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The link of the An singularity, L An ⊂ C3 admits a natural contact structure ξ0

coming from the set of complex tangencies. The canonical contact form α0

associated to ξ0 is degenerate and thus has no isolated Reeb orbits. We show that
there is a nondegenerate contact form for a contact structure equivalent to ξ0 that
has two isolated simple periodic Reeb orbits. We compute the Conley–Zehnder
index of these simple orbits and their iterates. From these calculations we compute
the positive S1-equivariant symplectic homology groups for (L An , ξ0). In addition,
we prove that (L An , ξ0) is contactomorphic to the lens space L(n+1, n), equipped
with its canonical contact structure ξstd.

1. Introduction and main results

The classical topological theory of isolated critical points of complex polynomials
relates the topology of the link of the singularity to the algebraic properties of the
singularity [Milnor 1968]. More generally, the link of an irreducible affine variety
An
⊂ CN with an isolated singularity at 0 is defined by L A = A ∩ S2N+1

δ . For
sufficiently small δ, the link L A is a manifold of real dimension 2n− 1, which is
an invariant of the germ of A at 0. The links of Brieskorn varieties can sometimes
be homeomorphic but not always diffeomorphic to spheres (see [Brieskorn 1966],
a preliminary result which further motivated the study of such objects). Recent
developments in symplectic and contact geometry have shown that the algebraic
properties of a singularity are strongly connected to the contact topology of the link
and symplectic topology of (the resolution of) the variety. A wide range of results
demonstrating the power of investigating the symplectic and contact perspective
of singularities include [Keating 2015; Kwon and van Koert 2016; McLean 2016;
Ritter 2010; Seidel 2008b; Ustilovsky 1999].

In this paper we study the contact topology of the link of the An singularity,
providing a computation of positive S1-equivariant symplectic homology. This
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is done via our construction of an explicit nondegenerate contact form and the
computation of the Conley–Zehnder indices of the associated simple Reeb orbits
and their iterates. Our computations show that positive S1-equivariant symplectic
homology is a free Q[u] module of rank equal to the number of conjugacy classes
of the finite subgroup An of SL(2;C). This provides a concrete example of the
relationship between the cohomological McKay correspondence and symplectic
homology, which is work in progress by McLean and Ritter [≥ 2017]. As a result,
the topological nature of the singularity is reflected by qualitative aspects of the
Reeb dynamics associated to the link of the An singularity.

The link of the An singularity is defined by

L An = f −1
An
(0)∩ S5

⊂ C3, f An = zn+1
0 + 2z1z2. (1-1)

It admits a natural contact structure coming from the set of complex tangencies,

ξ0 := TL An ∩ J0(TL An ).

The contact structure can be expressed as the kernel of the canonically defined
contact form,

α0 =
i
2

( m∑
j=0

(z j dz j − z j dz j )

)∣∣∣∣
L An

.

The contact form α0 is degenerate and hence not appropriate for computing Floer-
theoretic invariants as the periodic orbits of the Reeb vector field defined by

α0(Rα0)= 1, ιRα0
dα0 = 0

are not isolated.
Our first result is the construction of a nondegenerate contact form αε such that

(L An , kerα0) and (L An , kerαε) are contactomorphic. Define the Hamiltonian on
C3 by

H : C3
→ R,

(z0, z1, z2) 7→ |z|2+ ε(|z1|
2
− |z2|

2),

where ε is chosen so that H > 0 on S5. We will show

αε =
1
H

[
(n+1)i

8
(z0dz0− z0dz0)+

i
4
(z1dz1− z1dz1+ z2dz2− z2dz2)

]
(1-2)

is a nondegenerate contact form. We also find the simple Reeb orbits of Rαε
and compute the associated Conley–Zehnder index with respect to the canonical
trivialization of C3 of their iterates.

Theorem 1.1. The 1-form αε is a nondegenerate contact form for L An such that
(L An , kerα0) and (L An , kerαε) are contactomorphic. The Reeb orbits of Rαε are
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defined by
γ+(t)= (0, e2i(1+ε)t , 0), 0≤ t ≤ π/(1+ ε),

γ−(t)= (0, 0, e2i(1−ε)t), 0≤ t ≤ π/(1− ε).

The Conley–Zehnder index for γ = γ N
±

in 0≤ t ≤ Nπ/(1± ε) is

µC Z (γ
N
±
)= 2

(⌊
2N

(n+ 1)(1± ε)

⌋
+

⌊
N (1∓ ε)

1± ε

⌋
−

⌊
2N

1± ε

⌋)
+ 2N + 1. (1-3)

Remark 1.2. If ε is chosen such that 0< ε� 1/N then (1-3) can be simplified to

µC Z (γ
N
−
)= 2

⌊
2N

(n+ 1)(1− ε)

⌋
+ 1,

µC Z (γ
N
+
)= 2

⌊
2N

(n+ 1)(1+ ε)

⌋
+ 1.

(1-4)

The proof of Theorem 1.1 is obtained by adapting methods of Ustilovsky [1999]
to obtain αε and to compute the Conley–Zehnder indices. The Conley–Zehnder
index is a Maslov index for arcs of symplectic matrices and is defined in Section 2D.
These paths of matrices are obtained by linearizing the flow of the Reeb vector field
along the Reeb orbit and restricting to ξ0. To better understand the spread of the
Reeb orbits and their iterates in various indices, we have the following example.

