1.42 · 10−5s. Again
the norms of the vectors u(t) and y(t) divided by

√
N + 1 are calculated and

plotted (see Figure 7 for time step 1t = 1.41 · 10−5s and Figure 8 for time step
1t = 1.42 · 10−5s).

From Figure 7, it can be seen that the perturbation remains bounded. For
1t = 1.41 · 10−5s the numerical scheme is indeed stable.

From Figure 8, it can be concluded that the perturbation is unbounded. For
1t = 1.42 · 10−5s it holds that the numerical scheme is unstable.

5. Conclusions

After examining the stability of the fourth-order Runge–Kutta and modified Sielecki
numerical time-integration methods, it can be concluded that a bigger time step
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Figure 7. The norms of u(t) and y(t), divided by
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N + 1, with
1t = 1.41 · 10−5s.

0 0.5 1 1.5 2 2.5

x 10
-3

0

2

4

6

8

10

12

14
x 10

15

u-
no

rm

t
0 0.5 1 1.5 2 2.5

x 10
-3

0

2

4

6

8

10

12
x 10

10

y-
no

rm

t

Figure 8. The norms of u(t) and y(t), divided by
√

N + 1, with
1t = 1.42 · 10−5s.

(1t = 2.08 · 10−5s) can be used for the Runge–Kutta four method than for the
method modified Sielecki (1t = 1.41 · 10−5s). This corresponds with the article by
Diependaal, Duifhuis, Hoogstraten and Viergever [Diependaal et al. 1987].

When the time step 1t = 2.08 · 10−5s is used, the fourth-order Runge–Kutta
method is still stable, but the modified Sielecki method is then unstable. The
modified Sielecki method already shows unstable behavior when a time step of
1t = 1.42·10−5s is used.

Our numerical stability analysis for both time integration methods showed the
following results:

• Fourth-order Runge–Kutta: when we use a time step of 2.08·10−5s, the system
is numerically stable, but numerically unstable for a time step of 2.09 · 10−5s.

• Modified Sielecki: a time step of 1.41 · 10−5s causes the system to be nu-
merically stable, and a time step of 1.42 · 10−5s causes it to be numerically
unstable.
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Following this numerical stability analysis, we tried to verify these results with a
numerical test (Figure 4, 5, 7 and 8), and saw that the numerical tests supported the
results from our analysis. Thus, the theoretical analyses and experimental analyses
coincide.

List of symbols

• p(x, t): transmembrane fluid pressure
• y(x, t): excitation of the basilar membrane
• ms : specific acoustic mass of the basilar membrane (ms = m · b ·1X )
• ds(x): specific acoustic damping of the basilar membrane at place x (ds(x)=

d(x) · b ·1X and ds(xn)= dsAMP(xn) · dsPROF(xn))
• dsAMP(x): ensures that the damping in the cochlea is uniform everywhere

(dsAMP(x)= ε
√

msss(x))
• dsPROF(x): makes it possible to locally vary the (negative) damping (dsPROF(x)=1

in the linear case)
• ε: models strength impulse response (Matlab: ε = 5 · 10−2)
• ss(x): specific acoustic stiffness of the basilar membrane at place x (ss(x)=

s(x) · b ·1X and ss(xn)= s0 · e−λxn )
• s0: specific acoustic stiffness constant (Matlab: s0 = 1 · 1010 Pa/m)
• λ: value which determines place-frequency relation in the cochlea (Matlab:
λ= 300 m−1)

• ρ: density of the cochlear fluid
• h: height of a scala (h = Ssc/b)
• m: acoustic mass of the basilar membrane
• d(x): acoustic damping of the basilar membrane at place x
• s(x): acoustic stiffness of the basilar membrane at place x
• 1X : length of a subinterval (1X = L/(N + 1))
• Ssc: surface of a scala
• b: width of a scala
• mc01: acoustic mass of the cochlear fluid between the oval window and the

first oscillator (mc01 = ρ1X01/Ssc)
• 1X01: distance between the oval window and the first oscillator
• mm : acoustic mass of the middle ear (mm = n2

t Zs/(Stωrmδ))
• msm : specific acoustic mass of the middle ear (msm = mm SST )
• Zs : specific acoustic impedance of air
• St : surface of the eardrum
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• ωrm : resonance frequency of the middle ear
• δ: reciprocal value of the quality factor Q of the middle ear (δ = dm/

√
smmm)

• dm : acoustic damping of the middle ear
• sm : acoustic stiffness of the middle ear
• nt : transformation factor of the middle ear
• pe(t): form of the stimulus
• mc: acoustic mass of the cochlear fluid between two oscillators (mc=ρ1X/Ssc)
• u(x, t): velocity of the basilar membrane (u(x, t)= ẏ(x, t))
• SST : surface of the stapes (Matlab: SST = 3 · 10−6 m2)
• Za: acoustic impedance of air (Za = Zs/St )
• ssm : specific acoustic stiffness of the middle ear
• 1t : time step used in the fourth-order Runge–Kutta and modified Sielecki

numerical methods
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Three approaches to a bracket polynomial
for singular links

Carmen Caprau, Alex Chichester and Patrick Chu

(Communicated by Jim Hoste)

In this paper we extend the Kauffman bracket to singular links. Specifically, we
define a polynomial invariant for singular links, and in doing this, we consider
three approaches to our extended Kauffman bracket polynomial: (1) using skein
relations involving singular link diagrams, (2) using representations of the singular
braid monoid, (3) via a Yang–Baxter state model. We also study some properties
of the extended Kauffman bracket.

1. Introduction and background

Knot theory is one of the most active research areas in mathematics. In the recent
years, there has been a great interest in the study of knot-like objects, including
singular links, knotted graphs, virtual knots and pseudoknots, not only because of
their connections to other areas in mathematics, but also because of their applications
to physics, chemistry, and molecular biology.

In this paper we focus on singular links and construct an invariant for such objects,
based on the skein relation defining the Kauffman bracket for classical knots and
links. We hope our work will prove useful for young researchers interested in knot
theory for its intrinsic beauty or for its possible applications.

Knot theory studies embeddings of circles in three-dimensional space. When
more than one circle is embedded in R3, the resulting embedding is called a link;
otherwise, it is called a knot. In particular, a link is a disjoint union of knots, and these
knots are called the components of the link. For simplicity, whenever possible, we
will refer to both knots and links as knots. A diagram of a knot is a projection of the
knot into a plane, and the crossings of a knot diagram are artifacts of the projection.
We consider only regular diagrams, in which all crossings are double points.

A singular link is an immersion of a disjoint union of circles in three-dimensional
space, which has finitely many singularities, called singular crossings, that are all
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Keywords: Kauffman bracket, invariants for knots and links, singular braids and links, Yang–Baxter

equation.
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R1
⇐⇒

R1
⇐⇒

R2
⇐⇒

R2
⇐⇒

R3
⇐⇒

Figure 1. The Reidemeister moves.

R4
⇐⇒

R4
⇐⇒

R5
⇐⇒

R5
⇐⇒

Figure 2. Additional moves for singular links.

transverse double points. A singular link can be regarded as an embedding in R3

of a four-valent graph with rigid vertices. We can think of such vertices as being
rigid disks with four strands connected to it which turn as a whole when we flip the
vertex by 180 degrees.

The goal of knot theory is to know whether or not two knots are isotopic. Two
knots are called ambient isotopic if there is a continuously varying family of
embeddings connecting one to the other. It is well known that two knot diagrams
D1 and D2 represent ambient isotopic knots if and only if D1 and D2 are connected
by a finite sequence of the Reidemeister moves, depicted in Figure 1. For more
information on these and basic knot theory we refer the reader to the books [Adams
2004; Kauffman 2001; Murasugi 1996; Rolfsen 1976].

On the other hand, two singular link diagrams represent ambient isotopic singular
links if their diagrams differ by a finite sequence of the Reidemeister moves together
with the extended Reidemeister moves R4 and R5 shown in Figure 2; see [Kauffman
1989].
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Any knot or link can be assigned an orientation, and there are two possible
orientations for a knot and link component. The crossings of an oriented knot will
have designated arrows due to the assigned orientation of the knot, and there are
two types of crossings, namely positive and negative.

negative crossing positive crossing

Singular links may also be oriented or unoriented. If a singular link is oriented,
then the singular crossings (or four-valent vertices) are crossing-type oriented,
which is imposed by the fact that a singular link is an immersion in R3 of oriented
circles with transversal double points.

In practice, it is tedious to work with Reidemeister moves to determine whether
two diagrams represent equivalent knots (or singular links). Instead, one can work
with an invariant for knots (or singular links), which is a quantity associated
to the knot (or singular link) and is independent of the diagram of the knot (or
singular link). Equivalently, if K1 and K2 are equivalent knots (or singular links),
then Inv(K1) = Inv(K2) for any invariant Inv. These invariants can be numbers,
polynomials, groups, or more complex objects, such as homology theories. In this
paper we are concerned with polynomial invariants.

The Kauffman bracket [1987] is a polynomial invariant for unoriented knots and
links and is defined via a skein relation. A skein relation (as in (1-1)) is an identity
involving knot diagrams (or singular link diagrams) that are the same except in a
small neighborhood where they differ in the way indicated. The Kauffman bracket
of a knot diagram K is denoted by 〈K 〉, and is determined by〈 〉

= A
〈 〉

+ A−1
〈 〉

, (1-1)

〈 〉
= 1,

〈
K ∪

〉
= (−A2

− A−2) 〈K 〉. (1-2)

It is an enjoyable exercise to show that if two knot diagrams D1 and D2 differ by
a Reidemeister move R2 or R3, then 〈D1〉 = 〈D2〉. In other words, the Kauffman
bracket is a regular isotopy invariant for knots. Note that if an invariant upholds
the three Reidemeister moves it is called an ambient isotopy invariant for knots.

It is not hard to check that the Kauffman bracket has the following behavior with
respect to the Reidemeister move R1:〈 〉

= −A3
〈 〉

and
〈 〉

= −A−3
〈 〉

.
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By the skein relation defining the Kauffman bracket, every crossing in a knot
diagram L is locally replaced with one of the two possible smoothings,

or ,

which will result in a finite number of disjoint circles, called a state of K. Note
that if K contains n crossings, then there are 2n states associated with K. The
Kauffman bracket polynomial is thus a state model polynomial. In this state model,
the polynomial 〈K 〉 ∈ Z[A, A−1

] is given by

〈K 〉 =
∑
σ

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1,

where the sum is taken over all states σ of the knot diagram K, and where

α(σ) is the number of crossings that have been replaced by ,

β(σ ) is the number of crossings that have been replaced by ,

and γ (σ ) is the number of disjoint loops in the state σ. Sometimes, α(σ) and
β(σ) are referred to as the numbers of the A-smoothings and A−1-smoothings,
respectively.

One can use the Kauffman bracket polynomial to obtain an ambient isotopy
invariant for oriented knots by counteracting the behavior of 〈 · 〉 with respect to
the move R1. This is done by defining the Kauffman X polynomial of an oriented
knot K given by

X (K ) := (−A3)−w(K )〈K 〉,

wherew(K ) denotes the writhe of the oriented knot diagram K, given by the number
of positive crossings minus the number of negative crossings, and where 〈K 〉 is the
Kauffman bracket of the unoriented knot diagram obtained from K. Since w(K )
and 〈K 〉 are invariant under the moves R2 and R3, it follows that X (K ) is invariant
under all three Reidemeister moves. Therefore, the polynomial X is an ambient
isotopy invariant for oriented knots.

It is well-known that any polynomial invariant for classical links extends (in
various ways) to an invariant of rigid-vertex isotopy for knotted four-valent graphs;
see, for example, [Jonish and Millett 1991; Kauffman 1989; 2005; Kauffman
and Magarshak 1995; Kauffman and Mishra 2013; Kauffman and Vogel 1992].
(Recall that a singular link can be regarded as a knotted four-valent graph with
rigid vertices.) In particular, Kauffman and Vogel [1992] showed that if I(K ) is a
regular isotopy polynomial invariant for unoriented knots and links, then imposing
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the skein relation

I
( )

= x I
( )

+ x I
( )

+ y I
( )

+ y I
( )

,

where x and y are commuting algebraic variables, yields a polynomial invariant,
I(G), of rigid-vertex regular isotopy for unoriented knotted graphs G (equivalently,
it yields a regular isotopy invariant for unoriented singular links). This method
certainly applies to the Kauffman bracket, and we start this paper by borrowing this
approach with x = 1 and y = 0.

We remind the reader that one can also consider a regular isotopy invariant for
oriented knots and links and extend it to oriented singular links by applying three
local replacements at each singular crossings (that is, at each oriented vertex) and
then taking a linear combination of the corresponding replacements. The three
replacements are the positive crossing, the negative crossing, and the oriented
smoothing at the vertex. For more details on this we refer the reader to [Kauffman
1989; Kauffman and Vogel 1992]. The work in [Kauffman and Magarshak 1995]
contains possible applications to molecular biology of invariants of knotted rigid-
vertex graphs. More recently, Kauffman and Mishra [2013] introduced a new
method for constructing invariants of rigid vertex graph embeddings by using
nonlocal combinatorial information that is available at each vertex. In particular,
this paper uses the notions of Gauss code and parity for rigid-vertex graphs, and
thus it is fundamentally different from the method mentioned earlier.

In this paper we work with a variant of the skein relation above to arrive at a
version of the Kauffman bracket for singular links. The main scope of this paper is
to show that the resulting polynomial for singular links can be defined in at least two
more ways. By providing three approaches to the same polynomial invariant for sin-
gular links, we hope that a young researcher reading our paper will find a great deal of
information which is educational and interesting, as it reveals beautiful connections
between knot theory, combinatorics, abstract algebra, and statistical mechanics.

In Section 2 we give a detailed proof that using x = 1 and y = 0 in the above
skein relation with I(K )= 〈K 〉 yields an invariant for unoriented singular links. We
refer to the resulting polynomial as the extended Kauffman bracket. In Section 3 we
provide some properties of the extended Kauffman bracket and its associated ambient
isotopy invariant for oriented singular links. In Section 4 we define a representation
of the singular braid monoid into the Temperley–Lieb algebra, and use it to define a
bracket polynomial for singular braids and ultimately recover the extended Kauffman
bracket for singular links. Finally, in Section 5 we provide another method for
constructing our extended Kauffman bracket; this method relies on a solution to the
Yang–Baxter equation. By interpreting singular link diagrams as abstract tensor dia-
grams, we arrive at a Yang–Baxter state model for the extended Kauffman bracket.
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2. An invariant for singular links

In this section, we extend the Kauffman bracket to singular links. For our purpose,
we need to associate a skein relation to a singular crossing, and then check that the
resulting polynomial is invariant under the extended Reidemeister moves R4 and R5.

Given a singular link diagram L , we resolve each singular crossing in L using
the skein relation 〈 〉

=

〈 〉
+

〈 〉
. (2-1)

This process results in writing 〈L〉 as a Z[A, A−1
]-linear combination of bracket

evaluations of knots and links, which are then evaluated using the rules in (1-1)
and (1-2). This yields a Laurent polynomial 〈L〉 ∈ Z[A, A−1

].
Note that 〈L〉 is already invariant under the Reidemeister moves R2 and R3,

since 〈 · 〉 is a regular isotopy invariant for knots. Thus, we only need to check that
〈L〉 is invariant under the moves R4 and R5. We show this below, where along the
way, we use the fact that 〈 · 〉 is invariant under the move R2 and the behavior of
〈 · 〉 with respect to the move R1:〈 〉

=

〈 〉
+

〈 〉
=

〈 〉
+

〈 〉
=

〈 〉
.

In addition,〈 〉
=

〈 〉
+

〈 〉

=

〈 〉
+ (−A3)(−A−3)

〈 〉
=

〈 〉
.

It follows that 〈L〉 is a regular isotopy polynomial invariant for singular links, which
we call the extended Kauffman bracket. We have proved the statement below.

Theorem 1. Let L be a singular link diagram and 〈L〉 ∈ Z[A, A−1
] be the polyno-

mial given by the following rules:〈 〉
=

〈 〉
+

〈 〉
,

〈 〉
= A

〈 〉
+ A−1

〈 〉
,〈 〉

= 1,
〈
K ∪

〉
= (−A2

− A−2) 〈K 〉.
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Then 〈L〉 is a regular isotopy invariant for L and satisfies〈 〉
=−A3

〈 〉
and

〈 〉
=−A−3

〈 〉
.

We can define the writhe of an oriented singular link diagram in a similar manner
as for the case of oriented knot diagrams. That is, the writhe w(L) of an oriented
singular link diagram L is given by the number of positive crossings minus the
number of negative crossings. Note that w(L) is independent of the number of
singular crossings in L .

Theorem 2. Let L be an oriented singular link diagram, and let X (L) be the
Laurent polynomial defined by

X (L) := (−A3)−w(L)〈L〉

where 〈L〉 is the extended Kauffman bracket of the unoriented singular link diagram
represented by L. Then X (L) is an ambient isotopy invariant for L.

3. Some properties of the extended Kauffman bracket

The goal of this section is to study the behavior of the extended Kauffman bracket
polynomial and the polynomial X for singular links with respect to disjoint unions,
connected sums, and mirror images of singular links.

For this purpose, we observe first that the extended Kauffman bracket of a
singular link can also be defined using a state-sum formula. Let L be a singular
link diagram with n classical crossings and m singular crossings. By resolving the
classical and singular crossings in L using the first two skein relations in Theorem 1,
we write 〈L〉 as a Z[A, A−1

]-linear combination of bracket evaluations of the states
associated with L . Note that L has 2n+m states and that each state is a disjoint
union of closed loops. Then

〈L〉 =
∑
σ

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1,

where the sum is taken over all states σ associated with the singular link diagram L ,
where γ (σ ) is the number of disjoint loops in a state σ , and where α(σ) and β(σ)
are, respectively, the numbers of A-smoothings and A−1-smoothings in the state σ .
(Observe that these smoothings correspond to classical crossings in L .)

Proposition 3. Let L1 ∪ L2 be the disjoint union of singular link diagrams L1

and L2. Then

〈L1 ∪ L2〉 = (−A2
− A−2)〈L1〉〈L2〉.
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L1 L2 L1 # L2

Figure 3. A pair of disjoint links (left) and their connected sum (right).

Proof. Let L = L1 ∪ L2 and let S be the set of all of the states corresponding to L .
We have

〈L〉 = 〈L1 ∪ L2〉 =
∑
σ∈S

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1.

Let S1 and S2 represent the set of all of the states associated with L1 and L2,
respectively. Observe that the disjoint union of two singular links does not introduce
any new crossings and that there is a canonical one-to-one correspondence between
S1×S2 and S. For σ1∈ S1, σ2∈ S2, denote by σ ∈ S the state of L which corresponds
to (σ1, σ2). Then

α(σ)= α(σ1)+α(σ2), β(σ )= β(σ1)+β(σ2), γ (σ )= γ (σ1)+ γ (σ2).

Therefore,

〈L〉 =
∑
σ∈S

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1

=

∑
(σ1,σ2)∈S1×S2

Aα(σ1)+α(σ2)−β(σ1)−β(σ2)(−A2
− A−2)γ (σ1)+γ (σ2)−1

=

∑
(σ1,σ2)∈S1×S2

Aα(σ1)−β(σ1)(−A2
− A−2)γ (σ1)−1 Aα(σ2)−β(σ2)(−A2

− A−2)γ (σ2)−1+1

= 〈L1〉〈L2〉(−A2
− A−2). �

Corollary 4. Let L1 ∪ L2 be the disjoint union of oriented singular link diagrams
L1 and L2. Then,

X (L1 ∪ L2)= (−A2
− A−2)X (L1)X (L2).

Proof. Note that w(L1 ∪ L2)= w(L1)+w(L2). Combining this and making use
of Proposition 3,

X (L1 ∪ L2)= (−A3)−w(L1∪L2)〈L1 ∪ L2〉

= (−A3)−w(L1)〈L1〉 · (−A3)w(L2)〈L2〉 · (−A2
− A−2)

= (−A2
− A−2)X (L1)X (L2). �

A singular link diagram L is a connected sum, denoted by L = L1 # L2, if it is dis-
played as two disjoint singular link diagrams L1 and L2 connected by parallel embed-
ded arcs, up to planar isotopy. Figure 3 shows a connected sum of oriented diagrams.
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Proposition 5. Let L be a singular link diagram with the property that L = L1 # L2

for some singular link diagrams L1 and L2. Then the polynomial 〈L〉 can be
computed as

〈L〉 = 〈L1〉〈L2〉.

Proof. For every state σ of L , there is a pair of states σ1 and σ2 of L1 and L2,
respectively, such that σ = σ1 # σ2. Therefore, γ (σ )= γ (σ1)+ γ (σ2)− 1, while

α(σ)= α(σ1)+α(σ2) and β(σ)= β(σ1)+β(σ2).

Using a similar approach to that in the proof of Proposition 3, we have

〈L1#L2〉 =
∑
σ

Aα(σ)−β(σ)(−A2
−A−2)γ (σ )−1

=

∑
σ1

Aα(σ1)−β(σ1)(−A2
−A−2)γ (σ1)−1

∑
σ2

Aα(σ2)−β(σ2)(−A2
−A−2)γ (σ2)−1

= 〈L1〉〈L2〉. �

Corollary 6. Let L be an oriented singular link diagram such that L = L1 # L2 for
some oriented singular link diagrams L1 and L2. Then,

X (L)= X (L1)X (L2).

Proof. The proof is similar to that of Corollary 4, and thus it is omitted. �

The mirror image of a singular link with diagram L is the singular link whose
diagram L∗ is obtained from L by changing the crossing type for all classical
crossings in L . A singular link is achiral if it is ambient isotopic to its mirror image
and chiral otherwise.

Proposition 7. Let L∗ denote the mirror image of a singular link diagram L. Then
the extended Kauffman bracket of L∗ is obtained from the extended Kauffman
bracket of L by interchanging A and A−1. That is,

〈L∗〉(A)= 〈L〉(A−1).

Proof. According to the state-sum formula defining the extended Kauffman bracket
polynomial, it is easy to see that reversing the classical crossings in L replaces an
A-smoothing with an A−1-smoothing and vice versa. Hence, the statement follows
at once. �

Corollary 8. If 〈L〉(A) 6= 〈L〉(A−1), then L is a chiral singular link.

4. A representation of the singular braid monoid

In this section we provide a different approach to the extended Kauffman bracket
for singular links, via a representation of the singular braid monoid.
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4.1. The singular braid monoid. Let n be a positive integer, n ≥ 2. Recall that
the singular braid monoid on n strands, denoted SBn , is the monoid generated by
elements σi , σ

−1
i , and τi , for 1≤ i ≤ n− 1, where

σi =

i i+1

· · · · · · , σ−1
i =

i i+1

· · · · · · , τi =

i i+1

· · · · · · ,

and satisfying the following relations, under the operation given by vertical con-
catenation of diagrams:

(1) gi hj = hj gi for all gi , hi ∈ {σi , σ
−1
i , τi } and 1≤ i, j ≤ n−1 with |i− j |> 1,

(2) σiσ
−1
i = 1n = σ

−1
i σi for all 1≤ i ≤ n− 1,

(3) σiσjσi = σjσiσj for all 1≤ i, j ≤ n− 1 with |i − j | = 1

(4) τiσjσi = σjσiτj for all 1≤ i, j ≤ n− 1 with |i − j | = 1,

(5) σiτi = τiσi for all 1≤ i ≤ n− 1.

Note that the identity element, denoted 1n , is represented by n vertical strands
with no crossings. The geometric representations of the first three relations is given
below (observe that relations (2) and (3) mimic the Reidemeister moves R2 and R3,
respectively):

(1)
⇐⇒ ,

(2)
⇐⇒ ,

(3)
⇐⇒ .

These three relations (where in (1) we exclude the relations involving the genera-
tors τi ) are exactly the relations in the well-known Artin braid group.

In addition, note that relations (4) and (5) defining the singular braid monoid
SBn mimic, respectively, the moves R4 and R5 for singular link diagrams:

(4)
⇐⇒ ,

(5)
⇐⇒ .



THREE APPROACHES TO A BRACKET POLYNOMIAL FOR SINGULAR LINKS 207

Due to Joan Birman [1993], we know that every singular link can be expressed as
the closure of a singular braid, via ambient isotopy. Figure 4 displays the closure β
of a braid β.

There are many different ways to represent a singular link as a closed singular
braid. Bernd Gemein [1997] showed that two singular braids have isotopic closures
if and only if there exists a finite sequence of singular braid relations and/or extended
Markov moves (detailed below) transforming one singular braid into the other.

Let w ∈ SBn be a braid on n strands and let w∗ be the natural inclusion of w
into SBn+1 obtained by adding an (n+1)-st strand to w. Then the following are
called the extended Markov moves:

(M1) (a) τiw ∼ wτi for all 1≤ i ≤ n− 1,
(b) σiw ∼ wσi for all 1≤ i ≤ n− 1,

(M2) w∗σn ∼ w ∼ w
∗σ−1

n .

Figure 5 shows isotopic closed braids that differ by an extended Markov move.
Therefore, the works [Birman 1993; Gemein 1997] allow us to relate the theory

of singular links with the theory of the singular braid monoid. In particular, we can
study the extended Kauffman bracket via the singular braid monoid.

β =

Figure 4. The closure of a braid.

w

M1(a)
⇐⇒ w , w

M1(b)
⇐⇒ w ,

w
M2
⇐⇒ w .

Figure 5. Equivalent singular links under extended Markov moves.
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4.2. The Temperley–Lieb algebra. The Temperley–Lieb algebra played a central
role in the discovery of the Jones polynomial [1985], and in the subsequent de-
velopments relating knot theory, topological quantum field theory, and statistical
mechanics [Kauffman 2001]. Originally presented in terms of abstract generators
and relations, it was combinatorially described by Kauffman as a planar diagram
algebra in terms of his bracket polynomial for unoriented knots.

For each integer n≥ 2, the n-strand Temperley–Lieb algebra, denoted TLn , is the
unital, associative algebra over the ring Z[A, A−1

] generated by ui , for 1≤ i ≤ n−1,
where

ui =

i i+1

· · · · · · ,

along with the identity diagram, denoted 1n , and subject to the following relations
(where multiplication is given by vertical concatenation of diagrams):

• u2
i = (−A2

− A−2)ui for all 1≤ i ≤ n− 1:

i i+1

· · · · · · = (−A2
− A−2)

i i+1

· · · · · · ,

• ui uj ui = ui for all 1≤ i, j ≤ n− 1 with |i − j | = 1:

· · · · · · = · · · · · · ,

• ui uj = uj ui for all 1≤ i, j ≤ n− 1 with |i − j |> 1.

Observe that a generic element in TLn is a formal Z[A, A−1
]-linear combination of

n-strand diagrams formed by multiplications of the generators ui and the identity 1n .
Define a trace function tr :TLn→Z[A, A−1

] given by tr(D)= (−A2
− A−2)c−1,

where c is the number of disjoint loops in the diagram D obtained by closing the
diagram D ∈ TLn in the same way that we close a braid or a singular braid. Then
extend tr by linearity to all elements of TLn .

It is easy to see that the function tr satisfies

tr(xy)= tr(x) tr(y) for all x, y ∈ TLn . (4-1)
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4.3. A representation of SBn. We observe that for any given homomorphism
ρ : SBn → TLn , we can compose it with the trace function tr to obtain, for any
singular braid element w ∈ SBn , a polynomial (tr ◦ρ)(w) ∈ Z[A, A−1

].
Inspired by the skein relations defining the extended Kauffman bracket for

singular links, we define a homomorphism ρ : SBn→ TLn as follows:

τi
ρ
7−→ ui + 1n,

σi
ρ
7−→ A−1ui + A1n,

σ−1
i

ρ
7−→ Aui + A−11n.

We can think of ρ as a function that resolves the crossings of the singular braid,
since each σi , σ

−1
i , and τi represents a crossing of the strands in the singular braid.

Theorem 9. The map ρ is a representation of the singular braid monoid SBn into
the Temperley–Lieb algebra TLn . That is, ρ preserves the singular braid monoid
relations.

Proof. First, observe that ρ preserves the commuting relations in SBn , since the
generators for the algebra TLn satisfy similar commuting relations. Note also that
it must be the case that ρ preserves the relations (2)–(5) in SBn , since the extended
Kauffman bracket is invariant under the Reidemeister moves R2 and R3, as well
as under the moves R4 and R5. However, we will check two of the singular braid
monoid relations and leave the other relations as an exercise.

We start off by verifying that ρ(τiσjσi )= ρ(σjσiτj ). First, observe that

ρ(τiσjσi )= ρ(τi )ρ(σj )ρ(σi )

= (ui + 1n)(A−1uj + A1n)(A−1ui + A1n),

ρ(σjσiτj )= ρ(σj )ρ(σi )ρ(τj )

= (A−1uj + A1n)(A−1ui + A1n)(uj + 1n).

Employing the relations in TLn , we have

(ui + 1n)(A−1uj + A1n)(A−1ui + A1n)

= A2ui + u2
i + A−2ui uj ui + ui uj + A−2uj ui + A21n + ui + uj

= A2ui + (−A2
− A−2)ui + A−2ui + ui uj + A−2uj ui + A21n + ui + uj

= ui uj + A−2uj ui + A21n + ui + uj

= A2uj + (−A2
− A−2)uj + A−2uj + ui uj + A−2uj ui + A21n + ui + uj

= A2uj + u2
j + A−2uj ui uj + ui uj + A−2uj ui + A21n + ui + uj

= (A−1uj + A1n)(A−1ui + A1n)(uj + 1n).
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It follows that the fourth relation defining SBn is preserved by the map ρ. Next we
show that ρ(τiσi )= ρ(σiτi ). Using basic computations, we obtain

ρ(τiσi )= ρ(τi )ρ(σi )= (ui + 1n)(A−1ui + A1n)

= A−1u2
i + A−1ui + Aui + A1n

= (A−1ui + A1n)(−A−3)(ui + 1n)

= ρ(σi )ρ(τi )= ρ(σiτi ).

This shows that ρ also preserves the fifth relation defining SBn . �

Remark 10. For any a, b∈Z[A, A−1
], the homomorphism f :SBn→TLn given by

τi
f
7→ aui + b1n and σ±1

i
f
7→ A∓1ui + A±11n

also defines a representation of the singular braid monoid SBn into the Temperley–
Lieb algebra TLn . The proof that f preserves the singular braid monoid relations
follows verbatim as that for the map ρ.

4.4. The bracket polynomial of a singular braid. In this section, we show how
to recover the extended Kauffman bracket of singular links by making use of the
map ρ and the trace function tr.

Let β ∈ SBn be a singular braid on n strands and denote by wr(β) the writhe
of β, defined as the sum of the number of generators of type σi minus the sum of
the generators of type σ−1

j in the expression of β.
Define the function 〈 · 〉 : SBn→ Z[A, A−1

], given by the formula

〈β〉 = (−A3)−wr(β)(tr ◦ρ)(β).

We call 〈β〉 the bracket polynomial of the singular braid β.

Proposition 11. The bracket polynomial of a singular braid is well-defined on
singular braids, and is invariant under the extended Markov moves. Moreover, if L
is a singular link diagram in braid form such that L = β for some β ∈ SBn , then

〈β〉 = (−A3)−wr(β)
〈β〉 = (−A3)−wr(β)

〈L〉.

Proof. Since ρ is a representation of SBn and the writhe of the singular braid is
invariant under the relations in SBn , it follows that the bracket polynomial of a
singular braid is well-defined on singular braids. The trace function tr satisfies
(4-1), and thus

(tr ◦ρ)(τiw)= tr(ρ(τi )ρ(w))= tr(ρ(w)ρ(τi ))= (tr ◦ρ)(wτi ),

and similarly,
(tr ◦ρ)(σiw)= (tr ◦ρ)(wσi )
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for all τi , σi , w ∈ SBn . Thus 〈 · 〉 is invariant under the extended Markov moves of
type (M1). Moreover, the coefficient (−A3)−wr(β) in the expression of 〈 · 〉 cancels
the effect of a Markov move of type (M2):

〈w∗σn〉 = (−A3)−wr(β)−1(tr ◦ρ)(w∗σn)= (−A3)−wr(β)(tr ◦ρ)(w)= 〈w〉.

Finally, due to [Birman 1993; Gemein 1997] and the definitions for the maps ρ and
tr, the second part of the statement follows immediately. �

5. The Yang–Baxter equation and the extended Kauffman bracket

We will show now how to arrive at the extended Kauffman bracket by interpreting
singular link diagrams as abstract tensor diagrams and employing a solution to the
Yang–Baxter equation.

5.1. A Yang–Baxter model for the extended Kauffman bracket. Our approach
here is an extension from classical knots to singular links of the Yang–Baxter state
model for the Kauffman bracket, as introduced in [Kauffman 2001].

A singular link diagram D can be decomposed with respect to a height function
into minima (creations), maxima (annihilations) and crossings (interactions), as
illustrated in Figure 6. That is, the diagram D is constructed from interconnected
maxima, minima, and crossings (there might be some curves with no critical points
vis-a-vis the height function), and we want to associate to them square matrices
with entries in the ring Z[A, A−1

]. We start by labeling the edges of the diagram
D with spins from the index set I = {1, 2}.

We will denote the following portions of the link diagram as follows:

Ma,b ←→ a b
, Ma,b

←→
a b

,

Ra,b
c,d ←→

a b

c d
, Ra,b

c,d ←→
a b

c d
,

Qa,b
c,d ←→

a b

c d
, δa

b ←→

a

b
,

where a, b, c, d ∈ I and

δa
b =

{
1, if a = b,
0, if a 6= b.

Using these conventions, we wish to associate to any singular link diagram D
a polynomial τ(D) ∈ Z[A, A−1

] so that τ(D) recovers the extended Kauffman
bracket 〈D〉. The expression τ(D) is obtained by taking the sum over all internal
labels (spins on the arcs of the diagram D) of the products of symbols representing
maxima, minima, and crossings (classical and singular).
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a b c d

e f g h

i j k l
m n

Figure 6. An abstract tensor singular link diagram.

For example, for the diagram D in Figure 6, τ(D) is given by the following sum
of products of abstract tensor symbols:

τ(D)=
∑

a,b,...,n∈I

Ma,d Mb,c Ra,b
e, f Re, f

i, j M i,m Q j,k
m,n Mn,l Rg,h

k,l Qc,d
g,h,

where the sum is over all possible choices of indices (spins from I ) in the expression.
Note that the order of the factors in a product of abstract tensors does not matter,
since the abstract tensors are elements of the commutative ring Z[A, A−1

].
We will use the following notational conventions:

X = (X)a,bc,d =


X1,1

1,1 X1,1
1,2 X1,1

2,1 X1,1
2,2

X1,2
1,1 X1,2

1,2 X1,2
2,1 X1,2

2,2

X2,1
1,1 X2,1

1,2 X2,1
2,1 X2,1

2,2

X2,2
1,1 X2,2

1,2 X2,2
2,1 X2,2

2,2


and

(B)a,b = (B)a,b = (B)ab =
[

B1,1 B1,2

B2,1 B2,2

]
.

Observe that ∑
c,d∈I

Xa,b
c,d Y c,d

e, f = (XY )a,be, f for all a, b, e, f ∈ I.

This can be easily seen by rewriting Xa,b
c,d as X i

j , where i = b + 2(a − 1) and
j = d + 2(c− 1), since

4∑
j=1

X i
j Y j

k = (XY )ik .

To arrive at the bracket polynomial, the matrices corresponding to maxima and
minima need to satisfy∑

a,b∈I

Ma,b Ma,b
←→ ←→−A2

− A−2.
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By imposing Ma,b = Ma,b for a, b ∈ I, the above equality becomes∑
a,b∈I

(Ma,b)
2
=−A2

− A−2
=

∑
a,b∈I

(Ma,b)2. (5-1)

Since we want τ(D) to be a topological invariant, pairs of maxima and minima
should cancel as shown:

a

i

b

∼

a

b

∼

a

i

b

Therefore, we need that∑
i∈I

Ma,i Mi,b = δ
a
b =

∑
i∈I

Mb,i M i,a

or, equivalently, ∑
i∈I

Ma,i Mi,b = δ
a
b =

∑
i∈I

Mb,i Mi,a. (5-2)

It follows that the matrix M = (Ma,b) should be its own inverse. The following
matrix satisfies (5-1) and (5-2):

M =
[

0 i A
−i A−1 0

]
, where i2

=−1.

We wish τ(D) to satisfy the Kauffman bracket skein relation

τ

( )
= Aτ

( )
+ A−1τ

( )
and thus the R-matrix should satisfy

Ra,b
c,d ←→

a b

c d
= A

a b

c d
+ A−1

a b

c d
.

Therefore,

Ra,b
c,d = Aδa

c δ
b
d + A−1 Ma,b Mc,d for all a, b, c, d ∈ I.

Note that the matrix U = (U a,b
c,d ) := (M

a,b Mc,d), where

U a,b
c,d =

a b

c d
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has the following expression:

U =


M1,1 M1,1 M1,1 M1,2 M1,1 M2,1 M1,1 M2,2

M1,2 M1,1 M1,2 M1,2 M1,2 M2,1 M1,2 M2,2

M2,1 M1,1 M2,1 M1,2 M2,1 M2,1 M2,1 M2,2

M2,2 M1,1 M2,2 M1,2 M2,2 M2,1 M2,2 M2,2

=


0 0 0 0
0 −A2 1 0
0 1 −A−2 0
0 0 0 0

.
Moreover, observe that

(δa
c δ

b
d)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= [1 0
0 1

]
⊗

[
1 0
0 1

]
= (δa

c )⊗ (δ
b
d),

where ⊗ represents the Kronecker product of matrices.
Furthermore, the R-matrix should satisfy

Ra,b
c,d ←→

a b

c d
= A

a b

c d
+ A−1

a b

c d
and thus

Ra,b
c,d = AMa,b Mc,d + A−1δa

c δ
b
d for all a, b, c, d ∈ I.

