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In this paper, we introduce a new algorithm based on total variation for denoising
speckle noise images. Total variation was introduced by Rudin, Osher, and Fatemi
in 1992 for regularizing images. Chambolle proposed a faster algorithm based
on the duality of convex functions for minimizing the total variation, but his
algorithm was built for Gaussian noise removal. Unlike Gaussian noise, which
is additive, speckle noise is multiplicative. We modify the original Chambolle
algorithm for speckle noise images using the first noise equation for speckle
denoising, proposed by Krissian, Kikinis, Westin and Vosburgh in 2005. We
apply the Chambolle algorithm to the Krissian et al. speckle denoising model to
develop a faster algorithm for speckle noise images.

1. Introduction

Image restoration, especially image denoising, is a very important process and is
often necessary as preprocessing for other imaging techniques such as segmentation
and compression. For the last two decades, various partial differential equation
(PDE) based models have been developed for this purpose [Rudin et al. 1992;
Perona and Malik 1990; Kornprobst et al. 1997; Catté et al. 1992; Alvarez et al.
1992; Chan and Vese 1997; Vese and Chan 1997; Marquina and Osher 2000; Chan
et al. 1999; Joo and Kim 2003a; 2003b; Kim 2004; Kim and Lim 2007]. In general,
an observed image f , corrupted by Gaussian noise n, is represented by the equation

f = u+ n, (1)

where u is the original noise-free image. Here u, f :�⊂R2
→R. For any denoising

model, the main objective is to reconstruct u from an observed image f .
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Rudin, Osher, and Fatemi [Rudin et al. 1992] proposed the total variation (TV)
denoising model as the minimization problem

min
u

∫
�

|∇u| dEx (2)

subject to the constraints, ∫
�

f dEx =
∫
�

u dEx, (3)∫
�

1
2( f − u)2 dEx = σ 2, (4)

where σ is the standard deviation of the noise n. These constraints ensure that the
resulting image and the observed image are close to each other.

Combining the above constraints, the TV functional is obtained by

F(u)=
∫
�

|∇u| dEx + λ
2

∫
�

( f − u)2 dEx . (5)

Here, λ is a constraint parameter. The equivalent Euler–Lagrange equation gives
the TV denoising model as

∂u
∂t
−∇ ·

(
∇u
|∇u|

)
= λ( f − u). (6)

To avoid singularities, it was regularized by using |∇u| ≈ |∇εu| = (u2
x+u2

y+ε
2)1/2.

In this paper, we introduce a faster denoising method, compared to TV model,
for speckle noise images. Unlike Gaussian noise, speckle noise is multiplicative and
requires a model separate from those for Gaussian noise images. The first effective
speckle denoising model was developed by Krissian, Kikinis, Westin, and Vosburgh
[Krissian et al. 2005], and they proposed a new noise equation for speckle denoising.
For our new model, we modify the original Chambolle algorithm designed for the
TV model (6), and develop a fast and accurate speckle denoising method based on
the noise equation proposed by Krissian et al.

2. The Chambolle algorithm: dual approach

In this section, we provide a brief description of the Chambolle algorithm for the
TV model. Chambolle [2004] provided a fast algorithm for minimizing the total
variation. Detailed background and development of the algorithm can be found in
his lecture notes [Chambolle et al. 2010]. The work is based on the dual formulation
of Chan, Golub, and Mulet [Chan et al. 1999] and of Carter [2001]. To avoid the
staircasing effect, he derived the Euler–Lagrange equation in the sense of convex
analysis. His paper also contains the proof of the convergence of his algorithm.
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The Chambolle algorithm. Chambolle [2004] started with the Rudin, Osher, and
Fatemi (ROF) minimization functional [Rudin et al. 1992]

min
u

[
λJ (u)+

∫
�

1
2 |u− f |2 dEx

]
, (7)

where J (u)=
∫
�
|∇u| dEx . He proved that u is a minimizer of (7) if and only if

f − u
λ
∈ ∂ J (u),

where ∂F denotes the subdifferential of a convex function F. Hence, the Euler–
Lagrange equation obtained by Chambolle is given as

λ∂ J (u)+ u− f 3 0. (8)