Example 1.3. Let n = 2 and 0< ε� 1
10 . Then

µC Z (γ−)= 1, µC Z (γ+)= 1,

µC Z (γ
2
−
)= 3, µC Z (γ

2
+
)= 3,

µC Z (γ
3
−
)= 5, µC Z (γ

3
+
)= 3,

µC Z (γ
4
−
)= 5, µC Z (γ

4
+
)= 5,

µC Z (γ
5
−
)= 7, µC Z (γ

5
+
)= 7,

µC Z (γ
6
−
)= 9, µC Z (γ

6
+
)= 7,

µC Z (γ
7
−
)= 9, µC Z (γ

7
+
)= 9.

It is interesting to note that the spread of integers is not uniform between µC Z (γ
N
−
)

and µC Z (γ
N
+
), and where these jumps in index occur. However, we see that there

are n = 2 Reeb orbits with Conley–Zehnder index 1 and n + 1 = 3 orbits with
Conley–Zehnder index 2k+ 1 for each k ≥ 1.

Remark 1.4. Extrapolating this to all values of n and N demonstrates that the
numerology of the Conley–Zehnder index realizes the number of free homotopy
classes of L An. Recall [6L An ] = π0(6L An ) = π1(L An )/{conjugacy classes} and
H1(L An ,Z) = Zn+1. The information that the (n+ 1)-th iterate of γ± is the first
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contractible Reeb orbit is also encoded in the above formulas. Qualitative aspects of
the Reeb dynamics reflect this topological information in the following computation
of a Floer-theoretic invariant of the contact structure ξ0.

Theorem 1.1 allows us to easily compute positive S1-equivariant symplectic
homology SH+,S

1

∗
. Symplectic homology is a Floer-type invariant of symplectic

manifolds with contact-type boundary; see [Seidel 2008a]. Under additional as-
sumptions, one can prove that the positive S1-equivariant symplectic homology
SH+,S

1

∗
is in fact an invariant of the contact structure; see [Gutt 2015, Theorems 1.2

and 1.3; Bourgeois and Oancea 2012, Section 4.1.2]. Because of the behavior of the
Conley–Zehnder index in Theorem 1.1, we can directly compute SH+,S

1

∗
(L An , ξ0)

and conclude that it is a contact invariant. As a result, the underlying topology of
the manifold determines qualitative aspects of any Reeb vector field associated to a
contact form defining ξ0.

Theorem 1.5. The positive S1-equivariant symplectic homology of (L An , ξ0) is

SH+,S
1

∗
(L An , ξ0)=


Qn, ∗ = 1,
Qn+1, ∗ ≥ 3 and odd,
0, ∗ else.

Proof. To obtain a contact invariant from SH+,S
1

∗
we need to show in dimension 3

that all contractible Reeb orbits γ satisfy µC Z (γ )≥ 3; see [Gutt 2015, Theorems 1.2
and 1.3; Bourgeois and Oancea 2012, Section 4.1.2]. The first iterate of γ± which
is contractible is the (n + 1)-th iterate, and by Theorem 1.1, will always satisfy
µC Z (γ±)≥ 3.

If α is a nondegenerate contact form such that the Conley–Zehnder indices of
all periodic Reeb orbits are lacunary, meaning they contain no two consecutive
numbers, then we can appeal to [Gutt 2015, Theorem 1.1]. This result of Gutt
allows us to conclude that over Q-coefficients the differential for SH S1,+ vanishes.
In light of Theorem 1.1 we obtain the above result. �

Remark 1.4 yields the following corollary of Theorem 1.5, indicating a Floer-
theoretic interpretation of the McKay correspondence [Ito and Reid 1996] via the
Reeb dynamics of the link of the An singularity. The An singularity is the singularity
of f −1

An
(0), where f An is described as (1-1). This is equivalent to its characterization

as the absolutely isolated double point quotient singularity of C2/An , where An is
the cyclic subgroup of SL(2;C); see Section 4A. The cyclic group An acts on C2

by (u, v) 7→ (e2π i/(n+1)u, e2π in/(n+1)v).

Corollary 1.6. The positive S1-equivariant symplectic homology SH+,S
1

∗
(L An , ξ0)

is a free Q[u] module of rank equal to the number of conjugacy classes of the finite
subgroup An of SL(2;C).
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Remark 1.7. The ongoing work of Nelson [2015; ≥ 2017] and Hutchings and
Nelson [2014; ≥2017] is needed in order to work under the assumption that a related
Floer-theoretic invariant, cylindrical contact homology is a well-defined contact
invariant of (L An , ξ0). Once this is complete, the index calculations provided in
Theorem 1.1 show that positive S1-equivariant symplectic homology and cylindrical
contact homology agree up to a degree shift.

Bourgeois and Oancea [2012] prove that there are restricted classes of contact
manifolds for which one can prove that cylindrical contact homology (with a degree
shift) is isomorphic to the positive part of S1-equivariant symplectic homology
when both are defined over Q-coefficients. Their isomorphism relies on having
transversality for a generic choice of J , which is presently the case for unit cotangent
bundles DT ∗L such that dim L≥5 or when L is Riemannian manifold which admits
no contractible closed geodesics [Bourgeois and Oancea 2015]. Our computations
confirm that their results should hold for many more closed contact manifolds.

Our final result is an explicit proof that the singularity (L An , ξ0) and the lens
space (L(n+ 1, n), ξstd) are contactomorphic. The lens space

L(n+ 1, n)= S3/
(
(u, v)∼ (e2π i/(n+1)u, e2πni/(n+1)v)

)
admits a contact structure, which is induced by the one on S3 and can be expressed
as the kernel of the contact form

λstd =
1
2 i(udū− ūdu+ vd v̄− v̄dv).

Theorem 1.8. The link of the An singularity (L An , ξ0 = kerα0) and the lens space
(L(n+ 1, n), ξstd = ker λstd) are contactomorphic.