We arrive at the following matrices associated with classical crossings:

R =


A 0 0 0
0 0 A−1 0
0 A−1 A−A−3 0
0 0 0 A

 and R =


A−1 0 0 0

0 A−1
−A3 A 0

0 A 0 0
0 0 0 A−1

 .
Finally, we wish τ(D) to also satisfy

τ

( )
= τ

( )
+ τ

( )
which forces the matrix Q associated with a singular crossing to be given by

Qa,b
c,d = δ

a
c δ

b
d +Ma,b Mc,d for all a, b, c, d ∈ I.

Equivalently,

Q = (Qa,b
c,d )=


1 0 0 0
0 1−A2 1 0
0 1 1−A−2 0
0 0 0 1

.
Now that we have defined τ(D) for a given singular link diagram D, we need

to make sure that it is a regular isotopy invariant for D. That is, we need to verify
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that if D1 and D2 are singular link diagrams that differ by a Reidemeister move R2
or R3, or by an extended Reidemeister move R4 or R5, then τ(D1)= τ(D2).

An easy check shows that matrices R and R are inverses of each other, since
R R = I4×4 = R R. Equivalently,

∑
i,i∈I

Ra,b
i, j Ri, j

c,d ←→ ∼ ←→ δa
c δ

b
d ,

∑
i,i∈I

Ra,b
i, j Ri, j

c,d ←→ ∼ ←→ δa
c δ

b
d .

Hence, τ(D) is invariant under the Reidemeister move R2. Moreover, we have that

∑
i, j,k∈I

Ra,b
i, j R j,c

k, f Ri,k
d,e ←→ ∼ ←→

∑
i, j,k∈I

Rb,c
i, j Ra,i

d,k Rk, j
e, f .

The latter relation is the Yang–Baxter equation (YBE):∑
i, j,k∈I

Ra,b
i, j R j,c

k, f Ri,k
d,e =

∑
i, j,k∈I

Rb,c
i, j Ra,i

d,k Rk, j
e, f ,

which can be rewritten as

(R⊗ I )(I ⊗ R)(R⊗ I )= (I ⊗ R)(R⊗ I )(I ⊗ R).

That is, the R-matrix as defined above is a solution of the YBE. Similarly, one can
easily verify that the matrix R is a solution of the YBE. It follows that τ(D) is
invariant under the Reidemeister move R3.

Furthermore, it is not hard to check that the following holds:

∑
i, j,k∈I

Qa,b
i, j R j,c

k, f Ri,k
d,e ←→

•

∼

•

←→

∑
i, j,k∈I

Rb,c
i, j Ra,i

d,k Qk, j
e, f ,

or, equivalently,

(Q⊗ I )(I ⊗ R)(R⊗ I )= (I ⊗ R)(R⊗ I )(I ⊗ Q).

A similar relation holds for R being replaced by R. Hence, τ(D) is invariant under
the extended Reidemeister move R4.

Finally, observe that RQ = Q R and RQ = Q R, or equivalently,

RQ R = Q and RQ R = Q.

Therefore, τ(D) is invariant under the extended Reidemeister move R5.
According to the above discussion, we have proved the following statement.
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Theorem 12. The polynomial τ(D) ∈ Z[A, a−1
] is an invariant of regular isotopy

for singular links.

Remark 13. We note that τ(D) is the unnormalized extended Kauffman bracket.
That is,

τ(D)= (−A2
− A−2)〈D〉,

where 〈D〉 is the extended Kauffman bracket introduced in Section 2.

5.2. Yet another representation of SBn. We can use the matrices R, R, and Q to
define a representation of the singular braid monoid SBn into a matrix algebra over
the ring Z[A, A−1

]. Observe first that we can regard a generator for SBn as an
abstract tensor diagram. For example,

σi = · · · · · · ←→ δ
a1
b1
· · · Rai ,ai+1

bi ,bi+1
· · · δ

an
bn
∈ M2n×2n (Z[A, A−1

]).

Inspired by this, we define a homomorphism 1 : SBn→ M2n×2n (Z[A, A−1
]) given

by
σi 7→ I⊗(i−1)

⊗ R⊗ I⊗(n−i−1),

σ−1
i 7→ I⊗(i−1)

⊗ R⊗ I⊗(n−i−1),

τi 7→ I⊗(i−1)
⊗ Q⊗ I⊗(n−i−1).

Since the polynomial τ(D) is a regular isotopy invariant for singular links, it
follows that the map 1 preserves the singular braid monoid relations. Therefore,
the following statement holds.

Proposition 14. The mapping 1 is a representation of the singular braid monoid
SBn into the matrix algebra M2n×2n (Z[A, A−1

]).

The mapping 1 provides yet another method for obtaining the extended bracket
polynomial of a singular link. Let L be a singular link diagram in braid form and
let β ∈ SBn be the singular braid whose closure is L . That is, L = β:

L = β .

When closing a braid, each braid strand contributes a diagram and an associated
matrix of the form

ηa
b =

a

b
←→

∑
c∈I

Ma,c Mb,c, where a, b ∈ I.
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The matrix η = (ηa
b) is

η =

[
M1,1 M1,1

+M1,2 M1,2 M1,1 M2,1
+M1,2 M2,2

M2,1 M1,1
+M2,2 M1,2 M2,1 M2,1

+M2,2 M2,2

]
=

[
−A2 0

0 −A−2

]
.

Observe that Trace(η), the trace of the matrix η, is −A2
− A−2. Moreover,

τ(L)= Trace(η⊗n1(β)),

whenever β ∈ SBn and β = L .

Acknowledgements

This research was completed during the 2013 Fresno State Mathematics REU
Program, supported by NSF grant #DMS-1156273. The authors would also like
to thank the referee for a careful reading of the paper and valuable comments and
suggestions.

References

[Adams 2004] C. C. Adams, The knot book: an elementary introduction to the mathematical theory
of knots, 2nd ed., American Mathematical Society, Providence, RI, 2004. MR Zbl

[Birman 1993] J. S. Birman, “New points of view in knot theory”, Bull. Amer. Math. Soc. (N.S.) 28:2
(1993), 253–287. MR Zbl

[Gemein 1997] B. Gemein, “Singular braids and Markov’s theorem”, J. Knot Theory Ramifications
6:4 (1997), 441–454. MR Zbl

[Jones 1985] V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bull.
Amer. Math. Soc. (N.S.) 12:1 (1985), 103–111. MR Zbl

[Jonish and Millett 1991] D. Jonish and K. C. Millett, “Isotopy invariants of graphs”, Trans. Amer.
Math. Soc. 327:2 (1991), 655–702. MR Zbl

[Kauffman 1987] L. H. Kauffman, “State models and the Jones polynomial”, Topology 26:3 (1987),
395–407. MR Zbl

[Kauffman 1989] L. H. Kauffman, “Invariants of graphs in three-space”, Trans. Amer. Math. Soc.
311:2 (1989), 697–710. MR Zbl

[Kauffman 2001] L. H. Kauffman, Knots and physics, 3rd ed., Series on Knots and Everything 1,
World Scientific, River Edge, NJ, 2001. MR Zbl

[Kauffman 2005] L. H. Kauffman, “Knot diagrammatics”, pp. 233–318 in Handbook of knot theory,
edited by W. Menasco and M. Thistlethwaite, Elsevier, Amsterdam, 2005. MR Zbl

[Kauffman and Magarshak 1995] L. H. Kauffman and Y. B. Magarshak, “Vassiliev knot invariants
and the structure of RNA folding”, pp. 343–394 in Knots and applications, edited by L. H. Kauffman,
Series on Knots and Everything 6, World Scientific, River Edge, NJ, 1995. MR Zbl

[Kauffman and Mishra 2013] L. H. Kauffman and R. Mishra, “Nodal parity invariants of knotted
rigid vertex graphs”, J. Knot Theory Ramifications 22:4 (2013), Article ID #1340002. MR Zbl

[Kauffman and Vogel 1992] L. H. Kauffman and P. Vogel, “Link polynomials and a graphical
calculus”, J. Knot Theory Ramifications 1:1 (1992), 59–104. MR Zbl

http://bookstore.ams.org/knot
http://bookstore.ams.org/knot
http://msp.org/idx/mr/2079925
http://msp.org/idx/zbl/1065.57003
http://dx.doi.org/10.1090/S0273-0979-1993-00389-6
http://msp.org/idx/mr/1191478
http://msp.org/idx/zbl/0785.57001
http://dx.doi.org/10.1142/S0218216597000297
http://msp.org/idx/mr/1466593
http://msp.org/idx/zbl/0885.57005
http://dx.doi.org/10.1090/S0273-0979-1985-15304-2
http://msp.org/idx/mr/766964
http://msp.org/idx/zbl/0564.57006
http://dx.doi.org/10.1090/S0002-9947-1991-1062189-2
http://msp.org/idx/mr/1062189
http://msp.org/idx/zbl/0753.57005
http://dx.doi.org/10.1016/0040-9383(87)90009-7
http://msp.org/idx/mr/899057
http://msp.org/idx/zbl/0622.57004
http://dx.doi.org/10.1090/S0002-9947-1989-0946218-0
http://msp.org/idx/mr/946218
http://msp.org/idx/zbl/0672.57008
http://dx.doi.org/10.1142/9789812384836
http://msp.org/idx/mr/1858113
http://msp.org/idx/zbl/1057.57001
http://dx.doi.org/10.1016/B978-044451452-3/50007-1
http://msp.org/idx/mr/2179264
http://msp.org/idx/zbl/1098.57005
http://dx.doi.org/10.1142/9789812796189_0009
http://dx.doi.org/10.1142/9789812796189_0009
http://msp.org/idx/mr/1364195
http://msp.org/idx/zbl/1149.57306
http://dx.doi.org/10.1142/S0218216513400026
http://dx.doi.org/10.1142/S0218216513400026
http://msp.org/idx/mr/3055553
http://msp.org/idx/zbl/1270.57013
http://dx.doi.org/10.1142/S0218216592000069
http://dx.doi.org/10.1142/S0218216592000069
http://msp.org/idx/mr/1155094
http://msp.org/idx/zbl/0795.57001


218 CARMEN CAPRAU, ALEX CHICHESTER AND PATRICK CHU

[Murasugi 1996] K. Murasugi, Knot theory and its applications, Birkhäuser, Boston, MA, 1996. MR
Zbl

[Rolfsen 1976] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish,
Berkeley, CA, 1976. Revised edition published by the American Mathematical Society, Providence,
RI, 2003. MR Zbl

Received: 2014-06-29 Revised: 2015-01-28 Accepted: 2015-08-17

ccaprau@csufresno.edu Department of Mathematics, California State University,
Fresno, 5245 N. Backer Avenue M/S PB108,
Fresno, CA 93740-8001, United States

alexchi1114@gmail.com Department of Mathematics, SUNY Geneseo,
Geneseo, NY 14454, United States

pyc3@ricealumni.net Department of Mathematics, Rice University,
Houston, TX 77005, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-0-8176-4719-3
http://msp.org/idx/mr/1391727
http://msp.org/idx/zbl/0864.57001
https://books.google.com/books?id=naYJBAAAQBAJ
http://msp.org/idx/mr/0515288
http://msp.org/idx/zbl/0339.55004
mailto:ccaprau@csufresno.edu
mailto:alexchi1114@gmail.com
mailto:pyc3@ricealumni.net
http://msp.org


msp
INVOLVE 10:2 (2017)

dx.doi.org/10.2140/involve.2017.10.219

Symplectic embeddings of
four-dimensional ellipsoids into polydiscs

Madeleine Burkhart, Priera Panescu and Max Timmons

(Communicated by Bjorn Poonen)

McDuff and Schlenk recently determined exactly when a four-dimensional
symplectic ellipsoid symplectically embeds into a symplectic ball. Similarly,
Frenkel and Müller recently determined exactly when a symplectic ellipsoid
symplectically embeds into a symplectic cube. Symplectic embeddings of more
complicated sets, however, remain mostly unexplored. We study when a sym-
plectic ellipsoid E(a, b) symplectically embeds into a polydisc P(c, d). We
prove that there exists a constant C depending only on d/c (here, d is assumed
greater than c) such that if b/a is greater than C , then the only obstruction
to symplectically embedding E(a, b) into P(c, d) is the volume obstruction.
We also conjecture exactly when an ellipsoid embeds into a scaling of P(1, b)
for b ≥ 6, and conjecture about the set of (a, b) such that the only obstruction to
embedding E(1, a) into a scaling of P(1, b) is the volume. Finally, we verify our
conjecture for b = 13

2 .
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2. Proof of Theorem 1.1 222
3. Proof of Theorem 1.2, Part I 224
4. Proof of Theorem 1.2, Part II 228
5. Proof of Theorem 1.2, Part III 236
6. Conjectures 238
Acknowledgments 241
References 242

1. Introduction

Statement of results. Let (X0, ω0) and (X1, ω1) be symplectic manifolds. A sym-
plectic embedding of (X0, ω0) into (X1, ω1) is a smooth embedding ϕ such that
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ϕ∗(ω1) = ω0. It is interesting to ask when one symplectic manifold embeds into
another. For example, define the (open) four-dimensional symplectic ellipsoid

E(a, b)=
{
(z1, z2) ∈ C2

:
π |z1|

2

a
+
π |z2|

2

b
< 1

}
, (1-1)

and define the (open) symplectic ball B(a) := E(a, a). These inherit symplectic
forms by restricting the standard form ω=

∑2
k=1 dxkdyk on R4

= C2. McDuff and
Schlenk [2012] determined exactly when a four-dimensional symplectic ellipsoid
E(a, b) embeds symplectically into a symplectic ball, and found that if b/a is
small, then the answer involves an “infinite staircase” determined by the Fibonacci
numbers with odd index, while if b/a is large then all obstructions vanish except
for the volume obstruction.

To give another example, define the (open) four-dimensional polydisc

P(a, b)=
{
(z1, z2) ∈ C2

: π |z1|
2 < a, π |z2|

2 < b
}
, (1-2)

where a, b≥1 are real numbers and the symplectic form is again given by restricting
the standard symplectic form on R4. Frenkel and Müller [2012] determined exactly
when a four-dimensional symplectic ellipsoid symplectically embeds into a cube
C(a) := P(a, a) and found that part of the expression involves the Pell numbers.
Cristofaro-Gardiner and Kleinman [2013] studied embeddings of four-dimensional
ellipsoids into scalings of E

(
1, 3

2

)
and also found that part of the answer involves

an infinite staircase determined by a recursive sequence.
Here we study symplectic embeddings of an open four-dimensional symplectic

ellipsoid E(a, b) into an open four-dimensional symplectic polydisc P(c, d). By
scaling, we can encode this embedding question as the function

d(a, b) := inf
{
λ : E(1, a) s

↪→ P(λ, bλ)
}
, (1-3)

where a and b are real numbers that are both greater than or equal to 1.
The function d(a, b) always has a lower bound,

√
a/(2b), the volume obstruction.

Our first theorem states that for fixed b, if a is sufficiently large then this lower bound
is sharp, i.e., all embedding obstructions vanish aside from the volume obstruction:

Theorem 1.1. If a ≥ 9(b+ 1)2/(2b), then d(a, b)=
√

a/(2b).

This is an analogue of a result of Buse and Hind [2013] concerning symplectic
embeddings of one symplectic ellipsoid into another.

From the previously mentioned work of McDuff and Schlenk, Frenkel and
Müller, and Cristofaro-Gardiner and Kleinman, one expects that if a is small then
the function d(a, b) should be more rich. Our results suggest that this is indeed the
case. For example, we completely determine the graph of d

(
a, 13

2

)
(see Figure 1).
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Figure 1. The graph of d
(
a, 13

2

)
. The red line represents the vol-

ume obstruction.

Theorem 1.2. For b = 13
2 , we have d(a, b) ≥

√
a/13 and is equal to this lower

bound for all a except in the following cases:

(i) d
(
a, 13

2

)
= 1 for all a ∈

[
1, 25

2

]
.

(ii) For k ∈ Z, with 0≤ k ≤ 4,

d(a, b)=


2a

25+2k
if a ∈ [αk, 13+ 2k],

26+4k
25+2k

if a ∈ [13+ 2k, βk],

where

α0 =
25
2 , α1 =

351
25 , α2 =

841
52 , α3 =

961
52 , α4 =

1089
52 ,

β0 =
351
25 , β1 =

1300
81 , β2 =

15028
841 , β3 =

18772
961 , β4 =

2548
121 .

Interestingly, the graph of d
(
a, 13

2

)
has only finitely many nonsmooth points,

in contrast to the infinite staircases in [McDuff and Schlenk 2012; Frenkel and
Müller 2012; Cristofaro-Gardiner and Kleinman 2013]. This appears to be the case
for many values of b. For example, we conjecture what the function d(a, b) is for
all b ≥ 6; see Conjecture 6.3.

Our proofs rely on the following remarkable theorem of Frenkel and Müller
[2012]. Let N (a, b) be the sequence (indexed starting at 0) of all nonnegative
integer linear combinations of a and b, arranged with repetitions in nondecreasing
order, and let M(a, b) be the sequence whose k-th term is

min
{
ma+ nb : (m+ 1)(n+ 1)≥ k+ 1

}
,

where k,m, n ∈Z≥0. Write N (a, b)≤M(c, d) if each term in the sequence N (a, b)
is less than or equal to the corresponding term in M(c, d). Frenkel and Müller
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showed that embeddings of an ellipsoid into a polydisc are completely determined
by the sequences M and N :

Theorem 1.3 [Frenkel and Müller 2012]. There is a symplectic embedding

E(a, b) s
↪→ P(c, d)

if and only if N (a, b)≤ M(c, d).

To motivate the sequences M and N , note that N is the sequence of ECH capaci-
ties of the symplectic ellipsoid E(a, b), while M is the sequence of ECH capacities
of the symplectic polydisc P(c, d). The ECH capacities are a sequence of nonneg-
ative (possibly infinite) real numbers, defined for any symplectic four-manifold,
that obstruct symplectic embeddings. We will not discuss ECH capacities here; see
[Hutchings 2014] for a survey. Theorem 1.3 is equivalent to the statement that the
ECH capacities give sharp obstructions to embeddings of an ellipsoid into a polydisc.

2. Proof of Theorem 1.1

Weight sequences and the #-operation. We begin by describing the machinery
that will be used to prove Theorem 1.1.

Let a2 be a rational number. McDuff [2011] showed that there is a finite sequence

W (1, a2)= (a1, . . . , an),

called the (normalized) weight sequence for a2, such that E(1, a2) embeds into a
symplectic ellipsoid if and only if the disjoint union

⊔
B(W ) :=

⊔
B(ai ) embeds

into that ellipsoid.
To describe the weight sequence, let

W (a2, 1)= (X×`0
0 , X×`1

1 , . . . , X×`k
k ), (2-1)

where X0> X1> · · ·> Xk and `k ≥ 2. The `i are the multiplicities of the entries X i

and come from the continued fraction expansion

a2
= `0+

1

`1+
1

`2+···+
1
`k

:= [`0; `1, . . . , `k].

The entries of (2-1) are defined as

X−1 := a2, X0 = 1, X i+1 = X i−1− `i X i for i ≥ 0.

Important properties of the weight sequence include∑
i

a2
i = a2, (2-2)∑

i

ai = a2
+ 1− 1

q
, (2-3)

where for all i , we have ai ≤ 1 and a = p/q.
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We will also make use of a helpful operation, #, as in [McDuff 2011]. Suppose
s1 and s2 are sequences indexed with k ∈ Z, starting at 0. Then,

(s1 # s2)k = sup
i+ j=k

(s1)i + (s2) j .

A useful application of # is the following lemma:

Lemma 2.1 [McDuff 2011]. For all a, b > 0, we have

N (a, a) # N (a, b)= N (a, a+ b).

More generally, for all `≥ 1, we have

(#`N (a, a)) # N (a, b)= N (a, b+ `a).

This lemma together with the weight sequence and scaling implies that

N (1, a2)= N (a1, a1) # · · · # N (an, an). (2-4)

Similar to [McDuff 2011], this machinery allows us to reduce Theorem 1.1 to a
ball-packing problem.

Proof of Theorem 1.1. We begin by noting that the ECH capacities for B(a) are

N (a, a)= (0, a, a, 2a, 2a, 2a, 3a, 3a, 3a, 3a, . . . ),

where the terms Nk(a, a) of this sequence are of the form da and for each d there
are d + l entries occurring at

1
2(d

2
+ d)≤ k ≤ 1

2(d
2
+ 3d). (2-5)

Similarly, for the sequence (a/
√

2b)M(1, b), each term (a/
√

2b)Mk(1, b) is of
the form d(a/

√
2b), where

k ≤
d2

4b
+
(1+ b)d

2b
+

b2
− 2b+ 1

4b
. (2-6)

By continuity, it suffices to study d(a2, b) with a2 rational. So, we can prove
that the volume obstruction is the only obstruction when a ≥ 3(b+ 1)/

√
2b by

showing that

N (1, a2)≤
a
√

2b
M(1, b) (2-7)

for said a-values.
By (2-5) and (2-6), it is therefore sufficient to show that∑

i

di ai ≤
a
√

2b
d (2-8)
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whenever d1, . . . , dm, d are nonnegative integers such that∑
i

(d2
i + di )≤ 2

(
d2

4b
+
(1+ b)d

2b
+

b2
− 2b+ 1

4b

)
. (2-9)

We do so by considering the following cases:

Case 1:
∑

i d2
i ≤ d2/(2b). In this case, the Cauchy–Schwarz inequality along with

(2-2) implies (2-8).

Case 2:
∑

i d2
i > d2/(2b). This case, along with (2-9), implies∑

i

di ai ≤
∑

i

di ≤
(1+ b)d

b
+

b2
− 2b+ 1

2b
.

So, we need
(1+ b)d

b
+

b2
− 2b+ 1

2b
≤

a
√

2b
d.

It follows that

a ≥
b+ 1
√

2b

(
2+

b+ 1
d

)
. (2-10)

Now let d = b+ 1. We see that (2-6) is equivalent to

k ≤ b+ 1+ 1
4b
.

It is easy to see that Nk(1, a2) ≤ (a/
√

2b)Mk(1, b) for all such k values. As
such, we can apply d = b+ 1 to (2-10) to get

a ≥
3(b+ 1)
√

2b
, (2-11)

and hence the desired result. �

Remark 2.2. We allow d = b+ 1 in the statement of Theorem 1.1. However, if
we show Nk(1, a2)≤ (a/

√
2b)Mk(1, b) for all

k ≤
d2

4b
+
(1+ b)d

2b
+

b2
− 2b+ 1

4b
,

then we can use this d in (2-10) to achieve a sharper bound for a.

3. Proof of Theorem 1.2, Part I

We begin by computing d
(
a, 13

2

)
on the regions where it is linear.

Nondifferentiable points and Ehrhart polynomials. We first compute d at certain
values. These will eventually be the points a where d

(
a, 13

2

)
is not differentiable.
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Proposition 3.1. We have

d
(
1, 13

2

)
= 1, d

( 25
2 ,

13
2

)
= 1, d

(
13, 13

2

)
=

26
25 ,

d
( 351

25 ,
13
2

)
=

26
25 , d

(
15, 13

2

)
=

10
9 , d

( 1300
81 ,

13
2

)
=

10
9 ,

d
( 841

52 ,
13
2

)
=

29
26 , d

(
17, 13

2

)
=

34
29 , d

( 15028
841 ,

13
2

)
=

34
29 ,

d
( 961

52 ,
13
2

)
=

31
26 , d

(
19, 13

2

)
=

38
31 , d

( 18772
961 ,

13
2

)
=

38
31 ,

d
( 1089

52 ,
13
2

)
=

33
26 , d

(
21, 13

2

)
=

42
33 , d

( 2548
121 ,

13
2

)
=

42
33 .

To prove the proposition, the main difficulty comes from the fact that applying
Theorem 1.3 in principle requires checking infinitely many ECH capacities. Our
strategy for overcoming this difficulty is to study the growth rate of the terms in the
sequences M and N . We will find that in every case needed to prove Proposition 3.1,
one can bound these growth rates to conclude that only finitely many terms in the
sequences need to be checked. This is then easily done by computer. The details
are as follows:

Proof. Step 1: For the sequence N (a, b), let k(a, b, t) be the largest k such that
Nk(a, b)≤ t . Similarly, for the sequence M(c, d), let l(c, d, t) be the largest l such
that Ml(c, d)≤ t . To show that E(a, b) s

↪→ P(c, d), by Theorem 1.3, we just have
to show that for all t , we have k(a, b, t)≥ l(c, d, t).

Step 2: We can estimate k(a, b, t) by applying the following proposition:

Proposition 3.2. If a, b, r , and t are all positive integers, then

k
(

a
r
,

b
r
, t
)
=

1
2ab

(tr)2+
1
2
(tr)

(
1
a
+

1
b
+

1
ab

)
+

1
4

(
1+

1
a
+

1
b

)
+

1
12

(
a
b
+

b
a
+

1
ab

)

+
1
a

a−1∑
j=1

ξ
j (−tr)

a

(1−ξ jb
a )(1−ξ j

a )
+

1
b

b−1∑
l=1

ξ
l(−tr)
b

(1−ξ la
b )(1−ξ

l
b)
, (3-1)

where ξd = e2π i/d .

Proof. The number of terms in N (a/r, b/r) that are less than t is the same as the
number of lattice points (m, n) in the triangle bounded by the positive x- and y-axes
and the line x(a/r)+ y(b/r)≤ t . For integral t , this number can be computed by
applying the theory of “Ehrhart polynomials”. Proposition 3.2 follows by applying
[Beck and Robins 2007, Theorem 2.10]. �

We will be most interested in this proposition in the case where a = r . Note that
by the last two terms of the formula in Proposition 3.2, we have k(a/r, b/r, t) is a
periodic polynomial with period ab.

We also need an argument to account for the fact that Proposition 3.2 is only
for integral t , whereas the argument in Step 1 involves real t . To account for this,



226 MADELEINE BURKHART, PRIERA PANESCU AND MAX TIMMONS

we use an asymptotic argument. Specifically, for E(1, a/r), with a, r ∈ Z≥1, we
bound the right-hand side of (3-1) from below by taking the floor function of t . It
is convenient for our argument to further bound this expression from below by

c1

r2 (r t − 1)2+
c2

r
(r t − 1)+ c3, (3-2)

where the ci are the coefficients of the right-hand side of (3-1) that do not involve t
or r .

This is the lower bound that we will use for k(1, a/r, t).

Step 3: To get an upper bound l(c, d, t) for M(c, d), recall that

Ml(c, d)=min{cm+ dn : (m+ 1)(n+ 1)≥ l + 1}.

For cm+ dn = t , we solve for m in terms of n and find(
t − dn

c
+ 1

)
(n+ 1)− 1≥ l.

Considering m, n ∈ R, we can take the derivative of the left side of the inequality
with respect to n and then set the expression equal to 0 to maximize it. We do the
same with m to obtain(

t
2d
+

c
2d
+

1
2

)(
t

2c
+

d
2c
+

1
2

)
− 1≥ l.

By simplifying, we get that an upper bound for l is

l(c, d, t)=
t2

4cd
+
(c+ d)t

2cd
+
(c− d)2

4cd
. (3-3)

Our strategy now is to check that for each point in Proposition 3.1, we have
k(a, b, t)≥ l(c, d, t) asymptotically in t for the corresponding (a, b, c, d). From
there, we can check that for a sufficient number of terms, N (1, a)≤ M(λ, λb).

Step 4: Since the rest of the proof amounts to computation, it is best summarized
by Table 1. In the table, kt2 and lt2 denote the coefficients of the quadratic terms
in the upper and lower bounds from Steps 2 and 3, while kt and lt denote the
corresponding coefficients of the linear terms.

The t-column gives a sufficient number to check up to before the asymptotic
bounds from the previous three steps are enough. Note that if kt2 and lt2 in any
row are equal, then linear coefficients, kt and lt , are used to make an asymptotic
argument; this explains the appearance of the “N/A”s in the table. It is simple
to check by computer that the relevant N and M sequences in each row satisfy
N ≤ M once one knows that the problem only has to be checked up to the t in the
t-column.

The rightmost column of Table 1 gives an ECH capacity that shows that one
cannot shrink λ further, i.e., the claimed embeddings are actually sharp. �
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E(1,a) s
↪→P(λ,λb) kt2 lt2 kt lt t ECH

obstruction

E
(
1, 25

2

) s
↪→P

(
1, 13

2

) 1
25

1
26 N/A N/A 51 1

E(1,13) s
↪→P

( 26
25 ,

169
25

) 1
26

625
17576 N/A N/A 33 13

E
(
1, 351

25

) s
↪→P

( 26
25 ,

169
25

) 25
702

625
17576 N/A N/A 522 13

E(1,15) s
↪→P

( 10
9 ,

65
9

) 1
30

81
2600 N/A N/A 29 15

E
(
1, 1300

81

) s
↪→P

( 10
9 ,

65
9

) 81
2600

81
2600

691
1300

27
52 272 15

E
(
1, 841

52

) s
↪→P

( 29
26 ,

29
4

) 26
841

26
841

447
841

15
29 122 17

E(1,17) s
↪→P

( 34
29 ,

221
29

) 1
34

841
30056 N/A N/A 27 17

E
(
1, 15028

841

) s
↪→P

( 34
29 ,

221
29

) 841
30056

841
30056

7935
15028

435
884 32 17

E
(
1, 961

52

) s
↪→P

( 31
26 ,

31
4

) 26
961

26
961

507
961

15
31 23 19

E(1,19) s
↪→P

( 38
31 ,

247
31

) 1
38

961
37544 N/A N/A 7 19

E
(
1, 18772

961

) s
↪→P

( 38
31 ,

247
31

) 961
37544

961
37544

759
1444

465
988 28 19

E
(
1, 1089

52

) s
↪→P

( 33
26 ,

33
4

) 26
1089

26
1089

571
1089

15
33 14 21

E(1,21) s
↪→P

( 42
33 ,

273
33

) 1
42

121
5096 N/A N/A 26 21

E
(
1, 2548

121

) s
↪→P

( 42
33 ,

273
33

) 121
5096

121
5096

1335
2548

165
364 41 21

Table 1. The computations from Step 4 of the proof of Proposition 3.1.

The linear steps. Given the computations from the previous section, the computa-
tion of d

(
a, 13

2

)
for all the “linear steps”, i.e., those portions of the graph of d for

which d is linear, is straightforward. Indeed, we have the following two lemmas:

Lemma 3.3. For fixed b, the function d(a, b) is monotonically nondecreasing.

Proof. This follows from the fact that E(1, a) s
↪→ E(1, a′) if a ≤ a′. �

Lemma 3.4 (subscaling). d(λa, b)≤ λd(a, b).

Proof. This follows from the fact that E(1, λa) s
↪→ E(λ, λa) for λ≥ 1. �

By monotonicity, we know that d
(
a, 13

2

)
is constant on the intervals[

1, 25
2

]
,

[
13, 351

25

]
,

[
15, 1300

81

]
,

[
17, 15028

841

]
,

[
19, 18772

961

]
,

[
21, 2548

121

]
.

We now explain why for k ∈ Z, with 0≤ k ≤ 4, we have

d
(
a, 13

2

)
=

2a
25+ 2k

for a ∈ [αk, 13+ 2k],

where α0 =
25
2 , α1 =

351
25 , α2 =

841
52 , α3 =

961
52 , and α4 =

1089
52 .



228 MADELEINE BURKHART, PRIERA PANESCU AND MAX TIMMONS

Given the critical points we have determined, along with the subscaling lemma,
we have 2a/(25+ 2k) as an upper bound for d

(
a, 13

2

)
on the above intervals.

Intervals on which d
(
a, 13

2
)

is linear. We also know that

d
(
a, 13

2

)
= sup

{
Nx(1, a)

Mx
(
1, 13

2

) : x ∈ N

}
≥

Nl(1, a)

Ml
(
1, 13

2

) for any l.

Here is a representative example of our method:

Example 3.5. To illustrate how this can give us a suitable lower bound, consider
the case where x = 13:

sup

{
Nx(1, a)

Mx
(
1, 13

2

) : x ∈ N

}
≥

N13(1, a)

M13
(
1, 13

2

) = 2a
25

for a ∈
[ 25

2 , 13
]
.

This lower bound equals the upper bound given by Lemma 3.4, so we have
proven Theorem 1.2 for a ∈

[25
2 , 13

]
.

The general method is similar: given a ∈ [αk, 13+2k], we can find an l such that

Nl(1, a)

Ml
(
1, 13

2

) = 2a
25+ 2k

.

Such obstructing values of l are given in the following table:

k
2

25+2k l

0 2
25 13

1 2
27 15

2 2
29 17

3 2
31 19

4 2
33 21

Given a ∈ [αk, 13+ 2k] for each integer k ∈ [0, 4], we have found that the upper
and lower bounds of d

(
a, 13

2

)
equal 2a/(25+ 2k). Thus, we have proven our claim

for these intervals.

4. Proof of Theorem 1.2, Part II

To complete the proof of Theorem 1.2, we need to show that aside from the linear
steps described in the previous section, the graph of d

(
a, 13

2

)
is equal to the graph

of the volume obstruction. To do this, we adapt some of the ideas from [McDuff
and Schlenk 2012] in a purely combinatorial way. This will be needed to complete
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the proof of Theorem 1.2. Our combinatorial perspective on the techniques from
[McDuff and Schlenk 2012] borrows many ideas from [McDuff 2011].

Preliminaries. This section collects the main combinatorial machinery that will
be used to complete the proof. The basic idea behind our proof will be to reduce to
a ball-packing problem, as in the proof of Theorem 1.1. The machinery we develop
here will be useful for approaching this ball-packing problem.

We begin with two definitions:

Definition 4.1. Let Cr(d, di )= (d ′, d ′i ), where d ′=2d−d1−d2−d3, d ′i =d−d j−dk

for i, j, k = 1, 2, 3 and d ′i = di for all i ≥ 4. We call Cr the Cremona transform.

Definition 4.2. We say (d, di ) ∈ R1+n is

(i) positive if d, di ≥ 0 for all i ,

(ii) ordered if di , di+1 6= 0 implies di ≥ di+1 and di 6= 0, d j = 0 implies i < j ,

(iii) reduced if positive, ordered, and d ≥ d1+ d2+ d3.

Remark 4.3. It will be important to note that Cr(Cr(d, di ))= (d, di ).

We now define a product analogous to the intersection product in [McDuff and
Schlenk 2012]:

Definition 4.4. (x, xi ) · (y, yi )= xy−
∑

i

xi yi .

We also define a vector−K ∈R1+n that is motivated by the standard anticanonical
divisor in the M-fold blow up of CP2.

Definition 4.5. −K = (3, 1, 1, . . . , 1).

The following is a combinatorial analogue of “positivity of intersections” that
will be useful:

Lemma 4.6. If (x, xi ) is reduced, (d, di ) is positive, −K · (d, di ) ≥ 0, and d ≥
max(di ), then (x, xi ) · (d, di )≥ 0.

Proof. Let (d ′, d ′i ) be the vector obtained from ordering di . As

(x, xi ) · (d, di )≥ (x, xi ) · (d ′, d ′i ),

we can assume without loss of generality that (d, di ) is ordered. If x3 = 0 then
xi = 0 for i ≥ 3 and

(x, xi ) · (d, di )= xd − x1d1− x2d2.

As d ≥max(di ), we know that this expression is greater than or equal to

(x − x1− x2)d.

As (x, xi ) is reduced, this is greater than or equal to 0.
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We now assume without loss of generality that x3 = 1. Hence, xi ≤ 1 for i ≥ 3.
Let e1 = x1− 1 and e2 = x2− 1. Then

xd ≥ (3+ e1+ e2)d

as (x, xi ) is reduced. This expression is equal to

3d + de1+ de2.

As d ≥ d1, d2, we now have the following chain of inequalities:

3d + de1+ de2 ≥ 3d + d1e1+ d2e2 ≥
∑

i

di + d1e1+ d2e2

= d1x + d2x +
∑
i≥3

di ≥ d1x1+ d2x2+
∑
i≥3

xi di =
∑

i

di xi . �

In [McDuff and Schlenk 2012], Cremona transformations preserve the intersec-
tion product. Here we prove an analogous result.

Lemma 4.7. Cr(x, xi ) ·Cr(y, yi )= (x, xi ) · (y, yi ).

Proof.

Cr(x, xi )·Cr(y, yi )= x ′y′−
∑

i

x ′i y′i

= (2x−x1−x2−x3)(2y−y1−y2−y3)−(x−x2−x3)(y−y2−y3)

−(x−x1−x3)(y−y1−y3)−(x−x2−x3)(y−y2−y3)−
∑
i>3

xi yi

= xy−x1 y1−x2 y2−x3 y3−
∑
i>3

xi yi

= xy−
∑

i

xi yi

= (x, xi )·(y, yi ). �

The following sets will also be useful:

Definition 4.8. F =
{
(d, di ) : (d, di ) · (−K + (d, di ))≥ 0, d, di ∈ Z

}
.

Definition 4.9. F+ =
{
(d, di ) : (d, di ) ∈ F, d, di ≥ 0

}
.

Definition 4.10. E =
{
(d, di ) : (d, di ) · (d, di )≥−1,−K · (d, di )= 1, d, di ∈ Z

}
.

Remark 4.11. Observe Cr(F)⊂ F and Cr(E)⊂ E . Additionally, F, F+, and E
are invariant under permutations of di .

Remark 4.12. Note that (0,−1, 0, . . . , 0) ∈ E .

Definition 4.13. Let C be the set of (x, xi ) such that x, xi ∈ Z and

(a) (x, xi ) · (x, xi )≥ 0,

(b) (x, xi ) · (d, di )≥ 0 for all (d, di ) ∈ E .
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Both Li and Li [2002] and McDuff and Schlenk [2012] have found that compo-
sitions of Cremona transformations and permutations can reduce certain classes.
Here we prove a combinatorial version of those lemmas.

Lemma 4.14. If (x, xi ) ∈ C then by a sequence of Cremona transforms and per-
mutations of xi , we can transform (x, xi ) to (x ′, x ′i ), where (x ′, x ′i ) is reduced.

Proof. We begin with some helpful results:

Sublemma 4.15. Cr(C)⊂ C.

