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Let X be the affine flag manifold of Lie type A1
1. Its moment graph encodes the torus

fixed points (which are elements of the infinite dihedral group D∞) and the torus
stable curves in X . Given a fixed point u ∈ D∞ and a degree d = (d0, d1) ∈ Z2

≥0,
the combinatorial curve neighborhood is the set of maximal elements in the moment
graph of X which can be reached from u using a chain of curves of total degree≤ d.
In this paper we give a formula for these elements, using combinatorics of the
affine root system of type A1

1.

1. Introduction

Let X be an arbitrary algebraic variety and�⊂ X be a subvariety. Fix a degree d, i.e.,
an effective homology class in H2(X). The (geometric) curve neighborhood 0d(�)

is the locus of points x ∈ X which can be reached from � by a rational curve of
some effective degree ≤ d. For example, if X = P2 is the projective plane, and
� = pt, then any other point in X can be reached from the given point, using a
projective line. This implies 01(pt)= P2.

Curve neighborhoods have been recently defined by A. Buch and the first author
in [Buch and Mihalcea 2015] in relation to the study of quantum cohomology and
quantum K theory rings of generalized flag manifolds X = G/B, where G is a
complex semisimple Lie group and B is a Borel subgroup. The curve neighborhoods
which are relevant in that context are those when � is a Schubert variety in G/B. It
turns out that in this situation the calculation of the curve neighborhoods is encoded
in the moment graph of X . This is a graph encoding the T -fixed points and the
T -stable curves in X , where T is a maximal torus of G. Similar considerations,
but in the case when X is an affine flag manifold, led L. Mare and the first author
to a definition of an affine version of the quantum cohomology ring; see [Mare
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and Mihalcea 2014]. The curve neighborhoods which were relevant for quantum
cohomology calculations were those for certain “small” degrees. Those for “large”
degrees, which seem to encode more refined information about the geometry and
the combinatorics of affine flag manifolds, are still unknown.

In the current paper we give an explicit combinatorial formula for the curve
neighborhoods of the simplest affine flag manifold, that of affine Lie type A1

1. See,
e.g., [Kumar 2002] for details on affine flag manifolds. Instead of introducing the
geometry related to this flag manifold, we consider the more elementary — but
equivalent — problem of calculating the combinatorial curve neighborhoods. These
are encoded in the combinatorics of the moment graph of the affine flag manifold.

To state our main result, we briefly introduce some notation and recall a few
definitions. Full details are given in Section 2 below. Let D∞ be the infinite dihedral
group, generated by reflections s0 and s1. (This is the affine Weyl group of Lie
type A1

1.) Each element of D∞ has a unique reduced expression which involves
a s0’s and b s1’s, where |a−b|≤ 1. There is a natural length function ` : D∞→Z≥0,
and a (Bruhat) partial order on D∞, denoted <. A degree d is a pair of nonnegative
integers (d0, d1). The moment graph has vertices given by the elements of D∞; there
is an edge between u, v ∈ D∞ whenever there exists an (affine root) reflection s(a,b)
such that v = us(a,b). This edge has degree d = (a, b) such that |a− b| = 1; see
Section 2B below. A chain in the moment graph is a succession of adjacent edges,
and its degree is equal to the sum of the degrees of each of its edges.

Finally, fix a degree d = (d0, d1) and u ∈ D∞. The (combinatorial) curve
neighborhood 0d(u) is the set of elements in D∞ such that (1) they can be joined
to u (in the moment graph) by a chain of degree≤ d, and (2) they are maximal among
all elements satisfying (1). To each u ∈D∞, one associates the degree d(u) := (a, b),
where u has a reduced expression with a s0’s and b s1’s.

Consider the set

Ad(u) := {v ∈ D∞ : `(uv)= `(u)+ `(v), d(v)≤ d},

and denote by maxAd(u) the subset of its maximal elements. Our main result is:

Theorem 1.1. Let u ∈ D∞ and d = (d1, d2) be a degree. Then the following hold:

(a) The curve neighborhood 0d(u) is given by

0d(u)= {uw : w ∈maxAd(u)}.