Theorems 1.5 and 1.8 allow us to reprove the following result of Kwon and
van Koert [2016]. Since (L An , ξ0) and (L(n+ 1, n), ξstd) are contactomorphic and
SH S1,+
∗

is a contact invariant, SH S1,+
∗

(L(n+ 1, n), ξstd)= SH S1,+
∗

(L An , ξ0).

Theorem 1.9 [Kwon and van Koert 2016, Appendix A]. The positive S1-equivariant
symplectic homology of (L(n+ 1, n), ξstd) is

SH+,S
1

∗
(L(n+ 1, n), ξstd)=


Qn, ∗ = 1,
Qn+1, ∗ ≥ 3 and odd,
0, ∗ else.

Their proof relies on the nondegenerate contact form on (L(n + 1, n), ξstd).
If a1, a2 are any rationally independent positive real numbers then

λa1,a2 =
i
2

2∑
j=1

a j (z j dz j − z j dz j )
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is a nondegenerate contact form for (L(n+ 1, n), ξstd). The simple Reeb orbits on
L(n+ 1, n) are given by

γ1 = (ei t/a1, 0), 0≤ t ≤ (2a1π)/(n+ 1),

γ2 = (0, ei t/a2), 0≤ t ≤ (2a2π)/(n+ 1),

which descend from the simple isolated Reeb orbits on S3. Again, the n+1 different
free homotopy classes associated to this lens space are realized by covers of the
isolated Reeb orbits γi for i = 1 or 2. The Conley–Zehnder index for γ N

1 is

µC Z (γ
N

1 )= 2
(⌊

N
n+ 1

⌋
+

⌊
Na1

(n+ 1)a2

⌋)
+ 1, (1-5)

with a similar formula holding for γ N
2 .

Outline. The necessary background is given in Section 2. The construction of a
nondegenerate contact form and the proof of Theorem 1.1 is given in Section 3.
The proof of Theorem 1.8 is given in Section 4.

2. Background

In this section we recall all the necessary symplectic and contact background which
is needed to prove Theorems 1.1 and 1.8.

2A. Contact structures. First we recall some notions from contact geometry.

Definition 2.1. Let M be a manifold of dimension 2n+ 1. A contact structure is a
maximally nonintegrable hyperplane field ξ = kerα ⊂ TM .

Remark 2.2. The kernel of a 1-form α on M2n+1, ξ = kerα, is a contact structure
whenever

α∧ (dα)n 6= 0,

which is equivalent to the condition that dα be nondegenerate on ξ .

Note that the contact structure is unaffected when we multiply the contact form α

by any positive or negative function on M . We say that two contact structures
ξ0 = kerα0 and ξ1 = kerα1 on a manifold M are contactomorphic whenever there
is a diffeomorphism ψ : M→ M such that ψ sends ξ0 to ξ1,

ψ∗(ξ0)= ξ1.

If a diffeomorphism ψ : M→ M is in fact a contactomorphism then there exists a
nonzero function g : M→ R such that ψ∗α1 = gα0. Finding an explicit contacto-
morphism often proves to be a rather difficult and messy task, but an application of
Moser’s argument yields Gray’s stability theorem, which essentially states that there
are no nontrivial deformations of contact structures on a fixed closed manifold.
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First we give the statement of Moser’s theorem, which says that one cannot vary
a symplectic structure by perturbing it within its cohomology class. Recall that a
symplectic structure on a smooth manifold W 2n is a nondegenerate closed 2-form
ω ∈�2(W ).

Theorem 2.3 (Moser’s theorem, [McDuff and Salamon 1998, Theorem 3.17]). Let
W be a closed manifold and suppose that ωt is a smooth family of cohomologous
symplectic forms on W . Then there is a family of diffeomorphisms9t of W such that

90 = id, ψ∗t ωt = ω0.

The aforementioned contact analogue of Moser’s theorem is Gray’s stability
theorem, stated formally below.

Theorem 2.4 (Gray’s stability theorem, [Geiges 2008, Theorem 2.2.2]). Let ξt ,
t ∈ [0, 1], be a smooth family of contact structures on a closed manifold V . Then
there is an isotopy (ψt)t∈[0,1] of V such that

ψt∗(ξ0)= ξt for each t ∈ [0, 1].

Next we give the most basic example of a contact structure.

Example 2.5. Consider R2n+1with coordinates (x1,y1,...,xn,yn,z) and the 1-form

α = dz+
n∑

j=1

x j dy j .

Then α is a contact form for R2n+1. The contact structure ξ = kerα is called the
standard contact structure on R2n+1.

As in symplectic geometry, a variant of Darboux’s theorem holds. This states
that locally all contact structures are diffeomorphic to the standard contact structure
on R2n+1.

A contact form gives rise to a unique Hamiltonian-like vector field as follows.

Definition 2.6. For any contact manifold (M, ξ = kerα) the Reeb vector field Rα
is defined to be the unique vector field determined by α,

ι(Rα)dα = 0, α(Rα)= 1.

We define the Reeb flow of Rα by ϕt : M→ M, ϕ̇t = Rα(ϕt).

The first condition says that Rα points along the unique null direction of the
form dα and the second condition normalizes Rα. Because

LRαα = dιRαα+ ιRαdα,
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the flow of Rα preserves the form α and hence the contact structure ξ . Note that
if one chooses a different contact form f α, the corresponding vector field R f α is
very different from Rα, and its flow may have quite different properties.

A Reeb orbit γ of period T associated to Rα is defined to be a path γ :R/T Z→M
given by an integral curve of Rα. That is,

dγ
dt
= Rα ◦ γ (t), γ (0)= γ (T ).

