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The focus of this note is to learn more about the Kolmogorov equation describing
the dynamics of a randomly accelerated particle. We first explore some existing
results of the Kolmogorov equation from the stochastic and differential equation
points of view and discuss its solvability with and without boundary conditions.
More specifically, we introduce stochastic processes and Brownian motion and
we present a connection between a stochastic process and a differential equation.
After looking at stochastic processes, we introduce generalized functions and
derive the fundamental solution to the heat equation and to the Fokker–Planck
equation. The problem with a reflecting boundary condition is also studied by
using various methods such as separation of variables, self-similarity, and the
reflection method.

1. Introduction

In our studies of mathematics, we will often come across different types of pro-
cesses, including the stochastic process. A stochastic process is one that changes
randomly with time. Even if one starts at the same point, one cannot predict how
the process will evolve in the future. We can use stochastic processes to model
random fluctuations. The best known example of a stochastic process is Brownian
motion, which is the continuous, random movement of particles. It derives its name
from Robert Brown’s study [1828] of pollen floating on water; he noticed that the
pollen grains moved continuously, but he could not find a pattern to their movement.
Brownian motion is also a Markov process, in which future behavior depends only
on the current or previous state, and all other states are irrelevant [Ibe 2013].

Later, Einstein [1905; 1926] derived a diffusion equation for the density of
Brownian particles, whereas Smoluchowski [1906] created a kinetic model to
represent the collision of the particles.

When dealing with stochastic processes, in particular Markov processes, a useful
tool is the Chapman–Kolmogorov equation. This equation is used to determine the
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transition density function for moving from one state to another. The Chapman–
Kolmogorov equation is

p.x; t jy; s/D

Z C1
�1

p.x; t j z; r/p.z; r jy; s/ dz for s < r < t: (1-1)

This equation considers the fact that if you go from y at time s to x at time t ,
you must go through an intermediate point z at time r [van Kampen 1981]. In many
stochastic processes, the Chapman–Kolmogorov equation is very helpful because
again, stochastic processes are random processes. We cannot predict exactly where
a particle will be at a given time; we can only predict the probability that the particle
will be at a certain point in a given time. This applies directly when we look at
Brownian motion. In the case of Brownian motion, the transition probability density
function is

p.x; t jy/D
1
p

2� t
e�.x�y/2=.2t/ for t > 0: (1-2)

It is easy to see that p satisfies the partial differential equation (the heat equation)

@p

@t
D

1

2

@2p

@x2
; (1-3)

and the initial condition p.x; 0 jy/D ı.x � y/. Here ı is a generalized function,
which we will discuss more in detail in Section 3.1. This example illustrates the
connection between Brownian motion (stochastic process) and the heat equation
(differential equation) via the Chapman–Kolmogorov equation.

A wider range of diffusion processes can yield diffusion equations, which are
often called the Fokker–Planck equations. The Fokker–Planck equations have many
different applications such as modeling Brownian motion in drift, finance, and
physics [Risken 1984]. For this reason, it is worthwhile to learn about their many
properties and characteristics. The focus of this note is to investigate some properties
of the simplest kinetic Fokker–Planck equation, also known as the Kolmogorov
equation, given by

@p

@t
D�v

@p

@x
C k

@2p

@v2
; (1-4)

where

p D p.t;x; v/ for x 2 R; v 2 R; t > 0; and k > 0:

Here k is a diffusion coefficient. In the Kolmogorov equation, we have t , x, and v
as single variables, whereas the more complicated forms of the Fokker–Planck
equation consist of vectors in both x and v. It is important to look at the Kolmogorov
equation first because once the simplest form has been studied, similar techniques
may be applied to other forms of the equation.
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Because the Fokker–Planck equation is used to model the movement of particles,
it is necessary to look at some of the ways in which particles behave. In this note
we will look at the case in which a particle moves randomly in a given space. The
particle is not free to move as it pleases though; there is a wall, and once the particle
hits the wall it is bounced back to the original space. In previous works, researchers
(such as Skorohod [1961]) solved similar problems using approximation methods.
In this work, we attempt to do so using separation of variables, self-similarity, and
the reflection method.