Note that u= (ui j ), where i, j=1, . . . ,N , is the discrete image. Thus u∈ X=RN×N.
Applying the Legendre–Fenchel identity, he obtained the dual problem as

min
|pi, j |≤1

1
2

∥∥∥∥div p−
f
λ

∥∥∥∥2

, (9)

where div p=w for p= (pi, j )with i, j =1, . . . , N ∈Y = X×X andw= ( f −u)/λ.
Here ‖ · ‖ is the Euclidean norm, which is defined similarly to (6) in [Chambolle
2004]. We can recover u by

u = f − λw = f − λ div p. (10)

Hence, to find the denoised image u, the following problem must be solved for p:

min
{
‖λ div p− f ‖2 : p ∈ Y, |pi, j | ≤ 1 ∀i, j = 1, . . . , N

}
. (11)

Chambolle proposed the following algorithm to solve for p. Choosing τ > 0 and
taking p0

= 0 we derive pn for any n > 0, by

pn+1
i, j =

pn
i, j + τ(∇(div pn

− f/λ))i, j

1+ τ
∣∣(∇(div pn − f/λ))i, j |

. (12)

The next theorem proved the convergence of the algorithm in [Chambolle 2004]:

Theorem 2.1. If τ < 1
8 , then f − λ div pn converges to u as n→∞.

Image denoising with the Chambolle algorithm. In general, for Gaussian noise
images, Chambolle proposed updating λ at each iteration by the formula

λn+1
=

Nσ
gn
λn
=

Nσ
‖ div pn+1‖

=
‖ f − uc‖

‖ div pn+1‖
, (13)

where uc is the noise-free clear image and the variance σ 2 of the noise is known.
For s > 0, he defined g(s)= ‖s div p‖. Here, the starting value λ0 > 0 is chosen
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arbitrarily. Thus the Chambolle algorithm for TV denoising [Chambolle 2004;
Chambolle et al. 2010] is given by

pn+1
i, j =

pn
i, j + τ(∇(div pn

− f/λ))i, j

1+ τ |(∇(div pn − f/λ))i, j |
,

λn+1
=
‖ f − uc‖

‖ div pn+1‖
,

un+1
= f − λn+1 div pn+1

for any n ≥ 0. This algorithm converges almost twice as fast as the regular TV
model (6).

3. Speckle noise

Speckle noise is mostly present in ultrasound images, synthetic aperture radar (SAR)
images, and acoustic images. It is granular in nature, and it exists inherently in the
image. Unlike Gaussian noise, which affects single pixels of an image, speckle
noise affects multiple pixels. The noise is multiplicative, whereas Gaussian noise
is additive. Hence, it is not possible to remove speckle noise with the traditional
Gaussian denoising models.

Speckle denoising model by Krissian et al. This model was proposed by Krissian,
Kikinis, Westin, and Vosburgh [Krissian et al. 2005], where they mainly dealt with
speckle noise present in ultrasound images. They considered the speckle noise
equation as

f = u+
√

un, (14)

where u is the desired image to find, n is Gaussian noise, and f is the observed image.
Hence using n = ( f − u)/

√
u, the general regularized minimization functional is

given as

min
u

F(u)=min
u

(∫
�

[
|∇u| +

λ

2

(
f − u
√

u

)2 ]
dEx
)
.

Finally using the Euler–Lagrange equation of this functional, the TV based speckle
denoising model [Marquina and Osher 2000; Kim and Lim 2007] is derived as

∂u
∂t
−

u2

f + u
|∇u|∇ ·

(
∇u
|∇u|

)
= λ |∇u| ( f − u). (15)

4. The modified Chambolle for speckle denoising (MCSD) model

The Chambolle algorithm gives faster results than the regular TV model. Un-
fortunately, the model is formulated to work only for synthetic Gaussian noises.
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We modify it to obtain the modified Chambolle for speckle denoising (MCSD)
model for natural speckle noise. In [Wen et al. 2016] the authors used the primal-
dual approach of Chambolle [Chambolle and Pock 2011] to develop a TV based
denoising model for Poisson noise images. Similar approaches were proposed for
multiplicative-noise images based on the Chambolle primal-dual algorithm in [Chan
et al. 2014; Huang et al. 2012; 2013a; 2013b; Dong and Zeng 2013] for image
segmentation, denoising and deblurring.

The MCSD model is based on the Chambolle algorithm for faster TV denoising.
We apply the Chambolle-TV algorithm on the Krissian et al. speckle model to obtain
a faster speckle denoising model. We start with developing the Euler–Lagrange
equation for MCSD and then build the algorithm based on it.