Two Reeb orbits
γ1, γ0 : R/T Z→ M

are considered equivalent if they differ by reparametrization, i.e., precomposition
with a translation of R/T Z.

The N -fold cover γ N is defined to be the composition of γ± with R/N T Z→

R/T Z. A simple Reeb orbit is one such that γ : R/T Z→ M is injective.

Remark 2.7. Since Reeb vector fields are autonomous, the terminology “simple
Reeb orbit γ ” refers to the entire equivalence class of orbits, and likewise for its
iterates.

A Reeb orbit γ is said to be nondegenerate whenever the linearized return map

d(ϕT )γ (0) : ξγ (0)→ ξγ (T )=γ (0)

has no eigenvalue equal to 1. A nondegenerate contact form is one whose Reeb
orbits are all nondegenerate and hence isolated. Note that since the Reeb flow
preserves the contact structure, the linearized return map is symplectic.

Next we briefly review the canonical contact form on S3 and its Reeb dynamics.

Example 2.8 (canonical Reeb dynamics on the 3-sphere). If we define the function
f : R4

→ R,
f (x1, y1, x2, y2)= x2

1 + y2
1 + x2

2 + y2
2 ,

then S3
= f −1(1). Recall that the canonical contact form on S3

⊂R4 is given to be

λ0 := −
1
2 d f ◦ J = (x1dy1− y1dx1+ x2dy2− y2dx2)|S3 . (2-1)

The Reeb vector field is given by

Rλ0 =

(
x1

∂

∂y1
− y1

∂

∂x1
+ x2

∂

∂y2
− y2

∂

∂x2

)
= (−y1, x1,−y2, x2). (2-2)

Equivalently we may reformulate these using complex coordinates by identifying
R4 with C2 via

u = x1+ iy1, v = x2+ iy2.
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We obtain
λ0 =

1
2 i(udū− ūdu+ vd v̄− v̄dv)|S3,

and

Rλ0 = i
(

u
∂

∂u
− ū

∂

∂ ū
+ v

∂

∂v
− v̄

∂

∂v̄

)
= (iu, iv).

(2-3)

The second expression for Rλ0 follows from (2-2) since iu = (−y1, x1) and iv =
(−y2, x2).

To see that the orbits of Rλ0 define the fibers of the Hopf fibration, recall that a
fiber through a point

(u, v)= (x1+ iy1, x2+ iy2) ∈ S3
⊂ C2

can be parameterized as

ϕ(t)= (ei t u, ei tv), t ∈ R. (2-4)

We compute the time derivative of the fiber

ϕ̇(0)= (iu, iv)= (i x1− y1, i x2− y2).

Expressed as a real vector field on R4, which is tangent to S3, this is the Reeb
vector field Rλ0 as it appears in (2-3), so the Reeb flow does indeed define the Hopf
fibration.

2B. Hypersurfaces of contact type. Another notion that we need from symplectic
and contact geometry is that of a hypersurface of contact type in a symplectic
manifold. The following notion of a Liouville vector field allows us to define
hypersurfaces of contact type. Liouville vector fields will be used to understand the
Reeb dynamics of the nondegenerate contact form α1 as well as to construct the
contactomorphism between (L An , ξ0) and (L(n+ 1, n), ξstd).

Definition 2.9. A Liouville vector field Y on a symplectic manifold (W, ω) is a
vector field satisfying

LYω = ω.

The flow ψt of such a vector field is conformal symplectic, i.e., ψ∗t (ω)= etω. The
flow of these fields is volume expanding, so such fields may only exist locally on
compact manifolds.

Whenever there exists a Liouville vector field Y defined in a neighborhood of
a compact hypersurface Q of (W, ω), which is transverse to Q, we can define a
contact 1-form on Q by

α := ιYω.
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Proposition 2.10 [McDuff and Salamon 1998, Proposition 3.58]. Let (W, ω) be a
symplectic manifold and Q ⊂W a compact hypersurface. Then the following are
equivalent:

(i) There exists a contact form α on Q such that dα = ω|Q .

(ii) There exists a Liouville vector field Y :U→ T W defined in a neighborhood U
of Q, which is transverse to Q.

If these conditions are satisfied then Q is said to be of contact type.

We will need the following application of Gray’s stability theorem to hypersur-
faces of contact type to prove Theorem 1.8 in Section 4.

Lemma 2.11 [Geiges 2008, Lemma 2.1.5]. Let Y be a Liouville vector field on a
symplectic manifold (W, ω). Suppose that M1 and M2 are hypersurfaces of contact
type in W . Assume that there is a smooth function

h :W → R (2-5)

such that the time-1 map of the flow of hY is a diffeomorphism from M1 to M2.
Then this diffeomorphism is in fact a contactomorphism from (M1, ker ιYω|TM1) to
(M2, ker ιYω|TM2).

2C. Symplectization. The symplectization of a contact manifold is an important
notion in defining Floer-theoretic theories like symplectic and contact homology. It
will also be used in our calculation of the Conley–Zehnder index. Let (M, ξ =kerα)
be a contact manifold. The symplectization of (M, ξ = kerα) is given by the
manifold R×M and symplectic form

ω = et(dα−α∧ dt)= d(etα).

Here t is the coordinate on R, and it should be noted that α is interpreted as a 1-form
on R×M , as we identify α with its pullback under the projection R×M→ M .