2. Stochastic process of Fokker–Planck equation

We start out by determining if, like Brownian motion, the Fokker–Planck equation
(1-4) comes from a stochastic process. For simplicity, we will take kD 1. A general
form of the Fokker–Planck equation is

@p

@t
D�

nX
iD1

@

@xi
.bip/C

1

2

nX
i;jD1

@2

@xi@xj
.aij p/; (2-1)

where n is a positive integer, bi is the drift coefficient and aij is the diffusion
coefficient.

Let us first consider nD 2. Letting x D x1 and v D x2, we see that in (1-4), v
is the same as b1. Since x is not included in this term, we will form a vector Eb such
that Eb D Œx2; 0�

T. Notice also that in (2-1),

1

2

nD2X
i;jD1

@2

@xixj
.aij p/

is nonzero only when both i and j are equal to 2. Therefore a11 D a12 D a21 D 0

and a22 D 2, so we have a matrix

AD .aij /D ��
T
D

�
0 0

0 2

�
:

A stochastic differential equation for EX D Œx1;x2�
T has the form

d EX D Eb. EX ; t/ dt C �. EX ; t/ d EB: (2-2)

Plugging in our values, we have�
dx1

dx2

�
D

�
x2

0

�
dt C

�
0 0

0
p

2

�
d EB:

Multiplying these out, we obtain

dx1 D x2 dt and dx2 D
p

2 dB2:
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Recalling that x D x1; v D x2, and letting dB D �.t/ dt (white noise), we obtain

dx D v dt; dv D
p

2�.t/ dt:

We have found the stochastic differential equation for the Fokker–Planck equation.
Looking at the solution above, we see that

d2x

dt2
D
p

2�.t/:

Therefore, the Kolmogorov equation models a randomly accelerated particle.
We can do the same with the multidimensional Kolmogorov equation with no

external forces. For instance, (1-4) can be generalized as

@p

@t
D�v � rxpC�vp; (2-3)

where p D p.t;x; v/ and x 2 R3, v 2 R3. Recall that

v � rxp D v1@x1
pC v2@x2

pC v3@x3
p: (2-4)

Similar to the previous case, we will let x D .x1;x2;x3/ and v D .x4;x5;x6/.
Notice nD 6 in this case. We see in (2-1), vi is the same as bi . Let

Eb D Œx4;x5;x6; 0; 0; 0�
T :

Notice that in (2-3), the term

1

2

nD6X
i;jD1

@2

@xi@xj
.aij p/

only exists when both i and j are equal to 4, 5, and 6. Therefore, we have a matrix A

in which a44 D a55 D a66 D 2 and all other terms are equal to 0. This gives us
degenerate diffusion, which is different from Brownian motion. Here, “degenerate”
means that the diffusion coefficient matrix is nonnegative, but not positive definite.
We also know that our vector EX D Œx1;x2;x3;x4;x5;x6�

T . Recalling the general
form of a stochastic process (2-2) and plugging in our vectors and multiplying them
out, we obtain

dx1 D x4 dt; dx2 D x5 dt; dx3 D x6 dt;

dx4 D
p

2 dB4; dx5 D
p

2 dB5; dx6 D
p

2 dB6:

We have once again found the stochastic differential equations, so we know that
the kinetic Fokker–Planck equation (2-4) comes from a stochastic process. The
result of this section is well-known and we refer to [van Kampen 1981] for more
discussion on the stochastic processes and the Fokker–Planck equation.
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For the rest of the note, we will study the properties of the solutions to (1-4) and
(2-3) by using various methods.

3. Fundamental solutions of the Fokker–Planck equation

The fundamental solution is the solution of a particular equation with initial data
at a single, concentrated point. The idea behind this is that if we have enough
information about the solution of an equation at this infinitely dense point, we can
draw enough information about the behavior of the equation at other points.