Proof. The fact that Cr preserves (a) follows from the fact that Cr preserves the
intersection product. To complete the sublemma, note that if (d, di ) ∈ E , then

Cr(x, xi ) ·(d, di )=Cr2(x, xi ) ·(d ′, d ′i )= (x, xi ) ·(d ′, d ′i )≥ 0 as (d ′, d ′i )∈ E . �

Sublemma 4.16. If P is some permutation, P(C)⊂ C.

Proof. If (d, di ) ∈ E , then

P(x, xi ) · (d, di )= (x, xi ) · P−1(d, di ) as P−1(E)⊂ E . �

Sublemma 4.17. If (x, xi ) ∈ C , then x, xi ≥ 0.

Proof. If di = (−δi j ) and (0, di ) ∈ E then we have j ≤ length(di ) for all j . So,
(x, xi ) · (0, di )= x j ≥ 0. We also have (x, xi )·(1, 1, 1, 0, 0, . . . , 0)= x−x1−x2≥0.
As x1, x2 ≥ 0, this implies that x ≥ 0. �

Let oCr denote the transformation Cr followed by ordering the di . Fix (x, xi )∈C .
Let (xk, xk

i )=oCrk(x, xi ). Let α(k)= xk
−xk

1−xk
2−xk

3 . It suffices to show α(k)≥0
for some k. Assume not. Then α(k)≤−1 for all k. By Sublemmas 4.15 and 4.16,
oCr(C)⊂ C . For k ≥ 1,

xk
= xk−1

+α(k− 1)≤ xk−1
− 1.

Thus, there exists k such that xk < 0. This contradicts Sublemma 4.17, completing
the proof that we may reduce (x, xi ). �

We now prove Lemma 4.18, a result analogous to [McDuff and Schlenk 2012,
Proposition 1.2.12(i)].

Lemma 4.18. If (x, xi ) ∈ C then (x, xi ) · (d, di )≥ 0 for all (d, di ) ∈ F.

Proof. By Lemma 4.14 there exists A, a composition of Cr and permutations,
such that A(x, xi )= (x ′, x ′i ) with (x ′, x ′i ) reduced. For (d, di ) ∈ F, let A(d, di )=

(d ′, d ′i ) ∈ F . So,

(x, xi ) · (d, di )= A(x, xi ) · A(d, di )= (x ′, x ′i ) · (d
′, d ′i ).

Let e = d, ei = di if di > 0 and ei = 0 if di ≤ 0. We note (e, ei ) ∈ F and

(x ′, x ′i ) · (d
′, d ′i )≥ (x

′, x ′i ) · (e, ei ).
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If (e, ei ) ·(e, ei )≥ 0 then the Cauchy–Schwarz inequality shows (x ′, x ′i ) ·(e, ei )≥ 0.
Otherwise, (e, ei ) · (−K )≥ 0. Then∑

i

e2
i + ei ≤ e2

+ 3e

implies e ≥ ei , so Lemma 4.6 shows (x ′, x ′i ) · (e, ei )≥ 0. �

Remark 4.19. By scaling, Lemma 4.18 extends to (x, xi ) that satisfy (a) and (b)
of Definition 4.13 with x, xi ∈Q.

A key lemma. We now use the combinatorial machinery from the previous section,
together with a reduction to the ball-packing problem, to prove the key lemma
needed to complete the proof of Theorem 1.2; see part (iii) of Lemma 4.24 below.

To reduce to a ball-packing problem, note that [Frenkel and Müller 2012, Propo-
sition 1.4] states that for rational a, we have that

E(1, a) s
↪→ P(λ, cλ)

if and only if
E(1, a)t B(λ)t B(cλ) s

↪→ B((1+ c)λ), (4-1)

where t denotes disjoint union. Since, as explained in [Hutchings 2014], one can
compute the ECH capacities of the disjoint union in terms of the #-operation, we
know that the embedding in (4-1) exists if and only if

N (1, a) # N (λ, λ) # N (cλ, cλ)≤ N
(
(1+ c)λ, (1+ c)λ

)
. (4-2)

For the rest of the proof of Theorem 1.2, we are looking at intervals for a on
which the graph of d is equal to the volume obstruction; we therefore want to show
that (4-2) holds with λ=

√
a/(2c) (of course, for our proof one can specify c= 13

2 ,
but we state things here in slightly greater generality). By an argument analogous
to the argument used in the proof of Theorem 1.1, it is sufficient to show(∑

i

d2
i + di

)
+ e2

1+ e1+ e2
2+ e2 ≤ d2

+ 3d

implies (∑
i

ai di

)
+ cλe1+ λe2 ≤ (1+ c)λd

for all nonnegative integers d, di , e1, e2. Let m1 = e1,m2 = e2 and mi = di−2 for
i ≥ 3 and let w1(a) = cλ,w2(a) = λ and wi (a) = ai−2 for i ≥ 3. Hence, it is
enough to show ∑

i

m2
i +mi ≤ d2

+ 3d

implies
m ·w(a)≤ (1+ c)λd. (4-3)
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Let µ(d;m)(a)= (m ·w(a))/d. Then (4-3) is equivalent to µ(d;m)(a)≤ (1+c)λ.
By Lemma 4.18, it is sufficient to check the case∑

i

m2
i = d2

+ 1, (4-4)∑
i

mi = 3d − 1. (4-5)

Let E be the set of (d;m) satisfying (4-4) and (4-5) with d,mi nonnegative integers.
Define ε by

m =
d

(1+ c)λ
w(a)+ ε.

We now have a series of lemmas, culminating in the key lemma, Lemma 4.24.

Lemma 4.20. For (d;m) ∈ E , we have:

(i) µ(d;m)(a)≤ (1+ c)λ
√

1+ 1
d2 .

(ii) µ(d;m)(a) > (1+ c)λ if and only if ε ·w > 0.

(iii) µ(d;m)(a) > (1+ c)λ implies
∑

i ε
2
i < 1.

(iv) Let y(a)= a+ 1− 2(1+ c)λ. Then

−

∑
i

εi = 1+
d

(1+ c)λ

(
y(a)−

1
q

)
,

where a = p/q.

Proof. Part (i) follows from
∑

i w
2
i = c2λ2

+ λ2
+
∑

i a2
i = (1+ c)2λ2 and the

Cauchy–Schwarz inequality. To prove (ii), note

ε ·w = m ·w−
d

(1+ c)λ
w ·w

= d
(

m ·w
d
− (1+ c)λ

)
= d

(
µ(d;m)(a)− (1+ c)λ

)
.

To prove (iii), note∑
i

ε2
i = ε · ε = m ·m+

d2

(1+ c)2λ2w ·w−
2d

(1+ c)λ
m ·w

= 1+ d2
(

2−
2

(1+ c)λ
m ·w

d

)
< 1 if µ(d;m)(a) > (1+ c)λ.
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To prove (iv), note

−

∑
i

εi =
d

(1+ c)λ

∑
i

wi −
∑

i

mi

=
d

(1+ c)λ

(
a+ 1−

1
q
+ cλ+ λ

)
− 3d − 1

= 1+
d

(1+ c)λ

(
a+ 1−

1
q
− 2(1+ c)λ

)
. �

Lemma 4.21. Let (d;m) ∈ E and suppose that I is the maximal nonempty open
interval such that µ(d;m)(a) > (1+ c)λ for all a ∈ I . Then there exists a unique
a0 ∈ I such that l(a0) = l(m), where l(a0) is the length of wi (a) and l(m) is the
number of nonzero terms in m. Furthermore, l(a)≥ l(m) for all a ∈ I .

Proof. We adapt the proof of Lemma 2.1.3 in [McDuff and Schlenk 2012]. For i ≥ 3,
wi (a) is piecewise linear and is linear on open intervals that do not contain an
element a′ with length l(a′)≤ i . Therefore, if l(a) > l(m) for all a ∈ I ,

µ(d;m)(a)−
cλm1+ λm2

d

is linear on I . This is impossible as cλ(1 − m1/d) + λ(1 − m2/d) is concave
and I is bounded. Thus there exists a0 ∈ I with l(a0)≤ l(m). If l(a) < l(m) then∑

i≤l(a) m2
i < d2

+ 1, which implies

m ·w ≤ ‖w‖
√∑

i≤l(a)

m2
i ≤ d‖w‖ = (1+ c)λd,

which is impossible for a ∈ I . The proof of uniqueness is the same as in [McDuff
and Schlenk 2012, Lemma. 2.1.3]. �

Lemma 4.22. Let (d;m) be in E with µ(d;m)(a) > (1+ c)λ for some a. Let
J = k, . . . , k+ s− 1 be a block of s ≥ 2 consecutive integers such that wi (a) is
constant for i ∈ J . Then:

(i) One of the following holds:
• mk = · · · = mk+s−1.
• mk = · · · = mk+s−2 = mk+s−1+ 1.
• mk − 1= mk+1 = · · · = mk+s−1.

(ii) There is at most one block of length s ≥ 2 on which the mi are not all equal.

(iii) If there is a block J of length s ≥ 2 on which the mi are not all equal then∑
i∈J

ε2
i ≥

s− 1
s
.
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Proof. See the proof of [McDuff and Schlenk 2012, Lemma. 2.1.7]. McDuff and
Schlenk consider the case of embedding an ellipsoid into a ball, but their proof
generalizes without change to our situation. �

Lemma 4.23. Let (d;m) ∈ E be such that µ(d;m) > (1+ c)λ for some a with
l(a) = l(m) = M. Let wk+1, . . . , wk+s be a block, but not the first block, of w(a)
(the first two terms of w(a) are not considered to be part of any block).

(i) If this block is not the last block, then∣∣mk − (mk+1+ · · ·+mk+s +mk+s+1)
∣∣<√s+ 2.

If this block is the last block, then∣∣mk − (mk+1+ · · ·+mk+s)
∣∣<√s+ 1.

(ii) It is always true that

mk −

M∑
i=k+1

mi <
√

M − k+ 1.

Proof. This is similar to the proof of Lemma 4.22; see the proof of [McDuff and
Schlenk 2012, Lemma 2.1.8], which generalizes without change to our situation. �

Lemma 4.24. Assume that (d;m) ∈ E and µ(d;m)(a) > (1+ c)λ for some a with
l(a)= l(m). Assume further that y(a) > 1/q. Let

vM =
d

q(1+ c)
λ

and let L = l(m). Then:

(i)
∣∣∑

i εi
∣∣≤√L.

(ii) vM > 1
3 .

(iii) Let δ = y(a)− 1/q > 0. Then

d ≤
(1+ c)λ

δ

(√
L − 1

)
≤
(1+ c)λ

δ

(√
q +bac+ 2− 1

)
and

√
q +bac+ 2≥ 1+ δvMq.

Proof. Part (i) follows from
∑

i ε
2
i < 1. Part (ii) follows from the same argument

as [McDuff and Schlenk 2012, Lemma 5.1.2]. From [McDuff and Schlenk 2012,
Sublemma 5.1.1], we have q +bac+ 2≥ L , so Lemma 4.20 implies√

q +bac+ 2≥
√

L ≥ 1+
d

(1+ c)λ

(
y(a)−

1
q

)
= 1+

d
(1+ c)λ

δ = 1+ qvMδ.

This also shows

d ≤
(1+ c)λ

δ

(√
q +bac+ 2− 1

)
. �
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5. Proof of Theorem 1.2, Part III

With the Lemma 4.24 now shown, we can complete the proof of Theorem 1.2. We
explain the computation on various intervals separately.[1300

81 , 841
52

]
. We now wish to prove that d

(
a, 13

2

)
=
√

a/13 for a ∈
[ 1300

81 ,
841
52

]
.

Previously, we proved( 1300
81 ,

13
2

)
=

10
9 and d

( 841
52 ,

13
2

)
=

29
26 .

If d
(
a, 13

2

)
is not equal to

√
a/13 on the interval

[1300
81 ,

841
52

]
, there exists (d;m)∈ E

such that
µ(d;m)(a) > 7.5λ for some a ∈

[ 1300
81 ,

841
52

]
.

So, Lemma 4.24 shows that there exists a0 in
[ 1300

81 ,
841
52

]
with µ(d;m)(a0) > 7.5λ

and l(a0)= l(m). Let a0 = p/q = 16+ p′/q . As 16< a0 < 16+ 1
5 , we know q ≥ 5.

For a0 ∈
[1300

81 ,
841
52

]
and q ≥ 5, we know

δ ≥
1300

81
+ 1− 15

√
1300
81·13

−
1
q
≥

31
81
−

1
q
.

Thus, Lemma 4.24 shows√
q + 18≥ 1+

(
31
81
−

1
q

)
q
3
.

Hence, q ≤ 67.
We also note that for 1300

81 < a0 <
841
52 and q ≥ 5, we have

λ≤

√
841

52·13
=

29
26

and δ ≥
31
81
−

1
q
≥

74
405

.

Thus, Lemma 4.24 shows

d ≤
7.5 · 29

26
74

405

(
√

85− 1) < 377.

Using Mathematica we can reduce the possibilities for (d;m) to 38 candidates. We
can then use Lemma 4.23 to reduce these 38 cases to 11 possible candidates, which
can easily verified to not be obstructive by simple calculations.[15028

841 , 961
52

]
. We now will show d

(
a, 13

2

)
=
√

a/13 for a ∈
[15028

841 ,
961
52

]
. Previously,

we proved
d
( 15028

841 ,
13
2

)
=

34
29 and d

(961
52 ,

13
2

)
=

31
26 .

If d
(
a, 13

2

)
is not equal to

√
a/13 on the interval

[ 15028
841 ,

961
52

]
, then there exists

(d;m) ∈ E such that

µ(d;m)(a) > 7.5λ for some a ∈
[ 15028

841 ,
961
52

]
.
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Then Lemma 4.24 shows that there exists a0 ∈
[ 15028

841 ,
961
52

]
with µ(d,m)(a0)> 7.5λ

and l(a0)= l(m). Let a0= p/q with gcd(p, q)= 1. For a0 ∈
[ 15028

841 ,
961
52

]
, we know

δ ≥
15028
841

+ 1− 15

√
15028
841·13

−
1
q
=

1079
841
−

1
q
.

Thus, Lemma 4.24 shows√
q + 19≥ 1+

(
1079
841
−

1
q

)
q
3
.

Hence, q ≤ 11. We can then verify these cases directly using Mathematica, which
by simple calculations can be verified not to be obstructive.[18772

961 , 1089
52

]
. We will now show d

(
a, 13

2

)
=
√

a/13 for a ∈
[18772

961 ,
1089

52

]
. Previ-

ously, we proved

d
( 18772

961 ,
13
2

)
=

38
31 and d

( 1089
52 ,

13
2

)
=

33
26 .

If d
(
a, 13

2

)
is not equal to

√
a/13 on the interval

[ 18772
961 ,

1089
52

]
, then there exists

(d;m) ∈ E such that

µ(d;m)(a) > 7.5λ for some a ∈
[ 18772

961 ,
1089

52

]
.

Then Lemma 4.24 shows that there exists a0∈
[ 18772

961 ,
1089

52

]
withµ(d,m)(a0)>7.5λ

and l(a0)= l(m). Let a0= p/q with gcd(p, q)= 1. For a0 ∈
[ 18772

961 ,
1089

52

]
, we know

δ ≥
18772
961

+ 1− 15

√
18772
961·13

−
1
q
=

2063
961
−

1
q
.

Thus, Lemma 4.24 shows√
q + 21≥ 1+

(
2063
961
−

1
q

)
q
3
.

Hence, q ≤ 6. We can then verify these cases directly using Mathematica to check
these cases and we find no obstructions.[2548

121 , 27
]
. For a ∈

[ 2548
121 , 27

]
, we have√

q + 29≥
√

q +bac+ 2 and δ ≥ 21− 15
√

21
13 .

Hence, Lemma 4.24 implies√
q + 29≥ 1+

(
21− 15

√
21
13

)
q
3
,

which implies q < 8. We can then verify these cases directly using Mathematica to
check these cases and we find no obstructions.
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[27, ∞). We will apply Remark 2.2. As
√

27≥
7.5
√

13

(
2+

7.5
d

)
for d ≥ 18,

Remark 2.2 implies we only need to verify Nk(1, a2)≤ (a/13)Mk(1, 6.5) for all

k ≤
182

26
+

7.5 · 18
13

+
6.52
− 13+ 1
26

< 25.

For a2
≥ 27 and k ≤ 25, we have

Nk(1, a2)= k ≤

√
27
13

Mk(1, 6.5)≤
a
√

13
Mk(1, 6.5).

This completes the proof that d(a, b)=
√

a/13 for a ∈ [27,∞).

6. Conjectures

We now present some conjectures concerning exactly when an ellipsoid embeds
into a polydisc.

Extensions of Theorem 1.1. To consider an interesting refinement of Theorem 1.1,
define

V (b)= inf
{

A : d(a, b)=
√

a
2b

for a ≥ A
}
.

Theorem 1.1 implies V (b)≤ 9
2(b+ 2+ 1/b).

Proposition 6.1. For b ≥ 1,

V (b)≥ 2b
(

2bbc+ 2
⌈√

2b+{b}
⌉
− 1

b+bbc+
⌈√

2b+{b}
⌉
− 1

)2

.

Proof.

d
(
2bbc+2

⌈√
2b+{b}

⌉
−1, b

)
≥

N2bbc+2d
√

2b+{b}e−1

(
1, 2bbc+2

⌈√
2b+{b}

⌉
−1
)

M2bbc+2d
√

2b+{b}e−1(1, b)

=
2bbc+2

⌈√
2b+{b}

⌉
−1

b+bbc+
⌈√

2b+{b}
⌉
−1

>

√
2bbc+2

⌈√
2b+{b}

⌉
−1

2b
.

This implies

V (b)≥ 2b
(

2bbc+ 2
⌈√

2b+{b}
⌉
− 1

b+bbc+
⌈√

2b+{b}
⌉
− 1

)2

. �
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Experimental evidence seems to suggest that for b > 1 this bound is sharp.

Conjecture 6.2. For b > 1,

V (b)= 2b
(

2bbc+ 2
⌈√

2b+{b}
⌉
− 1

b+bbc+
⌈√

2b+{b}
⌉
− 1

)2

.

Generalizations of Theorem 1.2. The methods used to compute the graph of
d(a, 6.5) should extend for the most part to any b. In light of those techniques,
experimental evidence, and a conjecture regarding d(a, b) for b ∈ Z by David
Frenkel and Felix Schlenk relayed to us by Daniel Cristofaro-Gardiner, we offer a
conjecture regarding the graph of d(a, b) for b ≥ 6; see Figure 2.

Conjecture 6.3. For b ≥ 6, we have d(a, b)=
√

a/(2b) with the exception that

d(a, b)= 1 for a ∈
[
1, b+bbc

]
.

For k ∈ Z, with 0≤ k <
√

2b+{b}, we have

d(a, b)=
a

b+bbc+ k
for a ∈

[
αk, 2(bbc+ k)+ 1

]
,

d(a, b)=
2(bbc+ k)+ 1

b+bbc+ k
for a ∈

[
2(bbc+ k)+ 1, βk

]
,

where

α0= b+bbc, α1=β0=
(b+bbc+1)(2bbc+1)

b+bbc
,

αk =
(b+bbc+k)2

2b
for k ≥ 2, βk = 2b

(
2(bbc+k)+1

b+bbc+k

)2

for k ≥ 1.

For integers m, if

b ∈
[
m− m

(m+1)2
,m+ 1

2+m

]
,

let b = m+ ε. Then

d(a, b)=
ma+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [α∗, 2m+ 4],

d(a, b)=
m(2m+ 4)+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [2m+ 4, β∗],

where

α∗=
1

2(2m3+2m2ε)

(
8m3
+4m2

+8m2ε+4m3ε+ε2
+2mε2

+b2ε2
−(1+m)(2m+ε)

×

√
−4m2+8m3+4m4−4mε+8m2ε+4m3ε+ε2+2mε2+m2ε2

)
,

β∗=
2(ε+m+8mε+8m2

+20m2ε+16m3ε+16m4
+4m4ε+4m5)

(1+m)2(2m+ε)2
.
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d(
a,

b)

a
b

Figure 2. Approximate plot of the graph of d(a, b).

We note that Conjecture 6.3 implies Conjecture 6.2 for b ≥ 6. Furthermore, we
prove that the conjecture is a lower bound for d(a, b).

Proposition 6.4. For b ≥ 6, we have d(a, b)≥
√

a/(2b) and

d(a, b)≥ 1 for a ∈
[
1, b+bbc

]
.

For k ∈ Z, with 0≤ k <
√

2b+{b}, we have

d(a, b)≥
a

b+bbc+ k
for a ∈

[
αk, 2(bbc+ k)+ 1

]
,

d(a, b)≥
2(bbc+ k)+ 1

b+bbc+ k
for a ∈

[
2(bbc+ k)+ 1, βk

]
,

where αk, βk, α
∗, β∗ are as in Conjecture 6.3. For integers m, if

b ∈
[
m− m

(m+1)2
,m+ 1

2+m

]
,

let b = m+ ε. Then

d(a, b)≥
ma+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [α∗, 2m+ 4],

d(a, b)≥
m(2m+ 4)+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [2m+ 4, β∗].

Proof. We know that d(a, b)≥
√

a/(2b) because symplectic embeddings are volume
preserving. We also have

d(a, b)≥
N1(1, a)
M1(a, b)

=
1
1
= 1.
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Additionally, for k ∈Z, with ≤ k <
√

2b+{b}, and a ∈
[
2(bbc+k), 2(bbc+k)+1

]
,

we have

d(a, b)≥
N2(bbc+k)+1(1, a)
M2(bbc+k)+1(1, b)

=
a

b+bbc+ k
.

Thus,

d(a, b)≥ 1 for a ∈
[
b+bbc, 2bbc+ 1

]
, k = 0,

d(a, b)≥
2bbc+ 1
b+bbc

for a ∈
[
(b+bbc+ 1)(2bbc+ 1)

b+bbc
, 2bbc+ 3

]
, k = 1,

d(a, b)≥
√

a
2b

for a ∈
[
αk, 2(bbc+ k)+ 1

]
, k ≥ 2.

We also have, for a ∈
[
2(bbc+ k)+ 1,∞

)
,

d(a, b)≥
N2(bbc+k)+1(1, a)
M2(bbc+k)+1(1, b)

=
2(bbc+ k)+ 1

b+bbc+ k
.

Thus,

d(a, b)≥
√

a
2b

for a ∈
[
2(bbc+ k)+ 1, βk

]
.

Furthermore, if

b ∈
[
m− m

(m+1)2
,m+ 1

2+m

]
for some m ∈ Z and a ∈

[
2m+ 4− 1/m, 2m+ 4

]
, then

d(a, b)≥
N(m+1)3(1, a)
M(m+1)3(1, b)

=
ma+ 1

2m2+ (2+ ε)m+ ε
,

so

d(a, b)≥
√

a
2b

for a ∈ [α∗, 2m+ 4].

We also have, for a ∈ [2m+ 4mβ∗],

d(a, b)≥
N(m+1)3(1, a)
M(m+1)3(1, b)

=
m(2m+ 4)+ 1

2m2+ (2+ ε)m+ ε
.

Thus,

d(a, b)≥
√

a
2b

for a ∈ [2m+ 4, β∗]. �
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Characterizations of the round two-dimensional
sphere in terms of closed geodesics

Lee Kennard and Jordan Rainone

(Communicated by Kenneth S. Berenhaut)

The question of whether a closed Riemannian manifold has infinitely many
geometrically distinct closed geodesics has a long history. Though unsolved in
general, it is well understood in the case of surfaces. For surfaces of revolution
diffeomorphic to the sphere, a refinement of this problem was introduced by
Borzellino, Jordan-Squire, Petrics, and Sullivan. In this article, we quantify their
result by counting distinct geodesics of bounded length. In addition, we reframe
these results to obtain a couple of characterizations of the round two-sphere.

Introduction

All closed Riemannian manifolds contain a closed geodesic. If the manifold is not
simply connected, any length-minimizing representative of a nontrivial homotopy
class is a closed geodesic. In the simply connected case, this is already a nontrivial
result.

A more difficult question is whether there exist infinitely many closed geodesics.
To avoid over-counting, one considers two geodesics geometrically distinct if their
images are distinct. This brings us to the well-known question of whether there
exist infinitely many geometrically distinct closed geodesics. In this article, we
restrict our attention to surfaces, but we refer the reader to [Oancea 2015, Chapter 2]
for a survey and a guide to the literature on the problem.

For surfaces with genus g ≥ 1, one uses the infinitude of the fundamental group
and a length-minimization argument to construct infinitely many geometrically
distinct closed geodesics. For the torus, it follows that the number of such geodesics
of length at most ` grows quadratically in ` (see [Berger 2010, Chapter XII.5.A]).
For g ≥ 2, Katok proved that this number actually grows exponentially in ` (see
Remark 0.3 below).

In the remaining case, when the surface is the sphere, this question was answered
affirmatively by Bangert [1993] and Franks [1992] (cf. [Berger 2010; Hingston
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1993a]). Hingston [1993b] then proved a quantified version of this result: given
any metric on S2, the number of geometrically distinct closed geodesics of length
at most ` is asymptotically at least c`/ log ` for some constant c > 0.

In this article, we consider refinements of these results. As motivation, consider
a surface of revolution. Each profile curve connecting the poles extends to a closed
geodesic. In particular, the results of Bangert, Franks and Hingston are trivial in this
setting. On the other hand, all of these geodesics are in some sense the same. This
motivates the following definition: for a closed Riemannian manifold M, we say
that two geodesics on M are strongly geometrically distinct if there is no isometry
taking the image of one to the image of the other.

For metrics with finite isometry group, one has immediate analogues of the results
above. For metrics with infinite symmetry, it is unclear whether there exist infinitely
many strongly geometrically distinct geodesics. For example, the constant curvature
metric on S2 has only one closed geodesic in this sense. Borzellino et al. [2007]
proved that all surfaces of revolution diffeomorphic to S2, except for the round
spheres, have infinitely many strongly geometrically distinct geodesics. Our main
result is a quantification of this result, as well as a straightforward observation that
it extends to all closed, orientable surfaces with continuous (equivalently infinite)
symmetry.

Main Theorem. Let M be an orientable, compact surface with infinite isome-
try group. Let N (`) denote the number of strongly geometrically distinct closed
geodesics on M of length less than or equal to `. One of the following occurs:

(1) M is isometric to a round sphere, and N (`)= 1 for all sufficiently large ` > 0.

(2) There is a constant c > 0 such that N (`)≥ c`2 for all sufficiently large ` > 0.

We make a few remarks.

Remark 0.1. In the nonorientable case, one applies the theorem to the orientable
double cover to obtain an analogous characterization of the real projective plane
with constant curvature.

Remark 0.2. It is well known that a closed, orientable surface M can have infinite
isometry group only if M is diffeomorphic to S2 or the torus T 2 (see Lemma 1.1). In
the latter case, a simple extension of a standard argument shows the Main Theorem
holds. However the argument we provide for S2 carries over with little effort to the
case of T 2, so we include it in Section 3 for completeness.

Remark 0.3. For a compact surface M with genus g ≥ 2, the isometry group
is finite, so N (`) is related to the number n(`) of geometrically distinct closed
geodesics on M of length at most ` by the relation

N (`)≤ n(`)≤ C N (`),
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where C denotes the number of elements in the isometry group. Hence asymptotics
on n(`) imply asymptotics on N (`), up to multiplicative constant. For a metric on M
with constant curvature −1, Margulis showed that the function n(`) is asymptotic
to ce`/` for some constant c; that is, n(`)/(ce`/`)→ 1 as `→∞ (see [Margulis
1969]; cf. [Katok 1988, Section 1]). In particular, n(`) ≤ e` for all sufficiently
large `. On the other hand, Katok [1982] showed that, for any metric on M with
the same area as the constant curvature −1 metric,

lim inf
`→∞

log(n(`))/`≥ 1,

with equality if and only if the metric has constant curvature −1 (cf. [Berger 2010,
Chapter XII.5.B]). As a consequence, for the case of nonconstant curvature, there
exists a constant a > 1 such that n(`)≥ ea` for all sufficiently large `. Hence for
both S2 and surfaces of genus g≥ 2, there is a sense in which the constant curvature
metric is characterized by having the fewest closed geodesics. We do not know
whether the constant curvature metrics on T 2 have a similar characterization.

Consider now a metric on S2 with infinite isometry group. The metric takes the
form ds2

+ h(s)2dθ2 and one can check that the arguments in [Borzellino et al.
2007] for a surface of revolution carry over to this slightly more general case to
show that infinitely many strongly geometrically distinct closed geodesics exist, i.e.,
lim`→∞ N (`)=∞. In Section 2, we summarize their argument and supplement it
where needed to prove the claimed lower bound on the growth rate of N (`).

Before starting the proof, we point out that this theorem, combined with the
work of Hingston and Katok, immediately implies the following:

Corollary. Let M be an orientable, compact surface. Either M is isometric to
a round sphere and N (`) = 1 for all sufficiently large ` > 0, or there exists a
constant c > 0 such that N (`)≥ c`/ log ` for all sufficiently large ` > 0.

1. Preliminaries on Lie group actions

In this section, we gather some results on isometric actions by Lie groups that are
required for the proofs. We summarize the results here:

Lemma 1.1. If M is a closed, orientable Riemannian manifold of dimension two
with infinite isometry group G, then the identity component G0 ⊆ G contains a
circle S1, and one of the following occurs:

(1) M is isometric to a round S2 and dim G = 3.

(2) M is diffeomorphic to S2 but not isometric to a round S2, dim G = 1, and the
fixed-point set of S1 is a pair of isolated points.

(3) M is diffeomorphic to a torus, and the fixed-point set of S1 is empty.

In particular, M cannot have genus g ≥ 2.
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To prove this lemma, suppose M is a closed Riemannian manifold of dimen-
sion two with infinite isometry group G. A theorem of Myers and Steenrod states
that G is a compact Lie group (see [Kobayashi 1972, Chapter II, Section 1]). Let
G0 ⊆ G denote the identity component. By compactness, G has only finitely
many components. Since G is infinite, this implies G0 has positive dimension. In
particular, the maximal torus theorem implies G0 contains a circle S1.

This circle acts isometrically on M, and its fixed-point set

F = {p ∈ M | ei t(p)= p for all ei t
∈ S1
}

equals the zero set of the associated Killing field X on M defined by

X (p)= d
dt

∣∣∣
t=0
(ei t(p)).

Moreover, F consists of isolated points, and the number of these points equals the
Euler characteristic of M (see [Kobayashi 1972, Chapter II, Theorems 5.3 and 5.5]).
Since the Euler characteristic of M equals 2− 2g, where g is the genus, it follows
either that M is diffeomorphic to S2 and F is a pair of isolated points or that M is
diffeomorphic to T 2 and F is empty.

It suffices to show that dim G = 3 if and only if M is a round S2, and that
dim G = 2 only if M is diffeomorphic to T 2. Regarding the first of these claims,
we note that a round S2 has isometry group O(3), which is three-dimensional.
Conversely, it is a classical fact that if the isometry group of a compact two-
manifold is three-dimensional, then M is either S2 or the real projective plane RP2

equipped with a metric of constant curvature (see [Kobayashi 1972, Chapter II,
Theorem 3.1]). If, moreover, M is orientable, as in Lemma 1.1, then we conclude
that M is isometric to a round S2.

Suppose now that dim G= 2. The only compact, connected, two-dimensional Lie
group is the two-torus, so G0 = T 2 (see [Bröcker and tom Dieck 1985, page 169]).
Since G0 acts effectively on M and has the same dimension as M, it follows that
G0 acts transitively on M and hence that the Gauss curvature is constant. By the
Gauss–Bonnet theorem and the fact that the genus g ≤ 1, either M is a round S2

or a flat T 2. In the first of these cases, we have dim G = 3, a contradiction to the
assumption that dim G = 2. Hence M is isometric to a torus with constant zero
curvature.

2. Proof of the Main Theorem for the sphere

Assume that M is a Riemannian manifold diffeomorphic to S2 with infinite isometry
group. Let {p, q} ⊆ M denote the fixed point set of this circle action according to
Lemma 1.1. Choose a minimal geodesic c from p to q. By rescaling the metric
if necessary, assume that c is defined on [0, π] and that c(0) = p and c(π) = q.
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There exists a smooth function h : (0, π)→ (0,∞) and an isometric covering map

σ :
(
(0, π)×R, ds2

+ h(s)2dθ2)
→ M \ {p, q},

(s, θ) 7→ eiθ
· c(s),

where the dot denotes the action of the circle element eiθ on c(s). Since M
is smooth at p = c(0) and q = c(π), we conclude that the extended function
h : [0, π]→R satisfies h(0)=h(π)=0 and h′(0)=−h′(π)=1 (see [Petersen 2016,
Section 1.4.4]). The strategy now is to follow the proof in [Borzellino et al. 2007],
which covers the case of a surface of revolution. Note that, for a surface of revolution,
h(s) represents one coordinate of a unit-speed curve in the plane and hence satisfies
the condition that |h′(s)| ≤ 1 (see [Petersen 2016, Section 1.4.4]). Although we
are considering a more general class of surfaces, the arguments of [Borzellino et al.
2007] extend to our situation. We summarize the proof here since our strategy is
simply to supplement it, as needed, in order to prove the Main Theorem.

In the coordinates induced by σ , the geodesic equations are

s ′′(t)= h(s(t))h′(s(t))θ ′(t)2,

θ ′′(t)=−2
h′(s(t))
h(s(t))

s ′(t)θ ′(t).

The meridians, γ (t) = σ(t, θ0), satisfy these equations and extend to closed
geodesics passing through both poles, p and q. Since θ0 is arbitrary, we have
by uniqueness that meridians are the only geodesics that pass through the poles. In
the rest of this section, we consider those geodesics that do not pass through the
poles. Since σ defines an isometric covering map onto M \ {p, q}, we can write a
geodesic γ (t) as σ(s(t), θ(t)) for smooth functions s : R→ (0, π) and θ : R→ R.
For example, the parallels given by γ (t) = σ(s0, t/h(s0)) are closed geodesics
provided that h′(s0)= 0. Another example of a geodesic is provided in Figure 1.

Figure 1. A geodesic asymptotic to a parallel. The surface is S2

equipped with a rotationally symmetric metric.
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An important consequence of the geodesic equations is Clairaut’s relation. This
states that, for each nonmeridian geodesic γ , there exists a constant cγ > 0 such that

h(s(t)) cosα(t)= cγ ,

where α(t) is the angle between γ ′(t) and the coordinate vector field σθ at γ (t).
Since the cosine function is bounded, h(s(t)) cannot go to zero; hence any non-
meridian curve has its s-coordinate bounded by some interval

[s0(γ ), s1(γ )] = [inf s(t), sup s(t)] ⊆ (0, π).

Further analysis shows the following.

Lemma 2.1 (Clairaut). For a ∈ (0, π), let γa be a unit-speed geodesic starting with
s-coordinate a and initial direction γ ′(0) in the θ-direction. One of the following
occurs:

(1) parallel: h′(a)= 0, and s(t)= a for all t .

(2) asymptotic: h′(a) > 0 (resp. < 0) and there exists b = b(a) > a (resp. < a)
such that h′(b)= 0 and s(t)→ b as t→∞.

(3) oscillating: h′(a) > 0 (resp. < 0) and there exists b = b(a) > a (resp. < a)
such that h′(b) < 0 (resp. > 0) and s(t) oscillates between a and b, achieving
these extremal values at integral multiples of some time, denoted T (a).

According to this result, we refer to the parameter a ∈ (0, π) as parallel, as-
ymptotic, or oscillating. Following [Borzellino et al. 2007, Proposition 3.1], we
let U ⊆ (0, π) denote the subset consisting of oscillating a ∈ (0, π) for which
h′(a) > 0 and h′(b(a)) < 0, where b(a)= inf{b> a | h(b)= h(a)}. Geometrically,
the s-coordinate of γa oscillates between a and b(a). It follows that U ⊆ (0, π) is
an open set and that the function a 7→ b(a) on U is smooth. Indeed, this function
is given by h composed with a local inverse of h, and so it is smooth by the inverse
function theorem. Figure 2 indicates the region U for a function h(s) corresponding
to the dumbbell shape from Figure 1.

For each a ∈U, let γa(t)= σ(s(t), θ(t)) be as in Lemma 2.1 and define

R(a)= 2
∫ T (a)

0
θ ′(t) dt and L(a)= 2T (a)= 2

∫ T (a)

0
1 dt,

where T (a) is the time referred to in the third conclusion of Lemma 2.1. This
defines two functions R :U → R and L :U → R. The geometric interpretation of
these functions is as follows. The quantity 2T (a) denotes the time required for a
geodesic starting at s = a and parallel to σθ to have its s-coordinate go to b(a) and
back to a. We call this a “full trip”. It then follows by symmetry that R(a) and L(a)
denote the total rotation and length of the geodesic on a full trip. In [Borzellino
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0 s0 s1 s2 s3 π

s

h(
s)

U

Figure 2. Example of function h(s) corresponding to a surface of
revolution with the shape of a dumbbell, as in Figure 1. Here, s
is the arclength coordinate. The value a = s0 corresponds to an
asymptotic geodesic as in Lemma 2.1, and the values a∈{s1, s2, s3}

correspond to parallel geodesics. The blue region is U, the set of
oscillating values of a for which h′(a) > 0.

et al. 2007], the authors prove that R(a) is a continuous function of a. For our
purposes, we also need that L(a) is continuous.

Lemma 2.2. The functions L , R :U → R are continuous.

Proof. The proofs for R and L are similar, so we only prove it for L . Fix a ∈ U.
Choose a nontrivial interval [a1, a2] ⊆U containing a on which h′ ≥ c1 > 0. We
prove now that L is continuous on [a1, a2].

To do this, we rewrite expression for L(a). First, the unit-speed condition implies
1=|γ ′a(t)|

2
= s ′(t)2+h(s(t))2θ ′(t)2. Since s(t) is increasing from t = 0 to t = T (a),

this implies
s ′(t)=

√
1− h(s(t))2θ ′(t)2.

Next, the second geodesic equation implies d
dt (h(s(t))

2θ ′(t)) = 0. As a result,
h(s(t))2θ ′(t) equals a constant C . At t = 0, the unit-speed condition implies
θ ′(0)= 1/h(s(0))= 1/h(a), so we have C = h(a). Putting this together, we obtain

s ′(t)=
√

1− h(a)2/h(s(t))2.