The Euler–Lagrange equation for MCSD. We start by developing the Euler–
Lagrange equation based on the speckle noise equation (14) introduced by Krissian
et al. The minimization functional will be given by

min
u

[
λJ (u)+

∫
�

1
2
|u− f |2

u
dEx
]
. (16)

A similar model has also been discussed in [Jin and Yang 2011]. In this paper,
the authors also developed the denoising functional (16) for speckle noise images
motivated by the ROF model [Rudin et al. 1992] and the speckle noise model by
Krissian et al. [2005]. They proved the existence and uniqueness of the minimizer
for the functional (16). The existence and uniqueness of weak solutions for the
associated evolution equation were also derived. For numerical computation, they
directly used the finite difference scheme for the evolution equation, based on the
schemes introduced in [Rudin et al. 1992]. However, in our paper, we adopt a dual
formation suggested by Chambolle [2004] (see also [Chambolle et al. 2010]) for
(16) to produce a faster algorithm. This is the main difference between the results
of [Jin and Yang 2011] and ours. Moreover, for the purpose of development of the
Euler–Lagrange equation, we consider the following slightly modified functional
by using the fact u ≈ f :

min
u

[
λJ (u)+

∫
�

1
2
|u− f |2

f
dEx
]
. (17)

The following Theorem 4.1 provides us with the formulation of the Euler–Lagrange
equation for our new model.

Theorem 4.1. The Euler–Lagrange equation for the minimizing functional (16) is

∂ J (u)+
u− f
λu
3 0. (18)
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Proof. If u is the solution of the functional (16), since u ≈ f , we have for any
v ∈ L2(�),

λJ (v)+ 1
2

∫
�

|v− f |2

f
dEx ≥ λJ (u)+ 1

2

∫
�

|u− f |2

f
dEx

⇒ λJ (v)≥ λJ (u)+ 1
2

∫
�

1
f
[(u− f )2− (v− f )2] dEx

= λJ (u)+
∫
�

u− v
f

(
v− u

2
− ( f − u)

)
dEx

= λJ (u)−
∫
�

(u− v)2

2 f
dEx +

∫
�

(v− u)
f − u

f
dEx .

Now for any t ∈ R, we get

λ
(
J (u+ t (v− u))− J (u)

)
− t

∫
�

(v− u)
f − u

f
dEx ≥−

t2

2

∫
�

(v− u)2

f
dEx .

In the above inequality, the left-hand side is a convex function of t ∈ R and the
right-hand side is a concave parabola (as a function of t). The maximum point of
the parabola is at t = 0, and it meets the convex function at this point. Thus, we
can easily conclude that the convex function on the left-hand side will be larger
than the maximum of the parabola, which is zero here, at every point. Hence,

λ
(
J (u+ t (v− u))− J (u)

)
− t

∫
�

(v− u)
f − u

f
dEx ≥ 0.

Since this is true for any t ∈ R, considering f ≈ u and t = 1 gives us, for all
v ∈ L2(�),

J (v)≥ J (u)+
∫
�

(v− u)
f − u
λu

dEx .

Using the definition of subdifferential [Chambolle 2004],

f − u
λu
∈ ∂ J (u).

Conversely, if this is true, then we see that (18) holds.
Thus u is a minimizer of (16), and (18) gives the required Euler–Lagrange

equation. �

The MCSD algorithm. From the Euler–Lagrange equation (18) and the Legendre–
Fenchel identity property,

u ∈ ∂ J ∗
(

f − u
λu

)
.
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Setting w = ( f − u)/(λu), we have

u ∈ ∂ J ∗(w)⇒
f
λu
∈

f − u
λu
+
∂ J ∗(w)
λu

⇒ 0 ∈ w−
f
λu
+
∂ J ∗(w)
λu

(19)

⇒ 0 ∈ uw−
f
λ
+
∂ J ∗(w)
λ

. (20)

If the minimizing functional, where w is the minimizer, is given by∥∥√uw− f/(λ
√

u)
∥∥2

2
+

1
λ

J ∗(w), (21)

then similar analysis as in the proof of Theorem 4.1 yields that the corresponding
Euler–Lagrange equation is (20).