3.1. Delta function and fundamental solutions. We use the delta function (which
is referred to as a generalized function) to represent the infinitely dense point. The
delta function is formally defined by

ı.x� �/D

�
0; x ¤ �;

C1; x D �;

such that Z b

a

ı.x� �/ dx D 1 as long as a< � < b:

An interesting and very helpful property is that for any function f .x/,Z b

a

f .x/ı.x� �/ dx D f .�/ if a< � < b:

The above properties hold even if a D �1 and b D C1. Because of the
information it yields, we often use the delta function as the initial condition when
searching for fundamental solutions.

The definition of a fundamental solution for a linear differential operator L is

LF D 0; F.tD0/ D ı: (3-1)

3.2. Heat equation. In the introduction, we presented an example of the probability
density function for Brownian motion when looking at stochastic processes. In this
section, we show that we can also find a solution without considering a stochastic
process. For instance, we can use the Fourier transform method to give rise to the
fundamental solution of the heat equation [Olver 2014]. We denote the solution as
u.t;x/D F.t;xI �/ and set the initial condition to be F.0;xI �/D ı.x� �/. This
must satisfy the heat equation (1-3), so we know

@F

@t
D
@2F

@x2
:

We must now reconstruct the equation using the properties of linearity and the
Fourier transform method. After solving this, we take the inverse Fourier transform
to obtain the fundamental solution of the heat equation (1-3).
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We find that

F.t;x; �/D
1
p

2�

Z C1
�1

eik.x��/�k2t dk

D
1

2
p
� t

e�.x��/
2=.4t/ for t > 0:

(3-2)

Recall the probability density function (1-2). In this section we obtained the
same result, except we are off by a multiple of 1

2
. The reason for this is that here,

we started with the diffusion coefficient k D 1 instead of k D 1
2

.
Once we have the fundamental solution of a differential equation, we can find

other solutions using the convolution

u.t;x/D .F �f /.t;x/; (3-3)

where

.F �f /.t;x/D

Z
�2R

F.t;x; �/f .�/

and with the initial condition u.0;x/D f .x/.

3.3. Kolmogorov equation. In this section, we are interested in constructing the
fundamental solution to the Fokker–Planck equation (1-4) and (2-3). In fact,
Kolmogoroff [1934] provided the formula for the fundamental solution to the
Fokker–Planck equation, but did not give any details on the construction. After
finding the solution for the Fokker–Planck equation, we will consider the case of
the Kolmogorov equation.

Tanski [2004] found the fundamental solution of the Fokker–Planck equation

@n

@t
C vx

@n

@x
C vy

@n

@y
C vz

@n

@z
�˛

�
@

@vx
.vxn/C

@

@vy
.vyn/C

@

@vz
.vzn/

�
D k

�
@2n

@v2
x

C
@2n

@v2
y

C
@2n

@v2
z

�
: (3-4)

He used the method of characteristics to come up with the fundamental solution of
the form

G D
1

.2�/6

�
�

k
p

D

�3

exp

(
�1

4kD

"
1

2˛
.1� e�2˛t /. Ox2

C Oy2
C Oz2/

�

�
2

˛2
.1� e�˛t /�

1

˛2
.1� e�˛t /

�
. Ox OvxC Oy Ovy C Oz Ovz/

C

�
t

˛2
�

2

˛3
.1� e�˛t /C

1

2˛3
.1� e�2˛t /

�
. Ov2

xC Ov
2
y C Ov

2
z /

#)
; (3-5)
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where

Ox D x� .x0C .vx0=˛/.1� e�˛t //;

Oy D y � .y0C .vy0=˛/.1� e�˛t //;

Oz D z� .z0C .vz0=˛/.1� e�˛t //;

D D
det.A/

k2
;

and A is a matrix with

det.A/D k2˛t.1� e�2˛t /� 2.1� e�˛t /2

2˛4
:

This matches the results of [Kolmogoroff 1934].
In our case, we would like to look at a slightly more specific equation. We look

at the Fokker–Planck equation of the form

@tpC v � rxp D�vp; (3-6)

which can be rewritten as

@tpC v1@x1
pC v2@x2

pC v3@x3
p D .@2

v1
pC @2

v2
pC @2

v3
p/:

We follow Tanski’s method in order to find the fundamental solution of our equa-
tion. The result does not follow directly from [Tanski 2004]. We have that
x D x1;y D x2; z D x3, and vx D v1; vy D v2; vz D v3, and k D 1. We let
N D N.t;p1;p2;p3; q1; q2; q3/ be the Fourier transformation in .x; v/. It is
equivalent to

1

.2�/6

Z
R6

e�i.x1px1
Cx2px2

Cx3px3
Cv1q1Cv2q2Cv3q3/p dx1 dx2 dx3 dv1 dv2 dv3:

In terms of N, the Fourier transform equals

@tN �p1@q1
N �p2@q2

N �p3@q3
N D�.q2

1 C q2
2 C q2

3/N:

We then come up with

dt D
dp1

0
D

dp2

0
D

dp3

0
D

dq1

�p1

D
dq2

�p2

D
dq3

�p3

D
�dN=N

.q2
1
C q2

2
C q2

3
/
:

Solving this we find

p1 D p10; p2 D p20; p3 D p30;

q1 D�p1t C q10; q2 D�p2t C q20; q3 D�p3t C q30;

N DN0e�
1
2

�
.p2

1
Cp2

2
Cp2

3
/ 1

3
t3�.p1q10Cp2q20Cp3q30/t

2C.q2
10
Cq2

20
Cq2

30
/t
�
:
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Plugging in our values for q10; q20, and q30, we obtain

N DN0 exp
n
�

1
2

�
.p2

1 Cp2
2 Cp2

3/
1
3
t3

�
�
p1.q1Cp1t/Cp2.q2Cp2t/Cp3.q3Cp3t/

�
t2

C
�
.q1Cp1t/2C .q2Cp2t/2C .q3Cp3t/2

�
t
�o

which leaves us with

N DN0e�
1
2

�
.p2

1
Cp2

2
Cp2

3
/ 1

3
t3�.p1q1Cp2q2Cp3q3/t

2C.q2
1
Cq2

2
Cq2

3
/t
�
:

We take the initial density value as

n0 D ı.x1�x10/ı.x2�x20/ı.x3�x30/ı.v1�x10/ı.v2�x20/ı.v3�x30/:

The Fourier transform of the initial density becomes

N0 D e�i.x10p1Cx20p2Cx30p3Cv10q1Cv20q2Cv30q3/:

Plugging in the initial values we obtaincN0 D e�i.x10p1Cx20p2Cx30p3Cv10.p1tCq10/Cv20.p2tCq20/Cv30.p3tCq30//;

which is the Fourier transform of

bn0 D ı.x1� .x10C v10t//ı.x2� .x20C v20t//

ı.x3� .x30C v30t//ı.v1� v10/ı.v2� v20/ı.v3� v30/:

In our example, we get the matrix A to be

AD

"
1
3
t3 �

1
2
t2

�
1
2
t2 t

#
:

This matrix is created from the terms related to N, where a11 is the term coming
from p2

i , and the a12 and a21 terms are obtained by dividing the term for piqj in
half. Finally, a22 is the term associated with q2

i . Its determinant is

det.A/D 1
12

t4

and

D D 1
12

t4; since D D
det.A/

k2
and k D 1:

The inverse is given by

A�1
D

12

t4

"
t 1

2
t2

1
2
t2 1

3
t3

#
:
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We now combine bn0 with A�1 to obtain

G D
1

.2�/6

�
�

k
p

D

�3bn0 exp
�
�

3

t4

�
t.x2

1Cx2
2Cx2

3/�t2.x1v1Cx2v2Cx3v3/

C
1
3
t3.v2

1Cv
2
2Cv

2
3/
��
;

which gives us

G D
1

.2�/6

�
�

k
p

D

�3

exp
�
�

3

t4

�
t.bx1

2
Cbx2

2
Cbx3

2
/�t2.bx1bv1Cbx2bv2Cbx3bv3/

C
1
3
t3.bv1

2
Cbv2

2
Cbv3

2
/
��
:

Plugging in D D 1
12

t4, we have

G D
1

.2�/6

�
2
p

3�

t2

�3

exp
�
�

3

t4

�
t.bx1

2
Cbx2

2
Cbx3

2
/�t2.bx1bv1Cbx2bv2Cbx3bv3/

C
1
3
t3.bv1

2
Cbv2

2
Cbv3

2
/
�
;

�
wherebx1 D x1� .x10C v10t/; bx2 D x2� .x20C v20t/; bx3 D x3� .x30C v30t/;bv1 D v1� v10; bv2 D v2� v20; bv3 D v3� v30:

The same procedure can be performed for the Kolmogorov equation (1-4):

@tpC v@xp D @2
vp:

We obtain the fundamental solution

G D
1

.2�/2

�
2
p

3�

t2

�
e
� 3

t4

�
t Ox2�t2 Ox OvC 1

3
t3 Ov2

�
; (3-7)

where Ox D x� .x0C v0t/ and Ov D v� v0.
If we want to solve a problem with general initial conditions, we can do so using

p.t;x; v/D

“
G.t;x; v;x0; v0/p.x0; v0/ dx0 dv0: (3-8)

This gives a representation formula for a solution to the Kolmogorov equation in
the whole space.

Remark 3.1. After this work had been performed, we found out that Tanski [2008]
solved the problem. We refer to [Tanski 2004; 2008] for more details on the
construction of the fundamental solution of the general Fokker–Planck equations.
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4. Reflecting boundary conditions

Oftentimes, particles are not free to move around as they please; they are influenced
by their surroundings. This is the focus of this section. In particular, we are
interested in the case where the particle is reflected back to the plane once it hits
the boundary (or wall). Consider, for example, that fx D 0g is the wall of the
domain fx > 0; v 2 Rg. We represent this behavior with the boundary condition

p.0;�v/D p.0; v/ for all v: (4-1)

The first natural question is: are there any “simple solutions” of (1-4) satisfying
this boundary condition? We first consider the possible stationary solutions. The
equation to solve is

v@xp D @2
vp; (4-2)

with the condition (4-1).

4.1. Stationary solutions. Suppose the solution to (4-1)–(4-2) takes the form

p.x; v/DX.x/V .v/: (4-3)

Plugging this into (4-2), we get

vX 0V DXV 00:

Dividing both sides by vXV and letting this equal ��, we get

X 0

X
D

V 00

vV
D��:

Solving for X we find
X.x/DX0e��x;

where X0 is some constant.
We now try to solve for V. Because of the boundary condition, we know that V

must satisfy
V .v/D V .�v/:

It will also satisfy
V 00.v/D V 00.�v/:

Replacing these values we find

��vV .v/D �vV .�v/:

Using our boundary condition, we obtain

��vV .v/D �vV .v/:
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Moving everything to one side we see that

�2�vV .v/D 0:

We do not want v or V .v/ to equal 0; therefore �D 0 must be true. This also means
that V 00 D 0. Integrating leads us to the solution V .v/ D avC b. We need this
equation to satisfy the boundary condition, which in turn leads us to the conclusion
that V .v/D b.

Now that we know �, let us solve for X . Plugging in our value of �, we find
that X.x/DX0. Recall the form from (4-3). Therefore we get p.x; v/DC , where
C DX0b. Hence we see that only constants will solve the problem.

In many cases, the total mass of particles is positive. If we view p as a probability
density, then Z

x>0

Z
v2R

p.x; v/ dx dv D 1:

Since the domain is infinite, no constant will satisfy this criterion. There is no other
interesting solution to the stationary problem by using separation of variables.