Any contact structure ξ may be equipped with a complex structure J such that
(ξ, J ) is a complex vector bundle. This set is nonempty and contractible. There is a
unique canonical extension of the almost complex structure J on ξ to an R-invariant
almost complex structure J̃ on T (R×M), whose existence is due to the splitting,

T (R×M)= R
∂

∂t
⊕RRα ⊕ ξ. (2-6)

Definition 2.12 (canonical extension of J to J̃ on T (R× M)). Let [a, b; v] be
a tangent vector where a, b ∈ R and v ∈ ξ . We can extend J : ξ → ξ to J̃ :
T (R×M)→ T (R×M) by

J̃ [a, b; v] = [−b, a, Jv].
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Thus J̃ |ξ = J and J̃ acts on R∂/∂t ⊕RRα in the same manner as multiplication
by i acts on C, namely J∂/∂t = Rα.

2D. The Conley–Zehnder index. The Conley–Zehnder index µC Z is a Maslov
index for arcs of symplectic matrices which assigns an integer µC Z (8) to every
path of symplectic matrices 8 : [0, T ] → Sp(n), with 8(0)= 1. In order to ensure
that the Conley–Zehnder index assigns the same integer to homotopic arcs, one must
also stipulate that 1 is not an eigenvalue of the endpoint of this path of matrices, i.e.,
det(1−8(T )) 6= 0. We define the following set of continuous paths of symplectic
matrices that start at the identity and end on a symplectic matrix that does not have
1 as an eigenvalue:

6∗(n)={8 :[0, T ]→Sp(2n) :8 is continuous,8(0)=1, and det(1−8(T )) 6=0}.

The Conley–Zehnder index is a functor satisfying the following properties, and
is uniquely determined by the homotopy, loop, and signature properties.

Theorem 2.13 [Robbin and Salamon 1993, Theorem 2.3, Remark 5.4; Gutt 2014,
Theorem 2, Propositions 8 and 9]. There exists a unique functor µC Z called the
Conley–Zehnder index that assigns the same integer to all homotopic paths 9
in 6∗(n),

µC Z :6
∗(n)→ Z,

such that the following hold:

(1) Homotopy: The Conley–Zehnder index is constant on the connected compo-
nents of 6∗(n).

(2) Naturalization: For any paths 8,9 : [0, 1] → Sp(2n),

µC Z (898
−1)= µC Z (9).

(3) Zero: If 9(t) ∈ 6∗(n) has no eigenvalues on the unit circle for t > 0, then
µC Z (9)= 0.

(4) Product: If n= n′+n′′, identify Sp(2n′)⊕Sp(2n′′) with a subgroup of Sp(2n)
in the obvious way. For 9 ′ ∈ 6∗(n′) and 9 ′′ ∈ 6∗(n′′), we have µC Z (9

′
⊕

9 ′′)= µC Z (9
′)+µC Z (9

′′).

(5) Loop: If 8 is a loop at 1, then µC Z (89)= µC Z (9)+2µ(8), where µ is the
Maslov Index.

(6) Signature: If S ∈ M(2n) is a symmetric matrix with ‖S‖ < 2π and 9(t) =
exp(J0St), then µC Z (9)=

1
2 sgn(S).

The linearized Reeb flow of γ yields a path of symplectic matrices

d(ϕt)γ (0) : ξγ (0)→ ξγ (t)=γ (0)
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for t ∈ [0, T ], where T is the period of γ .
Thus we can compute the Conley–Zehnder index of dϕt , t ∈ [0, T ]. This index

is typically dependent on the choice of trivialization τ of ξ along γ which was used
in linearizing the Reeb flow. However, if c1(ξ ;Z)= 0 we can use the existence of
an (almost) complex volume form on the symplectization to obtain a global means
of linearizing the flow of the Reeb vector field. The choice of a complex volume
form is parametrized by H 1(R× M;Z), so an absolute integral grading is only
determined up to the choice of volume form. See [Nelson ≥ 2017, §1.1.1].

We define

µτC Z (γ ) := µC Z ({dϕt }|t∈[0,T ]).

In the case at hand we will be able to work in the ambient space of (C3, J0), and
use a canonical trivialization of C3.

2E. The canonical contact structure on Brieskorn manifolds. The An link is an
example of a Brieskorn manifold, which are defined generally by

6(a)=
{
(z0, . . . , zm) ∈ Cm+1

∣∣∣ f :=
m∑

j=0

za j
j = 0, a j ∈ Z>0 and

m∑
j=0

|z j |
2
= 1

}
.

The link of the An singularity after a linear change of variables is 6(n+ 1, 2, 2)
for n > 3; see (3-1). Brieskorn gave a necessary and sufficient condition on a
for 6(a) to be a topological sphere, and means to show when these yield exotic
differentiable structures on the topological (2n− 1)-sphere in [Brieskorn 1966]. A
standard calculus argument [Geiges 2008, Lemma 7.1.1] shows that 6(a) is always
a smooth manifold.

In the mid 1970s, Brieskorn manifolds were found to admit a canonical contact
structure, given by their set of complex tangencies,

ξ0 = T6 ∩ J0(T6),

where J0 is the standard complex structure on Cm+1. The contact structure ξ0 can
be expressed as ξ0 = kerα0 for the canonical 1-form

α0 := (−dρ ◦ J0)|6 =
i
4

( m∑
j=0

(z j dz j − z j dz j )

)∣∣∣∣
6

,

where ρ = (‖z‖2 − 1)/4. A proof of this fact may be found in [Geiges 2008,
Theorem 7.1.2]. The Reeb dynamics associated to α0 are difficult to understand.
There is a more convenient contact form α1 constructed by Ustilovsky [1999,
Lemma 4.1.2] via the following family.
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Proposition 2.14 [Geiges 2008, Proposition 7.1.4]. The 1-form

αt =
i
4

m∑
j=0

1
1− t + t/a j

(z j dz j − z j dz j )

is a contact form on 6(a) for each t ∈ [0, 1].

Via Gray’s stability theorem we obtain the following corollary.