Finally, we use this expression in order to apply the change of variables s = s(t)
to the integral L = 2

∫ T (a)
0 dt . This gives us the expression

L = 2
∫ b(a)

a

ds√
1− h(a)2/h(s)2

.
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Regarding the right side as a function of a, we may write L(a)= 2
∫ b(a)

a l(a, s) ds,
where l(a, s) is given by h(s)/

√
h(s)2− h(a)2. This integral is improper at both

endpoints, so we proceed by proving the following two claims:

(1) For all sufficiently small δ > 0, the integral Lδ(a) = 2
∫ b(a)−δ

a+δ l(a, s) ds is
smooth.

(2) The functions Lδ converge uniformly to L on [a1, a2].

The first claim follows from the Leibniz integral rule since l(a, s) is a smooth
function on the set {(a, s)|a ∈ [a1, a2], a+ δ ≤ s ≤ b(a)− δ}. To prove the second
claim, it suffices to prove that

∫ a+δ
a l(a, s) ds → 0 and

∫ b(a)
b(a)−δ l(a, s) ds → 0

uniformly in a ∈ [a1, a2] as δ goes to 0. These claims are proven similarly, so we
only prove the first. The second only requires the additional fact that b(a) depends
smoothly on a.

Observe that l(a, s) is nonnegative and bounded above as

l(a, s)=
h(s)√

h(s)2− h(a)2
≤

1
2c1

2h(s)h′(s)√
h(s)2− h(a)2

.

Integrating this expression and applying the change of variables y = h(s)2− h(a)2,
we conclude that∫ a+δ

a
l(a, s) ds ≤

1
2c1

∫ h(a+δ)2−h(a)2

0

dy
√

y
=

√
h(a+ δ)2− h(a)2

c1
.

Since h is smooth and hence uniformly continuous on [0, π], this last quantity
converges to 0 uniformly in a as δ→ 0. �

We proceed to the proof of the Main Theorem, that the number N (`) of strongly
geometrically distinct closed geodesics grows quadratically in `. The idea is to
show, for all large ` > 0, that a large number of values of a exist such that a ∈U,
R(a)= 2π(p/q) for some rational p/q, and L(a)≤ `/q. These three conditions
imply that any choice of γa as in Lemma 2.1 is oscillating, closes up after q full
trips, and is a closed geodesic with length at most `.

First, we dispose of the case where the isometry group G satisfies dim G 6= 1.
By Lemma 1.1, we have dim G = 3 and that M is a round sphere. In this case, the
isometry group is O(3) or SO(3), and every unit-speed geodesic can be carried to
any other by an isometry, so N (`)= 1 for all ` larger than 2πr , where 1/r2 is the
Gauss curvature of M. This completes the proof of the Main Theorem in this case.

We assume from now on that dim G = 1. As a result, the identity component
G0 ⊆ G equals the circle group. By compactness, G has only finitely many
components. In particular, for each oscillating value of a as above, at most finitely
many other such values result in geodesics that are not strongly geometrically
distinct from γa . This issue results in a multiplicative factor (equal to the number
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of components in the isometry group) in our estimates. Since the Main Theorem
involves an unknown multiplicative constant anyway, we simply assume, without
loss of generality, that the isometry group equals the circle.

The proof is carried out in three cases, which are based roughly on the setup in
[Borzellino et al. 2007]. One key step is to prove that there exists an asymptotic
geodesic if h has more than one critical point. This actually need not be the case.
Indeed, a capped cylinder provides a counterexample, since every critical point is
a local maximum and hence not a limiting value of an asymptotic geodesic. This
problem is easy to fix, however, by breaking the proof into cases as follows.

Lemma 2.3. If h has infinitely many critical points, then N (`) =∞ for all suffi-
ciently large ` > 0.

Proof. If h′(a)= 0, then γa(t)=σ(a, t/h(a)) is a closed geodesic of length 2πh(a).
Moreover, the image of γa maps to itself under any isometry, so distinct values of a
yield strongly geometrically distinct closed geodesics. The result follows since h is
bounded on [0, π]. �

Lemma 2.4. If h has finitely many critical points, and R is locally constant, then
N (`)=∞ for all sufficiently large ` > 0.

Proof. In this case, the argument in [Borzellino et al. 2007, Corollaries 4.4 and 4.5]
is valid since the critical points are isolated. Indeed, first suppose that h has more
than one critical point (as in Figure 2). The arguments there show that M has an
asymptotic geodesic and hence that R is unbounded on U. However, Lemma 2.1
and the assumptions of this lemma imply that R takes on only finitely many
values, so this is a contradiction. Assume instead that h has a unique critical
point, s0 (as in Figure 3 below). It follows as in [Borzellino et al. 2007, Corol-
lary 5.4] that U = (0, s0) and that R(a) = lima′→0 R(a′) = 2π for all a ∈ (0, s0).
But L is continuous on (0, s0) and hence on [s0/3, s0/2], so there exist infinitely
many strongly geometrically distinct closed geodesics of length at most L0, where
L0 =max

{
L(s) | s ∈ [s0/3, s0/2]

}
<∞. �

Lemma 2.5. If h has finitely many critical points and R is not locally constant, then
there exists a constant c > 0 such that N (`)≥ c`2 for all sufficiently large ` > 0.

Proof. Choose a closed interval I ′ ⊆ U that is mapped by R to some nontrivial
interval I ⊆ R. Let 2π(p/q) ∈ I . Each a ∈ U that is mapped by R to 2π(p/q)
corresponds to a closed geodesic of length q L(a). Since L is continuous on I ′, this
length is at most q L0, where L0 is the maximum value of L on I ′. This length is at
most ` if and only if q ≤ b`/L0c. To estimate N (`) from below, it suffices to count
the number of rationals p/q ∈ 1/(2π)I with q ≤ b`/L0c. By Lemma 2.6 below,
there is a constant c′ such that the number of such rationals is at least c′(b`/L0c)

2
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s0

s

h(
s)

U

Figure 3. An example of a profile curve h(s) with a unique critical
point. As in Figure 2, s is the arclength parameter and U is the set
of oscillating s-values a for which h′(a) > 0.

for all sufficiently large `. Taking c = 1
2 c′/L2

0, we conclude that N (`)≥ c`2 for all
sufficiently large ` > 0. �

As indicated in the previous proof, it suffices to prove the following counting
lemma.

Lemma 2.6. Inside any connected, nontrivial interval I ⊆ R, there exist constants
c > 0 and n0 ∈ N such that for all n ≥ n0, there are at least cn2 rational numbers
in I with denominator at most n.

Proof. The proof uses Farey fractions. Let Fn denote the set of rationals a/b written
in reduced form such that 0 ≤ a ≤ b ≤ n. It is easy to see that the number of
elements in Fn satisfies

|Fn| = 1+
n∑

k=1

φ(k),

where φ(k) is the Euler totient function, given by the number of integers 1≤ i ≤ k
coprime to k. According to Walfisz [1963],

n∑
k=1

φ(k)= 3
π2 n2

+O
(
n(log n)2/3(log log n)4/3

)
.

In particular, it follows that constants c1 > 0 and n0 > 0 exist such that |Fn|> c1n2

for all n ≥ n0.
The idea now is to inject Fn into I in a controlled way. First, it is clear that the

conclusion of the lemma holds for I if and only if it holds for {1+ i | i ∈ I }. Hence,
we assume without loss of generality that I 6⊆ (−∞, 0]. Choose positive integers a
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and b such that I contains the interval [a/b, (a + 1)/b]. Set c = 1
2(c1/b2), and

choose n0 ≥ n1 such that bn/bc ≥ n1 and c1(n/b− 1)2 > cn2 for all n ≥ n0. We
claim that n ≥ n0 implies the number of rationals x ∈ I with denominator at most n
is at least cn2.

To do this, consider the injection Fbn/bc→ I given by x 7→ (a+ x)/b. Note that
the rationals in the image of this map have denominator at most n. Hence the total
number of rationals in I with denominator at most n is at least the order of Fbn/bc.
For all n ≥ n0, this order is at least c1(bn/bc)2, which in turn is greater than cn2. �

This completes the proof of the Main Theorem in the case where M is a sphere.

3. Proof of the Main Theorem for the torus

Assume now that M is diffeomorphic to the torus and has infinite isometry group.
In this case, there exists an isometric covering map from

σ : (R×R, ds2
+ h(s)2dθ2)→ M,

where h : R → R is some smooth, positive, and periodic function on R, as in
Figure 4. To fix notation, we perform a global scaling so that the period is π .

As with the case where M is diffeomorphic to S2, we obtain the same geodesic
equations and Clairaut relation. However, Lemma 2.1 does not hold since it is
possible for geodesics to have the property |s(t)| →∞ as t→∞. Indeed, this is
the case for meridians. As a substitute, we make the following easy observation.

s0 s1 s0+π

s

h(
s)

U

Figure 4. Example of function h(s) corresponding to a torus of
revolution. Here, s is the arclength coordinate. The s-values
congruent to s0 or s1 modulo π correspond to parallel geodesics.
The blue region labeled U is, by analogy with the sphere case, the
set of oscillating s-values a such that h′(a) > 0.
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Lemma 3.1. The π -periodic function h :R→R has at least one of the two following
properties:

(1) (nonisolated case) There exist infinitely many critical points in (0, π).

(2) (asymptotic case) There exists an isolated local minimum at some s0 ∈ R.

In the first case of the lemma, it follows that N (`)=∞ for all `≥ 2π max(h).
In the second case, it follows as in the case where M is a sphere that the rotation
function R(a) is unbounded. One can imagine why this happens if h(s) is as in
Figure 4, since R(a)→∞ as a→ s0 from the right. Given that R(a) is unbounded,
it follows that R(a) is not locally constant and hence that N (`)≥ c`2 asymptotically
in ` for some constant c> 0. This concludes the proof in this case, and it concludes
the proof of both theorems in the Introduction.
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A necessary and sufficient condition for
coincidence with the weak topology

Joseph Clanin and Kristopher Lee
(Communicated by Joel Foisy)

For a topological space X, it is a natural undertaking to compare its topology
with the weak topology generated by a family of real-valued continuous functions
on X. We present a necessary and sufficient condition for the coincidence of these
topologies for an arbitrary family A⊂C(X). As a corollary, we give a new proof
of the fact that families of functions which separate points on a compact space
induce topologies that coincide with the original topology.

1. Introduction

Given a topological space (X, τ ), let C(X) denote the collection of all continuous
functions from X to R, where R is equipped with its usual topology. The weak
topology induced by a family A⊂ C(X), which we denote by τA, is the topology
on X such that the collection of sets of the form

V ( f, y, ε)= {x ∈ X : | f (x)− f (y)|< ε},

where y ∈ X, f ∈A, and ε > 0, is a subbase. It is also characterized as the coarsest
topology making all the functions in A continuous, and thus τA ⊂ τ . This naturally
leads one to ask when equality holds.

Gillman and Jerison [1976, Theorem 3.7] demonstrated that if τ = τA, then the
space X is completely regular; however, the converse does not hold in general. For
example, if we take (X, τ ) to be the real line with the discrete topology and the
family A to consist of only the identity function, then τA is the usual topology on R

and so τA 6= τ .
Conditions for the coincidence of τ and τA are also given. A family A⊂ C(X)

is said to be completely regular if given a closed set F ⊂ X and a point x0 ∈ X \ F,
there exists an f ∈A with f (x0) 6∈ cl f [F]. It is known (see [Gillman and Jerison
1976, Problem 3H]) that if A is completely regular, then τ = τA. The converse also
fails to hold, as we will demonstrate with Example 1.

MSC2010: 46E25, 54A10.
Keywords: weak topology, continuous functions.
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At present, a condition that is both necessary and sufficient appears to be absent
from the literature. To remedy this lapse, we propose the following improvement to
the definition of completely regular family:

Definition. A family A⊂ C(X) is said to be finitely completely regular if given
a closed set F ⊂ X and a point x0 ∈ X \ F, there exist f1, . . . , fn ∈ A such that
0 /∈ cl g[F], where the map g : X→ R is defined by

g(x)= max
1≤k≤n

| fk(x)− fk(x0)|.

We will show that the condition of finite complete regularity is both necessary
and sufficient for τA and τ to coincide, discuss the implications of our result for
families A on compact spaces, and present examples.

2. Main theorem

Theorem. Let (X, τ ) be a topological space and let A⊂ C(X) be a family of real-
valued continuous functions on X. The weak topology generated by A coincides
with τ if and only if A is a finitely completely regular family.

Proof. Suppose τ = τA, let F be closed, and let x0 /∈ F. As the collection V ( f, y, ε)
forms a subbase for τA, there exist f1, . . . , fn ∈A and an ε > 0 such that

x0 ∈

n⋂
k=1

V ( fk, x0, ε)⊂ X \ F,

and taking the complement yields

F ⊆
n⋃

k=1

X \ V ( fk, x0, ε).

Each set X \V ( fk, x0, ε) consists of all points x ∈ X such that | fk(x)− fk(x0)| ≥ ε,
and so if g : X→ R is defined by g(x)=max{| fk(x)− fk(x0)| : 1≤ k ≤ n}, then
0 /∈ cl g(X \ V ( fk, x0, ε)) for each k. Therefore, as

cl g(F)⊆
n⋃

k=1

cl g(X \ V ( fk, x0, ε)),

we have 0 /∈ cl g(F) and thus the family A is finitely completely regular.
Now, let A be a finitely completely regular family. Given U ∈ τ and x0 ∈U , there

exist f1, . . . , fn ∈A such that 0 /∈ cl g(X \U ), where g(x)=max | fk(x)− fk(x0)|.
Consequently, there exists an ε > 0 such that g(x)≥ ε for all x ∈ X \U , and we have

X \U ⊆
n⋃

i=1

{
x ∈ X : | fi (x)− fi (x0)| ≥ ε

}
,
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which we complement to obtain

x0 ∈

n⋂
i=1

{
x ∈ X : | fi (x)− fi (x0)|< ε

}
⊆U.

Therefore τ ⊂ τA, and so τ = τA. �

A family A⊂C(X) is said to separate points if for all distinct x, y∈ X there exists
a function f ∈A such that f (x) 6= f (y). It is well known that if a family separates
points on a compact space, then τA = τ (see [Kaniuth 2009, Proposition 2.2.14],
among others). The main theorem yields a new proof of this fact:

Corollary. Let (X, τ ) be a compact space. If A ⊂ C(X) is a family of functions
that separates points then τ = τA.

Proof. We proceed by contraposition. Indeed, suppose τ 6= τA. Then A fails to
be finitely completely regular. Consequently, there exists a closed F and a point
x0 ∈ X \ F such that 0 ∈ cl g[F], where g(x)=max | fk(x)− fk(x0)| for any finite
collection f1, . . . , fn ∈ A. Since X is compact, g is a closed mapping and this
implies that cl g[F] = g[F], which yields 0 ∈ g[F] and so there exists an x ∈ F
with fk(x)= fk(x0) for each 1≤ k ≤ n.

Define the closed sets

F f = {x ∈ F : f (x)= f (x0)} and K =
⋂
f ∈A

F f .

As any finite collection of functions f1, . . . , fn ∈A satisfies
n⋂

k=1

F fk 6=∅,

the collection of closed sets {F f : f ∈A} has the finite intersection property and so
there exists a y ∈ K . By construction, f (y)= f (x0) for all f ∈A and since y ∈ F,
it must be that y 6= x0. Therefore, A does not separate points. �

3. Examples

We now give illustrative examples of families of continuous functions; one is finitely
completely regular and the other fails to satisfy the definition.

Example 1. Consider the two functions f, g ∈ C([0, 1]) shown in Figure 1. The
family A= { f, g} separates points, and thus the topology it induces on [0, 1] is the
usual topology. This implies that A is finitely completely regular; however, it is
worth noting that A fails to be completely regular. Indeed, let F =

[
0, 1

9

]
∪
[5

9 ,
2
3

]
and x0 =

1
3 ; then x0 6∈ F but f (x0) ∈ cl f [F] and g(x0) ∈ cl g[F].
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1

1
2

1
3

2
3

1

f

g

Figure 1. The family { f, g} is finitely completely regular, but not
completely regular.

It is interesting to note that the subfamily { f } of the family in Figure 1 is not
finitely completely regular because any interval of the form

( 1
3 + ε,

2
3 − ε

)
for

0 < ε < 1
6 is open in the usual topology of the unit interval, but not in the weak

topology induced by { f }. The next example gives a family on [0,∞) that does not
induce a topology that coincides with that of the original space.

Example 2. Let A = { f (x) = αxe−x
: α ∈ R+} ⊂ C([0,∞)), F = [1,∞), and

x0 = 0. For any finite collection f1, . . . , fn ∈ A, where fk(x) = αk xe−x, we
have 0 ∈ cl g(F), as g(x) = max | fk(x)− fk(x0)| = αj xe−x for some 1 ≤ j ≤ n.
Consequently, A fails to be finitely completely regular and so τA is strictly coarser
than the usual topology on [0,∞). See Figure 2 for an example.

1

0.8

0.6

0.4

0.2

1 2 3 4 5 6 7 8

Figure 2. The finite collection
{

fn(x)= 1
5 nxe−x

:n=1, . . . ,10
}
⊂A.

Note that fn(x)→ 0 as x→∞ for each 1≤ n ≤ 10, and this forces
0 ∈ cl g[[1,∞)], where g(x)=max1≤k≤10 | fk(x)− fk(0)|.
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4. Concluding remarks

In this work we have given necessary and sufficient conditions for the coincidence
of a topology and a weak topology induced by a family of continuous functions.
In particular, this characterization yields a new, more direct proof of the fact
that a family that separates points on a compact space will induce the original
topology. The definition we introduce additionally reveals that coincidence of the
two topologies is possible only when the functions in the family suitably interact
with the topology, and our second example illustrates that this can fail even with
uncountably many functions.
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Peak sets of classical Coxeter groups
Alexander Diaz-Lopez, Pamela E. Harris,

Erik Insko and Darleen Perez-Lavin

(Communicated by Stephan Garcia)

We say a permutation π = π1π2 · · ·πn in the symmetric group Sn has a peak at
index i if πi−1<πi >πi+1 and we let P(π)={i ∈ {1, 2, . . . , n} | i is a peak of π}.
Given a set S of positive integers, we let P(S; n) denote the subset of Sn consisting
of all permutations π where P(π)= S. In 2013, Billey, Burdzy, and Sagan proved
|P(S; n)| = p(n)2n−|S|−1, where p(n) is a polynomial of degree max(S)−1. In
2014, Castro-Velez et al. considered the Coxeter group of type Bn as the group
of signed permutations on n letters and showed that |PB(S; n)| = p(n)22n−|S|−1,
where p(n) is the same polynomial of degree max(S)−1. In this paper we partition
the sets P(S; n) ⊂ Sn studied by Billey, Burdzy, and Sagan into subsets of
permutations that end with an ascent to a fixed integer k (or a descent to a fixed
integer k) and provide polynomial formulas for the cardinalities of these subsets.
After embedding the Coxeter groups of Lie types Cn and Dn into S2n , we partition
these groups into bundles of permutations π1π2 · · ·πn |πn+1 · · ·π2n such that
π1π2 · · ·πn has the same relative order as some permutation σ1σ2 · · · σn ∈ Sn .
This allows us to count the number of permutations in types Cn and Dn with a
given peak set S by reducing the enumeration to calculations in the symmetric
group and sums across the rows of Pascal’s triangle.

1. Introduction

We say a permutation π = π1π2 · · ·πn in the symmetric group Sn has a peak at
index i if πi−1 < πi > πi+1. We let [n] := {1, 2, . . . , n} and define the peak set of
a permutation π to be the set of peaks in π :

P(π)= {i ∈ [n] | i is a peak of π}.

Given a subset S ⊂ [n], we denote the set of all permutations with peak set S by

P(S; n)= {π ∈Sn | P(π)= S}.

MSC2010: 05A05, 05A10, 05A15.
Keywords: binomial coefficient, peak, permutation, signed permutation, permutation pattern.
This research was performed while Harris held a National Research Council Research Associateship
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We say a set S ⊂ [n] is n-admissible (or simply admissible when n is understood)
provided P(S; n) 6=∅.

While the combinatorics of Coxeter groups has fascinated mathematicians for
generations [Björner and Brenti 2005], the combinatorics of peaks has only recently
caught the eye of the mathematical community. Stembridge [1997] was one of the
first to study the combinatorics of peaks; he defined a peak analog of Stanley’s
theory of poset partitions. Nyman [2003] showed that taking formal sums of
permutations according to their peak sets gives a nonunital subalgebra of the group
algebra of the symmetric group. This motivated several papers studying peak (and
descent) algebras of classical Coxeter groups [Aguiar et al. 2004; 2006b, Bergeron
and Hohlweg 2006; Petersen 2007]. Peaks have also been linked to the Schubert
calculus of isotropic flag manifolds [Bergeron et al. 2002; Bergeron and Sottile
2002; Billey and Haiman 1995] and the generalized Dehn–Sommerville equations
[Aguiar et al. 2006a; Bergeron et al. 2000; Billera et al. 2003].

Billey, Burdzy, and Sagan [Billey et al. 2013, Theorem 1.1] counted the number
of elements in the sets P(S; n). For any n-admissible set S, they found these
cardinalities satisfy

|P(S; n)| = p(n)2n−|S|−1, (1)

where |S| denotes the cardinality of the set S, and where the peak polynomial p(n)
is a polynomial of degree max(S)−1 that takes integral values when evaluated
at integers. Their study was motivated by a problem in probability theory which
explored the mass distribution on graphs as it relates to random permutations with
specific peak sets; this research was presented in [Billey et al. 2015]. Billey, Burdzy,
and Sagan also computed closed formulas for the peak polynomials p(n) for various
special cases of P(S; n) using the method of finite differences, and Billey, Fahrbach,
and Talmage [Billey et al. 2016] then studied the coefficients and zeros of peak
polynomials.

Shortly after Billey, Burdzy, and Sagan’s article appeared on the arXiv, Kasraoui
[2012] proved one of their open conjectures and identified the most probable peak
set for a random permutation. Then Castro-Velez et al. [2013] generalized the work
of Billey, Burdzy, and Sagan to study peak sets of type-B signed permutations. They
studied two sets PB(S; n) and P̂B(S; n) of signed permutations with peak set S,
whose formal definition we introduce in Section 3B. Their main result regarding
the set PB(S; n) [Castro-Velez et al. 2013, Theorem 2.4] used induction to prove

|PB(S; n)| = |P(S; n)|2n
= p(n)22n−|S|−1. (2)

Note that p(n) is the same polynomial as that of (1).
Motivated by extending the above-mentioned results to other classical Coxeter

groups, our work begins by partitioning the sets P(S; n) studied by Billey, Burdzy,
and Sagan into subsets P(S; n)↗k and P(S; n)↘k of permutations ending with an
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ascent or a descent to a fixed k, respectively. With these partitions on hand, we
show in Theorems 11 and 12 that the cardinalities of these sets are governed by
polynomial formulas similar to those discovered by Billey, Burdzy, and Sagan.
These results are presented in Section 2.

We then embed the Coxeter groups of types Cn and Dn into S2n and call
these embedded subgroups Cn,Dn ⊂S2n the mirrored permutations of types Cn

and Dn , respectively (Section 3). For each π ∈Sn , we define the pattern bundle
of π in types Cn and Dn in Definitions 14 and 17. Each pattern bundle consists
of permutations τ1τ2 · · · τn | τn+1 · · · τ2n such that τ1τ2 · · · τn flattens to π1π2 · · ·πn ,
meaning τ1τ2 · · · τn has the same relative order as π1π2 · · ·πn . These pattern bundles
have the following properties: (1) they partition the groups Cn and Dn; (2) they
are indexed by the elements of Sn , and; (3) they have size 2n in Cn and 2n−1

in Dn . This process allows us to give concise proofs of the following two identities
(Theorem 24(I) and (II), respectively):

|PC(S; n)| = p(n)22n−|S|−1 and |PD(S; n)| = p(n)22n−|S|−2.

We note that the polynomial appearing above is the same as that of (1). Moreover,
the proof of Theorem 24(I) is much shorter than the one given by [Castro-Velez et al.
2013, Theorem 2.4], and Theorem 24(II) has not appeared before in the literature.

Finally in Section 4 we prove our main result, Theorem 26. We use the formulas
for |P(S; n)↗k

| and |P(S; n)↘k | from Section 2 and sums of binomial coefficients
to enumerate the set of permutations with peak set S ⊂ [n] in Cn and Dn .

We end this introduction with a remark on the history of this collaboration.
The last three authors of this article began their study of peak sets in classical
Coxeter groups before Castro-Velez et al. had published their results from type Bn ,
and focused their study on the Coxeter (Weyl) groups of types Cn and Dn using
presentations of these groups described in [Billey and Lakshmibai 2000, pp. 29, 34].
While Perez-Lavin was presenting the preliminary results of this paper at the
USTARS 2014 conference held at UC Berkeley, we met Alexander Diaz-Lopez,
who told us of his recently completed work with Castro-Velez et al. [2013]. Knowing
that the Coxeter groups of types B and C are isomorphic, we were immediately
intrigued to see what connections could be found between the two works. We were
delighted to find that we used vastly different techniques to count the elements of
PB(S; n) and PC(S; n), and discovered an isomorphism between the two groups
which preserves peak sets (up to a reordering of the peaks). We highlight these
connections and compare and contrast the two works in Section 3B.

2. Partitioning the set P(S; n)

To make our approach precise, we begin by setting notation and giving some
definitions.
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Definition 1. For a given peak set S ⊂ [n− 1], we define

P(S;n)↗k
:=
{
π ∈ P(S;n) |πn−1<πn and πn = k

}
, P(S;n) :=

n⊔
k=1

P(S;n)↗k,

P(S;n)↘k :=
{
π ∈ P(S;n) |πn−1>πn and πn = k

}
, P(S;n) :=

n⊔
k=1

P(S;n)↘k .

We remark that P(S; n)↗1
=∅ because a permutation cannot end with an ascent

to 1. Similarly P(S; n)↘n =∅ since a permutation cannot end with a descent to n.
Therefore the sets P(S; n) and P(S; n) are the disjoint unions of sets

P(S; n)=
n⊔

k=2

P(S; n)↗k and P(S; n)=
n−1⊔
k=1

P(S; n)↘k .

Since every π ∈ P(S; n) either ends with an ascent or a descent, we see

P(S; n)= P(S; n)t P(S; n).

Our next lemma counts the permutations without peaks that end with an ascent to k.

Lemma 2. If 2≤ k ≤ n, then |P(∅; n)↗k
| = 2k−2.

Proof. Let 2≤ k ≤ n and suppose π = π1π2 · · ·πn ∈ P(∅; n)↗k. Hence P(π)=∅
and πn−1<πn= k. Let us further assume that π = τA 1τB k, where τA and τB are the
portions of π to the left and right of 1, respectively. Since P(π)=∅, we know τA

must decrease, while τB must increase. However, the values of τB must come from
the set {2, 3, . . . , k− 1} because πn−1 < πn = k, and there is one π ∈ P(∅; n)↗k

for each subset of {2, 3, . . . , k− 1} as such a π is completely determined by which
elements from that set appear in τB . Hence we see |P(∅; n)↗k

| = 2k−2. �

We will next prove a recursive formula for the number of permutations with
specified peak set S that end in an ascent to a fixed integer k.

Lemma 3. Let S ⊂ [n− 1] be a nonempty admissible set. Let m =max S and fix
an integer k, where 1≤ k ≤ n. If S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)↗k
| =

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m− 1)|2k−i−2

− |P(S1; n)↗k
| − |P(S2; n)↗k

|.

Proof. Observe that if k = 1, then the result holds trivially as all terms in the
statement are identically zero. Let 2 ≤ k ≤ n and let 5↗k denote the set of
permutations ending with an ascent to k that have peak set S1 in the first m−1 spots
and no peaks in the last m− n+ 1, i.e.,

5↗k
=
{
π ∈Sn | P(π1π2 · · ·πm−1)= S1, P(πm · · ·πn)=∅, and πn−1<πn=k

}
.
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We compute the cardinality of the set 5↗k by counting the number of ways to
construct a permutation in 5↗k.

First we select a subset P1={π1, π2, . . . , πm−1}⊂ [n]\{k} (as we fix πn to be k).
When selecting P1, we can choose i numbers from {1, 2, . . . , k−1} to include in P1

for each 0≤ i ≤ k−1 and then choose the remaining m− i−1 numbers from the set
{k+1, k+2, . . . , n} to fill the remainder of P1. Thus there are

(k−1
i

)
·
( n−k

m−i−1

)
ways

to select the elements of P1. By definition, there are |P(S1,m − 1)| ways to
arrange the m − 1 elements of P1 into a permutation π1π2 · · ·πm−1 satisfying
P(π1π2 · · ·πm−1)= S1.

Let P2= {πm, πm+1, . . . , πn} = [n]\ P1, where πn = k. There are n− (m−1)=
n − m + 1 numbers in P2, and there are precisely k − i − 1 elements from the
set {1, 2, . . . , k − 1} that were not chosen to be part of P1. That means k is the
(k−i)-th largest integer in the set P2. By flattening the numbers in P2, we can see
there are |P(∅; n −m + 1)↗k−i

| ways to arrange the elements of P2 to create a
subpermutation πmπm+1 · · ·πn that satisfies

P(πm · · ·πn)=∅ and πn−1 < πn = k.

By Lemma 2 we know that |P(∅; n −m + 1)↗k−i
| = 2k−i−2 when k − i ≥ 2

and it is 0 otherwise. Of course k− i ≥ 2 when i ≤ k− 2. Putting this all together,
we see that the number of ways to create a permutation in 5↗k is

|5↗k
| =

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m− 1)|2k−i−2. (3)

Next we consider a different way to count the elements of 5↗k. Note that we
have not specified whether πm−1>πm or πm−1<πm . So, in particular, based on the
definition of 5↗k and its restrictions on P(π1π2 · · ·πm−1) and P(πmπm+1 · · ·πn),
all of the following are possible:

P(π)= S, P(π)= S1, or P(π)= S2 for π ∈5↗k.

Hence
5↗k
= P(S; n)↗k

t P(S1; n)↗k
t P(S2; n)↗k.

Thus
|5↗k

| = |P(S; n)↗k
| + |P(S1; n)↗k

| + |P(S2; n)↗k
|. (4)

The result follows from setting (3) and (4) equal to each other and solving for the
quantity |P(S; n)↗k

|. �

The following lemma will be used in the proofs of Lemmas 5 and 9.

Lemma 4. If n ≥ 2 then

• |P(∅; n)| = 1, and

• |P(∅; n)| = 2n−1
− 1.
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Proof. The only permutation π ∈ P(∅; n) that ends in a descent is n = π1 >

π2 > · · · > πn = 1; therefore |P(∅; n)| = 1. On the other hand, it is easy to see
that P(∅; n)= 2n−1, as in [Billey et al. 2013, Proposition 2.1]. Since P(∅; n)=
P(∅; n)t P(∅; n), we compute

|P(∅; n)| = |P(∅; n)| − |P(∅; n)| = 2n−1
− 1. �

The following result allows us to recursively enumerate the set of permutations
with specified peak set S that end with an ascent.

Lemma 5. Let S ⊂ [n− 1] be a nonempty n-admissible set, and let m =max S. If
we let S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)| =
( n

m−1

)
(2n−m

− 1)|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|.

Proof. Let S ⊂ [n − 1] be an admissible set with m = max S. Define the sets
S1 = S \ {m}, S2 = S1 ∪ {m− 1} and

5↗ =
{
π ∈Sn | P(π1π2 · · ·πm−1)= S1, P(πm · · ·πn)=∅, and πn−1 < πn

}
.

Next we compute the cardinality of 5↗. We observe that there are
( n

m−1

)
choices

for the values of π1, . . . , πm−1, and by definition, there are |P(S1;m− 1)| ways to
arrange the values of π1, . . . , πm−1 so that P(π1π2 · · ·πm−1)= S1. Once we have
chosen the values of π1, π2, . . . , πm−1, the values of

πm, πm+1, πm+2, . . . , πn

are determined. We note that there are |P(∅; n−m+ 1)| ways to arrange the
values of πm, . . . , πn , so that P(πm · · ·πn)=∅ and πn−1 < πn .

Yet Lemma 4 proved that |P(∅; n−m+ 1)| = 2n−m
− 1. Hence we see that

|5↗| =
( n

m−1

)
(2n−m

− 1)|P(S1;m− 1)|. (5)

On the other hand5↗= P(S; n)tP(S1; n)tP(S2; n) by the defining conditions
of 5↗. Hence

|5↗| = |P(S; n)| + |P(S1; n)| + |P(S2; n)|. (6)

When we set the right-hand sides of (5) and (6) equal to each other and solve for
|P(S; n)|, we see that

|P(S; n)| =
( n

m−1

)
(2n−m

− 1)|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|. �

The following examples illustrate the recursion used to prove Lemmas 3 and 5.
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Example 6. We make use of Lemma 3 to compute |P({3}; 5)↗3
|. Let S be the set

S = {3} ⊂ [5]. Note that m =max S = 3. Then we compute

|P({3}; 5)↗3
| =

[(2
0

)(2
2

)
21
+

(2
1

)(2
1

)
20
]
|P(∅; 2)|
− |P(∅; 5)↗3

| − |P({2}; 5)↗3
|. (7)

Some small computations show that

P(∅; 2)= {12, 21}, P(∅; 5)↗3
= {54213, 54123},

P({2}; 5)↗3
= {45213, 25413, 45123, 15423}.

Accordingly, we can see that (7) gives

|P({3}; 5)↗3
| = (2+ 4)(2)− 2− 4= 6.

Example 7. In this example we make use of Lemma 5 to compute |P({3}; 5)|. If
we let S = {3} ⊂ [5] then m =max S = 3. We then have

|P({3}; 5)| =
(5

2

)
(25−3

− 1)|P(∅; 2)| − |P(∅; 5)| − |P({2}; 5)|. (8)

Some small computations show

P(∅; 2)= {12, 21},

P(∅; 5)=
{

54321, 54213, 54123, 53214, 53124, 52134, 51234, 43215,
43125, 42135, 32145, 41235, 31245, 21345, 12345

}
.

Direct computations yield

P({2}; 5)

=

{
45312, 35412, 45213, 25413, 45123, 15423, 35214, 25314, 35124, 25134,
15324, 15234, 34215, 24315, 34125, 24135, 23145, 14325, 14235, 13245

}
.

Equation (8) gives

|P({3}; 5)| =
(5

2

)
(25−3

− 1)(2)− 15− 20= 25.

Next we consider permutations that end in a descent to a specific value k.

Lemma 8. Let S ⊂ [n− 1] be a nonempty admissible set, let m = max S, and fix
an integer k, where 1≤ k ≤ n. If S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)↘k | =

( n−k
n−m

)
|P(S1;m− 1)| − |P(S1; n)↘k | − |P(S2; n)↘k |.

The proof of Lemma 8 follows similarly to that of Lemma 3; hence we omit the
argument, but point the interested reader to the preprint version of this paper for a
detailed proof [Diaz-Lopez et al. 2015].
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The following result allows us to recursively enumerate the set of permutations
with specified peak set S that end with a descent.

Lemma 9. Let S ⊂ [n− 1] be a nonempty admissible set, and let m = max S. If
S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)| =
( n

m−1

)
|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|.

Proof. By Definition 1,

|P(S; n)| =
n−1∑
k=1

|P(S; n)↘k |.

Using this equation and Lemma 8 we get

|P(S; n)| =
n−1∑
k=1

[( n−k
n−m

)
|P(S1;m− 1)| − |P(S1; n)↘k | − |P(S2; n)↘k |

]
=

( n
m−1

)
|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|,

where the last equality comes from the identity
∑n

k=0
(k

c

)
=
(n+1

c+1

)
. �

As before, we provide an example that illustrates the use of the previous results.

Example 10. Consider the set S = {3} ⊂ [5]; hence m =max S = 3. We want to
compute |P({3}; 5)↘2|. By Lemma 8 we have

|P({3}; 5)↘2| =

(3
2

)
|P(∅; 2)| − |P(∅; 5)↘2| − |P({2}; 5)↘2|.

Some simple computations show that

P(∅; 2)= {12, 21}, P(∅; 5)↘2 =∅, and P({2}; 5)↘2 = {15432}.

Therefore
|P({3}; 5)↘2| = 3(2)− 0− 1= 5.

In fact, P({3}; 5)↘2 = {51432, 41532, 31542, 14532, 13542}.
We want to compute |P({3}; 5)|. By Lemma 9 we have

|P({3}; 5)| =
(5

2

)
|P(∅; 2)| − |P(∅; 5)| − |P({2}; 5)|.

Again we can compute that

P(∅; 2)= {12, 21}, P(∅; 5)= {54321},

P({2}; 5)= {45321, 35421, 25431, 15432}.
Thus

|P({3}; 5)| = 10(2)− 1− 4= 15.
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In fact,

P({3}; 5)=
{

53421, 43521, 34521, 52431, 42531, 32541, 24531,
23541, 51432, 41532, 31542, 21543, 14532, 13542, 12543

}
.

The following two theorems allow us to easily calculate closed formulas for
|P(S; n)| and |P(S; n)↗k

| using the method of finite differences [Stanley 2012,
Proposition 1.9.2]. We start by applying Lemma 9 in an induction argument to
show |P(S; n)| is given by a polynomial pδ(n).

Theorem 11. Let S⊂ [n−1] be an admissible set. If S=∅, take m = 1; otherwise
let m =max S. Then the cardinality of the set P(S; n) is given by

|P(S; n)| = pδ(n),

where pδ(n) is a polynomial in the variable n of degree m− 1 that returns integer
values for all integers n.

Proof. We induct on the sum i =
∑

i∈S i . When i = 0, the set S is empty. By
Lemma 4 we get |P(∅; n)| = 1, and so pδ(n)= 1 is a polynomial of degree 0.