(b) Formulas (3) and (4) below give explicit combinatorial formulas for the ele-
ments in maxAd(u). In particular, the curve neighborhood 0d(u) has exactly
two elements if u = 1 and d = (a, a), and one element otherwise.

It is interesting to remark that the curve neighborhoods distinguish the degrees
corresponding to “imaginary roots” (a, a) in this case. (See [Kac 1985] for more
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about this affine root system.) We plan to study further this phenomenon elsewhere.
The theorem implies the “geometric” curve neighborhood for the Schubert variety
indexed by u is either a single Schubert variety, or the union of two Schubert
varieties, indexed by the elements in 0d(u). We refer to [Mare and Mihalcea 2014]
for a discussion of geometric curve neighborhoods.

This paper is the outcome of an undergraduate research project of Norton con-
ducted under the direction of Mihalcea.

2. Preliminaries

2A. The infinite dihedral group. The infinite dihedral group D∞ is the group with
generators s0, s1 and relations s2

0 = s2
1 = 1. Each element w ∈ D∞ can be written

uniquely as a product of s0’s and s1’s in such a way that no s0’s and no s1’s are
consecutive. We call such an expression reduced. We define the length `(w) of w to
be the total number of s0’s and s1’s in the expression of w. For example, `(s0)= 1
and `(s1s0 s1s0)= 4.

A (positive) root corresponding to D∞ is a pair of nonnegative integers α =
(a, b) ∈ Z2

≥0 such that |a− b| = 1. For example, α0 := (1, 0) and α1 := (0, 1) are
roots, and so is α= 2α0+3α1 = (2, 3). Fix a root α= (a0, a1). A root reflection sα
is the unique element of D∞ which can be written as a product of a0 s0’s and a1 s1’s,
and which has length a+ b. For example,

s(2,3) = s1s0 s1s0 s1, s(1,0) = s0.

The terminology follows from the fact that these are the positive roots of the affine
Lie algebra of type A1

1; see, e.g., [Kac 1985].
We record for later use the following properties:

Lemma 2.1. Let u, v ∈ D∞. Then:

(a) `(u)= `(u−1).

(b) u is a root reflection if and only if `(u) is odd.

(c) `(uv)≤ `(u)+ `(v).

(d) If `(u)≤ `(v), then

`(uv)= `(u)+ `(v) or `(uv)= `(v)− `(u).

In particular, `(uv)≡ `(u)+ `(v) mod 2.

Proof. This is an easy verification. �

2B. The moment graph and curve neighborhoods. The moment graph G associ-
ated to D∞ is the graph given by the following data:

• The set V of vertices is the group D∞.
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id

s0

s0 s1

s0 s1s0

s0 s1s0 s1

...

s1

s1s0

s1s0 s1

s1s0 s1s0

...

(3,4)

(3,2) (1,2)

(0,1)

Figure 1. The moment graph G associated to D∞.

• Let u, v ∈ V be vertices. Then there is an edge from u to v if and only if there
exists a root α = (a0, a1) such that v = usα. We denote this situation by

u α
−→ v,

and we say that the degree of this edge is α.

In Figure 1 we show the moment graph up to elements of length 4. We labeled a
few of the edges by their corresponding degrees.

Remark 2.2. As mentioned in the Introduction, the vertices of this graph correspond
to the T -fixed points, and its edges to the T -stable curves in the affine flag manifold
of type A1

1, where T is a maximal torus in an affine Kac–Moody group of type A1
1.

See, e.g., [Kumar 2002, Chapter 12], especially §12.2.E, for details.

A chain between u and v in the moment graph is a succession of adjacent edges
starting with u and ending with v:

π : u = u0
β0
−−→ u1

β1
−−→· · ·

βn−2
−−→ un−1

βn−1
−−→ un = v.

The chain is called increasing if at each step the lengths increase, i.e., `(ui )>`(ui−1)

for 1 ≤ i ≤ n. The degree of the chain π is deg(π) = β0 + · · · + βn−1. Define
a partial ordering on the elements of D∞ by u < v if and only if there exists an
increasing chain starting with u and ending with v.