Since w ∈ K , where K = {div p : p ∈ Y, ‖pi, j‖ ≤ 1 ∀i, j}, and J ∗ = H , where
H is defined as

H(w)=
{

0 if w ∈ K ,
+∞ if w 6∈ K ,

(22)

we get J ∗(w) = 0. Therefore, finding a minimizer w for (21) is equivalent to
solving the problem

min
p

{∥∥∥∥√u div p−
f

λ
√

u

∥∥∥∥2

: p ∈ Y, |pi, j | ≤ 1 ∀i, j = 1, . . . , N
}
. (23)

We need to find p for (23) and then recover u by

u = f − λ u div p.

Now, to minimize (23), we consider

−

[
∇

(
√

u div p−
f

λ
√

u

)]
i, j
+αi j pi j = 0,

where αi j ≥ 0 is a Lagrange multiplier. One can verify that αi j > 0 and |pi j | = 1,
or |pi j |< 1 and αi j = 0. In any case,

αi j =

∣∣∣∣(∇(√u div pn
−

f
λ
√

u

))
i, j

∣∣∣∣.
Applying gradient descent, we can obtain the solution iteratively by the semi-implicit
algorithm

pn+1
i, j = pn

i, j+τ

((
∇

(
√

u div pn
−

f
λ
√

u

))
i, j
−

∣∣∣∣(∇(√u div pn
−

f
λ
√

u

))
i, j

∣∣∣∣pn+1
i, j

)
(24)
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for n ≥ 0, p0
= 0, and for an iterative time-step size τ > 0. Then (24) gives

pn+1
i, j =

pn
i, j + τ

(
∇
(√

u div pn
− f/(λ

√
u)
))

i, j

1+ τ
∣∣(∇(√u div pn − f/(λ

√
u)
))

i, j

∣∣ .
For the TV model, Chambolle proposed updating λ for denoising purposes us-
ing (13):

λn+1
=
‖ f − uc‖

‖ div pn+1‖
.

Here, uc is the noise-free clear image. But this can only be obtained for synthetic
images. For speckle noise images, we change (13) to

λn+1
=
‖ f − fs‖

‖un div pn+1‖
,

where fs is the smoother version of the original or given image. For any (i, j), we
obtain fs(i, j) by considering the average of the four surrounding pixels. Hence,
the iterative algorithm for MCSD is given for n ≥ 0 as

pn+1
i, j =

pn
i, j + τ

(
∇
(√

un div pn
− f/(λ

√
un)
))

i, j

1+ τ
∣∣(∇(√un div pn − f/(λ

√
un)
))

i, j

∣∣ , (25)

λn+1
=
‖ f − fs‖

‖un div pn+1‖
, (26)

un+1
= f − λn+1 un div pn+1. (27)

Note that the problem satisfies the zero Neumann boundary condition

∂u
∂n
= 0 on ∂�. (28)

5. Numerical procedure: the MCSD model

We now describe the numerical procedure used for the MCSD model. In [Cham-
bolle 2004], the discrete gradient and divergence were defined using forward and
backward differences respectively. Also, Chambolle used separate definitions for
boundary points. In this model, we use central differences to define both the gradient
and divergence, as we have seen that this gives more accurate results. Also, we
introduce 1-pixel-wide ghost grids on each side to avoid separate definitions for
boundary points and also to satisfy the zero Neumann boundary condition (28).
The ghost grid values are obtained by

u(0, : )= u(2, : ), u(N + 1, : ) = u(N − 1, : ),

u( : , 0)= u( : , 2), u( : , N + 1)= u( : , N − 1).
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For u ∈ X = RN×N, we have

(∇u)i, j =
(
(∇u)1i, j , (∇u)2i, j

)
,

where

(∇u)1i, j =
1
2(ui+1, j − ui−1, j ), (∇u)2i, j =

1
2(ui, j+1− ui, j−1)

for 1≤ i, j ≤ N . For any vector p = (p1, p2) ∈ Y = X × X , we define

(div p)i, j =
1
2(p

1
i+1, j − p1

i−1, j )+
1
2(p

2
i, j+1− p2

i, j−1) (29)

for 1 ≤ i, j ≤ N. Applying these definitions, we solve the iterative algorithm
provided in (25)–(27).

Convergence analysis. For purposes of convergence analysis of the MCSD algo-
rithm developed on page 332, we slightly modify the algorithm by using (19) for
the Euler–Lagrange equation instead of (20). We do not iterate u in the algorithm
by replacing it by fs , where fs is the smoother version of the original or given
image. Thus the modified Euler–Lagrange equation is given by

0 ∈ w−
f
λ fs
+
∂ J ∗(w)
λ fs

.