Corollary 2.15. For all t ∈ (0, 1], the contact manifold (6(a), kerα0) is contacto-
morphic to (6(a), kerαt).

Next, the Reeb dynamics associated to α1 =
1
4 i
∑m

j=0 a j (z j dz j − z j dz j ) are
computed.

Remark 2.16. While α1 is degenerate, one can still easily check that the Reeb
vector field associated to α1 is given by

Rα1 = 2i
m∑

j=0

1
a j

(
z j

∂

∂z j
− z j

∂

∂z j

)
= 2i

(
z0

a0
, . . . ,

zm

am

)
.

Indeed, one computes

d f (Rα1)= f (z) and dρ(Rα1)= 0.

This shows that Rα1 is tangent to 6(a). The defining equations for the Reeb vector
field are satisfied since

α1(Rα1)≡ 1 and ιRα1
dα1 =−dρ,

with the latter form being zero on the Tp6(a). The flow of Rα1 is given by

ϕt(z0, . . . , zm)= (e2i t/a0, . . . , e2i t/am ).

All the orbits of the Reeb flow are closed, and the flow defines an effective S1-action
on 6(a).

In the next section we perturb α1 to a nondegenerate contact form.

3. Proof of Theorem 1.1

3A. Constructing a nondegenerate contact form. Here, we adapt a method used
by Ustilovsky [1999, §4] to obtain a nondegenerate contact form αε on L An whose
kernel is contactomorphic to ξ0. Ustilovsky’s methods yielded a nondegenerate
contact form on Brieskorn manifolds of the form 6(p, 2, . . . , 2), which are diffeo-
morphic to S4m+1.
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We define the change of coordinates to go from 6(n + 1, 2, 2) with defining
function f = zn+1

0 + z2
1+ z2

2 to L An with defining function f An = w
n+1
0 + 2w1w2:

9(w0, w1, w2)=
(
w0︸︷︷︸
:=z0

,
√

2
2 (w1+w2)︸ ︷︷ ︸
:=z1

,
√

2
2 (−iw1+ iw2)︸ ︷︷ ︸

:=z2

)
. (3-1)

We obtain

9∗ f (z0, z1, z2)= w
n+1
0 + 2w1w2. (3-2)

Then the pull-back of

α1

2
=

i
8

m∑
j=0

a j (z j dz j − z j dz j )

is given by

9∗α1
2
=
(n+1)i

8
(w0dw0−w0dw0)+

i
4
(w1dw1−w1dw1+w2dw2−w2dw2).

We now construct the Hamiltonian function

H(w)= |w|2+ ε(|w1|
2
− |w2|

2).

We choose 0< ε < 1 such that H(w) is positive on S5, and define the contact form

αε =9
∗α1/(2H). (3-3)

Remark 3.1. The above shows that (6(n+ 1, 2, 2), kerα1) is contactomorphic to
(9(6(n+ 1, 2, 2)), kerαε). Moreover L An = 9(6(n+ 1, 2, 2)), where L An was
defined in (1-1).

Proposition 3.2. The Reeb vector field for αε is

Rαε =
4i

n+1
w0

∂

∂w0
−

4i
n+1

w0
∂

∂w0
+ 2i(1+ ε)

(
w1

∂

∂w1
−w1

∂

∂w1

)
+ 2i(1− ε)

(
w2

∂

∂w2
−w2

∂

∂w2 j

)
=

(
4i

n+1
w0, 2i(1+ ε)w1, 2i(1− ε)w2

)
. (3-4)

Remark 3.3. The second formulation of the Reeb vector field is equivalent to
the first in the above proposition via the standard identification of R4 with C2, as
explained in Example 2.8, (2-3).

Before proving Proposition 3.2 we need the following lemma.
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Lemma 3.4. On C3, the vector field

X (w)= 1
2

( 2∑
j=0

w j
∂

∂w j
+w j

∂

∂w j

)
(3-5)

is a Liouville vector field for the symplectic form

ω1 =
d(9∗α1)

2
=

i(n+ 1)
4

dw0 ∧ dw0+
i
2

2∑
j=1

dw j ∧ dw j .

The Hamiltonian vector field X H of H with respect to ω1 is −Rαε , as in (3-4).

Proof. Recall that the condition to be a Liouville vector field is LXω1 = ω1. We
show this with Cartan’s formula, given as

LXω1 = ιX dω1+ d(ιXω1)

= d(ιXω1).

We do the explicit calculation for the first term and the rest easily follows:

d
(

i(n+1)
4

dω0∧dω0

(
1
2

(
w0

∂

∂w0
+w0

∂

∂w0

)
, ·

))
= d

(
i(n+1)

8
w0dw0−w0dw0

)
=

i(n+1)
8

(dw0∧dw0−dw0∧dw0)

=
i(n+1)

4
dw0∧dw0,

so X (w) is indeed a Liouville vector field for ω1.
Next we prove that ω1(−Rαε , · )= d H( · ). First we calculate d H :

d H =
( 2∑

j=0

w j dw j +w j dw j

)
+ ε(w1dw1+w1dw1−w2dw2−w2dw2).

Then we compare the coefficients of d H to the coefficients of ω1(−Rαε , · ) associ-
ated to each term, (dwi ∧ dwi ). The (dw0 ∧ dw0) term is

i(n+ 1)
4

dw0 ∧ dw0

(
−

4i
n+ 1

w0
∂

∂w0
+

4i
n+ 1

w0
∂

∂w0
, ·

)
=

i(n+ 1)
4

(
−

4i
n+ 1

w0dw0−
4i

n+ 1
w0dw0

)
= w0dw0+w0dw0.
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The (dw1 ∧ dw1) term is

1
2 idw1 ∧ dw1

(
−2i(1+ ε)w1

∂

∂w1
+ 2i(1+ ε)w1

∂

∂w1

)
=

1
2 i(−2i(1+ ε)w1dw1− 2i(1+ ε)w1dw1)

= (1+ ε)w1dw1+ (1+ ε)w1dw1.