The next result gives an equivalent way to describe the partial ordering on D∞:

Lemma 2.3. Let u, v ∈ D∞. Then u < v if and only if `(u) < `(v).
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Proof. Clearly if u < v then `(u) < `(v) from the definition of an increasing chain.
To prove the converse, we first notice that if `(v)− `(u)= 1, then u−1v is a root
reflection sα (possibly of length > 1); thus there exists an edge u α

−→v. The general
statement follows by induction on `(v)− `(u)≥ 1. �

A degree is a pair of nonnegative integers d = (d0, d1). There is a natural partial
order on degrees. If d = (d0, d1) and d ′= (d ′0, d ′1) then d ≥ d ′ if and only if di ≥ d ′i
for i ∈ {0, 1}.

Definition 2.4. Fix a degree d and u ∈ D∞. The (combinatorial) curve neighbor-
hood is the set 0d(u) consisting of elements v ∈ D∞ such that

(1) there exists a chain of some degree d ′ ≤ d from u to v in the moment graph G;

(2) the elements v are maximal among all of those satisfying the condition in (1).

For example,

0(1,0)(id)= 0(2,0)(id)= {s0}, 0(1,1)(id)= {s1s0, s0 s1}.

Our main goal is to find a formula to determine 0d(u).
For w ∈ D∞, define the degree associated to w to be d(w) = (d0, d1), where

di := number of reflections si in the reduced word of w. The following holds.

Lemma 2.5. Let u, v ∈ D∞ and assume there is a chain from u to v of degree d.
Then d = d(u−1v)+ 2(r, s), where r, s ∈ Z≥0. In particular, d ≥ d(u−1v).

Proof. Let β0 := (a0, b0), β1 := (a1, b1), . . . , βn−1 := (an−1, bn−1) be the labels
of the edges of the chain π . Then v = usβ0 · · · sβn−1 and d = β0 + · · · + βn−1 =

(a0+· · ·+an−1, b0+· · ·+bn−1). Now d(u−1v)= d(sβ0 · · · sβn−1). If sβ0 · · · sβn−1 is
nonreduced, one needs to perform some cancellations of the form s2

0 = 1 or s2
1 = 1.

Each of these result in a decrease by 2 of the number of s0’s, respectively s1’s, in
an expression for sβ0 · · · sβn−1 . Thus d(u−1v)= d− 2(r, s) as claimed. �

3. Calculation of the curve neighborhoods

Let d = (d1, d2) be a degree such that d1 6= d2. We denote by α(d) the maximal
root α such that α ≤ d. Clearly there is exactly one such root, and it is easy to find
the following explicit formula for it:

α(d)=
{
(d1, d1+ 1) if d1 < d2,

(d2+ 1, d2) if d1 > d2.
(1)

In order to find the curve neighborhoods of an element u ∈ D∞, we need the
following key result.

Lemma 3.1. Let u ∈ D∞ and d = (d1, d2) be a degree. Consider the set

Ad(u) := {v ∈ D∞ : `(uv)= `(u)+ `(v), d(v)≤ d}. (2)
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Then the following hold:

• Ad(u) has a unique maximal element if u 6= 1 or if u = 1 and d 6= (a, a) for
some nonnegative integer a.

• If d = (a, a) and u = 1 then the maximal elements of Ad(u) are (s0 s1)
a and

(s1s0)
a .

Proof. Clearly, 1 ∈ Ad(u) so Ad(u) 6= ∅. For any v ∈ Ad(u), we have d(v) ≤ d.
Hence the set Ad(u) is finite, and so it must contain a maximal element. Lemma 2.3
implies there can be at most two maximal elements v1 and v2 and they must have
the same length. We consider each of the situations in the statement:

Case 1: u 6= 1. Assume there are two maximal elements v1, v2. Since u 6= 1, either
uv1 or uv2 is not reduced, say uv1. Then `(uv1) < `(u)+`(v1), and this contradicts
that v1 ∈Ad(u).