Let S ⊂ [n−1] be nonempty, with m =max S and
∑

i∈S i = i. Let S1 = S \ {m}
and S2 = S1 ∪ {m− 1}, and note, in particular, that the sums

∑
i∈S1

i and
∑

i∈S2
i

are both strictly less than i. By induction, we know |P(S1; n)| = pδ1(n) and
|P(S2; n)| = pδ2(n), where pδ1 and pδ2 are polynomials of degrees less than m− 1
that have integral values when evaluated at integers.

By (1) we have |P(S1;m − 1)| = p(m − 1)2(m−1)−|S1|−1 and this expression
returns an integer value when evaluated at any integer m − 1 [Billey et al. 2013,
Theorem 2.2]. Since the expression p(m − 1)2(m−1)−|S1|−1 is an integer-valued
constant with respect to n, we see that p(m−1)2(m−1)−|S1|−1

( n
m−1

)
is a polynomial

in the variable n of degree m− 1. These facts, together with Lemma 9, imply

|P(S; n)| =
( n

m−1

)
|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|

=

( n
m−1

)
p(m− 1)2(m−1)−|S1|−1

− pδ1 − pδ2

= pδ,

where pδ is a polynomial in the variable n of degree m− 1 that has integer values
when evaluated at integers. �

Using Lemma 3, we show |P(S; n)↗k
| is given by a polynomial.

Theorem 12. Let S ⊂ [n−1] be an admissible set. If S =∅ take m = 1; otherwise
let m =max S. Fix an integer k satisfying 2≤ k ≤ n; then the cardinality of the set
P(S; n)↗k is given by

|P(S; n)↗k
| = pα(k)(n),
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where pα(k)(n) is a polynomial of degree m− 1 that returns integer values for all
integers n.

Proof. We proceed by induction on the sum i =
∑

i∈S i . When i = 0 the set S is
empty. By Lemma 2 we get |P(∅; n)↗k

| = 2k−2, which is a polynomial of degree 0
in the indeterminate n.

Consider a nonempty subset S ⊂ [n− 1] with m =max S and
∑

i∈S i = i. Let
S1 = S \ {m} and S2 = S1 ∪ {m− 1}, and note, in particular, that the sums

∑
i∈S1

i
and

∑
i∈S2

i are both strictly less than i. By induction, we know

|P(S1; n)↗k
| = pα1(k)(n) and |P(S2; n)↗k

| = pα2(k)(n),

where pα1(k)(n) and pα2(k)(n) are each polynomials of degrees less than m− 1 that
have integer values when evaluated at integers.

By (1) we know |P(S1;m − 1)| = p(m − 1)2(m−1)−|S1|−1 is an integer-valued
function when evaluated at any integer m − 1, and it is a constant function with
respect to n. Hence the expression

(k−1
i

)
|P(S1;m − 1)|2k−i−2 is a polynomial

expression in n that has degree m− 1 when i = 0 and degree less than or equal to
m− 1 for 1≤ i ≤ k− 2. These facts, together with Lemma 3, imply

|P(S;n)↗k
| =

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m−1)|2k−i−2

−|P(S1;n)↗k
|−|P(S2;n)↗k

|

=

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m−1)|2k−i−2

−pα1(k)(n)−pα2(k)(n)

= pα(k)(n)

is a polynomial in the variable n of degree m− 1 that returns integer values when
evaluated at integers. �

Below we show an example of how to find the polynomial pα(k)(n).

Example 13. It is well known that any sequence given by a polynomial of degree d
can be completely determined by any consecutive d + 1 values by the method of
finite differences [Stanley 2012, Proposition 1.9.2]. Theorems 11 and 12 give us a
way of finding explicit formulas pα(k)(n) and pδ(n) for an admissible set S.

For instance if S={2, 4} and k= 6, Theorem 12 tells us pα(k)(n) is a polynomial
of degree 3. Hence we require four consecutive terms to compute pα(k)(n). One
can compute that the first few values of pα(6)(n)= |P(S; n)↗6

| are

pα(6)(6)= 16, pα(6)(7) = 80, pα(6)(8) = 224,

pα(6)(9)= 480, pα(6)(10)= 880, pα(6)(11)= 1456, . . . .
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We then take four successive differences until we get a row of zeros in the following
array:

16 80 224 480 880 1456 . . .

64 144 256 400 576 . . .

80 112 144 176 . . .

32 32 32 . . .

0 0 . . .

Since the first value we considered in the first row of the array above is the value of
pα(6)(n) at n = 6, we can write the polynomial pα(6)(n) in the basis

(n−6
j

)
as

pα(6)(n)= 16
(n−6

6

)
+ 64

(n−6
7

)
+ 80

(n−6
8

)
+ 32

(n−6
9

)
.

The sequence given by 1
16 pα(6)(n) in this example is sequence A000330 in Sloane’s

On-line encyclopedia of integer sequences [OEIS 1996] with the index n shifted by 6.

3. Pattern bundles of Coxeter groups of types C and D

In this section, we describe embeddings of the Coxeter groups of types Cn and Dn

into the symmetric group S2n . We then partition these groups into subsets, which
we call pattern bundles and denote by Cn(π) and Dn(π), that correspond to permu-
tations π of Sn . Each of the type-Cn pattern bundles Cn(π) contains 2n elements,
and the type-Dn pattern bundles Dn(π) contain 2n−1 elements. These sets allow us
to give a concise proof of Theorem 24, and they play an instrumental role in our
proof of Theorem 26.

3A. Pattern bundle algorithms for Cn and Dn. We define the group of type-Cn

mirrored permutations to be the subgroup Cn ⊂S2n consisting of all permutations
π1π2 · · ·πn |πn+1πn+2 · · ·π2n∈S2n , where πi = k if and only if π2n−i+1=2n−k+1.
In other words, if we place a “mirror” between πn and πn+1, then the numbers i and
2n− i + 1 must be the same distance from the mirror for each 1≤ i ≤ n. A simple
transposition si with 1≤ i ≤ n− 1 acts on a mirrored permutation π ∈ Cn ⊂S2n

(on the right) by simultaneously transposing πi with πi+1 and π2n−i with π2n−i+1.
The simple transposition sn acts on a mirrored permutation π ∈ Cn ⊂ S2n by
transposing πn with πn+1.

Similarly, we define the group of type-Dn mirrored permutations as the subgroup
Dn ⊂S2n consisting of all permutations π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈S2n , where
πi = k if and only if π2n−i+1 = 2n − k + 1 and the set {π1, π2, . . . , πn} always
contains an even number of elements from the set {n+ 1, n+ 2, . . . , 2n}. A simple
transposition si with 1≤ i ≤ n−1 acts on a mirrored permutation π ∈Dn ⊂S2n (on
the right) by simultaneously transposing πi with πi+1 and π2n−i with π2n−i+1. The
simple transposition sn acts on a mirrored permutation π ∈Dn ⊂ S2n by transposing
πn−1πn with πn+1πn+2.

http://oeis.org/A000330
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Definition 14. Let π = π1π2 · · ·πn ∈ Sn . We define the pattern bundle of π in
type Cn (denoted Cn(π)) to be the set of all mirrored permutations

τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn

such that τ1τ2 · · · τn has the same relative order as π1π2 · · ·πn .

We could equivalently describe Cn(π) as the set of mirrored permutations which
contain the permutation pattern π in the first n entries. We will show that these
sets partition Cn into subsets of size 2n. For every π ∈Sn , we will describe how to
construct the pattern bundle Cn(π)⊂ Cn of π using the following process:

Algorithm 15 (pattern bundle algorithm for Cn(π)).

(1) Let π = π1π2 · · ·πn ∈Sn and write it as a mirrored permutation

π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈S2n.

(2) Let In = {π1, π2, . . . , πn}. Fix 0≤ j ≤ n and select j elements from the set In .
Then let 5 be the set consisting of the j selected elements.

(3) The set In \5 consists of n− j elements. Denote this subset of In by 5c.

(4) Let 5c denote the set containing π2n−ik+1 = 2n− πik + 1 for each πik ∈5
c.

Note that |5c| = n− j .

(5) List the n elements of the set

5c t5

so that they are in the same relative order as π and call them τ1τ2 · · · τn . (Note
that the set 5c consists of the integers that were switched in Step (4), and the
set 5 consists of the ones that were fixed in Step (2).)

(6) The order of the remaining entries τn+1τn+2 · · · τ2n is determined by that of
τ1τ2 · · · τn since we must have τ2n−i+1 = 2n− τi + 1 for 1≤ i ≤ n.

(7) Output the mirrored permutation τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn ⊂S2n and
stop.

Step (5) ensures all of the constructed elements will have the same relative order
as π . It follows that the set Cn(π) described in Definition 14 denotes all elements
of Cn created from π by Algorithm 15. Notice in Step (2), we must choose j values
to fix. When we let j range from 0 to n, we see that the total number of elements
in Cn(π) is given by(n

0

)
+

(n
1

)
+ · · ·+

( n
n−1

)
+

(n
n

)
= 2n.

We conclude that |Cn(π)| = 2n for all π ∈Sn .
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Note that if τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn , then τ1 · · · τn has the same
relative order as exactly one element π ∈Sn . It follows that if σ and π are distinct
permutations of Sn , then Cn(σ )∩ Cn(π) = ∅. Therefore, this process creates all
2nn! elements of Cn .

Example 16. Using Algorithm 15, we have partitioned the elements of C3 into the
pattern bundles Cn(π):

C3 =



123|456,
124|356,
135|246,
145|236,
236|145,
246|135,
356|124,
456|123,

132|546,
142|536,
153|426,
154|326,
263|415,
264|315,
365|214,
465|213,

213|465,
214|365,
315|264,
326|154,
415|326,
426|153,
536|142,
546|132,

231|645,
241|635,
351|624,
362|514,
451|623,
462|513,
563|412,
564|312,

312|564,
412|563,
513|462,
514|362,
623|451,
624|351,
635|241,
645|231,

321|654,
421|653,
531|642,
541|632,
632|541,
642|531,
653|421,
654|321


.

One can see that the elements of π ∈S3 correspond to the elements in the top row
(in bold font). Each column consists of the pattern bundle C(π) corresponding to
each π ∈S3.

Definition 17. Let π = π1π2 · · ·πn ∈Sn . We define the pattern bundle Dn(π) to
be the set of all mirrored permutations τ = τ1τ2 · · · τn | τn+1 · · · τ2n ∈ Dn such that
τ1τ2 · · · τn has the same relative order as π1π2 · · ·πn .

For every π ∈ Sn , we construct the subsets Dn(π) ⊂ Dn using the following
process:

Algorithm 18 (pattern bundle algorithm for Dn(π)).

(1) Let π = π1π2 · · ·πn ∈Sn and write it as a mirrored permutation

π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈S2n.

(2) If n is even, then pick an even number 2 j , with 0≤ j ≤ 1
2 n. Select a subset of

2 j elements from the set {π1, π2, . . . , πn} to keep fixed. Then let 5 be the set
consisting of the 2 j selected elements.
If n is odd, then pick an odd number 2 j + 1 with 1≤ j ≤ 1

2(n− 1). Select a
subset of 2 j + 1 elements from the set {π1, π2, . . . , πn} to keep fixed. Then
let 5 be the set consisting of the 2 j + 1 selected elements.

(3) If n is even, let the set of remaining n− 2 j elements be denoted as 5c. (Note
that n− 2 j is an even integer.)
If n is odd, let the set of remaining n − 2 j − 1 elements be denoted as 5c.
(Note that n− 2 j − 1 is an even integer.)
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(4) Let the set 5c denote the set of mirror images from the elements of 5c. In
other words, for each πik ∈5

c, the mirror image π2n−ik+1 is in 5c.

(5) List elements of the set 5t5c so they are in the same relative order as π and
call the resulting permutation τ1τ2 · · · τn .

(6) Then the entries of τn+1τn+2 · · · τ2n are determined by the relation τ2n−ik+1 =

2n− τik + 1.

(7) Output the mirrored permutation τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈Dn ⊂S2n and
stop.

By Definition 17 the set Dn(π) is the subset of all elements of Dn which are
created from π by Algorithm 18. This is because Step (5) ensures that all of the
constructed elements will have the same relative order as π .

In Step (2) we choose an even/odd number of entries to fix, so that we always
exchange an even number of entries with their mirror image. This ensures each τ
constructed via Algorithm 18 is a type-Dn mirrored permutation. When n is even, we
can see from Step (2) that the total number of permutations created by Algorithm 18
is given by

∑n/2
j=0

( n
2 j

)
. When n is odd, we can use the identity

bn/2c∑
j=0

( n
2 j+1

)
=

bn/2c∑
k=0

( n
2k

)
, where 2k = n− (2 j + 1),

to see that the total number of elements created by Algorithm 18 is also given by
the formula

bn/2c∑
j=0

( n
2 j

)
.

Pascal’s identity for computing binomial coefficients states that for all integers n
and k with 1≤ k ≤ n− 1, (n

k

)
=

(n−1
k−1

)
+

(n−1
k

)
.

Using this identity we can see that

bn/2c∑
j=0

( n
2 j

)
=

n−1∑
j=0

(n−1
j

)
= 2n−1.

So for every element π ∈Sn , we create 2n−1 elements of Dn . Hence |Dn(π)|=2n−1.
Also notice that for each choice of π , the 2n−1 elements of Dn(π) will be distinct
due to the choice of which elements get sent to their mirror image. Namely, if σ
and π are distinct permutations of Sn , then Dn(σ )∩Dn(π)=∅. Therefore, this
process creates all 2n−1n! distinct elements of Dn .
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Example 19. Using Algorithm 18, we have partitioned the set D3 into the pattern
bundles Dn(π):

D3 =


123|456,
145|236,
246|135,
356|124,

132|546,
154|326,
264|315,
365|214,

213|465,
214|365,
426|153,
536|142,

231|645,
241|635,
462|513,
563|412,

312|564,
412|563,
624|351,
635|241,

321|654,
421|653,
642|531,
653|421

 .
Note that the elements in the top row (in bold font) are the elements of S3, while
the elements in each column are the elements of the pattern bundle D3(π) for each
respective π ∈S3.

3B. Peak sets in types B and C. Castro-Velez et al. [2013] studied the sets of
type-Bn signed permutations (defined below) with a given peak set R ⊂ [n − 1].
It is well known that the group of signed permutations of type Bn is isomorphic
to the Coxeter groups of types Bn and Cn . In this section, we describe one such
isomorphism between the group of signed permutations Bn and the mirrored per-
mutations Cn and show how the peak sets in mirrored permutations studied in this
paper correspond with the ones studied by Castro-Velez et al. [2013]. It is important
to know that even though we compute the cardinalities of similar sets, our methods
are completely different and yield different equations. In particular, Castro-Velez
et al. use induction arguments similar to those used by Billey, Burdzy, and Sagan
in the realm of signed permutations to derive their formulas, whereas we use the
pattern bundles of type Cn to reduce the problem to calculations in the symmetric
group.

Let Bn denote the group of signed permutations on n letters

Bn :=
{
β1β2 · · ·βn | βi ∈ {−n,−n+ 1, . . . ,−1, 1, . . . , n}

and {|β1|, |β2|, . . . , |βn|} = [n]
}
.

We say that a signed permutation β ∈ Bn has a peak at i if βi−1 < βi > βi+1.

Definition 20. Let R⊆[n−1]. Then the sets PB(R; n) and P̂B(R; n) are defined as

PB(R; n) := {β ∈ Bn | P(β1 · · ·βn)= R},

P̂B(R; n) := {β ∈ Bn | P(β0β1 · · ·βn)= R, where β0 = 0}.

In this paper we study the sets of mirrored permutations of types Cn and Dn that
have a given peak set S.

Definition 21. Let Cn and Dn be the mirrored permutations of types C and D,
respectively. For S ⊆ [n− 1], we define the sets PC(S; n) and PD(S; n) as

PC(S; n) := {π ∈ Cn | P(π1π2 · · ·πn)= S}, (9)

PD(S; n) := {π ∈ Dn | P(π1π2 · · ·πn)= S}. (10)
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Let S ⊆ [n] we define the sets P̂C(S; n) and P̂D(S; n) as

P̂C(S; n) := {π ∈ Cn | P(π1π2 · · ·πn |πn+1)= S}, (11)

P̂D(S; n) := {π ∈ Dn | P(π1π2 · · ·πn |πn+1)= S}. (12)

Note that P̂C(S; n) and P̂D(S; n) differ from PC(S; n) and PD(S; n) in that they
allow for a peak in the n-th position when πn−1 < πn > πn+1. The following
proposition provides a bijection between the peak sets P̂B(R; n) considered by
Castro-Velez et al. [2013] and P̂C(S; n) considered in this paper.

Proposition 22. Let S = {i1, i2, . . . , ik} ⊂ {2, 3, . . . , n} and

R = {n− i1+1, n− i2+1, . . . , n− ik+1} ⊂ [n−1].

Then there is a bijection between Cn and Bn that maps P̂C(S; n) to P̂B(R; n).

The above result states that the peaks of π1π2 · · ·πn |πn+1 correspond bijectively
with the peaks of a signed permutation β0β1β2 · · ·βn , where β0 = 0, and the peaks
of π1π2 · · ·πn correspond with those of β1β2 · · ·βn . Before proceeding to the proof
of Proposition 22, we set some preliminaries.

Billey and Lakshmibai [2000, Definition 8.3.2] note that a mirrored permutation

π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈ Cn

can be represented by either side of the mirror, π1π2 · · ·πn or πn+1πn+2 · · ·π2n ,
and we use the latter πn+1πn+2 · · ·π2n to define a map F from Cn to Bn as

F : Cn→ Bn,

π1π2 · · ·πn |πn+1πn+2 · · ·π2n 7→ β1β2 · · ·βn,

where

βi =

{
πn+i − n if πn+i > n,
πn+i − n− 1 if πn+i ≤ n.

We consider a signed permutation β = β1β2 · · ·βn in Bn as β0β1 · · ·βn , where
β0 = 0, thus allowing for a peak at position 1. We note that the map F respects
the relative order of the sequence πnπn+1πn+2 · · ·π2n; i.e., for 0 ≤ i ≤ n − 1, if
πn+i < πn+i+1 then βi < βi+1, and similarly if πn+i > πn+i+1 then βi > βi+1.

We also define an automorphism G : Bn → Bn which switches the sign of
each βi in β0β1β2 · · ·βn (keeping β0 = 0 fixed). To avoid cumbersome notation,
for each βi , we set βi = −βi . The following table illustrates how the maps F
and G map the group of mirrored permutations C2 bijectively to the group of signed
permutations B2:
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π ∈ C2 F(π) ∈ B2 G(F(π)) ∈ B2

12|34 012 012
21|43 021 021
13|24 012 012
24|13 021 021
31|42 021 021
42|31 012 012
34|12 021 021
43|21 012 012

With the above notation at hand we now proceed to the proof.

Proof of Proposition 22. Let π = π1π2 · · ·πn |πn+1 · · ·π2n be a mirrored permuta-
tion and F(π)= β0β1β2 · · ·βn . Then we see G(F(π))= β0β1β2 · · ·βn . Suppose
πi < πi+1 for some i ∈ {1, 2, . . . , n}. Looking at the mirror images of πi and πi+1,
we get 2n−πi + 1> 2n−πi+1+ 1; thus π2n−i+1 > π2n−(i+1)+1. Since the map F
respects the relative order of πnπn+1 · · ·π2n , we have βn−i+1>βn−(i+1)+1, and thus
βn−i+1<βn−(i+1)+1. Using the same argument but replacing “<” with “>” and vice
versa, we get that if πi >πi+1 then βn−i+1>βn−(i+1)+1. Therefore if π ∈ P̂C(S; n)
then G(F(π)) ∈ P̂B(R; n), and if π 6∈ P̂C(S; n) then G(F(π)) 6∈ P̂B(R; n). Since
both G and F are bijections, we conclude that G(F(P̂C(S; n)))= P̂B(R; n). �

We can also consider signed permutations β ∈ Bn without the convention that
β0 = 0. In that case we obtain the following result.

Corollary 23. Let S = {i1, i2, . . . , ik} ⊂ {2, 3, . . . , n− 1} and

R = {n− i1+1, n− i2+1, . . . , n− ik+1} ⊂ {2, . . . , n−1}.

Then the bijection G ◦ F : Cn→ Bn maps PC(S; n) to PB(R; n).

Proof. The proof of this corollary proceeds exactly as the proof of Proposition 22. �

3C. The sets PC(S; n) and PD(S; n). In this subsection, we use the fact that
Cn(π) and Dn(π) partition Cn and Dn to give concise proofs that |PC(S; n)| =
p(n)22n−|S|−1 and |PD(S; n)| = p(n)22n−|S|−2, where p(n) is the polynomial given
in [Billey et al. 2013, Theorem 2.2].

Theorem 24. Let S ⊆ [n− 1]. Then

(I) |PC(S; n)| = p(n)22n−|S|−1,

(II) |PD(S; n)| = p(n)22n−|S|−2.

Proof. To prove part (I), note that Billey et al. [2013, Theorem 2.2] showed that
|P(S; n)| = p(n)2n−|S|−1, where p(n) is a polynomial with degree max(S)−1.
Algorithm 15 showed that each π ∈ P(S; n) corresponds to a subset Cn(π) ⊂ Cn
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which contains 2n elements. By construction these elements have the exact same
peak set as π . In other words, for every τ ∈ Cn(π), the peak sets P(τ )= P(π)= S
agree. We compute that |PC(S; n)| = p(n)2n−|S|−12n

= p(n)22n−|S|−1.
Part (II) follows similarly, replacing Cn with Dn , Algorithm 15 with Algorithm 18,

and 2n with 2n−1. �

4. Peak sets of the Coxeter groups of types C and D

In this section we use specific sums of binomial coefficients and the partitions

P(S; n)= P(S; n)t P(S; n) and P(S; n)=
n⊔

k=2

P(S; n)↗k

to describe the cardinality of the sets P̂C(S; n), P̂C(S ∪ {n}; n), P̂D(S; n), and
P̂D(S ∪ {n}; n). We begin by setting the following notation:

Definition 25. Let 8(n, k) denote the sum of the last n− j + 1 terms of the n-th
row in Pascal’s triangle,

8(n, k)=
n∑

i=k

(n
i

)
=

(n
k

)
+

( n
k+1

)
+ · · ·+

(n
n

)
,

and let
9(n, k)= 2n

−8(n, k).

We can now state our main result.

Theorem 26. Type C : Let P̂C(S; n) denote the set of elements of Cn with peak set
S ⊂ [n− 1]. Then

|P̂C(S; n)| =
n∑

k=1

|P(S; n)↗k
| ·8(n, k)+ |P(S; n)| · 2n

and

|P̂C(S ∪ {n}; n)| =
n∑

k=1

|P(S; n)↗k
| ·9(n, k).

Type D: Let P̂D(S; n) denote the set of elements of Dn with peak set S ⊂ [n− 1].
If n is even, then

|P̂D(S; n)|=
n/2∑
k=1

(
|P(S; n)↗2k−1

|+|P(S; n)↗2k
|
)
8(n−1, 2k−1)+|P(S; n)|2n−1

and

|P̂D(S ∪ {n}; n)| =
n/2∑
k=1

(
|P(S; n)↗2k−1

| + |P(S; n)↗2k
|
)
9(n− 1, 2k− 1).
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If n is odd, then

|P̂D(S; n)| =
(n−1)/2∑

k=1

(
|P(S; n)↗2k+1

|+|P(S; n)↗2k
|
)
8(n−1, 2k)+|P(S; n)|2n−1

and

|P̂D(S ∪ {n}; n)| =
(n−1)/2∑

k=1

(
|P(S; n)↗2k+1

| + |P(S; n)↗2k
|
)
9(n− 1, 2k).

Since the proofs of the type-C and type-D results in Theorem 26 require some
specific identities involving the functions 8 and 9, we present these results and
proofs in Sections 4A and 4B, respectively.

Note that Proposition 22 shows that |P̂B(R; n)| = |P̂C(S; n)|. Castro-Velez et al.
[2013, Theorem 3.2] gave a recursive formula for computing the cardinality of the set
P̂B(R; n). Theorem 26 provides an alternate formula for |P̂C(S; n)| = |P̂B(R; n)|
using the sums of binomial coefficients 8(n, k) and 9(n, k), and the cardinalities
of sets P(S; n) and P(S; n)↗k.

4A. Peak sets of the Coxeter groups of type C. The following lemma uses the
functions 8(n, k) and 9(n, k) to count the number of elements in Cn(π) having
an ascent in the n-th position. This lemma is the key step in the type-C proof of
Theorem 26.

Lemma 27. If π ∈ P(S; n)↗k then there are 8(n, k) elements τ ∈ Cn(π) with
τn ≤ n and 9(n, k) elements τ ∈ Cn(π) with τn > n.

Proof. Suppose that π = π1π2 · · ·πn ∈ P(S; n)↗k, so πn−1 < πn = k. If τ =
τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn(π), then τn is the k-th largest integer in the set
{τ1, τ2, . . . , τn} because τ has the same relative order as π and πn = k. Therefore if
at least k elements of the set {τ1, τ2, . . . , τn} have τi ≤ n then we conclude τn ≤ n.

We will show there are
(n

j

)
elements τ ∈ Cn(π), where exactly j elements

of the set {τ1, τ2, . . . , τn} satisfy τn ≤ n. To construct such a τ , we start with
π = π1π2 · · ·πn , and then we choose j elements of the set {π1, π2, . . . , πn} to
remain fixed. We replace the remaining n− j elements of {π1, π2, . . . , πn} with
their mirror images, which are all greater than n. Finally, we list the elements
of the resulting set so that they have the same relative order as π and call them
τ1τ2 · · · τn . The subpermutation τn+1τn+2 · · · τ2n is then completely determined
by the subpermutation τ1τ2 · · · τn . Thus there are

(n
j

)
mirrored permutations τ

of the form τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn(π), where j of the elements in
{τ1, τ2, . . . , τn} satisfy τi ≤ n.

Considering all integers j with k ≤ j ≤ n, we see that the number of elements

τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn(π)
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with at least k of the elements in {τ1, τ2, . . . , τn} satisfying τi ≤ n is exactly

8(n, k)=
n∑

j=k

(n
j

)
.

Thus there are 8(n, k) elements τ ∈ Cn(π) with τn ≤ n. The other 2n
−8(n, k)=

9(n, k) elements of Cn(π) must have τn > n. �

With the above result at hand, we now give the following proof.

Proof of Theorem 26, type C. Let π = π1π2 · · ·πn ∈ P(S; n), and recall that Cn(π)

is the set of elements of Cn whose first n entries have the same relative order as π ,
and |Cn(π)|= 2n for any π ∈ Sn . Let τ = τ1τ2 · · · τn | τn+1 · · · τ2n ∈ Cn denote a
mirrored permutation of type Cn . Then there are two possibilities:

• Either τ has the same peak set as π so that τ ∈ P̂C(S; n), or

• τ has an additional peak at n, in which case τ ∈ P̂C(S ∪ {n}; n).

There are two cases in which τ ∈ P̂C(S; n):

Case 1: If π ends with a descent, i.e., πn−1 > πn , then every τ ∈ Cn(π) also has
τn−1 > τn , and thus τ is in P̂C(S; n) because it cannot possibly have a peak at n
if it ends with a descent. We conclude that if π ∈ P(S; n) then all 2n elements
τ ∈ Cn(π) are in P̂C(S; n).

Case 2: If π ends with an ascent, i.e., πn−1 < πn , then τn−1 < τn for all τ ∈ Cn(π)

as well. (Recall that for any σ ∈ Cn , our map into S2n identifies σi with its mirror
σn−i+1 by σn−i+1 = 2n− σi + 1.) Hence, if τn ≤ n, then τn+1 = 2n− τn + 1> τn .
In this case τn−1 < τn < τn+1, and τ does not have a peak at n. So τ ∈ P̂C(S; n).
Therefore we conclude that if π ∈ P(S; n) and if τ ∈ Cn(π) satisfies τn ≤ n then τ
is an element of P̂C(S; n). By Lemma 27 we conclude that if π ∈ P(S; n)↗k then
8(n, k) of the elements in Cn(π) are in P̂C(S; n).

Case 3: There is only one case in which τ ∈ P̂C(S ∪ {n}; n). If π ∈ P(S; n)
and τ ∈ Cn(π) is such that τn > n, then τ must satisfy τn−1 < τn > τn+1 because
τn+1 = 2n− τn + 1 < n. Therefore τ is an element of P̂C(S ∪ {n}; n). Applying
Lemma 27 we conclude that if π ∈ P(S; n)↗k then 9(n, k) of the elements in
Cn(π) are in P̂C(S ∪ {n}; n).

From Cases 1 and 2, we conclude that the cardinality of P̂C(S; n) is given by

|P̂C(S; n)| =
n∑

k=1

|P(S; n)↗k
| ·8(n, k)+ |P(S; n)| · 2n.

From Case 3, we get

|P̂C(S ∪ {n}; n)| =
n∑

k=1

|P(S; n)↗k
| ·9(n, k). �
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The following example illustrates the type-C formulas proven in Theorem 26.

Example 28. Using the results of this section, we compute the sets P̂C(S; 3), where
S ⊂ [3]. First, the group S3 can be partitioned as S3 = P(∅; 3)t P({2}; 3), where

P(∅; 3)= {123, 321, 213, 312} and P({2}; 3)= {132, 231}.

To calculate the peak sets in type C3, we will further partition the sets P(∅; 3) and
P({2}; 3) using Definition 1. Hence we compute

P(∅; 3)= P(∅; 3)t P(∅; 3)↗2
t P(∅; 3)↗3,

where P(∅; 3)= {321}, P(∅; 3)↗2
= {312}, and P(∅; 3)↗3

= {123, 213}.
We also compute the set

P({2}; 3)= P({2}; 3)= {231, 132}.

Of the 48 elements of the Coxeter group C3, only 23
|P(∅; 3)| = 23

·4= 32 elements
are in P̂C(∅; 3)t P̂C({3}; 3). Of these 32 permutations, we observe that 18 lie in
P̂C({3}; 3) and 14 lie in P̂C(∅; 3). We calculate |P̂C(∅; 3)| using Theorem 26:

|P̂C(∅; 3)| =(|P(∅; 3)|·23)+(|P(∅; 3)↗2
|·8(3, 2))+(|P(∅; 3)↗3

|·8(3, 3))

=(1·8)+(1·4)+(2·1)= 14.

Hence |P̂C({3}; 3)| = 23
· 4− 14= 18. Since P({2}; 3)= P({2}; 3), we have

|P̂C({2}; 3)| = |P({2}; 3)| · 23
= |P({2}; 3)| · 23

= 16.

Indeed one may confirm that P̂C({2}; 3) is the union of the sets

C3(231)=


231|645, 241|635,
351|624, 362|514,
451|623, 462|513,
356|124, 564|312

 and C3(132)=


132|645, 142|536,
153|426, 263|415,
154|326, 264|315,
365|214, 465|213

 .
4B. Peak sets of the Coxeter group of type D. In this section, we use the functions
8(n, k) and 9(n, k) to describe the cardinalities of P̂D(S; n) and P̂D(S ∪ {n}; n).
The results depend on the parity of n. We begin by providing the following lemmas
(similar to Lemma 27), which are used in the type-D proof of Theorem 26.

Lemma 29. Let n be even, and let 1≤ k ≤ 1
2 n. If π ∈ P(S; n)↗2k

t P(S; n)↗2k−1,
then there are8(n−1, 2k−1) elements τ ∈Dn(π) with τn≤n, and9(n−1, 2k−1)
elements τ ∈ Dn(π) with τn > n.

Proof. Suppose π = π1π2 · · ·πn ∈ P(S; n)↗2k , so πn = 2k and πn−1 = i for some
integer i < 2k. If τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Dn(π), then τn is the 2k-th
largest integer in the set {τ1, τ2, . . . , τn} because τ has the same relative order
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as π and πn = 2k. Therefore if at least 2k elements of the set {τ1, τ2, . . . , τn}

satisfy τi ≤ n then we can conclude that τn ≤ n. Moreover, τn ≤ n if and only if
τn<τn+1=2n−τn+1. Thus we wish to count the number of τ ∈Dn(π)with τn≤n.

In the construction of Dn(π), the total number of τ with at least 2k of the elements
from {τ1, τ2, . . . , τn} fixed (and less than or equal to n) is given by the sum( n

2k

)
+

( n
2k+2

)
+ · · ·+

( n
n−2

)
+

(n
n

)
(13)

when n is even. Using the identity
( n

2k

)
=
( n−1

2k−1

)
+
(n−1

2k

)
, we can see that the quantity

in (13) equals[( n−1
2k−1

)
+

(n−1
2k

)]
+

[( n−1
2k+1

)
+

( n−1
2k+2

)]
+· · ·+

(n−1
n−1

)
=8(n−1, 2k−1)

when n is even.
Suppose π = π1π2 · · ·πn ∈ P(S; n)↗2k−1, so πn = 2k − 1 and πn−1 = i for

some integer i < 2k − 1. If τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Dn(π), then τn is
the (2k−1)-th largest integer in the set {τ1, τ2, . . . , τn} because τ has the same
relative order as π and πn = 2k− 1. Therefore if at least 2k− 1 elements of the set
{τ1, τ2, . . . , τn} satisfy τi ≤ n then we can conclude that τn ≤ n. Moreover, τn ≤ n
if and only if τn < τn+1 = 2n − τn + 1. So again, the number of elements with
τn ≤ n is 8(n− 1, 2k− 1).

We conclude that when π ∈ P(S; n)↗2k
tP(S; n)↗2k−1, there are8(n−1, 2k−1)

mirrored permutations τ ∈Dn(π) with τn < τn+1. Since there are 2n−1 elements in
Dn(π), we see that there are9(n−1, 2k−1) elements τ ∈Dn(π)with τn>τn+1. �

Lemma 30. Let n be odd and let 1 ≤ k ≤ 1
2(n − 1). If π ∈ P(S; n)2k or π ∈

P(S; n)2k+1 then there are 8(n − 1, 2k) elements τ ∈ Dn(π) with τn ≤ n and
9(n− 1, 2k) elements τ ∈ Dn(π) with τn > n.

The proof of Lemma 30 follows similarly to that of Lemma 29; hence we omit
the argument, but point the interested reader to the arXiv preprint of this paper for
a detailed proof [Diaz-Lopez et al. 2015]. We are now ready to enumerate the sets
P̂D(S; n) and P̂D(S ∪ {n}; n).

Proof of Theorem 26, type D. Let π∈P(S;n), τ = τ1τ2 · · ·τn |τn+1τn+2 · · ·τ2n ∈Dn ,
and recall that Dn(π) consists of the elements of Dn which have the same relative
order as π . There are 2n−1 such elements. Since τ ∈ Dn(π), its first n entries
τ1τ2 · · · τn have the same relative order as π1π2 · · ·πn , and just as in the type-Cn

case, there are two possibilities:

• Either τ has the same peak set as π so that τ ∈ P̂D(S; n), or

• τ has an additional peak at n, in which case τ ∈ P̂D(S ∪ {n}; n).

There are two cases in which τ ∈ P̂D(S; n):
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Case 1: If π ends with a descent, i.e., πn−1 > πn , then every τ ∈ Dn(π) also has
τn−1 > τn , and thus τ is in P̂D(S; n) because it cannot possibly have a peak at n if
it has a descent at n− 1. We conclude that if π ∈ P(S; n) then all 2n−1 elements
of Dn(π) are in P̂D(S; n).

Case 2: If π ends with an ascent, πn−1 < πn , then τn−1 < τn for all τ ∈ Dn(π)

as well. (Recall that for any σ ∈ Dn , our map into S2n identifies σi with σn−i+1

by σn−i+1 = 2n − σi + 1.) Hence, if τn ≤ n, then τn+1 = 2n − τn + 1 > τn . In
this case τn−1 < τn < τn+1, and τ does not have a peak at n. So τ ∈ P̂D(S; n).
Therefore we conclude that if π ∈ P(S; n) and if τ ∈Dn(π) satisfies τn ≤ n then τ
is an element of P̂D(S; n). By Lemma 29 we conclude that if π ∈ P(S; n)↗k then
8(n− 1, 2k− 1) of the elements in Dn(π) are in P̂D(S; n).

Case 3: There is only one case in which τ ∈ P̂D(S ∪ {n}; n). If π ∈ P(S; n) and
τ ∈ Dn(π) is such that τn > n, then τ must satisfy τn−1 < τn > τn+1 because
τn+1 = 2n− τn + 1< n. Therefore τ is an element of P̂D(S ∪ {n}; n).

We have shown if π is in P(S; n), then all 2n−1 elements Dn(π) are in P̂C(S; n).
Lemma 29 showed when n is even and π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k−1, then
8(n, 2k− 1) of the elements of Dn(π) are in P̂D(S; n). Thus we conclude when n
is even, the cardinality of P̂D(S; n) is given by the formula

|P̂D(S; n)| =
n∑

k=1

(
|P(S; n)k−1

| + |P(S; n)2k
|
)
·8(n, 2k− 1)+ |P(S; n)| · 2n−1.

Lemma 29 also showed if π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k−1 then9(n−1, 2k−1)
elements from Dn(π) are in the set P̂D(S ∪ {n}; n), and thus

|P̂D(S ∪ {n}; n)| =
n/2∑
k=1

(
|P(S; n)↗2k−1

| + |P(S; n)↗2k
|
)
·9(n− 1, 2k− 1)

when n is even.
Lemma 30 showed when n is odd and π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k−1,

then 8(n− 1, 2k) of the elements of Dn(π) are in P̂D(S; n). Thus we conclude
that when n is odd, the cardinality of P̂D(S; n) is given by the formula

|P̂D(S;n)| =
(n−1)/2∑

k=1

(
|P(S;n)↗2k+1

|+|P(S;n)↗2k
|
)
·8(n−1,2k)+|P(S;n)|·2n−1.

Lemma 30 also showed if π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k+1 then 9(n−1, 2k)
elements from Dn(π) are in the set P̂D(S ∪ {n}; n), and thus

|P̂D(S ∪ {n}; n)| =
(n−1)/2∑

k=1

(
|P(S; n)↗2k+1

| + |P(S; n)↗2k
|
)
·9(n− 1, 2k)

when n is odd. This proves the formula for the cardinality of P̂D(S ∪ {n}; n). �
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4C. Special case: empty peak set in types C and D. In this section we consider
the special case of S =∅ in types Cn and Dn .