The corresponding minimizing functional is therefore

1
2

∥∥∥∥w− f
λ fs

∥∥∥∥2

+
1
λ fs

J ∗(w), (30)

where w = ( f − u)/(λu) is the minimizer. Thus we obtain the semi-implicit
algorithm

pn+1
i, j = pn

i, j + τ

((
∇

(
div pn

−
f
λ fs

))
i, j
−

∣∣∣∣(∇(div pn
−

f
λ fs

))
i, j

∣∣∣∣pn+1
i, j

)
(31)

and that

pn+1
i, j =

pn
i, j + τ

(
∇(div pn

− f/(λ fs))
)

i, j

1+ τ
∣∣(∇(div pn − f/(λ fs))

)
i, j

∣∣ (32)

for n ≥ 0, p0
= 0, and for an iterative time-step size τ > 0. Then the following

convergence theorem holds.

Theorem 5.1. If τ ≤ 1
2 , then f −λ fs div pn, where pn is obtained by (32), converges

to u as n→∞.

Proof. Fix n ≥ 0 and let η = (pn+1
− pn)/τ . Since

div pn+1
−

f
λ fs
= div pn

−
f
λ fs
+ τ div η,
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we derive the following:∥∥∥∥div pn+1
−

f
λ fs

∥∥∥∥2

=

∥∥∥∥div pn
−

f
λ fs
+ τ div η

∥∥∥∥2

=

∥∥∥∥div pn
−

f
λ fs

∥∥∥∥2

+ 2τ
〈
div η, div pn

−
f
λ fs

〉
+ τ 2
‖ div η‖2.

Let κ be the norm of div : Y → X . That is, κ = sup‖p‖Y≤1 ‖ div p‖X . Then, we get
‖ div η‖2 ≤ κ2

‖η‖2Y . Using this and also by the property 〈div p, u〉 = −〈p,∇u〉,
we obtain the inequality∥∥∥∥div pn+1

−
f
λ fs

∥∥∥∥2

≤

∥∥∥∥div pn
−

f
λ fs

∥∥∥∥2

− τ

(
2
〈
η,∇

(
div pn

−
f
λ fs

)〉
−κ2τ‖η‖2Y

)
.

Note that

2
〈
η,∇

(
div pn

−
f
λ fs

)〉
− κ2τ‖η‖2Y =

N∑
i, j=1

2ηi, j

(
∇

(
div pn

−
f
λ fs

))
i, j
− κ2τη2

i, j

and by (31),

ηi, j =

(
∇

(
div pn

−
f
λ fs

))
i, j
− ρi, j ,

where ρi, j =
∣∣(∇(div pn

− f/(λ fs))
)

i, j

∣∣ pn+1
i, j . Let ai, j :=

(
∇(div pn

− f/(λ fs))
)

i, j .
Then

2ηi, j

(
∇

(
div pn

−
f
λ fs

))
i, j
−κ2τη2

i, j = 2ηi, j ai, j−2ηi, jρi, j+2ηi, jρi, j−κ
2τη2

i, j

= 2η2
i, j+2ηi, jρi, j−κ

2τη2
i, j

= (1−κ2τ)η2
i, j+η

2
i, j+2ηi, jρi, j

= (1−κ2τ)η2
i, j+a2

i, j−ρ
2
i, j .

Since p0
= 0, we can easily prove by induction that |pn

i, j | ≤ 1 ∀i, j for all n ≥ 0.
This implies ρi, j ≤ |ai, j |. Therefore, if τ ≤ 1/κ2, then

2
〈
η,∇

(
div pn

−
f
λ fs

)〉
− κ2τ‖η‖2Y ≥ 0,

which implies ‖ div pn
− f/(λ fs)‖

2 is decreasing with n. Hence, there exists a limit
of ‖ div pn

− f/(λ fs)‖
2 as n→∞ and we can conclude f − λ fs div pn converges

to a solution of the simplified version of the MCSD minimizing functional (21).
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Now we need to show that τ ≤ 1/κ2 if τ ≤ 1
2 . By (29),

‖ div p‖2 =
∑

1≤i, j≤N

( 1
2(p

1
i+1, j − p1

i−1, j )+
1
2(p

2
i, j+1− p2

i, j−1)
)2

≤

∑
1≤i, j≤N

(p1
i+1, j )

2
+ (p1

i−1, j )
2
+ (p2

i, j+1)
2
+ (p2

i, j−1)
2

≤ 2‖p‖2Y .