4.2. Kummer functions. We will try again to find a solution to (4-1)-(4-2)- by a
different method. Because of the scaling invariance property of the equation, we
want a solution of the form

p.x; v/D x˛�.�v3=.9x//:

When done this way, we get

@xp D ˛x˛�1�C .v3=.9x2//x˛�0;

@2
vp D x˛.�3v2=.9x//2�00Cx˛.�6v=.9x//�0:

After some calculations, we obtain

z�00C
�

2
3
� z
�
�0C˛� D 0; (4-4)

where z D�v3=.9x/. This form satisfies the Kummer equations. Equation (4-4)
has two independent solutions: M and U [Abramowitz and Stegun 1965].

We now examine the asymptotic behavior of the solutions to see whether the
boundary conditions are satisfied by these solutions. Our boundary condition is
given in (4-1): p.0; v/D p.0;�v/.

Taking the boundary condition into account, when x approaches 0 and v > 0,
we notice z approaches C1, and when x approaches 0 and v < 0, we notice z

approaches�1. Therefore, we will study the asymptotic behavior of the solution of
(4-4) as z approachesC1 and �1 to match the boundary condition. We start with
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the first kind of solution M . From [Abramowitz and Stegun 1965, 13.1.5], we obtain

M
�
�˛; 2

3
;�z

�
�

�
�

2
3

�
�
�

2
3
C˛

�z˛ as z!C1; (4-5)

and from [Abramowitz and Stegun 1965, 13.1.4],

M
�
�˛; 2

3
; z
�
�
�
�

2
3

�
ezz�˛�

2
3

�.�˛/
as z!C1: (4-6)

The behavior as z approaches C1 differs from when z approaches �1. There-
fore, the first kind of solution does not satisfy the boundary condition.

Now we will look at our second independent solution, U.�˛; 2
3
; z/. Recall the

solution from [Abramowitz and Stegun 1965, 13.5.2]:

U
�
�˛; 2

3
; z
�
D z˛

�R�1X
nD0

.�˛/n
�
1�˛� 2

3

�
n

n!
.�z/�n

CO.jzj�R/

�
;

where �3
2
� < arg.z/ < 3

2
� .

As z approaches C1, the defining behavior becomes

U
�
�˛; 2

3
; z
�
� z˛:

Let us define a new variable S so that

z D�v3=.9x/D�S3
D .�S/3 where S 2 R;�1

2
� < arg.�S/ < 1

2
�:

Therefore, we obtain

U
�
�˛; 2

3
;�S3

�
� jS j3˛ as S !�1:

In order to examine the behavior as z approaches �1, we look at [Abramowitz
and Stegun 1965, 13.1.3]:

U
�
�˛; 2

3
; z
�
D

�

sin
�

2
3
�
�� M

�
�˛; 2

3
; z
�

�
�
1�˛�2

3

�
�
�

2
3

��z1� 2
3

M
�
1�˛�2

3
; 2�2

3
; z
�

�.�˛/�
�
2�2

3

� �
: (4-7)

Recall that z D�S3 and the previously obtained formula (4-5). Plugging this
into (4-7), we obtain

U
�
˛; 2

3
;�S3

�
D

�

sin.2
3
�/

�
1

�
�

1
3
�˛

�
�
�

2
3
C˛

� C 1

�.�˛/�.1C˛/

�
S3˛:

We now use the following identity from [Abramowitz and Stegun 1965]:

�.�x/�.1Cx/D�
�

sin.�x/
;
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which gives us

�
�

1
3
�˛

�
�
�

2
3
C˛

�
D

�

sin
�
�
�

2
3
C˛

�� and �.�˛/�.1C˛/D�
�

sin.�˛/
:

Recall the trigonometric identity

sin
�
�
�
˛C 2

3

��
� sin.�˛/

sin.2
3
�/

D 2 cos
�
�
�
˛C 1

3

��
:

As a result,

U
�
�˛; 2

3
;�S3

�
� 2 cos

�
�
�
˛C 1

3

��
S3 as S !C1:

If our boundary conditions are satisfied, then we have

2 cos
�
�
�
˛C 1

3

��
jS j3˛ D jS j3˛I

hence,
2 cos

�
�
�
˛C 1

3

��
D 1:

Solving for ˛, we find that ˛ D 0 or ˛ D�2
3

.
In the case that ˛D 0, we would obtain a constant, which has been already found

in the previous section by separation of variables. In the case of ˛ D�2
3

, there is a
singularity near the origin. However, it turns out that it is positive and integrable
near the origin. The solution

p.x; v/D x�
2
3 U
�

2
3
; 2

3
;�v3=.9x/

�
to the stationary problem (4-1)–(4-2) could be useful in studying the behavior of
the solution with the boundary condition near the boundary. We refer to [Hwang
et al. 2015a] for more discussion on the Kummer functions and their applications
to the Kolmogorov equation (1-4).

5. Reflection method

We will now try to solve (1-4),

@tpC v@xp D @2
vp;

where x > 0, v 2 R and t > 0. We also require that p.t;x; v/ satisfies p.t; 0; v/D

p.t; 0;�v/ and initial data p.0;x; v/D p0.x; v/ satisfies the compatibility condi-
tion p0.0; v/D p0.0;�v/.

Although we do not know the solution of this problem yet, we do know the
solution on the whole real line (when x 2 R). Therefore, we will attempt to use the
reflection method to solve our problem.

The main result of this section is the following.
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Theorem 5.1. Define

Np.t;x; v/D

Z C1
�1

Z C1
0

ŒG.t;x; v;x0; v0/CG.t;x; v;�x0;�v0/�p0.x0; v0/ dx0 dv0

for t > 0, x > 0, v 2 R. Here G is the fundamental solution obtained in Section 3.3
and p0 is the given initial data for our problem. Then Np.t;x; v/ satisfies:

(1) Npt C v Npx D Npvv for t > 0, x > 0, v 2 R.

(2) limt!0 Np.t;x; v/D p0.x; v/ for x > 0, v 2 R.

(3) Np.t; 0; v/D Np.t; 0;�v/ for t > 0, v 2 R.

Proof. In order to prove the theorem, we first assume that p solves our problem
and extend p to the whole space.

We let

Nq.t;x; v/D

�
p.t;x; v/; x > 0;

p.t;�x;�v/; x < 0;

and let

Nq0.x0; v0/D Nq.0;x; v/D

�
p0.x; v/; x > 0;

p0.�x;�v/; x < 0:

We see that Nq.t;x; v/ satisfies our boundary conditions: plugging in 0 for x, we
have

p.t; 0; v/D p.t; 0;�v/ if Nq.t;x; v/ is continuous.

First, we check that Nq solves the problem in the whole space. We know that
the equation satisfies the problem when x > 0, since this is our original problem.
However, we must check that the second half of our solution also satisfies the
problem.

When x < 0, we find that Nq D p.t;�x;�v/ satisfies

@t Nq.t;x; v/D @tp.t;�x;�v/;

@x Nq.t;x; v/D�@xp.t;�x;�v/;

@2
v Nq.t;x; v/D�@

2
vp.t;�x;�v/:

On the other hand, since �x> 0, we have that p.t;�x;�v/ satisfies the equation

@tp.t;�x;�v/C .�v/.@xp.t;�x;�v//� @2
vp.t;�x;�v/D 0;

which is the same as

@tp.t;�x;�v/C .v/.�@xp.t;�x;�v//� @2
vp.t;�x;�v/D 0:

Now by using the above relations for the derivatives of Nq, we see that

@t Nq.t;x; v/C v.@x Nq.t;x; v//� @
2
v Nq.t;x; v/D 0
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for x < 0. Since we have seen that Nq solves the whole space problem, we can
obtain the solution Nq.t;x; v) with the extended initial data Nq0.x0; v0/ by using
G.t;x; v;x0; v0/, where G is the fundamental solution we obtained earlier in (3-7),