Proposition 31. Let n ≥ 2 and m ≥ 4, then

(I) |P̂C(∅; n)| = 1
2(3

n
+ 1),

(II) |P̂D(∅;m)| = 1
4 3m
+

1
4(−1)m + 1

2 .

Proposition 31(I) was originally proved by Castro-Velez et al. [2013, Theo-
rem 2.4] in type Bn . However, the proof given here is a combinatorial argument
involving ternary sequences (in the letters A, B and C) with an even number
of B’s that restricts naturally to a proof of a similar result involving the mirrored
permutations with no peaks in type Dn as well.

The integer sequence given by Proposition 31(I) is sequence A007051 in [OEIS
1996] after the first three iterations. Let Tn denote the set of ternary sequences (in
the letters A, B and C) of length n with an even number of B’s. It is noted on
Sloane’s OEIS that 1

2(3
n
+ 1) counts all such sequences.

Proof of Proposition 31(I). To prove that |P̂C(∅; n)| = |Tn| =
1
2(3

n
+ 1), we prove

there is a bijection between the sets Tn and P̂C(∅; n).
Every permutation π ∈ P̂C(∅; n) has the form π=πAπBπC |πCπBπA, where πA

is a sequence of numbers in descending order and each πi ∈ πA is greater than n,
πB is a sequence of numbers in descending order and each πi ∈ πB is less than or
equal to n, and πC is a sequence of numbers in ascending order and each πi ∈ πC

is less than or equal to n. Note that the mirror image πCπBπA is determined
uniquely by πAπBπC , so to condense notation in this proof we will refrain from
writing it. It is possible for at most two of the parts πA, πB , or πC to be empty.
Moreover, there is always a choice of whether to include the minimum element of
the subpermutation πBπC as the last element in πB or the first element in πC . We
always choose to make the length of πB even by including/excluding this minimum
element depending on the parity of πB .

More precisely, let π = πAπBπC ∈ P̂C(∅; n), where

πA=[π1> · · ·>πk], πB=[πk+1> · · ·>πk+ j ], and πC=[πk+ j+1< · · ·<πn].

Define a set map 1 : P̂C(∅; n)→ Tn by assigning a ternary sequence 1(π)= x
in Tn to each element π ∈ P̂C(∅; n) by setting

1(π)i = xi =


A if i ∈ {2n−π1+ 1, . . . , 2n−πk + 1},
B if i ∈ {πk+1, . . . , πk+ j },

C if i ∈ {πk+ j+1, . . . , πn}.

Note that there is an even number of B ′s by the way we defined πB . Hence
1(π)= x ∈ Tn .

http://oeis.org/A007051
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We can also define a set map 2 : Tn→ P̂C(∅; n) by reversing this process. That
is to say, given a ternary sequence x = x1x2 · · · xn in Tn , define A,B, and C as

A={1≤ i ≤n : xi = A}, B={1≤ i ≤n : xi = B}, and C={1≤ i ≤n : xi =C}.

List the elements of A and C in ascending order and B in descending order:

A= [a1 < a2 < · · ·< ak], B = [bk+1 > bk+2 > · · ·> bk+ j ],

C = [ck+ j+1 < ck+ j+2 < · · ·< cn].

Then define 2(x)= π , where

πi =


2n− ai + 1 if 1≤ i ≤ k,
bi if k+ 1≤ i ≤ k+ j,
ci if k+ j + 1≤ i ≤ n.

Notice that after πi is determined for 1≤ i ≤ n, the rest of π is determined.
To show 2 ◦1= Id, let π = πAπBπC ∈ P̂C(∅; n), where

πA=[π1> · · ·>πk], πB=[πk+1> · · ·>πk+ j ], and πC=[πk+ j+1< · · ·<πn],

and set σ =2(1(π))= σ1 · · · σn . Then

1(π)i = xi = A for i ∈ {2n−π1+ 1, . . . , 2n−πk + 1},

so A = [2n − π1 + 1 < · · · < 2n − πk + 1]. By the definition of 2, we get
σi = 2n− (2n−πi + 1)+ 1 for 1≤ i ≤ k; thus σi = πi for 1≤ i ≤ k.

Similarly,1(π)i = xi = B for i ∈{πk+1, . . . , πk+ j }; thus B=[πk+1> · · ·>πk+ j ].
By the definition of2, we get σi =πi for k+1≤ i ≤ k+ j . Finally,1(π)i = xi =C
for i ∈ {πk+ j+1, . . . , πn}; thus C = [πk+ j+1 < · · ·<πn]. By the definition of 2, we
see that σi =πi for k+ j+1≤ i ≤ n. Therefore σi =πi for 1≤ i ≤ n, which implies
2(1(π))= σ = π for all π ∈ P̂C(∅; n). A similar argument shows 1(2(x))= x
for all x ∈ Tn . �

The integer sequence given by Proposition 31(II) is sequence A122983 in [OEIS
1996] after the first three iterations. To prove this result, we let Tn denote the set of
ternary sequences (in the letters A, B and C) of length n with an even number of
A’s and B’s. It is noted on Sloane’s OEIS that 1

4 3n
+

1
4(−1)n + 1

2 counts all such
sequences. In the following proof we construct a bijection from Tn to P̂D(∅; n) by
using the maps 1 and 2, similar to the proof of Proposition 31(I).

Proof of Proposition 31(II). The proof follows as the proof of Proposition 31(I),
with the additional condition that the length of πA is even since every element π in
P̂D(∅; n) has an even number of entries in π1π2 · · ·πn that are greater than n. We
point the interested reader to the arXiv preprint version of this paper for a detailed
proof [Diaz-Lopez et al. 2015]. �

http://oeis.org/A122983
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We will illustrate the bijection between 1 and 2, described in the proof of
Proposition 31, with the following example.

Example 32. Type C : Consider the permutation π ∈ C10, where

π = 20 18 13 10 9 7 4 2 5 6 | 15 16 19 17 14 12 11 8 3 1.

Let 1(π)= x ∈ Tn . Since

πA = 20 18 13, πB = 10 9 7 4, and πC = 2 5 6,

we have xi = A for i ∈ {1, 3, 8}, xi = B for i ∈ {4, 7, 9, 10}, and xi = C for
i ∈ {2, 5, 6}. Thus 1(π)= x = ACABCCBABB.

Consider 2(1(π)) ∈ P̂C(∅; 10). Since 1(π)= x = ACABCCBABB, the lists
A,B and C are defined as

A= [1< 3< 8], B = [10> 9> 7> 4], and C = [2< 5< 6].

Using the definition of 2, we get

2(1(π))=2(x)= 20 18 13 10 9 7 4 2 5 6 | 15 16 19 17 14 12 11 8 3 1= π.

Type D: Consider the permutation π ∈ D10, where

π = 20 18 13 11 9 7 4 2 5 6 | 15 16 19 17 14 12 10 8 3 1.

Let 1(π)= x ∈ Tn . Since

πA = 20 18 13 11, πB = 9 7 4 2, and πC = 5 6,

we have xi = A for i ∈ {1, 3, 8, 10}, xi = B for i ∈ {2, 4, 7, 9}, and xi = C for
i ∈ {5, 6}. Thus

1(π)= x = ABABCCBABA.

Consider 2(1(π)) ∈ P̂D(∅; 10). Since 1(π) = x = ABABCCBABA, the lists
A,B and C are defined as

A= [1< 3< 8< 10], B = [9> 7> 4> 2], and C = [5< 6].

Using the definition of 2, we get

2(1(π))=2(x)= 20 18 13 11 9 7 4 2 5 6 | 15 16 19 17 14 12 10 8 3 1= π.

5. Questions and future work

We end this paper with a few questions of interest. We suspect that the sets we call
pattern bundles have appeared elsewhere in the literature on Coxeter groups, but
we do not know of such a reference. (Note that the pattern bundles are the fibers of
an order-preserving flattening map from Cn to Sn that differs from the usual 2n to 1
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projection of signed permutations to Sn , which forgets the negative signs.) If these
sets have not been studied before, then our first question is:

Problem 1. Can the pattern bundles of types Cn and Dn be used to study other
permutation statistics (such as descent sets for instance)?

We can also ask whether these techniques can be applied to study other groups
having suitably nice embeddings into SN , and whether the peak set of the image
encodes any information about the embedded group.

Problem 2. Can the methods used in this paper be applied to study peak sets
of groups such as the dihedral groups or Coxeter groups of exceptional type by
embedding them into SN for some N?

We provide recursive formulas for the quantities |P̂C(S; n)| and |P̂D(S; n)| in
Theorem 26 that can be used to find closed formulas for any particular choice
of peak set S. Several of the special cases we consider in this paper give closed
formulas for integer sequences appearing in [OEIS 1996]. Hence we believe the
following would be an interesting undergraduate student research project.

Problem 3 (undergraduate student research project). Can one compute closed for-
mulas for some families of peak sets and analyze which of these appear on the OEIS?

This leads us to our final question:

Problem 4. Can one discover closed combinatorial formulas for |P̂C(S; n)| and
|P̂D(S; n)| in general?
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Fox coloring and the minimum number of colors
Mohamed Elhamdadi and Jeremy Kerr

(Communicated by Kenneth S. Berenhaut)

We study Fox colorings of knots that are 13-colorable. We prove that any
13-colorable knot has a diagram that uses exactly five of the thirteen colors that
are assigned to the arcs of the diagram. Due to an existing lower bound, this
gives that the minimum number of colors of any 13-colorable knot is 5.

1. Introduction

Fox [1962] introduced a diagrammatic definition of colorability of a knot K by Zm

(the integers modulo m). This notion of colorability is clearly one of the simplest
invariants of knots. For a natural number m greater than 1, a diagram D of a knot K
is m-colorable if at every crossing, the sum of the colors of the under-arcs is twice
the color of the over-arc (modulo m), as in Figure 1.

It is well known [Fox 1962] that for a prime p, a knot K is p-colorable if and only
if p divides the determinant of K. The problem of finding the minimum number
of colors for p-colorable knots with p prime and less than or equal to 11 was
studied in [Satoh 2009; Oshiro 2010; Lopes and Matias 2012; Hayashi et al. 2012].
For example, Satoh [2009] proved that any 5-colorable knot admits a nontrivially
5-colored diagram where the coloring assignment uses only four of the five available
colors. For a prime p, let K be a p-colorable knot and let C p(K ) denote the
minimum number of colors among all diagrams of the knot K. In [Nakamura et al.
2013], it was proved that C p(K ) ≥ blog2 pc + 2. This implies that in our case,
p = 13, the minimum number of colors of 13-colorable knots is greater than or
equal to 5. In fact, the goal of this article is to prove equality, that is, C13(K )= 5.

2. Fox coloring and the minimum number of colors of 13-colorable knots

Notation. We use {a |b |c} to denote a crossing, as in Figure 1, where a and c are
the colors of the under-arcs, b is the color of the over-arc and a+ c ≡ 2b mod 13.
When the crossing is of the type {c |c |c} (trivial coloring), we will omit over- and
under-crossings and draw the arcs crossing each other.

MSC2010: 57M25.
Keywords: knots, fox colorings, minimum number of colors.
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a b

c ≡ 2b − a

Figure 1

Theorem 2.1. Any 13-colorable knot has a 13-colored diagram with exactly five
colors. Thus, C13(K )= 5 for any 13-colorable knot K.

Proof. We prove this theorem using eight lemmas. In each of the following lemmas
we decrease the coloring scheme of the diagram by one color c. To accomplish
this we first transform any crossings of the form {c |c |c}. That is, when c is both
an over-arc and an under-arc, we remove c as an over-arc by transforming any
crossings of the form {a |c |2c−a}, where a ∈ Z13 \ {c}. Finally, we complete each
lemma by removing c as an under-arc in a case-by-case method. In these under-arc
cases we must consider when c connects two crossings of the same color and when c
connects two crossings of different colors. �

Eliminating the color 12.

Lemma 2.2. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 12.

Proof. Let c = 12. We first transform any crossing of the form {12|12|12}. If
there is any such crossing, there is an adjacent crossing of the form {12|a |2a+1}
or {a |12|11−a}, where a ∈ Z13 \ {12}. In either case, since 11 − a 6= 12 and
2a+1 6= 12 for any a in Z13 \ {12}, we transform the diagram as in Figures 2 and 3.

Next, we remove 12 as an over-arc by transforming any crossings of the form
{a |12|11−a}. Since 2a + 1 6= 12 and 3a + 2 6= 12 for any a ∈ Z13 \ {12}, we
transform the diagram as in Figure 4.

a c

2a − c

a c

c

c c2a − c

2a − c

Figure 2
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a c

c  

2c � a 2c � a

a c

c

cc

2a � c

Figure 3

a

c

2c − a

a

c

c

2c − a

2a − c

3a − 2c

Figure 4

We complete the proof of the lemma by removing 12 as an under-arc in a case-
by-case method. We first consider the case where 12 is an under-arc connecting
two crossings of the form {12|a |2a+1}. Since 2a + 1 6= 12, 3a + 2 6= 12, and
4a+ 3 6= 12 for any a ∈ Z13 \ {12}, we transform the diagram as in Figure 5.

Now we consider the case where 12 is an under-arc connecting two crossings of
the forms {2a+1|a |12} and {12|2a+1|4a+3}. Since 2a+1 6= 12 and 3a+2 6= 12
for any a ∈ Z13 \ {12}, we transform the diagram as in Figure 6.

Lastly we consider the case where 12 is an under-arc connecting two crossings of
the forms {2a+1|a |12} and {12|b |2b+1}, where a 6= b and b 6= 2a+ 1 for any a
and b in Z13\{12}. Since 2a−2b−1 6=12 and 2a−b 6=12 for any a and b in Z13\{12}
(from a 6=b and b 6=2a+1 respectively), we transform the diagram as in Figure 7. �

a a

2a − c 2a − c

2a − c

a a

a a

c

3a − 2c 3a − 2c

4a − 3c 2a − c 2a − c

Figure 5
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a 2a +1

3a +2

2a +1

2a +1

2a +1 2a +14a +3 4a +3

a

a

12
2a +1

Figure 6

a b b 

b 

2a −b

2a +1 2a +1

2a −2b−1

2b +1
2b +1

a

a

12

Figure 7

Eliminating the color 11.

Lemma 2.3. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 11 or 12.

Proof. Let c = 11. By the previous lemma we assume that no arc in D is colored
by 12. We first transform any crossing of the form {11|11|11}. If there is any such
crossing, there is an adjacent crossing of the form {11|a |2a+2} or {a |11|9−a},
where a is in Z13 \ {11, 12}. If a 6= 5, 10, then 9− a 6= 11, 12 and 2a+ 2 6= 11, 12
for any a in Z13 \{5, 10, 11, 12}, so we transform the diagram as in Figures 2 and 3.

If a = 5 as an under-arc, we transform the diagram as in Figure 8. Now, a cannot
equal 5 as an over-arc, otherwise 2a+2= 12, contradicting our assumption that no
arc is colored by 12.

a c

2c − a 2c − a

a c

c

cc 3c − 2a

Figure 8
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a

c

2c − a a

c

c

2c − a

3c − 2a

4c − 3a

Figure 9

If a = 10 as an over-arc, we transform the diagram as in Figure 2. Similarly a
cannot equal 10 as an under-arc, otherwise 9− a = 12, which is a contradiction.

Next, we remove 11 as an over-arc by transforming any crossings of the form
{a |11|9−a}. Since 9− a 6= 11, 12, we have a 6= 10. Therefore if a 6= 5, 7 then
2a+ 2 6= 11, 12 and 3a+ 4 6= 11, 12 for any a in Z13 \ {5, 7, 10, 11, 12}, and we
transform the diagram as in Figure 4. If a = 5 or a = 7, we transform the diagram
as in Figure 9.

We complete the proof of the lemma by removing 11 as an under-arc in a case-
by-case method. We first consider the case where 11 is an under-arc connecting
two crossings of the form {11|a |2a+2}. Since 2a+ 2 6= 11, 12, we have a 6= 5. If
a 6= 7, 8, then 3a+4 6= 11, 12 and 4a+6 6= 11, 12 for any a in Z13\{5, 7, 8, 11, 12},
and we transform the diagram as in Figure 5. If a = 7, we transform the diagram
as in Figure 10. If a = 8, we transform the diagram as in Figure 11.

Now we consider the case where 11 is an under-arc connecting two crossings
of the forms {2a+2|a |11} and {11|b |2b+2}, where a 6= b for any a and b in
Z13 \ {5, 11, 12}. (Note a, b 6= 5, otherwise 2a+ 2= 12 or 2b+ 2= 12.)

7 7

3 311

7

7

7

7

9 9

9 9

4 4

3 30

0

0

0

3

8

Figure 10
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a a

2a − c 2a − cc

a

a

a

a

a

6c − 5a2a − c

2a − c

2a − c

3a − 2c

3c − 2a

5c − 4a

7c − 6a

6c − 5a

7c − 6a

7c − 6a 7c − 6a

Figure 11

If (a, b) 6= (0, 6), (6, 0), (3, 7), (7, 3) then either

2a− 2b− 2 6= 11, 12 and 2a− b 6= 11, 12
or

2b− 2a− 2 6= 11, 12 and 2b− a 6= 11, 12

for any a and b in Z13 \ {5, 11, 12}, and we transform the diagram as in Figure 12.
If (a, b)= (0, 6), we transform the diagram as in Figure 13. A similar transfor-

mation works for the case (a, b)= (6, 0).
If (a, b)= (3, 7), we transform the diagram as in Figure 14. A similar transfor-

mation works for the case (a, b)= (7, 3). �

a a

2a − c 2a − c

2a − b

2b − c

a b

a b

c
2a − 2b + c

2b − c

2b − a

2b − c

a b

a b

2b − 2a + c

OR
2a − c

Figure 12
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0 6

2 1

0

2 9

6

1

0 6

11 402

Figure 13

3 7

8 3

3

0 9

7

8

3 7

11 5 0 3

Figure 14

Eliminating the color 7.

Lemma 2.4. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 7, 11, or 12.

Proof. Let c= 7. By the previous lemmas we assume that no arc in D is colored by
11 or 12. We first transform any crossing of the form {7|7|7}. If there is any such
crossing, there is an adjacent crossing of the form {7|a |2a+6} or {a |7|1−a}, where
a is in Z13\{7, 11, 12}. If a 6=2, 3, 9 then 1−a 6=7, 11, 12 and 2a+6 6=7, 11, 12 for
any a in Z13 \{2, 3, 7, 9, 11, 12}, so we transform the diagram as in Figures 2 and 3.

If a = 2 as an over-arc, we transform the diagram as in Figure 2. Note a cannot
equal 2 as an under-arc, otherwise 1− a = 12, contradicting our assumption that
no arc is colored by 12.

Now a cannot be 3 as an over-arc or an under-arc, otherwise 1− a = 11 and
2a+ 6 = 12, contradicting our assumption that no arc is colored by 11 or 12. If
a = 9 as an under-arc, we transform the diagram as in Figure 8. Note a cannot
equal 9 as an over-arc, otherwise 2a+ 6= 11, contradicting our assumption that
no arc is colored by 11. Therefore any crossings of the form {7|7|7} are removed.

Next, we remove 7 as an over-arc by transforming any crossings of the form
{a |7|1−a}. Since 1−a 6= 7, 11, 12, we have a 6= 2, 3. Therefore if a 6= 0, 4, 9 then
2a+6 6= 7, 11, 12 and 3a+12 6= 7, 11, 12 for any a in Z13\{0, 2, 3, 4, 7, 9, 11, 12},
and we transform the diagram as in Figure 4. If a = 0, 4, 9, we transform the
diagram as in Figure 9.
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0 0

6 67

0 0

2

9

9

3 3

9 9 48

8

8

8

0 0

5 5

9

9

4

4

4 4

42

6 64

4

6

5

10

3 3

10

Figure 15

We complete the proof of the lemma by removing 7 as an under-arc in a case-
by-case method. We first consider the case where 7 is an under-arc connecting two
crossings of the form {7|a |2a+6}. Since 2a + 6 6= 7, 11, 12, we have a 6= 3, 9.
If a 6= 0, 4, 5, 8 then 3a + 12 6= 7, 11, 12 and 4a + 5 6= 7, 11, 12 for any a in
Z13 \ {0, 3, 4, 5, 7, 8, 9, 11, 12}, and we transform the diagram as in Figure 5. If
a= 0, we transform the diagram as in Figure 15. If a= 4, we transform the diagram
as in Figure 16. If a = 5, we transform the diagram as in Figure 17. If a = 8, we
transform the diagram as in Figure 11.

4 4

1 17

0 0

5 5

9 9

0

9 9

0

8 8

2

1 122

2

2

1

8

8 8

4 4

4 4

Figure 16
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5 5

3 37

1

9

9

9

6 66633

6

6

6
6

99

9

8

8

4 4

8

8

610

10

109 6 6 2 2 2 6 6 9 3

10

10

1

5

5

5

5 5

10

Figure 17

Now we consider the case where 7 is an under-arc connecting two crossings
of the forms {2a+6|a |7} and {7|b |2b+6}, where a 6= b for any a and b in
Z13 \ {3, 7, 9, 11, 12}. (Note a, b 6= 3, 9, otherwise 2a + 6 = 11, 12 or 2b+ 6 =
11, 12.) If

(a, b) 6= (0, 2), (2, 0), (0, 6), (6, 0), (1, 4), (4, 1), (4, 8), (8, 4)

then either

2a− 2b− 6 6= 7, 11, 12 and 2a− b 6= 7, 11, 12

or
2b− 2a− 6 6= 7, 11, 12 and 2b− a 6= 7, 11, 12

for any a and b in Z13 \ {3, 7, 9, 11, 12}, and we transform the diagram as in
Figure 12.

If (a, b)= (0, 2), we transform the diagram as in Figure 18. The case (a, b)=

(2, 0) is similar.

0 0

4

2 2

0 2

6 10 26

6

107

Figure 18
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0 6

6 5

0

10 4

6

5

0 6

7 346

Figure 19

1 4

1

1

112

4

1 4

8 1 8

8

87

2

2

0

0

9

9

5

Figure 20

4 48 8

4 8

1 9 1 4 9

9
0

7

Figure 21

If (a, b)= (0, 6), we transform the diagram as in Figure 19. The case (a, b)=

(6, 0) is similar.
If (a, b)= (1, 4), we transform the diagram as in Figure 20. The case (a, b)=

(4, 1) is similar.
If (a, b)= (4, 8), we transform the diagram as in following Figure 21. The case

(a, b)= (8, 4) is similar. �

Eliminating the color 8.

Lemma 2.5. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 7, 8, 11, or 12.
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Proof. Let c = 8. By the previous lemmas we assume that no arc in D is colored
by 7, 11, or 12. We first transform any crossing of the form {8|8|8}. If there is any
such crossing, there is an adjacent crossing of the form {8|a |2a+5} or {a |8|3−a},
where a is in Z13 \ {7, 8, 11, 12}. If a 6= 1, 3, 4, 5, 9, 10 then 3− a 6= 7, 8, 11, 12
and 2a+ 5 6= 7, 8, 11, 12 for any a in Z13 \ {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so we
transform the diagram as in Figures 2 and 3.

If a = 4, 5, 9 as an over-arc, we transform the diagram as in Figure 2. Note
a cannot be 4, 5, or 9 as an under-arc, otherwise 3− a = 7, 11, 12, contradicting
our assumption that no arc is colored by 7, 11, or 12. If a = 1 as an under-arc we
transform the diagram as in Figure 8. Note a cannot be 1 as an over-arc, otherwise
2a+ 5= 7, contradicting our assumption that no arc is colored by 7. If a = 3 as
an under-arc, we transform the diagram as in Figure 8. Note a cannot be 3 as an
over-arc, otherwise 2a+5= 11, contradicting our assumption that no arc is colored
by 11. If a = 10 as an under-arc, we transform the diagram as in Figure 8. Note a
cannot be 10 as an over-arc, otherwise 2a+ 5= 12, contradicting our assumption
that no arc is colored by 12. Therefore any crossings of the form {8|8|8} are
removed.

Next, we remove 8 as an over-arc by transforming any crossings of the form
{a |8|3−a}. Since 3 − a 6= 7, 8, 11, 12, we have a 6= 4, 5, 9. Therefore if
a 6= 1, 3, 10 then 2a + 5 6= 7, 8, 11, 12 and 3a + 10 6= 7, 8, 11, 12 for any a
in Z13 \ {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}, and we transform the diagram as in Figure 4.
If a = 1, 3 or 10, we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 8 as an under-arc in a case-
by-case method. We first consider the case where 8 is an under-arc connecting
two crossings of the form {8|a |2a+5}. Since 2a + 5 6= 7, 8, 11, 12, we have
a 6= 1, 3, 10. If a 6= 5, 9 then 3a+10 6= 7, 8, 11, 12 and 4a+2 6= 7, 8, 11, 12 for any
a in Z13 \ {1, 3, 5, 7, 8, 9, 10, 11, 12}, and we transform the diagram as in Figure 5.
If a = 5, we transform the diagram as in Figure 22. If a = 9, we transform the
diagram as in Figure 23.

Now we consider the case where 8 is an under-arc connecting two crossings
of the forms {2a+5|a |8} and {8|b |2b+5}, where a 6= b for any a and b in
Z13 \ {1, 3, 7, 8, 10, 11, 12}. (Note a, b 6= 1, 3, 10, otherwise 2a + 5 = 7, 11, 12
or 2b+ 5 = 7, 11, 12.) If (a, b) 6= (0, 2), (2, 0), (0, 6), (6, 0), (2, 5), (5, 2) then
either

2a− 2b− 5 6= 7, 8, 11, 12 and 2a− b 6= 7, 8, 11, 12

or
2b− 2a− 5 6= 7, 8, 11, 12 and 2b− a 6= 7, 8, 11, 12

for any a and b in Z13 \ {1, 3, 7, 8, 10, 11, 12}, and we transform the diagram as in
Figure 12.
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5 5

2 28

5

5

5

5

0 0

0 0

6 6

2 23

3

3

3

2

9

Figure 22

9 9

10 108

9 9

9 9

6

6

0

2

2

2

6

6

0

2

2

2

0

0

0

0 0

0

10 5 1

1 1

1 1
3 3

1 1 1 1 5 10

105 51 1

1

3

1

1

Figure 23

If (a, b)= (0, 2), we transform the diagram as in Figure 24. The case (a, b)=

(2, 0) is similar.
If (a, b)= (0, 6), we transform the diagram as in Figure 25. The case (a, b)=

(6, 0) is similar.
If (a, b)= (2, 5), we transform the diagram as in Figure 26. The case (a, b)=

(5, 2) is similar. �

Eliminating the color 6.

Lemma 2.6. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 6, 7, 8, 11, or 12.
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0 2

5 9

0

5 3

2

9

0 2

8 1005

Figure 24

0 6

5 4

0

10 4

6

5

0 6

8 2 6 4

Figure 25

2 5

9 2

2

3 0

5

9

2 5

8 10 3 2

Figure 26

Proof. Let c = 6. By the previous lemmas we assume that no arc in D is colored
by 7, 8, 11, or 12. We first transform any crossing of the form {6|6|6}. If there
is any such crossing, there is an adjacent crossing of the form {6|a |2a+7} or
{a |6|12−a}, where a is in Z13 \{6, 7, 8, 11, 12}. With the exceptions of a= 0, 2, 9
as an over-arc (when 2a+7= 7, 8, 11, 12) and a = 0, 1, 4, 5 as an under-arc (when
12− a = 7, 8, 11, 12), we transform the diagram as in Figures 2 and 3.

Now we must check when a = 0, 2, 9 as an under-arc. First and foremost a
cannot equal 0 as an under-arc, otherwise 12−a= 12, contradicting our assumption
that no arc is colored by 12. If a = 2, 9 as an under-arc, we transform the diagram
as in Figure 8. Therefore any crossings of the form {6|6|6} are removed.

Next, we remove 6 as an over-arc by transforming any crossings of the form
{a |6|12−a}. Since 12 − a 6= 6, 7, 8, 11, 12, we have a 6= 0, 1, 4, 5. With the
exceptions of a = 2, 9 (when 2a+ 7= 6, 7, 8, 11, 12 and 3a+ 1= 6, 7, 8, 11, 12),
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5 2 3 4 4 3 5

3 5 3

4
4

Figure 27

we transform the diagram as in Figure 4. If a = 2 or a = 9, we transform the
diagram as in Figure 9.

We complete the proof of the lemma by removing 6 as an under-arc in a case-
by-case method. We first consider the case where 6 is an under-arc connecting
two crossings of the form {6|a |2a+7}. Since 2a + 7 6= 6, 7, 8, 11, 12, we have
a 6= 0, 2, 9. If a 6= 1, 3, 4 then 3a+ 1 6= 6, 7, 8, 11, 12 and 4a+ 8 6= 6, 7, 8, 11, 12,
so we transform the diagram as in Figure 5. If a = 1, we transform the diagram as
in Figure 11. If a = 3, we transform the diagram as in Figures 27 and 28. If a = 4,
we transform the diagram as in Figure 11.

Now we consider the case where 6 is an under-arc connecting two crossings
of the forms {2a+7|a |6} and {6|b |2b+7}, where a 6= b for any a and b in
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1 4

9 26
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1
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4

1
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2
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4

3

0

2

10

10 10

4

Figure 29

Z13 \ {0, 2, 6, 7, 8, 9, 11, 12}. (Note a, b 6= 0, 2, 9, otherwise 2a+ 7= 7, 8, 11, 12
or 2b+ 7= 7, 8, 11, 12.)

If (a, b) 6= (1, 4), (4, 1) then either

2a− 2b− 7 6= 6, 7, 8, 11, 12 and 2a− b 6= 6, 7, 8, 11, 12
or

2b− 2a− 7 6= 6, 7, 8, 11, 12 and 2b− a 6= 6, 7, 8, 11, 12

for any a and b in Z13 \ {0, 2, 6, 7, 8, 9, 11, 12}, and we transform the diagram as
in Figure 12.

If (a, b)= (1, 4), we transform the diagram as in Figure 29. The case (a, b)=

(4, 1) is similar. �

Eliminating the color 1.

Lemma 2.7. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 1, 6, 7, 8, 11, or 12.
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Proof. Let c= 1. By the previous lemmas we assume that no arc in D is colored by
6, 7, 8, 11, or 12. We first transform any crossing of the form {1|1|1}. If there is any
such crossing, there is an adjacent crossing of the form {1|a |2a+12} or {a |1|2−a},
where a is in Z13 \ {1, 6, 7, 8, 11, 12}. With the exceptions of a = 0, 4, 10 as an
over-arc (when 2a + 12 = 6, 7, 8, 11, 12) and a = 3, 4, 9 as an under-arc (when
2− a = 6, 7, 8, 11, 12), we transform the diagram as in Figures 2 and 3.

Now we must check when a = 0, 4, 10 as an under-arc. We know a cannot be 4
as an under-arc, otherwise 2− a = 11, contradicting our assumption that no arc is
colored by 11. If a = 0 or a = 10 as an under-arc, we transform the diagram as in
Figure 8. Therefore any crossings of the form {1|1|1} are removed.

Next, we remove 1 as an over-arc by transforming any crossings of the form
{a |1|2−a}. Since 2−a 6=1, 6, 7, 8, 11, 12, we have a 6=3, 4, 9. With the exceptions
of a = 0, 10 (when 2a+12= 1, 6, 7, 8, 11, 12 and 3a+11= 1, 6, 7, 8, 11, 12), we
transform the diagram as in Figure 4. If a = 0 or a = 10, we transform the diagram
as in Figure 9.

We complete the proof by removing 1 as an under-arc in a case-by-case method.
We first consider the case where 1 is an under-arc connecting two crossings of the
form {1|a |2a+12}. Since 2a + 12 6= 1, 6, 7, 8, 11, 12, we have a 6= 0, 4, 10. If
a 6= 3, 9 then 3a+ 11 6= 1, 6, 7, 8, 11, 12 and 4a+ 10 6= 1, 6, 7, 8, 11, 12, so we
transform the diagram as in Figure 5. If a = 3, we transform the diagram as in
Figure 30. If a = 9, we transform the diagram as in Figure 31.

Now we consider the case where 1 is an under-arc connecting two crossings
of the forms {2a+12|a |1} and {1|b |2b+12}, where a 6= b for any a and b in
Z13\{0, 1, 4, 6, 7, 8, 10, 11, 12}. (Note a, b 6= 0, 4, 10, otherwise 2a+12= 1, 6, 7,

8, 11, 12 or 2b+12= 1, 6, 7, 8, 11, 12.) If (a, b) 6= (2, 5), (5, 2), (3, 5), (5, 3) then
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either

2a− 2b− 12 6= 1, 6, 7, 8, 11, 12 and 2a− b 6= 1, 6, 7, 8, 11, 12

or
2b− 2a− 12 6= 1, 6, 7, 8, 11, 12 and 2b− a 6= 1, 6, 7, 8, 11, 12

for any a and b in Z13 \ {0, 1, 4, 6, 7, 8, 10, 11, 12}, and we transform the diagram
as in Figure 12.

2 5

3 9

2

3 0

5

9

2 5

1 423

Figure 32

3 5

5 9

3

2 0

5

9

3 5

1 405

Figure 33
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If (a, b)= (2, 5), we transform the diagram as in Figure 32. The case (a, b)=

(5, 2) is similar.
If (a, b)= (3, 5), we transform the diagram as in Figure 33. The case (a, b)=

(5, 3) is similar. �

Eliminating the color 10.

Lemma 2.8. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 1, 6, 7, 8, 10, 11, or 12.

Proof. Let c = 10. By the previous lemmas we assume that no arc in D is colored
by 1, 6, 7, 8, 11, or 12. We first transform any crossing of the form {10|10|10}. If
there is any such crossing, there is an adjacent crossing of the form {10|a |2a+3}
or {a |10|7−a}, where a is in Z13 \ {1, 6, 7, 8, 10, 11, 12}. With the exceptions of
a= 2, 4, 9 as an over-arc (when 2a+3= 1, 6, 7, 8, 11, 12) and a= 0, 9 as an under-
arc (when 7−a= 1, 6, 7, 8, 11, 12), we transform the diagram as in Figures 2 and 3.

Now we must check when a = 2, 4, 9 as an under-arc. We know a cannot be 9
as an under-arc, otherwise 7− a = 11, contradicting our assumption that no arc is
colored by 11. If a = 2 or a = 4 as an under-arc, we transform the diagram as in
Figure 8. Therefore any crossings of the form {10|10|10} are removed.
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Next, we remove 10 as an over-arc by transforming any crossings of the form
{a |10|7−a}. Since 7 − a 6= 1, 6, 7, 8, 10, 11, 12, we have a 6= 0, 9. With the
exceptions of a = 2, 4, 5 (when 2a + 3 = 1, 6, 7, 8, 10, 11, 12 and 3a + 6 =
1, 6, 7, 8, 10, 11, 12), we transform the diagram as in Figure 4. If a=2, we transform
the diagram as in Figure 34. If a = 4, we transform the diagram as in Figure 9. If
a = 5, since 7−a = 2, we transform the diagram similarly to Figure 34, i.e., a = 2.

We complete the proof by removing 10 as an under-arc in a case-by-case method.
We first consider the case where 10 is an under-arc connecting two crossings of the
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form {10|a |2a+3}. Since 2a+ 3 6= 1, 6, 7, 8, 10, 11, 12, we have a 6= 2, 4, 9. So,
we need to check a = 0, 3, 5. If a = 0, we transform the diagram as in Figure 35,
and we shall refer to this transformation throughout Lemma 2.8. As such, two
variations of this transformation are given in Figure 36. If a = 3, we transform the
diagram as in Figure 37. If a = 5, we transform the diagram as in Figure 38. Note
the center of a = 5 as well as the six dashed boxes are the same transformations
we used for a = 0 and its variations. Also, there are two arcs colored by 10, each
of which are transformed by a = 3 as in Figure 37.

Now we consider the case where 10 is an under-arc. There are six such cases:
(a, b)= (0, 3), (3, 0), (0, 5), (5, 0), (3, 5), (5, 3). If (a, b)= (0, 3), we transform
the diagram as in Figure 39. For eliminating the 10 arc, see the variations of a = 0
in Figure 36. The case (a, b)= (3, 0) is similar.

If (a, b) = (0, 5), we transform the diagram as in Figure 40. For eliminating
the 10 arc, see a = 5 in Figure 38; however, we will use the variations of a = 0
in Figure 36 for the center. The case (a, b)= (5, 0) is similar.
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If (a, b)= (3, 5), we transform the diagram as in Figure 41. For eliminating the
10 arcs, see the (a, b)= (0, 3) case in Figure 39 and the a = 5 case in Figure 38
using the variations in Figure 36. The case (a, b)= (5, 3) is similar. �
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Eliminating the color 5.

Lemma 2.9. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 1, 5, 6, 7, 8, 10, 11, or 12.

Proof. Let c= 5. By the previous lemmas we assume that no arc in D is colored by
1, 6, 7, 8, 10, 11, or 12. We first transform any crossing of the form {5|5|5}. If there
is any such crossing, there is an adjacent crossing of the form {5|a |2a+8}, where
a is in Z13 \ {1, 5, 6, 7, 8, 10, 11, 12}. Since 10− a = 1, 6, 7, 8, 10, 11, 12 when
a = 0, 2, 3, 4, 9, we know a cannot be an under-arc. Therefore, with the exceptions
of a = 0, 2, 3 as an over-arc (when 2a+ 8= 1, 5, 6, 7, 8, 10, 11, 12), we transform
the diagram as in Figure 2. Therefore any crossings of the form {5|5|5} are removed.
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Next, we remove 5 as an over-arc by transforming any crossings of the form
{a |5|10−a}. Since 10− a 6= 1, 5, 6, 7, 8, 10, 11, 12, we have a 6= 0, 2, 3, 4, 9.
Therefore, 5 cannot be an over-arc.
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We complete the proof of Lemma 2.8 by removing 5 as an under-arc in a case-
by-case method. We first consider the case where 5 is an under-arc connecting two
crossings of the form {5|a |2a+8}. Since 2a+8 6= 1, 5, 6, 7, 8, 10, 11, 12, we have
a 6= 0, 2, 3. So, we need to check a = 4, 9. If a = 4, we transform the diagram as
in Figure 42. If a = 9, we transform the diagram as in Figure 43.