This proves that κ2
≤ 2. Since we assumed τ ≤ 1

2 , we finally get τ ≤ 1/κ2. �

6. Numerical results for the MCSD model

The resulting images shown here are obtained using C++ programs which were
compiled and run on Linux. Other than comparing the visual results, we also use
peak-signal-to-noise ratio (PSNR) to measure image quality. The definition of
PSNR is given as follows:

Definition 6.1 (PSNR). Let g be a noise-free clean image and u be the restored
image obtained by denoising a noisy version of g. The PSNR is measured by

PSNR= 10 log10

( ∑
i j 2552∑

i j (gi j − ui j )2

)
.

Note that if the denoised image is very close to the clean image, the denominator
will be very small, thus providing a higher PSNR for a cleaner image. Also, the
PSNR can be obtained for images with synthetically added noise only. Images with
natural noise cannot have PSNR values since g is not available.

First we show the results for a Gaussian noise image (synthetic Lena image).
From Figure 1, we can compare the results obtained from different denoising
models. The MCSD model does not produce a nice result, as it is meant for
speckle denoising. The Chambolle with central difference scheme provides the best
denoised image. This fact is also supported by the PSNR values in Table 1, where
the central difference Chambolle model has the highest PSNR and MCSD has the
lowest, but the MCSD model is still faster than the TV model (6).

Next we have the results together with the residuals for the MCSD (25)–(27) and
the Krissian et al. (15) models for speckle noise images. In Figure 2 (the speckle
Lena image), we see that MCSD has comparable results to the Krissian et al. model.
The residuals in Figure 3 show that MCSD has picked up more noise and less detail
than the Krissian et al. model. From Table 2, we see that MCSD has a higher PSNR
value than Krissian et al. and it also takes less time.

Figure 4 shows the results for an ultrasound image (liver image). Here also we
can see MCSD performs better than Krissian et al. The residual image (Figure 5)
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noise-free image Gaussian noise image

TV Chambolle

Chambolle (cdm) MCSD

Figure 1. Results of TV, Chambolle and MCSD models (Gaussian
Lena image).
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noise-free image speckle noise image

Krissian et al. MCSD

Figure 2. Results of Krissian et al. and MCSD models (speckle
Lena image).

TV Chambolle Chambolle (cdm) MCSD
time PSNR time PSNR time PSNR time PSNR

13.71 27.78 4.54 27.71 4.64 28.86 8.98 26.06

Table 1. Model comparison for the Lena image with Gaussian
noise and PSNR= 24.30, where time is measured in seconds.

shows MCSD picked up more noise but preserved more edges compared to the
Krissian et al. model. We are unable to compare PSNR values here since they are
images having natural noise. But Table 2 does show us that MCSD is faster than
the Krissian et al. model.
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Krissian et al. absolute residual MCSD absolute residual

Krissian et al. noise residual MCSD noise residual

Figure 3. Residuals of Krissian et al. and MCSD models (speckle
Lena image).

Krissian et al. MCSDimages
time PSNR time PSNR

Lena (PSNR= 25.70) 2.83 27.02 0.14 28.52
liver 2.35 − 0.13 −

Table 2. Model comparison for speckle noise, where time is mea-
sured in seconds.
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noisy image

Krissian et al. MCSD

Figure 4. Results of Krissian et al. and MCSD models (ultrasound
liver image).

7. Conclusion

In this paper, we introduced our new TV based denoising model for speckle noise
images. The new model provides a speckle noise version for the Chambolle algo-
rithm, which was originally designed for faster solution of the ROF model. The
results show a significant amount of improvement compared to the conventional
TV based speckle denoising model. Based on a dual formation, the solution is
updated directly from the dual space. The new method is therefore much more
efficient than the method by Krissian et al. It is also numerically shown that the new
method is more accurate than the Krissian et al. method. Under certain conditions
on the time-step size, it is proved that the solution from the new algorithm converges
to the minimizer of the new speckle denoising model.
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Krissian et al. absolute residual MCSD absolute residual

Krissian et al. noise residual MCSD noise residual

Figure 5. Residuals of Krissian et al. and MCSD models (ultra-
sound liver image).
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