Nq.t;x; v/D

Z C1
�1

Z C1
�1

G.t;x; v;x0; v0/ Nq0.x0; v0/ dx0 dv0

D

Z C1
�1

Z C1
0

G.t;x; v;x0; v0/p0.x0; v0/ dx0 dv0

C

Z C1
�1

Z 0

�1

G.t;x; v;x0; v0/p0.�x0;�v0/ dx0 dv0:

Let Qx D�x0 and Qv D�v0. We get

Nq.t;x; v/D

Z C1
�1

Z C1
0

G.t;x; v;x0; v0/p0.x0; v0/ dx0 dv0

C

Z C1
�1

Z C1
0

G.t;x; v;� Qx;�Qv/p0. Qx; Qv/ d Qx d Qv:

We can now add the two parts and we obtain

Nq.t;x; v/D

Z C1
�1

Z C1
0

ŒG.t;x; v;x0;v0/CG.t;x; v;�x0;�v0/�p0.x0; v0/ dx0 dv0:

This is a solution to the whole space problem, but we are only looking for the
solution to the half line. Therefore, we restrict the solution to x > 0, v 2 R, t > 0.
It is now clear that the first two conditions in the theorem are satisfied. We must
now check the third condition.

Recall our solution

Nq.t;x; v/

D

Z C1
�1

Z C1
0

p0.x0; v0/

� p
3

2� t2
e
� 3

t4

�
t.x�x0�v0t/2�t2.x�x0�v0t/.v�v0/C

t3

3
.v�v0/

2
�

C

p
3

2� t2
e
� 3

t4

�
t.xCx0Cv0t/2�t2.xCx0Cv0t/.vCv0/C

t3

3
.vCv0/

2
��

dx0 dv0:

Let us check if our boundary conditions are satisfied:

Nq.t; 0; v/

D

Z C1
�1

Z C1
0

p0.x0; v0/

� p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.v0�v/C

1
3

t3.v�v0/
2
�

C

p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.vCv0/C

1
3

t3.vCv0/
2
��

dx0 dv0;
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Nq.t; 0;�v/

D

Z C1
�1

Z C1
0

p0.x0; v0/

� p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.v0Cv/C

1
3

t3.vCv0/
2
�

C

p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.v0�v/C

1
3

t3.v�v0/
2
��

dx0 dv0:

As we can see, both of these are equal and therefore our solution meets all three
conditions. We see that Nq D Np and find that when Nq is restricted to the half line, it
is Np defined in the statement of the theorem. �

6. Conclusion

Our note focuses on the Kolmogorov equation and teaches us some of its important
properties. We first introduced stochastic processes including Brownian motion.
Next, we searched for stationary solutions to our equation. We started off by looking
for a solution of the form p.x; v/DX.x/V .v/. When looking at this case, we found
that the result is a constant. Next, we searched for a solution of self-similar type,
but this time one of the form p.x; v/D x˛�.�v3=.9x//; because of the scaling
invariant property of the equation. In our attempt to solve this we found that with a
reflecting boundary condition, a nonconstant solution exists when ˛D�2

3
. We also

found the fundamental solution to the heat equation and the Kolmogorov equation.
Once we had the fundamental solution, we were able to solve the differential
equation with reflecting boundary condition. We first solved the problem on the
whole space and then restricted it to the half line. Now that we have completed
our investigations, it would be worthwhile to see the behavior of the Kolmogorov
equation with different boundary conditions. In the case of absorbing boundary
conditions, we refer to [Hwang et al. 2014; 2015b]. It would be interesting to
investigate the long term behavior of the solutions, particularly whether the solution
to the evolution problem would converge to the stationary solution. We leave this
study for future projects. In addition, it would be useful to look at some of the many
applications of this multifaceted equation. These investigations would be beneficial
for many fields and could provide insight to some of the more obscure areas.
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