Now we consider the case where 5 is an under-arc connecting two crossings of the
forms {5|a |2a+8} and {5|b |2b+8}. Since 2a+8, 2b+8 6= 1, 5, 6, 7, 8, 10, 11, 12,
there are two cases that we need to consider: (a, b)= (4, 9), (9, 4). If (a, b)= (4, 9),
we transform the diagram as in Figure 44. The case (a, b)= (9, 4) is similar. �

At the same time we were working on this problem, Bento and Lopes [2015]
proved the same result using different techniques.
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Combinatorial curve neighborhoods
for the affine flag manifold of type A1

1

Leonardo C. Mihalcea and Trevor Norton

(Communicated by Jim Haglund)

Let X be the affine flag manifold of Lie type A1
1. Its moment graph encodes the torus

fixed points (which are elements of the infinite dihedral group D∞) and the torus
stable curves in X . Given a fixed point u ∈ D∞ and a degree d = (d0, d1) ∈ Z2

≥0,
the combinatorial curve neighborhood is the set of maximal elements in the moment
graph of X which can be reached from u using a chain of curves of total degree≤ d.
In this paper we give a formula for these elements, using combinatorics of the
affine root system of type A1

1.

1. Introduction

Let X be an arbitrary algebraic variety and�⊂ X be a subvariety. Fix a degree d, i.e.,
an effective homology class in H2(X). The (geometric) curve neighborhood 0d(�)

is the locus of points x ∈ X which can be reached from � by a rational curve of
some effective degree ≤ d. For example, if X = P2 is the projective plane, and
� = pt, then any other point in X can be reached from the given point, using a
projective line. This implies 01(pt)= P2.

Curve neighborhoods have been recently defined by A. Buch and the first author
in [Buch and Mihalcea 2015] in relation to the study of quantum cohomology and
quantum K theory rings of generalized flag manifolds X = G/B, where G is a
complex semisimple Lie group and B is a Borel subgroup. The curve neighborhoods
which are relevant in that context are those when � is a Schubert variety in G/B. It
turns out that in this situation the calculation of the curve neighborhoods is encoded
in the moment graph of X . This is a graph encoding the T -fixed points and the
T -stable curves in X , where T is a maximal torus of G. Similar considerations,
but in the case when X is an affine flag manifold, led L. Mare and the first author
to a definition of an affine version of the quantum cohomology ring; see [Mare

MSC2010: primary 05E15; secondary 17B67, 14M15.
Keywords: affine flag manifolds, moment graph, curve neighborhood.
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and Mihalcea 2014]. The curve neighborhoods which were relevant for quantum
cohomology calculations were those for certain “small” degrees. Those for “large”
degrees, which seem to encode more refined information about the geometry and
the combinatorics of affine flag manifolds, are still unknown.

In the current paper we give an explicit combinatorial formula for the curve
neighborhoods of the simplest affine flag manifold, that of affine Lie type A1

1. See,
e.g., [Kumar 2002] for details on affine flag manifolds. Instead of introducing the
geometry related to this flag manifold, we consider the more elementary — but
equivalent — problem of calculating the combinatorial curve neighborhoods. These
are encoded in the combinatorics of the moment graph of the affine flag manifold.

To state our main result, we briefly introduce some notation and recall a few
definitions. Full details are given in Section 2 below. Let D∞ be the infinite dihedral
group, generated by reflections s0 and s1. (This is the affine Weyl group of Lie
type A1

1.) Each element of D∞ has a unique reduced expression which involves
a s0’s and b s1’s, where |a−b|≤ 1. There is a natural length function ` : D∞→Z≥0,
and a (Bruhat) partial order on D∞, denoted <. A degree d is a pair of nonnegative
integers (d0, d1). The moment graph has vertices given by the elements of D∞; there
is an edge between u, v ∈ D∞ whenever there exists an (affine root) reflection s(a,b)
such that v = us(a,b). This edge has degree d = (a, b) such that |a− b| = 1; see
Section 2B below. A chain in the moment graph is a succession of adjacent edges,
and its degree is equal to the sum of the degrees of each of its edges.

Finally, fix a degree d = (d0, d1) and u ∈ D∞. The (combinatorial) curve
neighborhood 0d(u) is the set of elements in D∞ such that (1) they can be joined
to u (in the moment graph) by a chain of degree≤ d, and (2) they are maximal among
all elements satisfying (1). To each u ∈D∞, one associates the degree d(u) := (a, b),
where u has a reduced expression with a s0’s and b s1’s.

Consider the set

Ad(u) := {v ∈ D∞ : `(uv)= `(u)+ `(v), d(v)≤ d},

and denote by maxAd(u) the subset of its maximal elements. Our main result is:

Theorem 1.1. Let u ∈ D∞ and d = (d1, d2) be a degree. Then the following hold:

(a) The curve neighborhood 0d(u) is given by

0d(u)= {uw : w ∈maxAd(u)}.

(b) Formulas (3) and (4) below give explicit combinatorial formulas for the ele-
ments in maxAd(u). In particular, the curve neighborhood 0d(u) has exactly
two elements if u = 1 and d = (a, a), and one element otherwise.

It is interesting to remark that the curve neighborhoods distinguish the degrees
corresponding to “imaginary roots” (a, a) in this case. (See [Kac 1985] for more
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about this affine root system.) We plan to study further this phenomenon elsewhere.
The theorem implies the “geometric” curve neighborhood for the Schubert variety
indexed by u is either a single Schubert variety, or the union of two Schubert
varieties, indexed by the elements in 0d(u). We refer to [Mare and Mihalcea 2014]
for a discussion of geometric curve neighborhoods.

This paper is the outcome of an undergraduate research project of Norton con-
ducted under the direction of Mihalcea.

2. Preliminaries

2A. The infinite dihedral group. The infinite dihedral group D∞ is the group with
generators s0, s1 and relations s2

0 = s2
1 = 1. Each element w ∈ D∞ can be written

uniquely as a product of s0’s and s1’s in such a way that no s0’s and no s1’s are
consecutive. We call such an expression reduced. We define the length `(w) of w to
be the total number of s0’s and s1’s in the expression of w. For example, `(s0)= 1
and `(s1s0 s1s0)= 4.

A (positive) root corresponding to D∞ is a pair of nonnegative integers α =
(a, b) ∈ Z2

≥0 such that |a− b| = 1. For example, α0 := (1, 0) and α1 := (0, 1) are
roots, and so is α= 2α0+3α1 = (2, 3). Fix a root α= (a0, a1). A root reflection sα
is the unique element of D∞ which can be written as a product of a0 s0’s and a1 s1’s,
and which has length a+ b. For example,

s(2,3) = s1s0 s1s0 s1, s(1,0) = s0.

The terminology follows from the fact that these are the positive roots of the affine
Lie algebra of type A1

1; see, e.g., [Kac 1985].
We record for later use the following properties:

Lemma 2.1. Let u, v ∈ D∞. Then:

(a) `(u)= `(u−1).

(b) u is a root reflection if and only if `(u) is odd.

(c) `(uv)≤ `(u)+ `(v).

(d) If `(u)≤ `(v), then

`(uv)= `(u)+ `(v) or `(uv)= `(v)− `(u).

In particular, `(uv)≡ `(u)+ `(v) mod 2.

Proof. This is an easy verification. �

2B. The moment graph and curve neighborhoods. The moment graph G associ-
ated to D∞ is the graph given by the following data:

• The set V of vertices is the group D∞.
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id

s0

s0 s1

s0 s1s0

s0 s1s0 s1

...

s1

s1s0

s1s0 s1

s1s0 s1s0

...

(3,4)

(3,2) (1,2)

(0,1)

Figure 1. The moment graph G associated to D∞.

• Let u, v ∈ V be vertices. Then there is an edge from u to v if and only if there
exists a root α = (a0, a1) such that v = usα. We denote this situation by

u α
−→ v,

and we say that the degree of this edge is α.

In Figure 1 we show the moment graph up to elements of length 4. We labeled a
few of the edges by their corresponding degrees.

Remark 2.2. As mentioned in the Introduction, the vertices of this graph correspond
to the T -fixed points, and its edges to the T -stable curves in the affine flag manifold
of type A1

1, where T is a maximal torus in an affine Kac–Moody group of type A1
1.

See, e.g., [Kumar 2002, Chapter 12], especially §12.2.E, for details.

A chain between u and v in the moment graph is a succession of adjacent edges
starting with u and ending with v:

π : u = u0
β0
−−→ u1

β1
−−→· · ·

βn−2
−−→ un−1

βn−1
−−→ un = v.

The chain is called increasing if at each step the lengths increase, i.e., `(ui )>`(ui−1)

for 1 ≤ i ≤ n. The degree of the chain π is deg(π) = β0 + · · · + βn−1. Define
a partial ordering on the elements of D∞ by u < v if and only if there exists an
increasing chain starting with u and ending with v.

The next result gives an equivalent way to describe the partial ordering on D∞:

Lemma 2.3. Let u, v ∈ D∞. Then u < v if and only if `(u) < `(v).
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Proof. Clearly if u < v then `(u) < `(v) from the definition of an increasing chain.
To prove the converse, we first notice that if `(v)− `(u)= 1, then u−1v is a root
reflection sα (possibly of length > 1); thus there exists an edge u α

−→v. The general
statement follows by induction on `(v)− `(u)≥ 1. �

A degree is a pair of nonnegative integers d = (d0, d1). There is a natural partial
order on degrees. If d = (d0, d1) and d ′= (d ′0, d ′1) then d ≥ d ′ if and only if di ≥ d ′i
for i ∈ {0, 1}.

Definition 2.4. Fix a degree d and u ∈ D∞. The (combinatorial) curve neighbor-
hood is the set 0d(u) consisting of elements v ∈ D∞ such that

(1) there exists a chain of some degree d ′ ≤ d from u to v in the moment graph G;

(2) the elements v are maximal among all of those satisfying the condition in (1).

For example,

0(1,0)(id)= 0(2,0)(id)= {s0}, 0(1,1)(id)= {s1s0, s0 s1}.

Our main goal is to find a formula to determine 0d(u).
For w ∈ D∞, define the degree associated to w to be d(w) = (d0, d1), where

di := number of reflections si in the reduced word of w. The following holds.

Lemma 2.5. Let u, v ∈ D∞ and assume there is a chain from u to v of degree d.
Then d = d(u−1v)+ 2(r, s), where r, s ∈ Z≥0. In particular, d ≥ d(u−1v).

Proof. Let β0 := (a0, b0), β1 := (a1, b1), . . . , βn−1 := (an−1, bn−1) be the labels
of the edges of the chain π . Then v = usβ0 · · · sβn−1 and d = β0 + · · · + βn−1 =

(a0+· · ·+an−1, b0+· · ·+bn−1). Now d(u−1v)= d(sβ0 · · · sβn−1). If sβ0 · · · sβn−1 is
nonreduced, one needs to perform some cancellations of the form s2

0 = 1 or s2
1 = 1.

Each of these result in a decrease by 2 of the number of s0’s, respectively s1’s, in
an expression for sβ0 · · · sβn−1 . Thus d(u−1v)= d− 2(r, s) as claimed. �

3. Calculation of the curve neighborhoods

Let d = (d1, d2) be a degree such that d1 6= d2. We denote by α(d) the maximal
root α such that α ≤ d. Clearly there is exactly one such root, and it is easy to find
the following explicit formula for it:

α(d)=
{
(d1, d1+ 1) if d1 < d2,

(d2+ 1, d2) if d1 > d2.
(1)

In order to find the curve neighborhoods of an element u ∈ D∞, we need the
following key result.

Lemma 3.1. Let u ∈ D∞ and d = (d1, d2) be a degree. Consider the set

Ad(u) := {v ∈ D∞ : `(uv)= `(u)+ `(v), d(v)≤ d}. (2)
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Then the following hold:

• Ad(u) has a unique maximal element if u 6= 1 or if u = 1 and d 6= (a, a) for
some nonnegative integer a.

• If d = (a, a) and u = 1 then the maximal elements of Ad(u) are (s0 s1)
a and

(s1s0)
a .

Proof. Clearly, 1 ∈ Ad(u) so Ad(u) 6= ∅. For any v ∈ Ad(u), we have d(v) ≤ d.
Hence the set Ad(u) is finite, and so it must contain a maximal element. Lemma 2.3
implies there can be at most two maximal elements v1 and v2 and they must have
the same length. We consider each of the situations in the statement:

Case 1: u 6= 1. Assume there are two maximal elements v1, v2. Since u 6= 1, either
uv1 or uv2 is not reduced, say uv1. Then `(uv1) < `(u)+`(v1), and this contradicts
that v1 ∈Ad(u).

Case 2: u = 1. In this case, the set Ad(u) coincides with the set of all v ∈ D∞
such that d(v) ≤ d. From the description of D∞, it follows that d(v)= (a, a) or
d(v)= (a, a+ 1) or d(v)= (a+ 1, a) for some nonnegative integer a. Further, the
reduced decomposition of v is known in each case: there are two possibilities for v
if d(v)= (a, a), and there is exactly one (in fact, v = sα(d)) in the other two cases.
The claim follows from this. �

In what follows, we will denote by maxAd(u) the set of maximal elements in
the (finite) partially ordered set Ad(u). Our main result is:

Theorem 3.2. Let u ∈ D∞ and d = (d1, d2) be a degree. Then

0d(u)= {uw : w ∈maxAd(u)}.

We will prove this theorem in the next two sections, which correspond to the
cases u = 1 and u 6= 1. For now, notice that the proof of Lemma 3.1, and some
easy arguments based on reduced decompositions in D∞, imply that if u = 1 then
the set of maximal elements of Ad(1) is

maxAd(1)=
{
{sα(d)} if d = (d1, d2) and d1 6= d2,

{(s0 s1)
a, (s1s0)

a
} if d = (a, a).

(3)

If u 6= 1, we assume for simplicity that last simple reflection in the reduced word
for u is s0, i.e., u = · · · s0. (The other situation will be symmetric). Then

maxAd(u)=


{s1sα(d−(0,1))} if d0 = d1,

{sα(d)} if d1 > d0,

{s0 sα(d)} if d1 < d0.

(4)

The two formulas give explicit combinatorial rules to determine the curve neigh-
borhood 0d(u). See Section 3C below for several examples.



COMBINATORIAL CURVE NEIGHBORHOODS 323

3A. Curve neighborhoods for u = 1.

Theorem 3.3. Let d = (d1, d2) be a degree. Then the curve neighborhood of the
identity can be calculated in the following way:

0d(1)=maxAd(1)=
{
{sα(d)} if d1 6= d2,

{(s0 s1)
a, (s1s0)

a
} if d = (a, a).

Proof. If v ∈ 0d(1) then there exists a chain of degree ≤ d joining 1 to v. Then
by Lemma 2.5, d ≥ d(v). In particular, v ∈ Ad(1); thus 0d(1) ⊂ Ad(1), and the
inclusion is compatible with the partial order <. Conversely, if v is any element
in Ad(1) then there exists a chain of degree d(v)≤ d joining 1 to v. If v is maximal
in Ad(1), and because 0d(1)⊂Ad(1), it follows that v ∈ 0d(1). �

3B. General curve neighborhoods. The goal of this section is to find a formula
for the curve neighborhoods 0d(u) for u 6= 1 and d 6= (0, 0). First we need some
preparatory lemmas.

Lemma 3.4. Let u ∈ D∞, z ∈Ad(1) and v ∈ 0d(u). Then:

(a) `(uz)≤ `(v) and d(u−1v)≤ d.

(b) If z ∈ 0d(1) (i.e., z is maximal in Ad(1)), then `(u−1v)≤ `(z).

Proof. Since z ∈ Ad(1), there exists a chain of degree d(z) ≤ d joining 1 to z.
Multiplying this chain by u on the left gives a chain between u and uz of the same
degree. The first statement in (a) follows by the maximality of v. To prove the
second statement in (a), notice that since v ∈ 0d(u), there exists a chain from u
to v of degree ≤ d. If we multiply each element of this chain on the left by u−1,
we obtain a chain from 1 to u−1v of the same degree. The fact that d(u−1v)≤ d
follows from Lemma 2.5. Finally, (b) follows from the maximality of z, using also
that maximal elements in Ad(1) have the same length, by (3). �

The following lemma gives a strong constraint on the possible elements in 0d(u).

Lemma 3.5. Let v ∈ 0d(u). Then u−1v ∈Ad(u).

Proof. We have seen in Lemma 3.4 that d(u−1v)≤ d. It remains to show that `(v)=
`(u)+ `(u−1v). This clearly holds for u = 1 and from now on we assume u 6= 1.
From Lemma 2.1(c) it follows that `(v) = `(uu−1v) ≤ `(u) + `(u−1v). If the
inequality is strict then `(u−1v) > `(v)− `(u)= `(v)− `(u−1). But `(u) ≤ `(v),
thus by Lemma 2.1(d) it follows that

`(u−1v)= `(u)+ `(v).

Consider now an element z ∈ 0d(1) = maxAd(1) (by Theorem 3.3). We invoke
Lemma 3.4 to obtain

`(uz)≤ `(v) < `(u)+ `(u−1v)≤ `(u)+ `(z).
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This implies the expression uz is not reduced. But since u 6= 1, we can eliminate
the first simple reflection from the reduced expression for z to define z′ < z such
that `(z′)= `(z)− 1 and `(uz′)= `(u)+ `(z′). Notice that d(z′) < d(z)≤ d; thus
z′ ∈Ad(1). Then we have the inequalities

`(v)≥ `(uz′)= `(u)+ `(z)− 1≥ `(u)+ `(u−1v)− 1= `(u)+ `(u)+ `(v)− 1,

where the first inequality follows from Lemma 3.4(a) and the last inequality follows
from Lemma 3.4(b). Taking the extreme sides and subtracting `(v), we obtain
0≥ 2`(u)− 1, which is impossible since `(u) ≥ 1. Thus `(v) = `(u)+ `(u−1v)

and this finishes the proof. �

We are ready to prove our main result.

Theorem 3.6. Let d = (d1, d2) be a nonzero degree and u ∈ D∞. Then

0d(u)= {uw : w ∈maxAd(u)}.

Proof. Let v ∈ 0d(u). Then Lemma 3.5 implies u−1v ∈Ad(u). From Lemma 3.1
(or (4)), there exists a unique maximal element of Ad(u), call it w. Then u−1v ≤w

and clearly w is also in Ad(1). By Lemma 3.4(a), we deduce `(uw)≤ `(v). Then

`(u)+ `(u−1v)= `(v)≥ `(uw)= `(u)+ `(w).

This implies `(u−1v)≥ `(w). Together with u−1v ≤ w, this forces u−1v = w; i.e.,
v = uw as claimed. �

3C. Examples. We provide several examples determining 0d(u).

• Let u = 1 and d = (9, 4). From (1) we obtain α(d)= (5, 4); thus

0(9,4)(1)= {s(5,4)} = {s0 s1s0 s1s0 s1s0 s1s0}.

• Let u = 1 and d = (4, 4). By (3) the two maximal elements in A(4,4)(1) are
s0 s1s0 s1s0 s1s0 s1 and s1s0 s1s0 s1s0 s1s0. Then

0(4,4)(id)= {s0 s1s0 s1s0 s1s0 s1, s1s0 s1s0 s1s0 s1s0}.

• Let u = s0 s1s0 and d = (3, 3). From (4),

maxA(3,3)(u)= {s1sα((3,3)−(0,1))} = {s1s0 s1s0 s1s0}.

Thus 0(3,3)(s0 s1s0)= {(s0 s1s0)(s1s0 s1s0 s1s0)}.

• Let u = s1s0 s1 and d = (3, 3). From the symmetric version of (4),

maxA(3,3)(u)= {s0 sα((3,3)−(1,0))} = {s0 s1s0 s1s0 s1}.

Thus 0(3,3)(s1s0 s1)= {(s1s0 s1)(s0 s1s0 s1s0 s1)}.
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• Let u = s0 s1s0 and d = (9, 4). Then α((9, 4)) = (5, 4) and using (4) again,
maxAd(u)= {s1s0 s1s0 s1s0 s1s0}. Then

0(9,4)(s0 s1s0)= {(s0 s1s0)(s1s0 s1s0 s1s0 s1s0)}.

• Let u = s0 s1s0 and d = (4, 9). Then α((4, 9)) = (4, 5) and maxAd(u) =
{s1s0 s1s0 s1s0 s1s0 s1}. From this we obtain

0(9,4)(s0 s1s0)= {(s0 s1s0)(s1s0 s1s0 s1s0 s1s0 s1)}.
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Total variation based denoising methods
for speckle noise images

Arundhati Bagchi Misra, Ethan Lockhart and Hyeona Lim

(Communicated by Kenneth S. Berenhaut)

In this paper, we introduce a new algorithm based on total variation for denoising
speckle noise images. Total variation was introduced by Rudin, Osher, and Fatemi
in 1992 for regularizing images. Chambolle proposed a faster algorithm based
on the duality of convex functions for minimizing the total variation, but his
algorithm was built for Gaussian noise removal. Unlike Gaussian noise, which
is additive, speckle noise is multiplicative. We modify the original Chambolle
algorithm for speckle noise images using the first noise equation for speckle
denoising, proposed by Krissian, Kikinis, Westin and Vosburgh in 2005. We
apply the Chambolle algorithm to the Krissian et al. speckle denoising model to
develop a faster algorithm for speckle noise images.

1. Introduction

Image restoration, especially image denoising, is a very important process and is
often necessary as preprocessing for other imaging techniques such as segmentation
and compression. For the last two decades, various partial differential equation
(PDE) based models have been developed for this purpose [Rudin et al. 1992;
Perona and Malik 1990; Kornprobst et al. 1997; Catté et al. 1992; Alvarez et al.
1992; Chan and Vese 1997; Vese and Chan 1997; Marquina and Osher 2000; Chan
et al. 1999; Joo and Kim 2003a; 2003b; Kim 2004; Kim and Lim 2007]. In general,
an observed image f , corrupted by Gaussian noise n, is represented by the equation

f = u+ n, (1)

where u is the original noise-free image. Here u, f :�⊂R2
→R. For any denoising

model, the main objective is to reconstruct u from an observed image f .

MSC2010: primary 68U10, 94A08; secondary 65M06, 65N06, 65K10, 49K20.
Keywords: anisotropic diffusion, speckle noise, denoising, total variation (TV) model, Chambolle

algorithm, fast speckle denoising.
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Rudin, Osher, and Fatemi [Rudin et al. 1992] proposed the total variation (TV)
denoising model as the minimization problem

min
u

∫
�

|∇u| dEx (2)

subject to the constraints, ∫
�

f dEx =
∫
�

u dEx, (3)∫
�

1
2( f − u)2 dEx = σ 2, (4)

where σ is the standard deviation of the noise n. These constraints ensure that the
resulting image and the observed image are close to each other.

Combining the above constraints, the TV functional is obtained by

F(u)=
∫
�

|∇u| dEx + λ
2

∫
�

( f − u)2 dEx . (5)

Here, λ is a constraint parameter. The equivalent Euler–Lagrange equation gives
the TV denoising model as

∂u
∂t
−∇ ·

(
∇u
|∇u|

)
= λ( f − u). (6)

To avoid singularities, it was regularized by using |∇u| ≈ |∇εu| = (u2
x+u2

y+ε
2)1/2.

In this paper, we introduce a faster denoising method, compared to TV model,
for speckle noise images. Unlike Gaussian noise, speckle noise is multiplicative and
requires a model separate from those for Gaussian noise images. The first effective
speckle denoising model was developed by Krissian, Kikinis, Westin, and Vosburgh
[Krissian et al. 2005], and they proposed a new noise equation for speckle denoising.
For our new model, we modify the original Chambolle algorithm designed for the
TV model (6), and develop a fast and accurate speckle denoising method based on
the noise equation proposed by Krissian et al.

2. The Chambolle algorithm: dual approach

In this section, we provide a brief description of the Chambolle algorithm for the
TV model. Chambolle [2004] provided a fast algorithm for minimizing the total
variation. Detailed background and development of the algorithm can be found in
his lecture notes [Chambolle et al. 2010]. The work is based on the dual formulation
of Chan, Golub, and Mulet [Chan et al. 1999] and of Carter [2001]. To avoid the
staircasing effect, he derived the Euler–Lagrange equation in the sense of convex
analysis. His paper also contains the proof of the convergence of his algorithm.
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The Chambolle algorithm. Chambolle [2004] started with the Rudin, Osher, and
Fatemi (ROF) minimization functional [Rudin et al. 1992]

min
u

[
λJ (u)+

∫
�

1
2 |u− f |2 dEx

]
, (7)

where J (u)=
∫
�
|∇u| dEx . He proved that u is a minimizer of (7) if and only if

f − u
λ
∈ ∂ J (u),

where ∂F denotes the subdifferential of a convex function F. Hence, the Euler–
Lagrange equation obtained by Chambolle is given as

λ∂ J (u)+ u− f 3 0. (8)

Note that u= (ui j ), where i, j=1, . . . ,N , is the discrete image. Thus u∈ X=RN×N.
Applying the Legendre–Fenchel identity, he obtained the dual problem as

min
|pi, j |≤1

1
2

∥∥∥∥div p−
f
λ

∥∥∥∥2

, (9)

where div p=w for p= (pi, j )with i, j =1, . . . , N ∈Y = X×X andw= ( f −u)/λ.
Here ‖ · ‖ is the Euclidean norm, which is defined similarly to (6) in [Chambolle
2004]. We can recover u by

u = f − λw = f − λ div p. (10)

Hence, to find the denoised image u, the following problem must be solved for p:

min
{
‖λ div p− f ‖2 : p ∈ Y, |pi, j | ≤ 1 ∀i, j = 1, . . . , N

}
. (11)

Chambolle proposed the following algorithm to solve for p. Choosing τ > 0 and
taking p0

= 0 we derive pn for any n > 0, by

pn+1
i, j =

pn
i, j + τ(∇(div pn

− f/λ))i, j

1+ τ
∣∣(∇(div pn − f/λ))i, j |

. (12)

The next theorem proved the convergence of the algorithm in [Chambolle 2004]:

Theorem 2.1. If τ < 1
8 , then f − λ div pn converges to u as n→∞.

Image denoising with the Chambolle algorithm. In general, for Gaussian noise
images, Chambolle proposed updating λ at each iteration by the formula

λn+1
=

Nσ
gn
λn
=

Nσ
‖ div pn+1‖

=
‖ f − uc‖

‖ div pn+1‖
, (13)

where uc is the noise-free clear image and the variance σ 2 of the noise is known.
For s > 0, he defined g(s)= ‖s div p‖. Here, the starting value λ0 > 0 is chosen
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arbitrarily. Thus the Chambolle algorithm for TV denoising [Chambolle 2004;
Chambolle et al. 2010] is given by

pn+1
i, j =

pn
i, j + τ(∇(div pn

− f/λ))i, j

1+ τ |(∇(div pn − f/λ))i, j |
,

λn+1
=
‖ f − uc‖

‖ div pn+1‖
,

un+1
= f − λn+1 div pn+1

for any n ≥ 0. This algorithm converges almost twice as fast as the regular TV
model (6).

3. Speckle noise

Speckle noise is mostly present in ultrasound images, synthetic aperture radar (SAR)
images, and acoustic images. It is granular in nature, and it exists inherently in the
image. Unlike Gaussian noise, which affects single pixels of an image, speckle
noise affects multiple pixels. The noise is multiplicative, whereas Gaussian noise
is additive. Hence, it is not possible to remove speckle noise with the traditional
Gaussian denoising models.

Speckle denoising model by Krissian et al. This model was proposed by Krissian,
Kikinis, Westin, and Vosburgh [Krissian et al. 2005], where they mainly dealt with
speckle noise present in ultrasound images. They considered the speckle noise
equation as

f = u+
√

un, (14)

where u is the desired image to find, n is Gaussian noise, and f is the observed image.
Hence using n = ( f − u)/

√
u, the general regularized minimization functional is

given as

min
u

F(u)=min
u

(∫
�

[
|∇u| +

λ

2

(
f − u
√

u

)2 ]
dEx
)
.

Finally using the Euler–Lagrange equation of this functional, the TV based speckle
denoising model [Marquina and Osher 2000; Kim and Lim 2007] is derived as

∂u
∂t
−

u2

f + u
|∇u|∇ ·

(
∇u
|∇u|

)
= λ |∇u| ( f − u). (15)

4. The modified Chambolle for speckle denoising (MCSD) model

The Chambolle algorithm gives faster results than the regular TV model. Un-
fortunately, the model is formulated to work only for synthetic Gaussian noises.
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We modify it to obtain the modified Chambolle for speckle denoising (MCSD)
model for natural speckle noise. In [Wen et al. 2016] the authors used the primal-
dual approach of Chambolle [Chambolle and Pock 2011] to develop a TV based
denoising model for Poisson noise images. Similar approaches were proposed for
multiplicative-noise images based on the Chambolle primal-dual algorithm in [Chan
et al. 2014; Huang et al. 2012; 2013a; 2013b; Dong and Zeng 2013] for image
segmentation, denoising and deblurring.

The MCSD model is based on the Chambolle algorithm for faster TV denoising.
We apply the Chambolle-TV algorithm on the Krissian et al. speckle model to obtain
a faster speckle denoising model. We start with developing the Euler–Lagrange
equation for MCSD and then build the algorithm based on it.

The Euler–Lagrange equation for MCSD. We start by developing the Euler–
Lagrange equation based on the speckle noise equation (14) introduced by Krissian
et al. The minimization functional will be given by

min
u

[
λJ (u)+

∫
�

1
2
|u− f |2

u
dEx
]
. (16)

A similar model has also been discussed in [Jin and Yang 2011]. In this paper,
the authors also developed the denoising functional (16) for speckle noise images
motivated by the ROF model [Rudin et al. 1992] and the speckle noise model by
Krissian et al. [2005]. They proved the existence and uniqueness of the minimizer
for the functional (16). The existence and uniqueness of weak solutions for the
associated evolution equation were also derived. For numerical computation, they
directly used the finite difference scheme for the evolution equation, based on the
schemes introduced in [Rudin et al. 1992]. However, in our paper, we adopt a dual
formation suggested by Chambolle [2004] (see also [Chambolle et al. 2010]) for
(16) to produce a faster algorithm. This is the main difference between the results
of [Jin and Yang 2011] and ours. Moreover, for the purpose of development of the
Euler–Lagrange equation, we consider the following slightly modified functional
by using the fact u ≈ f :

min
u

[
λJ (u)+

∫
�

1
2
|u− f |2

f
dEx
]
. (17)

The following Theorem 4.1 provides us with the formulation of the Euler–Lagrange
equation for our new model.

Theorem 4.1. The Euler–Lagrange equation for the minimizing functional (16) is

∂ J (u)+
u− f
λu
3 0. (18)
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Proof. If u is the solution of the functional (16), since u ≈ f , we have for any
v ∈ L2(�),

λJ (v)+ 1
2

∫
�

|v− f |2

f
dEx ≥ λJ (u)+ 1

2

∫
�

|u− f |2

f
dEx

⇒ λJ (v)≥ λJ (u)+ 1
2

∫
�

1
f
[(u− f )2− (v− f )2] dEx

= λJ (u)+
∫
�

u− v
f

(
v− u

2
− ( f − u)

)
dEx

= λJ (u)−
∫
�

(u− v)2

2 f
dEx +

∫
�

(v− u)
f − u

f
dEx .

Now for any t ∈ R, we get

λ
(
J (u+ t (v− u))− J (u)

)
− t

∫
�

(v− u)
f − u

f
dEx ≥−

t2

2

∫
�

(v− u)2

f
dEx .

In the above inequality, the left-hand side is a convex function of t ∈ R and the
right-hand side is a concave parabola (as a function of t). The maximum point of
the parabola is at t = 0, and it meets the convex function at this point. Thus, we
can easily conclude that the convex function on the left-hand side will be larger
than the maximum of the parabola, which is zero here, at every point. Hence,

λ
(
J (u+ t (v− u))− J (u)

)
− t

∫
�

(v− u)
f − u

f
dEx ≥ 0.

Since this is true for any t ∈ R, considering f ≈ u and t = 1 gives us, for all
v ∈ L2(�),

J (v)≥ J (u)+
∫
�

(v− u)
f − u
λu

dEx .

Using the definition of subdifferential [Chambolle 2004],

f − u
λu
∈ ∂ J (u).

Conversely, if this is true, then we see that (18) holds.
Thus u is a minimizer of (16), and (18) gives the required Euler–Lagrange

equation. �

The MCSD algorithm. From the Euler–Lagrange equation (18) and the Legendre–
Fenchel identity property,

u ∈ ∂ J ∗
(

f − u
λu

)
.
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Setting w = ( f − u)/(λu), we have

u ∈ ∂ J ∗(w)⇒
f
λu
∈

f − u
λu
+
∂ J ∗(w)
λu

⇒ 0 ∈ w−
f
λu
+
∂ J ∗(w)
λu

(19)

⇒ 0 ∈ uw−
f
λ
+
∂ J ∗(w)
λ

. (20)

If the minimizing functional, where w is the minimizer, is given by∥∥√uw− f/(λ
√

u)
∥∥2

2
+

1
λ

J ∗(w), (21)

then similar analysis as in the proof of Theorem 4.1 yields that the corresponding
Euler–Lagrange equation is (20).

Since w ∈ K , where K = {div p : p ∈ Y, ‖pi, j‖ ≤ 1 ∀i, j}, and J ∗ = H , where
H is defined as

H(w)=
{

0 if w ∈ K ,
+∞ if w 6∈ K ,

(22)

we get J ∗(w) = 0. Therefore, finding a minimizer w for (21) is equivalent to
solving the problem

min
p

{∥∥∥∥√u div p−
f

λ
√

u

∥∥∥∥2

: p ∈ Y, |pi, j | ≤ 1 ∀i, j = 1, . . . , N
}
. (23)

We need to find p for (23) and then recover u by

u = f − λ u div p.

Now, to minimize (23), we consider

−

[
∇

(
√

u div p−
f

λ
√

u

)]
i, j
+αi j pi j = 0,

where αi j ≥ 0 is a Lagrange multiplier. One can verify that αi j > 0 and |pi j | = 1,
or |pi j |< 1 and αi j = 0. In any case,

αi j =

∣∣∣∣(∇(√u div pn
−

f
λ
√

u

))
i, j

∣∣∣∣.
Applying gradient descent, we can obtain the solution iteratively by the semi-implicit
algorithm

pn+1
i, j = pn

i, j+τ

((
∇

(
√

u div pn
−

f
λ
√

u

))
i, j
−

∣∣∣∣(∇(√u div pn
−

f
λ
√

u

))
i, j

∣∣∣∣pn+1
i, j

)
(24)
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for n ≥ 0, p0
= 0, and for an iterative time-step size τ > 0. Then (24) gives

pn+1
i, j =

pn
i, j + τ

(
∇
(√

u div pn
− f/(λ

√
u)
))

i, j

1+ τ
∣∣(∇(√u div pn − f/(λ

√
u)
))

i, j

∣∣ .
For the TV model, Chambolle proposed updating λ for denoising purposes us-
ing (13):

λn+1
=
‖ f − uc‖

‖ div pn+1‖
.

Here, uc is the noise-free clear image. But this can only be obtained for synthetic
images. For speckle noise images, we change (13) to

λn+1
=
‖ f − fs‖

‖un div pn+1‖
,

where fs is the smoother version of the original or given image. For any (i, j), we
obtain fs(i, j) by considering the average of the four surrounding pixels. Hence,
the iterative algorithm for MCSD is given for n ≥ 0 as

pn+1
i, j =

pn
i, j + τ

(
∇
(√

un div pn
− f/(λ

√
un)
))

i, j

1+ τ
∣∣(∇(√un div pn − f/(λ

√
un)
))

i, j

∣∣ , (25)

λn+1
=
‖ f − fs‖

‖un div pn+1‖
, (26)

un+1
= f − λn+1 un div pn+1. (27)

Note that the problem satisfies the zero Neumann boundary condition

∂u
∂n
= 0 on ∂�. (28)

5. Numerical procedure: the MCSD model

We now describe the numerical procedure used for the MCSD model. In [Cham-
bolle 2004], the discrete gradient and divergence were defined using forward and
backward differences respectively. Also, Chambolle used separate definitions for
boundary points. In this model, we use central differences to define both the gradient
and divergence, as we have seen that this gives more accurate results. Also, we
introduce 1-pixel-wide ghost grids on each side to avoid separate definitions for
boundary points and also to satisfy the zero Neumann boundary condition (28).
The ghost grid values are obtained by

u(0, : )= u(2, : ), u(N + 1, : ) = u(N − 1, : ),

u( : , 0)= u( : , 2), u( : , N + 1)= u( : , N − 1).
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For u ∈ X = RN×N, we have

(∇u)i, j =
(
(∇u)1i, j , (∇u)2i, j

)
,

where

(∇u)1i, j =
1
2(ui+1, j − ui−1, j ), (∇u)2i, j =

1
2(ui, j+1− ui, j−1)

for 1≤ i, j ≤ N . For any vector p = (p1, p2) ∈ Y = X × X , we define

(div p)i, j =
1
2(p

1
i+1, j − p1

i−1, j )+
1
2(p

2
i, j+1− p2

i, j−1) (29)

for 1 ≤ i, j ≤ N. Applying these definitions, we solve the iterative algorithm
provided in (25)–(27).

Convergence analysis. For purposes of convergence analysis of the MCSD algo-
rithm developed on page 332, we slightly modify the algorithm by using (19) for
the Euler–Lagrange equation instead of (20). We do not iterate u in the algorithm
by replacing it by fs , where fs is the smoother version of the original or given
image. Thus the modified Euler–Lagrange equation is given by

0 ∈ w−
f
λ fs
+
∂ J ∗(w)
λ fs

.