The (dw2 ∧ dw2) term is obtained in a similar way. Summing the terms yields
ω1(−Rαε , · )= d H( · ). �

Proof of Proposition 3.2. First we show that X H = −Rαε is tangent to the link
9(6(n+ 1, 2, 2)). We compute

(9∗d f )(Rαε )= ((n+ 1)wn
0 dw0+ 2w1dw2+ 2w2dw1)(Rαε )

= 4iwn+1
0 + 4i(1− ε)w1w2+ 4i(1+ ε)w1w2

= 4i(9∗ f )

= 0.

The last equality is because 9∗ f is constant along 9(6(n + 1, 2, 2)). Now we
have to show that 1

29
∗α1(X H )=−H . We have

1
29
∗α1( · )= ιXω1( · )= ω1(X (w), · )=−ω( · , X (w)),

1
29
∗α1(X H )=−ω(X H , X (w))=−d H(X (w))

=−|w|2− ε(|w1|
2
− |w2|

2)

=−H.

From these, we conclude

αε(X H )=−
1
H

H =−1,

dαε(X H , · )=−
1

2H 2 (d H∧9∗α1)(X H , · )+
1

2H
d9∗α1(X H , · )

=−
1

2H 2 d H(X H )9
∗α1( · )+

1
2H 29

∗α1(X H )d H( · )+
1
H
ω(X H , · )

=−
1

2H 2ω1(X H , X H )9
∗α1( · )−

1
H

d H( · )+
1
H

d H( · )

= 0.

By Lemma 3.4, we know −X H = Rαε so the result follows. �

3B. Isolated Reeb orbits. In this short section, we prove the following proposition.
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Proposition 3.5. The only simple periodic Reeb orbits of Rαε are nondegenerate
and defined by

γ+(t)= (0, e2i(1+ε)t , 0), 0≤ t ≤ π/(1+ ε),

γ−(t)= (0, 0, e2i(1−ε)t), 0≤ t ≤ π/(1+ ε).

Proof. The flow of

Rαε =
(

4i
n+ 1

w0, 2i(1+ ε)w1, 2i(1− ε)w2

)
is given by

ϕt(w0, w1, w2)=

(
e4i t/(n+1)w0, e2i(1+ε)tw1, e2i(1−ε)tw2

)
.

Since ε is small and irrational, the only possible periodic trajectories are

γ0(t)= (e4i/(n+1)t , 0, 0),

γ+(t)= (0, e2i(1+ε)t , 0),

γ−(t)= (0, 0, e2i(1−ε)t).

It is important to note that the first trajectory does not lie in 9(6(n+ 1, 2, 2)),
but rather on the total space C3. This is because the point γ0(0)= (1, 0, 0) is not a
zero of f An = w

n+1
0 + 2w1w2.

Next we need to check that the linearized return maps dφ|ξ associated to γ+ and
γ− have no eigenvalues equal to 1. We consider the first orbit γ+ of period π/(1+ε),
as a similar argument applies to the return flow associated to γ−. The differential
of its total return map is

dϕT =

e4iT/(n+1) 0 0
0 1 0
0 0 e2i(1−ε)T


∣∣∣∣∣∣∣
T=π/(1+ε)

.

Since ε is a small irrational number, the total return map only has one eigenvalue
which is 1. The eigenvector associated to the eigenvalue which is 1 is in the
direction of the Reeb orbit γ+, but since we are restricting the return map to ξ , we
can conclude that γ+ is nondegenerate. �

3C. Computation of the Conley–Zehnder index. To compute the Conley–Zehnder
indices of the Reeb orbits in Theorem 1.1 we use the same method as shown in
[Ustilovsky 1999], extending the Reeb flow to give rise to a symplectomorphism
of C3

\ {0}. This permits us to do the computations in C3, equipped with the
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symplectic form

ω1 =
d(9∗α1)

2
=

i(n+ 1)
4

dw0 ∧ dw0+
i
2

2∑
j=1

dw j ∧ dw j .

We may equip the contact structure ξ0 with the symplectic form ω = dα1 instead
of dαε when computing the Conley–Zehnder indices. This is because kerαε =
kerα1 = ξ0, as αε = (1/H)α1 with H > 0 and because ω|ξ = Hdαε |ξ and H is
constant along Reeb trajectories.

Our first proposition shows that we can construct a standard symplectic basis for
the symplectic complement

ξω = {v ∈ C3
: ω(v,w)= 0 for all w ∈ ξ}

of ξ in C3. As a result, c1(ξ
ω) = 0. Since c1(C

3) = 0, we know c1(ξ) = 0. Thus
we may compute the Conley–Zehnder indices in the ambient space C3 and use
additivity of the Conley–Zehnder index under direct sums of symplectic paths to
compute it in ξ .

Proposition 3.6. There exists a standard symplectic basis for the symplectic com-
plement ξω with respect to ω = dα1.

Proof. Notice that ξω = span(X1, Y1, X2, Y2), where

X1 = (w
n
0, w1, w2), Y1 = i X1,

X2 = Rε, Y2 = w.

We make this into a symplectic standard basis for ξω via a Gram–Schmidt process.
The new basis is given by

X̃1 =
X1

√
ω(X1, Y2)

, Ỹ1 =
Y1

√
ω(X1, Y1)

= i X̃1,

X̃2 = X2, Ỹ2 = Y2−
ω(X1, Y2)Y1−ω(Y1, Y2)X1

ω(X1, Y1)

= Y2−
n− 1

2
wn+1

0 w(X1, Y1)X1.