Case 2: u = 1. In this case, the set Ad(u) coincides with the set of all v ∈ D∞
such that d(v) ≤ d. From the description of D∞, it follows that d(v)= (a, a) or
d(v)= (a, a+ 1) or d(v)= (a+ 1, a) for some nonnegative integer a. Further, the
reduced decomposition of v is known in each case: there are two possibilities for v
if d(v)= (a, a), and there is exactly one (in fact, v = sα(d)) in the other two cases.
The claim follows from this. �

In what follows, we will denote by maxAd(u) the set of maximal elements in
the (finite) partially ordered set Ad(u). Our main result is:

Theorem 3.2. Let u ∈ D∞ and d = (d1, d2) be a degree. Then

0d(u)= {uw : w ∈maxAd(u)}.

We will prove this theorem in the next two sections, which correspond to the
cases u = 1 and u 6= 1. For now, notice that the proof of Lemma 3.1, and some
easy arguments based on reduced decompositions in D∞, imply that if u = 1 then
the set of maximal elements of Ad(1) is

maxAd(1)=
{
{sα(d)} if d = (d1, d2) and d1 6= d2,

{(s0 s1)
a, (s1s0)

a
} if d = (a, a).

(3)

If u 6= 1, we assume for simplicity that last simple reflection in the reduced word
for u is s0, i.e., u = · · · s0. (The other situation will be symmetric). Then

maxAd(u)=


{s1sα(d−(0,1))} if d0 = d1,

{sα(d)} if d1 > d0,

{s0 sα(d)} if d1 < d0.

(4)

The two formulas give explicit combinatorial rules to determine the curve neigh-
borhood 0d(u). See Section 3C below for several examples.



COMBINATORIAL CURVE NEIGHBORHOODS 323

3A. Curve neighborhoods for u = 1.

Theorem 3.3. Let d = (d1, d2) be a degree. Then the curve neighborhood of the
identity can be calculated in the following way:

0d(1)=maxAd(1)=
{
{sα(d)} if d1 6= d2,

{(s0 s1)
a, (s1s0)

a
} if d = (a, a).

Proof. If v ∈ 0d(1) then there exists a chain of degree ≤ d joining 1 to v. Then
by Lemma 2.5, d ≥ d(v). In particular, v ∈ Ad(1); thus 0d(1) ⊂ Ad(1), and the
inclusion is compatible with the partial order <. Conversely, if v is any element
in Ad(1) then there exists a chain of degree d(v)≤ d joining 1 to v. If v is maximal
in Ad(1), and because 0d(1)⊂Ad(1), it follows that v ∈ 0d(1). �

3B. General curve neighborhoods. The goal of this section is to find a formula
for the curve neighborhoods 0d(u) for u 6= 1 and d 6= (0, 0). First we need some
preparatory lemmas.

Lemma 3.4. Let u ∈ D∞, z ∈Ad(1) and v ∈ 0d(u). Then:

(a) `(uz)≤ `(v) and d(u−1v)≤ d.

(b) If z ∈ 0d(1) (i.e., z is maximal in Ad(1)), then `(u−1v)≤ `(z).

Proof. Since z ∈ Ad(1), there exists a chain of degree d(z) ≤ d joining 1 to z.
Multiplying this chain by u on the left gives a chain between u and uz of the same
degree. The first statement in (a) follows by the maximality of v. To prove the
second statement in (a), notice that since v ∈ 0d(u), there exists a chain from u
to v of degree ≤ d. If we multiply each element of this chain on the left by u−1,
we obtain a chain from 1 to u−1v of the same degree. The fact that d(u−1v)≤ d
follows from Lemma 2.5. Finally, (b) follows from the maximality of z, using also
that maximal elements in Ad(1) have the same length, by (3). �

The following lemma gives a strong constraint on the possible elements in 0d(u).

Lemma 3.5. Let v ∈ 0d(u). Then u−1v ∈Ad(u).