The corresponding minimizing functional is therefore

1
2

∥∥∥∥w− f
λ fs

∥∥∥∥2

+
1
λ fs

J ∗(w), (30)

where w = ( f − u)/(λu) is the minimizer. Thus we obtain the semi-implicit
algorithm

pn+1
i, j = pn

i, j + τ

((
∇

(
div pn

−
f
λ fs

))
i, j
−

∣∣∣∣(∇(div pn
−

f
λ fs

))
i, j

∣∣∣∣pn+1
i, j

)
(31)

and that

pn+1
i, j =

pn
i, j + τ

(
∇(div pn

− f/(λ fs))
)

i, j

1+ τ
∣∣(∇(div pn − f/(λ fs))

)
i, j

∣∣ (32)

for n ≥ 0, p0
= 0, and for an iterative time-step size τ > 0. Then the following

convergence theorem holds.

Theorem 5.1. If τ ≤ 1
2 , then f −λ fs div pn, where pn is obtained by (32), converges

to u as n→∞.

Proof. Fix n ≥ 0 and let η = (pn+1
− pn)/τ . Since

div pn+1
−

f
λ fs
= div pn

−
f
λ fs
+ τ div η,
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we derive the following:∥∥∥∥div pn+1
−

f
λ fs

∥∥∥∥2

=

∥∥∥∥div pn
−

f
λ fs
+ τ div η

∥∥∥∥2

=

∥∥∥∥div pn
−

f
λ fs

∥∥∥∥2

+ 2τ
〈
div η, div pn

−
f
λ fs

〉
+ τ 2
‖ div η‖2.

Let κ be the norm of div : Y → X . That is, κ = sup‖p‖Y≤1 ‖ div p‖X . Then, we get
‖ div η‖2 ≤ κ2

‖η‖2Y . Using this and also by the property 〈div p, u〉 = −〈p,∇u〉,
we obtain the inequality∥∥∥∥div pn+1

−
f
λ fs

∥∥∥∥2

≤

∥∥∥∥div pn
−

f
λ fs

∥∥∥∥2

− τ

(
2
〈
η,∇

(
div pn

−
f
λ fs

)〉
−κ2τ‖η‖2Y

)
.

Note that

2
〈
η,∇

(
div pn

−
f
λ fs

)〉
− κ2τ‖η‖2Y =

N∑
i, j=1

2ηi, j

(
∇

(
div pn

−
f
λ fs

))
i, j
− κ2τη2

i, j

and by (31),

ηi, j =

(
∇

(
div pn

−
f
λ fs

))
i, j
− ρi, j ,

where ρi, j =
∣∣(∇(div pn

− f/(λ fs))
)

i, j

∣∣ pn+1
i, j . Let ai, j :=

(
∇(div pn

− f/(λ fs))
)

i, j .
Then

2ηi, j

(
∇

(
div pn

−
f
λ fs

))
i, j
−κ2τη2

i, j = 2ηi, j ai, j−2ηi, jρi, j+2ηi, jρi, j−κ
2τη2

i, j

= 2η2
i, j+2ηi, jρi, j−κ

2τη2
i, j

= (1−κ2τ)η2
i, j+η

2
i, j+2ηi, jρi, j

= (1−κ2τ)η2
i, j+a2

i, j−ρ
2
i, j .

Since p0
= 0, we can easily prove by induction that |pn

i, j | ≤ 1 ∀i, j for all n ≥ 0.
This implies ρi, j ≤ |ai, j |. Therefore, if τ ≤ 1/κ2, then

2
〈
η,∇

(
div pn

−
f
λ fs

)〉
− κ2τ‖η‖2Y ≥ 0,

which implies ‖ div pn
− f/(λ fs)‖

2 is decreasing with n. Hence, there exists a limit
of ‖ div pn

− f/(λ fs)‖
2 as n→∞ and we can conclude f − λ fs div pn converges

to a solution of the simplified version of the MCSD minimizing functional (21).
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Now we need to show that τ ≤ 1/κ2 if τ ≤ 1
2 . By (29),

‖ div p‖2 =
∑

1≤i, j≤N

( 1
2(p

1
i+1, j − p1

i−1, j )+
1
2(p

2
i, j+1− p2

i, j−1)
)2

≤

∑
1≤i, j≤N

(p1
i+1, j )

2
+ (p1

i−1, j )
2
+ (p2

i, j+1)
2
+ (p2

i, j−1)
2

≤ 2‖p‖2Y .

This proves that κ2
≤ 2. Since we assumed τ ≤ 1

2 , we finally get τ ≤ 1/κ2. �

6. Numerical results for the MCSD model

The resulting images shown here are obtained using C++ programs which were
compiled and run on Linux. Other than comparing the visual results, we also use
peak-signal-to-noise ratio (PSNR) to measure image quality. The definition of
PSNR is given as follows:

Definition 6.1 (PSNR). Let g be a noise-free clean image and u be the restored
image obtained by denoising a noisy version of g. The PSNR is measured by

PSNR= 10 log10

( ∑
i j 2552∑

i j (gi j − ui j )2

)
.

Note that if the denoised image is very close to the clean image, the denominator
will be very small, thus providing a higher PSNR for a cleaner image. Also, the
PSNR can be obtained for images with synthetically added noise only. Images with
natural noise cannot have PSNR values since g is not available.

First we show the results for a Gaussian noise image (synthetic Lena image).
From Figure 1, we can compare the results obtained from different denoising
models. The MCSD model does not produce a nice result, as it is meant for
speckle denoising. The Chambolle with central difference scheme provides the best
denoised image. This fact is also supported by the PSNR values in Table 1, where
the central difference Chambolle model has the highest PSNR and MCSD has the
lowest, but the MCSD model is still faster than the TV model (6).

Next we have the results together with the residuals for the MCSD (25)–(27) and
the Krissian et al. (15) models for speckle noise images. In Figure 2 (the speckle
Lena image), we see that MCSD has comparable results to the Krissian et al. model.
The residuals in Figure 3 show that MCSD has picked up more noise and less detail
than the Krissian et al. model. From Table 2, we see that MCSD has a higher PSNR
value than Krissian et al. and it also takes less time.

Figure 4 shows the results for an ultrasound image (liver image). Here also we
can see MCSD performs better than Krissian et al. The residual image (Figure 5)
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noise-free image Gaussian noise image

TV Chambolle

Chambolle (cdm) MCSD

Figure 1. Results of TV, Chambolle and MCSD models (Gaussian
Lena image).
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noise-free image speckle noise image

Krissian et al. MCSD

Figure 2. Results of Krissian et al. and MCSD models (speckle
Lena image).

TV Chambolle Chambolle (cdm) MCSD
time PSNR time PSNR time PSNR time PSNR

13.71 27.78 4.54 27.71 4.64 28.86 8.98 26.06

Table 1. Model comparison for the Lena image with Gaussian
noise and PSNR= 24.30, where time is measured in seconds.

shows MCSD picked up more noise but preserved more edges compared to the
Krissian et al. model. We are unable to compare PSNR values here since they are
images having natural noise. But Table 2 does show us that MCSD is faster than
the Krissian et al. model.
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Krissian et al. absolute residual MCSD absolute residual

Krissian et al. noise residual MCSD noise residual

Figure 3. Residuals of Krissian et al. and MCSD models (speckle
Lena image).

Krissian et al. MCSDimages
time PSNR time PSNR

Lena (PSNR= 25.70) 2.83 27.02 0.14 28.52
liver 2.35 − 0.13 −

Table 2. Model comparison for speckle noise, where time is mea-
sured in seconds.
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noisy image

Krissian et al. MCSD

Figure 4. Results of Krissian et al. and MCSD models (ultrasound
liver image).

7. Conclusion

In this paper, we introduced our new TV based denoising model for speckle noise
images. The new model provides a speckle noise version for the Chambolle algo-
rithm, which was originally designed for faster solution of the ROF model. The
results show a significant amount of improvement compared to the conventional
TV based speckle denoising model. Based on a dual formation, the solution is
updated directly from the dual space. The new method is therefore much more
efficient than the method by Krissian et al. It is also numerically shown that the new
method is more accurate than the Krissian et al. method. Under certain conditions
on the time-step size, it is proved that the solution from the new algorithm converges
to the minimizer of the new speckle denoising model.
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Krissian et al. absolute residual MCSD absolute residual

Krissian et al. noise residual MCSD noise residual

Figure 5. Residuals of Krissian et al. and MCSD models (ultra-
sound liver image).
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A new look at Apollonian circle packings
Isabel Corona, Carolynn Johnson, Lon Mitchell and Dylan O’Connell

(Communicated by Scott T. Chapman)

We define an abstract Apollonian supergasket using the solution set of a certain
Diophantine equation, showing that the solutions are in bijective correspon-
dence with the circles of any concrete supergasket. Properties of the solution set
translate directly to geometric and algebraic properties of Apollonian gaskets,
facilitating their study. In particular, curvatures of individual circles are explored
and geometric relationships among multiple circles are given simple algebraic
expressions. All results can be applied to a concrete gasket using the curvature-
center coordinates of its four defining circles. These techniques can also be
applied to other types of circle packings and higher-dimensional analogs.

An Apollonian gasket is a type of circle packing in the plane generated recursively
starting from a set of four mutually tangent circles. The curvatures of any four such
circles are related by an equation discovered by Descartes, and every circle in a
gasket generated by four circles with integer curvatures will have integer curvature.
While these gaskets have been fascinating to mathematicians for some time — the
use of group theory in their study was initiated by Keith Hirst [1967] and they
even inspired a poem1 — it was only relatively recently that Jeffrey Lagarias, Colin
Mallows, and Allan Wilks [Lagarias et al. 2002] gave an algebraic characterization
of Descartes configurations. One question in particular has inspired much work
but resisted a complete answer: given the four original integer curvatures, which
other curvatures can or will occur, and how frequently? Peter Sarnak [2011], Elena
Fuchs [2013], and Hee Oh [2014] have recent surveys on this topic, which has seen
significant progress in the past five years [Bourgain 2012; Bourgain and Kontorovich
2014; Bourgain and Fuchs 2011; Fuchs and Sanden 2011].

In this paper, inspired by recent work of Sam Northshield [2015], we provide a
four-dimensional label to each circle that does not depend on the location of the
circle but refers instead to its geometric relationship to the original four circles.
Since we consider only the process of generating the gasket, the labels provide an
abstract version of an Apollonian circle packing that can represent any concrete

MSC2010: primary 52C26; secondary 11D09.
Keywords: Apollonian circle packing, Apollonian gasket, Apollonian supergasket.

1The Kiss Precise by Frederick Soddy, 1936.
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packing once an initial set of four circles is specified. These labels can be used to
determine location and radius, find whether given circles in a gasket are tangent
or not, perform operations such as inversion, and obtain curvature results. This
technique is equally applicable to any packing generated in a similar fashion, such as
the generalizations of Apollonian packings of Gerhard Guettler and Colin Mallows
[2010] or packings in higher-dimensional Euclidean, spherical, or hyperbolic spaces
[Lagarias et al. 2002].

1. Descartes configurations

Descartes configurations are the basic building blocks of Apollonian circle packings.
We begin by providing a brief introduction; for more detail, see the paper by Lagarias,
Mallows, and Wilks [Lagarias et al. 2002] or any of the surveys mentioned above.

An oriented circle in the plane consists of a circle and an orientation, thought of
as a unit normal vector, of “inward” or “outward” that specifies its interior. The
curvature of a circle is the inverse of its radius; the oriented curvature of an oriented
circle is the curvature if the circle has an inward-pointing normal vector and the
negative of the curvature otherwise. Two circles are tangent if they intersect in a
single point. Lines are considered to be circles of curvature zero, and two lines that
are not the same are considered to be tangent at infinity. In what follows, by a circle
we will mean either an oriented circle or oriented line, tangent will mean externally
tangent, and by the curvature of a circle, we will mean the oriented curvature.

A Descartes configuration (hereafter, configuration) consists of four circles in
the plane that are pairwise externally tangent and such that no three share a point of
tangency. There are four basic types of configurations, shown in Figure 1. Descartes
discovered that the oriented curvatures κi of four oriented circles in a configuration
satisfy

2(κ2
1 + κ

2
2 + κ

2
3 + κ

2
4 )= (κ1+ κ2+ κ3+ κ4)

2, (1)

which we will call the Descartes condition.2

The Descartes condition is not enough to characterize configurations, but a
characterization exists using additional information [Graham et al. 2005; Lagarias
et al. 2002], and the geometry of inversion over a circle plays an important part.
For a line, inversion over the line is simply reflection. For a circle C with center O
and radius r , inversion over C is the Möbius transformation IC that maps a point P
to the point Q on the ray from O through P such that r2

= |O P||O Q|. Each
inversion is anticonformal in that it preserves magnitudes of angles but reverses
their directions; further, inversion over a circle or line maps oriented circles and
lines to oriented circles and lines.

2Descartes considered configurations without lines, but with our definitions, (1) is true for any
type of configuration [Lagarias et al. 2002].
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Figure 1. Descartes configurations.

Each circle that is not a line is uniquely identified by its center and curvature,
since the curvature provides both radius and orientation. To uniquely identify all
circles, Lagarias, Mallows, and Wilks devised curvature-center coordinates, which
for any circle are of the form k ′, k, x, y, where k is the curvature and k ′ is the
curvature of the inversion of the circle over the unit circle; if the curvature k is
nonzero, then x = kcx and y = kcy , where (cx , cy) is the center of the circle; if
the curvature k is zero, then x and y are the corresponding components of the unit
normal vector. For example, the curvature-center coordinates of the unit circle with
the origin in its interior are −1, 1, 0, 0 and the curvature-center coordinates of the
line y = 1 with the origin in its interior are 2, 0, 0,−1.

Here is the characterization of configurations: let C1, . . . ,C4 be circles, let
M = M(C1, . . . ,C4) be the curvature-center matrix of the circles C1, . . . ,C4,
where each row consists of the curvature-center coordinates of the corresponding
circle, and let

Q=


1 –1 –1 –1

–1 1 –1 –1
–1 –1 1 –1
–1 –1 –1 1

.
(Our Q matrix is twice the Q of Lagarias et al. [2002] for notational convenience.)

Theorem 1 (augmented Euclidean Descartes theorem [Lagarias et al. 2002; Graham
et al. 2005]). Circles C1, . . . ,C4 form a configuration if and only if

MTQM =


0 –8 0 0

–8 0 0 0
0 0 4 0
0 0 0 4

=:W. (2)

Note that the matrix Q is related to the Descartes condition in that if Ex =
(x1 x2 x3 x4)

T is a column vector then

〈Ex, Ex〉Q := ExTQEx = 2(x2
1 + x2

2 + x2
3 + x2

4)− (x1+ x2+ x3+ x4)
2.

Indeed, the first two diagonal entries of W correspond to the Descartes condition.
Given any three mutually tangent circles C1, C2, and C3 that do not share a

point of tangency, there are exactly two other circles that each form a configuration
with the original three [Sarnak 2011]. The operation that takes a configuration
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C1 C2

C5

C4

C3

Figure 2. An example of reflection.

C1,C2,C3,C4 to the configuration C1,C2,C3,C5 is defined to be the reflection
(of C4 over C1, C2, and C3) [Graham et al. 2005] (and when the context allows
we will speak of replacing C4 with C5 in this fashion). In Figure 2, for example,
C5 is the reflection of C4 over C1, C2, and C3 (and C4 is the reflection of C5 over
C1, C2, and C3), and hence we can speak of replacing C4 in the configuration
C1,C2,C3,C4 with C5 to obtain the configuration C1,C2,C3,C5.

Since inversion over a circle preserves tangency, inverting three circles of a
configuration over the fourth will also result in another Descartes configuration.
For example, in Figure 3, the three smallest circles invert over circle C1 to the three
largest circles.

C1

1

Figure 3. An example of inversion.

Figure 4. A configuration (solid lines) and its dual (dashed lines).
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Finally, each configuration C1, . . . ,C4 also has a dual configuration C ′1, . . . ,C ′4
such that each C ′i does not intersect Ci and goes through the three points of tangency
of the other three C j with j 6= i . For example, in Figure 4, a configuration (solid
lines) is superimposed with its dual (dashed lines).

2. Apollonian gaskets

Apollonian Gaskets can be defined geometrically and algebraically. In this section,
we will review the geometric construction.

Given three mutually tangent circles, there are exactly two other circles that form
a configuration with the original three. Thus, starting with a configuration of four
circles, any three of the four define a new configuration not including the other
circle. Repeatedly creating new configurations in this fashion, a circle packing (a
collection of circles with mutually disjoint interiors) is created, called an Apollonian
circle packing or Apollonian gasket; see Figure 5.

If κ1, . . . , κ5 are the curvatures of five circles C1, . . . ,C5 such that C1,C2,C3,C4

and C1,C2,C3,C5 are configurations, the Descartes condition implies

κ5 = 2κ1+ 2κ2+ 2κ3− κ4. (3)

Thus, in an Apollonian gasket, because each circle belongs to a configuration that
can be obtained from the original one by repeated replacement operations, if the
original curvatures are integers then the curvatures of all the circles in the gasket
will also be integers.

The gasket with starting curvatures 0, 0, 2, and 2 contains another set of well-
known circles called the Ford circles, shown in Figure 6, which can be defined
as follows. For r > 0 and arbitrary real a, let C(a, r) be the circle with radius r
above and tangent to the x-axis at x = a. For relatively prime integers c and d
with d 6= 0, let Cc,d = C(c/d, 1/(2d2)); the set of all such Cc,d are the Ford
circles. These circles have a number of interesting properties. To see they are
part of the (2, 2, 0, 0)-gasket (which we will call the Ford gasket) invokes one
of these properties: if Ca,b and Cc,d are mutually tangent, then Ca+c,b+d forms a

Figure 5. An Apollonian gasket.
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Figure 6. Ford circles.

Descartes configuration with Ca,b, Cc,d , and the x-axis. The claim then follows
from C0,1, C1,1, and the x-axis being part of the original four gasket circles.

Sam Northshield [2015] recently discovered a new characterization and labeling
for the Ford circles. For integers s and t with s+ t > 0, define

〈s, t〉 = C
(

s
s+ t

,
1

(s+ t)2

)
.

Then the set of Ford circles is exactly the set of those 〈s, t〉 with integer s and t
that satisfy two conditions: s + t > 0 and there exists an integer u such that
gcd(s, t, u)= 1 and s2

+ t2
+ u2
= (s+ t + u)2. This characterization also allowed

Northshield to study natural generalizations of the Ford circles in higher dimensions.

3. The Apollonian group

Each geometric operation described above has a matrix counterpart. For example,
consider two configurations C1,C2,C3,C4 and C1,C2,C3,C5, let

S4 =


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 –1


and let M = M(C1,C2,C3,C4). We claim that S4 M = M(C1,C2,C3,C5). Since
ST

4 QS4 = Q, we have (S4 M)TQS4 M = MTQM =W, so that S4 M is also a config-
uration. Since S4 does not change C1, C2, or C3, it follows that S4 M must be the
unique configuration obtained by reflection of C4. This provides an alternate way
of defining an Apollonian gasket.

The Apollonian group A is generated by S4 along with

S1 =


–1 2 2 2

0 1 0 0
0 0 1 0
0 0 0 1

, S2 =


1 0 0 0
2 –1 2 2
0 0 1 0
0 0 0 1

, S3 =


1 0 0 0
0 1 0 0
2 2 –1 2
0 0 0 1

.
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Figure 7. A dual Apollonian packing.

These matrices satisfy S2
i = I and ST

i QSi = Q for each i . With this notation, the
Apollonian gasket generated by an initial Descartes configuration whose circles
have curvature-center matrix M consists of the circles in the configurations of the
orbit of M under the left action of A.

Given a column vector of initial curvatures (κ1, κ2, κ3, κ4)
T that satisfy the

Descartes condition, in light of (3) and the above, multiplication by Si can be
viewed as removing curvature κi and substituting the curvature of its replacement.
Thus the curvatures that occur in an Apollonian gasket with initial curvature vector v
are those that occur in the vectors of the orbit of v under the action of the Apollonian
group.

One can verify that the matrix Ti := ST
i corresponds to inversion over the i-th

circle of a configuration, that the matrix D := −1
2 Q gives DM(C1, . . . ,C4) =

M(C ′1, . . . ,C ′4), and that D= D−1
=DT. These matrices are related by Si D= DTi

for each i . As a result, the dual Apollonian group A⊥ generated by T1, . . . , T4 is
conjugate to the Apollonian group. The orbit of a configuration under A⊥ is called
a dual Apollonian packing; see Figure 7.

4. An abstract supergasket

Having now reviewed the geometric and algebraic constructions of Apollonian
circle packings, we proceed to transpose the algebraic viewpoint; instead of looking
at configurations, we will focus on identifying individual circles. From now on, for
convenience, we will view (a, b, c, d) both as a point and as a vector. We will also
use it to identify a circle: given a configuration with curvature-center matrix M, let
(a, b, c, d) be the circle whose curvature-center coordinates are given by the vector
(a, b, c, d)M .

There are two motivations for this notation. One is to extend Northshield’s
coordinates for Ford circles. The other is to view the process of generating an
Apollonian gasket in an abstract fashion: if M is the curvature-center matrix
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of the configuration that generates an Apollonian gasket, then by definition any
configuration in the gasket has curvature-center matrix of the form AM, where A is
an element of the Apollonian group A. In particular, M = IM, and we can view the
rows of the identity matrix I as giving the four original circles, which correspond to
the labels e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1).

Information contained in these labels can be applied to any gasket by using the
corresponding curvature-center matrix. For example, using the curvature-center
coordinates of the first four circles in the Ford gasket, the reader can verify that
each label (a, b, c, d) with a+ b 6= 0 corresponds to the circle with

x =
b

a+ b
, y =

a+ b− c+ d
2(a+ b)

, k = 2(a+ b), (4)

where (x, y) is the center and k is the curvature, while labels of the form (a,−a, c, d)
correspond to lines.

While any label (a, b, c, d) corresponds to a circle, which ones give circles in
the gasket? This question is equivalent to asking what rows can occur in matrices
in A. If l is a circle in the gasket, then l is a row of some matrix A ∈ A and, for
any i , we have ASi ∈ A. Then lSi is a row of ASi , and so lSi is the label of a
circle in the gasket. Since any A ∈A can be written as a word in the Si , any vector
corresponding to the label of a circle in the gasket can be written as ei A for some
A ∈A and some 1≤ i ≤ 4. Thus the question becomes what are the orbits of the ei

under A?
Let

fQ(a, b, c, d)= 2(a2
+ b2
+ c2
+ d2)− (a+ b+ c+ d)2.

Then fQ(ei )=〈ei , ei 〉Q=1 for each i . Moreover, since fQ(ei )=1 and 〈uSi , uSi 〉Q=

〈u, u〉Q for each i and every vector u, each label (a, b, c, d) of a circle in the gasket
satisfies fQ(a, b, c, d) = 1. Unfortunately, this condition does not characterize
the gasket circles.3 One way to discover this is to start plotting integer solutions
to fQ(a, b, c, d) = 1 using (4); in doing so, an interesting picture emerges (see
Figure 8).

The group AS generated by the Si and the Ti is the super Apollonian group, and
an orbit of a configuration under the super Apollonian group is a superpacking or
supergasket [Graham et al. 2006]. In fact, as we will prove, integer solutions to
fQ(a, b, c, d)=1 correspond bijectively to the circles of any Apollonian supergasket.
The rest of this section is devoted to proving this characterization.

Let I be the set of integer solutions to fQ(a, b, c, d) = 1. Note first that
〈uSi , uSi 〉Q = 〈uTi , uTi 〉Q = 〈u, u〉Q for each i and every vector u, so that
〈ei A, ei A〉Q = 1 for each i and any A ∈ AS . Thus each orbit of an ei is a subset

3Such a condition would be of much interest, and we mention this again as an open problem later.
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1

Figure 8. Plot of integer solutions to fQ(a, b, c, d)= 1.

of I. Our next few results explore properties of I. One fact we will use repeatedly
is that (a, b, c, d) ∈ I means

a = b+ c+ d ±
√

4(bc+ bd + cd)+ 1. (5)

Lemma 2. There is no element of I with two negative coordinates and two positive
coordinates.

Proof. Assume without loss of generality that a and b are negative and that c and d
are positive, and rewrite fQ(a, b, c, d)= 1 as

(a− b)2+ (c− d)2 = 2(a+ b)(c+ d)+ 1. (6)

Then the left side is positive but the right is negative, a contradiction. �

If (a, b, c, d) ∈ I, then (−a,−b,−c,−d) ∈ I, and they are the same circle but
with opposite orientations. Since orientation changes are already present in the
curvature-center matrices, they should not be needed in the labels. Let I+ be the
subset of I consisting of labels with at least one positive coordinate and at least as
many positive coordinates as negative.

Our eventual proof that I+ will behave as the abstract supergasket will depend
on an algorithm to take any element of I+ and produce a series of transformations
that will take us back to some ei . The next four results show that the S and T
transformations map I+ to itself.
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Lemma 3. Let (a, b, c, d)∈I+ have no negative entries and let a=max{a, b, c, d}.
Then b+ c+ d < a. Further, a < 3(b+ c+ d) unless (a, b, c, d)= e1.

Proof. If a ≤ b+ c+ d, then (5) implies −(bc+ bd + cd) > 1
2 , a contradiction. If

a ≥ 3(b+ c+ d), then (5) yields b2
+ c2
+ d2
≤

1
2 , implying b = c = d = 0. �

Lemma 4. For (a, b, c, d) ∈ I+ with no negative entries and a =max{a, b, c, d},
unless (a, b, c, d)= e1, we have

(a′, b′, c′, d ′) := (a, b, c, d)T1 ∈ I+ and a+ b+ c+ d > a′+ b′+ c′+ d ′ > 0.

Proof. Since T1 only changes a, we know (a, b, c, d)T1 has at most one negative
entry. Thus, if (a, b, c, d) 6= e1, then (a, b, c, d)T1 ∈ I+. Further, a′+b′+c′+d ′=
3b+3c+3d−a, so assuming (a, b, c, d) 6= e1, we have 3b+3c+3d−a>a−a= 0.
Using b+ c+ d < a,

a′+ b′+ c′+ d ′− a− b− c− d = 2b+ 2c+ 2d − 2a > 0. �

Lemma 5. Let (a, b, c, d) ∈ I+ have exactly one negative entry a. Then a ≥
−

1
6(b+ c+ d). If a =− 1

6(b+ c+ d) then (a, b, c, d)= (−1, 2, 2, 2).

Proof. Assume a ≤− 1
6(b+ c+ d). Then (5) implies

36≥ 49(b2
+ c2
+ d2)− 46(bc+ bd + cd).

Assume without loss of generality that d ≥ c ≥ b ≥ 0. Using that

b2
+ c2
+ d2
− bc− bd − cd = (b− c)2+ (d − b)(d − c)≥ 0,

we have 12≥ b2
+ c2
+ d2. The only such nonnegative values of b, c, and d that

admit an a with fQ(a, b, c, d)= 1 are b = c = d = 2. �

Lemma 6. For (a, b, c, d) ∈ I+ with exactly one negative entry a,

(a′, b′, c′, d ′) := (a, b, c, d)S1 ∈ I+ and a+ b+ c+ d > a′+ b′+ c′+ d ′ > 0.

Proof. Since a is negative, a′ = −a is positive. If (a′, b′, c′, d ′) /∈ I+, then by
Lemma 2, each of b′, c′, and d ′ are negative. Thus b+ 2a = b′ < 0, and similarly
c+ 2a < 0 and d + 2a < 0. Taken together, b+ c+ d + 6a < 0, a contradiction.

Since a < 0, it follows that a′+ b′+ c′+ d ′− a− b− c− d = 4a > 0. Finally,

a′+ b′+ c′+ d ′ = 5a+ b+ c+ d > 6a+ b+ c+ d > 0. �

Now for the main result that establishes the connection between I+ and the
action of AS .

Lemma 7. Suppose l ∈ I+. There exists an element A ∈ AS and an i such that
l = ei A.



A NEW LOOK AT APOLLONIAN CIRCLE PACKINGS 355

Proof. Since l = (a1, a2, a3, a4) ∈ I+, either it has no negative entries or exactly
one negative entry. Consider the operation

l 7→
{

lTi if l has no negative entries and ai =max{a1, a2, a3, a4},
lSj if l has exactly one negative entry aj .

By Lemmas 4 and 6, repeated application of this operation will eventually result
in ei for some i and we will have l A = ei for some A ∈AS. Since each Ti and Si

are invertible, l = ei A−1. �

Conversely, for any A∈AS and any i , we have ei A∈AS, establishing our bijection.

Theorem 8. The circles of an Apollonian supergasket are in one-to-one correspon-
dence with I+.

If l= ei A as in Lemma 7, then the three circles ej A for j 6= i form a configuration
with l, and we can call them the “parents” of l. From (6), the elements of I must
have exactly one odd entry, and one can verify the location of this entry is not
altered by replacement or inversion. Thus the odd entry provides a quick indicator
of which ei will be obtained by the procedure of Lemma 7.

Since duality D preserves the Q-inner product, the labels (a, b, c, d) of dual
circles also satisfy fQ(a, b, c, d)= 1, but the one odd entry of elements of I means
that the elements of 2ID are all odd integers. Results similar to Lemmas 2, 3, and 5
hold for dual circles, and thus a procedure similar to that of Lemma 7 can return a
dual circle to one of the original four dual circles:

(
−

1
2 ,

1
2 ,

1
2 ,

1
2

)
or a permutation

thereof.

5. Label operations

Having now defined our abstract supergasket as the set I+, we can begin to put it
to use. We are particularly interested in properties shared by all gaskets. As we
will see in this section, the labels give a simple way to identify individual circles,
but they can also be combined to give simple computations for the configuration
operations. As a first example, the next theorem follows directly from analyzing
the entries of the Si .

Theorem 9. Let C1, . . . ,C4 be the circles of a Descartes configuration with labels
c1, . . . , c4. Let C5 be the replacement of C4, let C ′j be the inversion of C j , 2≤ j ≤ 4,
over C1, and let c5 and c′j denote the corresponding labels. Using entrywise
operations, c5 = 2c1+ 2c2+ 2c3− c4 and c′j = 2c1+ cj .

A key fact is that, using duality and as witnessed by Si D = DTi for each i ,
replacement can be viewed as inversion and inversion can be viewed as replacement.
As an example of an application, for any circle C in the plane and any Descartes
configuration with curvature-center matrix M, let IC be the operation of inversion
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C5 X1

X2

C4

C3

C1 C2

D3

D4

D1D2

Figure 9. Circle X1 is the inversion of C5 over D1, and X2 is the
inversion of C5 over C1.

over C . If, for some i , the intersection of the interior of C with the interior of
any circle represented by M or Si M is empty, then Si IC M = ICSi M, and the
similar results hold for Ti and for duality D. To see this, recall that the replacement
of a circle determines a unique circle tangent to the other three in the original
configuration. Inversion preserves tangency, and the unique circle tangent to three
of IC M must be the inversion of the unique circle tangent to the corresponding
three of M. Duality is similarly uniquely defined by the points of intersection which
preserve their status under inversion. This view can help us to understand the action
of an individual Si or Ti on a given label, since multiplication of a label vector
on the right corresponds to “premultiplication” on the left of the matrix M for a
configuration.

Theorem 10. Multiplication of a label vector on the right by Ti corresponds to
inversion over the i-th circle of the original configuration, while multiplication on
the right by Si corresponds to inversion over the i-th dual circle.

For example, using (4), the label (1, 0, 0, 0) corresponds to the circle with center(
0, 1

2

)
and curvature 2, called C1 in Figure 9, and (0, 1, 0, 0), (0, 0, 1, 0), and

(0, 0, 0, 1) correspond to C2, C3, and C4, respectively. The dual circles are the Di .
According to Theorem 9, C5 has label (2, 2, 2,−1). According to Theorem 10,
for example, (2, 2, 2,−1)S1 = (−2, 6, 6, 3) gives circle X1, which is the inversion
of C5 over D1, and (2, 2, 2,−1)T1 = (4, 2, 2,−1) gives circle X2, which is the
inversion of C5 over C1.
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6. An inner product

Curvature-center coordinate vectors take on another meaning when viewed in R4

with the indefinite inner product 〈 · , · 〉G given by the matrix

G= 1
2


0 1 0 0
1 0 0 0
0 0 –2 0
0 0 0 –2

.
For circles C1 and C2 that are not lines, let d be the distance between their centers
and let r1 and r2 be their respective radii. If C1 and C2 intersect at an angle θ , then
d2
=r2

1+r2
2−2r1r2 cos θ . Define a quantity A for C1 and C2 as 2Ar1r2=d2

−r2
1−r2

2
[Kotlov et al. 1997]. A then generalizes the intersection angle to any pair of circles.
Moreover, if v1 and v2 are the curvature-center coordinate vectors of C1 and C2,
respectively, then A = 〈v1, v2〉G = v1GvT

2 . For two circles C1 and C2 (including
lines), letting 〈C1,C2〉G be the G-inner product of their curvature-center vectors,
we get the following characterization:

〈C1,C2〉G C1 and C2

−1 are internally tangent
1 are externally tangent
0 are mutually orthogonal

− cosα intersect at angle α
<−1 are disjoint, one inside the other
> 1 are disjoint, outside each other

In general, given four circles C1, . . . ,C4 with curvature-center coordinate vectors
v1, . . . ,v4, Jerzy Kocik [2007] defines their configuration matrix F=F(C1, . . . ,C4)

to be the Gram matrix of the vectors v1, . . . , v4 with respect to 〈 · , · 〉G; that is,
Fi j = 〈vi , vj 〉G. Thus if M is the curvature-center matrix for C1, . . . ,C4, then
F = MGMT.

For a (Descartes) configuration, the configuration matrix F is −Q. In that case,
F is invertible, thus so is M, and F = MGMT if and only if MT F−1 M =G−1. The
inverses of F and G are also related to previously defined matrices: G−1

=−
1
4 W

and F−1
=−

1
4 Q.

From the above, if M is the curvature-center matrix of a Descartes configuration,
MGMT

=−Q. Thus for labels u and v, we have 〈u, v〉Q =−〈uM, vM〉G, so that
Q-inner products of our label vectors also give the geometric relationships between
the circles they represent. For example, letting 〈C1,C2〉Q be the Q-inner product
of the labels of circles C1 and C2, we have the following theorem.

Theorem 11. Circles C1 and C2 are externally tangent, mutually orthogonal, or
internally tangent if and only if 〈C1,C2〉Q is −1, 0, or 1, respectively.
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Viewing the circles as vectors suggests additional constructions, including one
that resembles a Householder transformation:4 Let C be any circle in a superpacking
and let c be its label. For other labels d , consider the map d 7→ d(I−2QcTc) (with
labels used as vectors). Since C is internally tangent to itself, 〈C,C〉Q = cQcT

= 1
and this map is an involution. Moreover, for any circle C ′ tangent to C , from
Theorem 11 we have 〈C,C ′〉Q = −1, so that c′ 7→ c′ + 2c. From Theorem 9,
this map inverts the circles tangent to C over C . Finally, every other circle in the
supergasket can be obtained via replacement and/or duality and we saw earlier that
those operations commute with inversion over C .

Theorem 12. If c and d are circles in the abstract superpacking, then d(I−2QcTc)
is the inversion of d over c.

Note that by computing (I−2QeT
i ei ) for i ∈{1, . . . , 4}, Theorem 12 also provides

another justification for part of Theorem 10.

7. Curvatures

We return now to the fascinating problem mentioned at the start: given four original
integer curvatures, which other curvatures can or will occur? Certain conditions
modulo 24 are known [Graham et al. 2003], and recent progress has been made in
the form of a positive density theorem [Bourgain and Fuchs 2011] and a local-global
theorem [Bourgain and Kontorovich 2014]. Our labels can provide an analysis
similar to the proof of the positive density theorem, which involves looking at the
curvatures of circles tangent to a given circle.

In the proof of the positive density theorem, if a, b, c, and d are the curvatures of
the first four circles, then the set of curvatures of the circles tangent to the circle C1

of curvature a involves the quadratic form f (x, y)= Ax2
+ 2Bxy+Cy2, where

A= a+b, B = 1
2(a+b+d−c), and C = a+d . In particular, the set of curvatures

of the circles tangent to C1 is shown to contain the set { f (x, y)−a : gcd(x, y)= 1}.
For our approach, notice that the Ford circles are the circles tangent to one of the
four original circles in the Ford gasket (the x-axis). Our labels extend Northshield’s
[2015] in that the abstract Ford circles are (s, t, u, v), where gcd(s, t, u)= 1 and
s2
+ t2
+ u2
= (s + t + u)2. In particular, using Northshield’s ideas, the abstract

Ford circle labels can be parametrized as(
x(x+ y), y(x+ y), x2

+ xy+ y2
−1, −xy

)
with gcd(x, y)= 1. Thus, if a, b, c, and d are the initial curvatures of a gasket, then(

x2
+ xy+ y2

−1, x(x+ y), −xy, y(x+ y)
)

4A Householder transformation of a vector is the result of multiplication by a matrix of the form
I − vvT, where I is an identity matrix and v is a column vector of the appropriate size.
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has curvature

a(x2
+ xy+ y2

− 1)+ b(x(x + y))+ c(−xy)+ d(y(x + y))= f (x, y)− a.

Equation (6) also gives some information about the set of curvatures of the Ford
supergasket since 2(a+ b) is the curvature of the circle (a, b, c, d). In particular,
given a desired curvature κ , the equations

2(a+ b)= κ, a− b = y1, c− d = y2, and c+ d = y3

provide a connection to the solutions of the equation y2
1 + y2

2 = κy3+ 1. Recalling
Fermat’s result that any number of the form pq2, where the prime factorization
of p consists of primes that are congruent to 1 modulo 4, can be written as the
sum of two perfect squares gives a quick way to see that every integer occurs as a
curvature in the Ford supergasket.

Ideally, we could characterize the subset of supergasket labels that form a gasket
and find a parametrization using that characterization. Suppose fQ(a, b, c, d)= 1
and d is odd. Then 4(ab+ac+bc)+1 is a perfect square, say m2, so 4(ab+ac+bc)=
m2
− 1 and m must be odd. Thus ab+ ac+ bc = n(n − 1) for some integer n.

Conversely, if ab+ac+bc= n(n−1), then 4(ab+ac+bc)+1 is a perfect square.
Perhaps there exists a simple characterization of the n that occur in this fashion.
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