Proof. We have seen in Lemma 3.4 that d(u−1v)≤ d. It remains to show that `(v)=
`(u)+ `(u−1v). This clearly holds for u = 1 and from now on we assume u 6= 1.
From Lemma 2.1(c) it follows that `(v) = `(uu−1v) ≤ `(u) + `(u−1v). If the
inequality is strict then `(u−1v) > `(v)− `(u)= `(v)− `(u−1). But `(u) ≤ `(v),
thus by Lemma 2.1(d) it follows that

`(u−1v)= `(u)+ `(v).

Consider now an element z ∈ 0d(1) = maxAd(1) (by Theorem 3.3). We invoke
Lemma 3.4 to obtain

`(uz)≤ `(v) < `(u)+ `(u−1v)≤ `(u)+ `(z).
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This implies the expression uz is not reduced. But since u 6= 1, we can eliminate
the first simple reflection from the reduced expression for z to define z′ < z such
that `(z′)= `(z)− 1 and `(uz′)= `(u)+ `(z′). Notice that d(z′) < d(z)≤ d; thus
z′ ∈Ad(1). Then we have the inequalities

`(v)≥ `(uz′)= `(u)+ `(z)− 1≥ `(u)+ `(u−1v)− 1= `(u)+ `(u)+ `(v)− 1,

where the first inequality follows from Lemma 3.4(a) and the last inequality follows
from Lemma 3.4(b). Taking the extreme sides and subtracting `(v), we obtain
0≥ 2`(u)− 1, which is impossible since `(u) ≥ 1. Thus `(v) = `(u)+ `(u−1v)

and this finishes the proof. �

We are ready to prove our main result.

Theorem 3.6. Let d = (d1, d2) be a nonzero degree and u ∈ D∞. Then

0d(u)= {uw : w ∈maxAd(u)}.

Proof. Let v ∈ 0d(u). Then Lemma 3.5 implies u−1v ∈Ad(u). From Lemma 3.1
(or (4)), there exists a unique maximal element of Ad(u), call it w. Then u−1v ≤w

and clearly w is also in Ad(1). By Lemma 3.4(a), we deduce `(uw)≤ `(v). Then

`(u)+ `(u−1v)= `(v)≥ `(uw)= `(u)+ `(w).

This implies `(u−1v)≥ `(w). Together with u−1v ≤ w, this forces u−1v = w; i.e.,
v = uw as claimed. �

3C. Examples. We provide several examples determining 0d(u).

• Let u = 1 and d = (9, 4). From (1) we obtain α(d)= (5, 4); thus

0(9,4)(1)= {s(5,4)} = {s0 s1s0 s1s0 s1s0 s1s0}.

• Let u = 1 and d = (4, 4). By (3) the two maximal elements in A(4,4)(1) are
s0 s1s0 s1s0 s1s0 s1 and s1s0 s1s0 s1s0 s1s0. Then

0(4,4)(id)= {s0 s1s0 s1s0 s1s0 s1, s1s0 s1s0 s1s0 s1s0}.

• Let u = s0 s1s0 and d = (3, 3). From (4),

maxA(3,3)(u)= {s1sα((3,3)−(0,1))} = {s1s0 s1s0 s1s0}.

Thus 0(3,3)(s0 s1s0)= {(s0 s1s0)(s1s0 s1s0 s1s0)}.

• Let u = s1s0 s1 and d = (3, 3). From the symmetric version of (4),

maxA(3,3)(u)= {s0 sα((3,3)−(1,0))} = {s0 s1s0 s1s0 s1}.

Thus 0(3,3)(s1s0 s1)= {(s1s0 s1)(s0 s1s0 s1s0 s1)}.
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• Let u = s0 s1s0 and d = (9, 4). Then α((9, 4)) = (5, 4) and using (4) again,
maxAd(u)= {s1s0 s1s0 s1s0 s1s0}. Then

0(9,4)(s0 s1s0)= {(s0 s1s0)(s1s0 s1s0 s1s0 s1s0)}.

• Let u = s0 s1s0 and d = (4, 9). Then α((4, 9)) = (4, 5) and maxAd(u) =
{s1s0 s1s0 s1s0 s1s0 s1}. From this we obtain

0(9,4)(s0 s1s0)= {(s0 s1s0)(s1s0 s1s0 s1s0 s1s0 s1)}.
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