This is a standard basis for the symplectic vector space ξω; i.e., the form ω in this
basis is given by 

(
0 1
1 0

)
(

0 1
1 0

)
 . �

Now we are ready to prove the Conley–Zehnder index formula in Theorem 1.1.
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Proposition 3.7. The Conley–Zehnder index for γ = γ N
±

in 0≤ t ≤ Nπ/(1± ε) is

µC Z (γ
N
±
)= 2

(⌊
2N

(n+1)(1±ε)

⌋
+

⌊
N (1∓ε)

1±ε

⌋
−

⌊
2N

1±ε

⌋)
+ 2N + 1. (3-6)

Proof. The Reeb flow ϕ which we introduced in the previous section can be extended
to a flow on C3, which we also denote by ϕ. The action of the extended Reeb flow
on C3 is given by

dϕt(w)X̃1 = e4i t X̃1(ϕt(w)), dϕt(w)Ỹ1 = e4i t Ỹ1(ϕt(w)),

dϕt(w)X̃2 = X̃2(ϕt(w)), dϕt(w)Ỹ2 = Ỹ2(ϕt(w)).

Define
8 := dϕt |C3 = diag(e4i/(n+1)t , e2i(1+ε)t , e2i(1−ε)t).

We can now use the additivity of the Conley–Zehnder index under direct sums of
symplectic paths, Theorem 2.13(4) to get

µC Z (γ±)= µC Z (8)−µC Z (8ξω),

where
8ξω := dϕt |ξω = diag(e4i t , 1). (3-7)

The right-hand side of (3-7) is easily computed via the crossing form; see [Robbin
and Salamon 1993, Remark 5.4]. In particular we have

µC Z
(
{ei t
}|t∈[0,T ]

)
=

{
T/π, T ∈ 2πZ,

2bT/2πc+ 1, otherwise.

Thus for {8(t)} = {e4i t/(n+1)
⊕ e2i t (1+ε)

⊕ e2i t (1−ε)
} with 0≤ t ≤ T we obtain

µC Z (8)=

{
4T/((n+ 1)π), T ∈ 1

2(n+ 1)πZ,

2
⌊

2T/((n+ 1)π)
⌋
+ 1, T /∈ 1

2(n+ 1)πZ,

+

{
2T (1+ ε)/π, T ∈ π/(1+ ε)Z,
2
⌊

T (1+ ε)/π
⌋
+ 1, T /∈ π/(1+ ε)Z,

+

{
2T (1− ε)/π, T ∈ π/(1− ε)Z,
2
⌊

T (1− ε)/π
⌋
+ 1, T /∈ π/(1− ε)Z.

Likewise for 8ξω with 0≤ t ≤ T we obtain

µC Z (8ξω)=

{
4T/π, T ∈ π/2Z,

2b2T/πc+ 1, T /∈ π/2Z.

Hence we get that the Conley–Zehnder index for γ N
±

in 0 ≤ t ≤ Nπ/(1± ε) is
given by

µC Z (γ
N
±
)= 2

(⌊
2N

(n+1)(1±ε)

⌋
+

⌊
N (1∓ε)

1±ε

⌋
−

⌊
2N

1±ε

⌋)
+ 2N + 1. (3-8)
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This completes the proof. �

4. Proof of Theorem 1.8

This section proves that (L An , ξ0) and (L(n+1, n), ξstd) are contactomorphic. This
is done by constructing a 1-parameter family of contact manifolds via a canonically
defined Liouville vector field and applying Gray’s stability theorem.

4A. Contact geometry of (L(n + 1, n), ξstd). The lens space L(n + 1, n) is ob-
tained via the quotient of S3 by the binary cyclic subgroup An ⊂ SL(2,C). The
subgroup An is given by the action of Zn+1 on C2 defined by(

u
v

)
7→

(
e2π i/(n+1) 0

0 e2nπ i/(n+1)

)(
u
v

)
.

The following exercise shows that L(n+ 1, n) is homeomorphic to L An . This
construction will be needed later in another proof, so we explain it here to set up
the notation.

The origin is the only fixed point of the An action on C2 and hence is an isolated
quotient singularity of C2/An . We can represent C2/An as a hypersurface of C3 as
follows. Consider the monomials

z0 := uv, z1 :=
1
√

2
iun+1, z2 :=

1
√

2
ivn+1.

These are invariant under the action of An and satisfy the equation zn+1
0 +2z1z2= 0.

Recall that

f An (z0, z1, z2)= zn+1
0 + 2z1z2 and L An = S5

∩ { f −1
An
(0)}.

Moreover,
ϕ̃ : C2

→ C3,

(u, v) 7→ (uv, 1
√

2
iun+1, 1

√
2
ivn+1),

(4-1)

descends to the map
ϕ : C2/An→ C3,

which sends ϕ(C2/An) homeomorphically onto the hypersurface f −1
An
(0).

Rescaling away from the origin of C3 yields a homeomorphism between ϕ(S3/An)

and L An . As 3-manifolds which are homeomorphic are also diffeomorphic [Moise
1952], we obtain the following proposition.

Proposition 4.1. L(n+ 1, n) is diffeomorphic to L An .

Remark 4.2. In order to prove that two manifolds are contactomorphic, one must
either construct an explicit diffeomorphism or make use of Gray’s stability theorem.
Sadly, ϕ is not a diffeomorphism onto its image when u = 0 or v = 0. As the above
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diffeomorphism is only known to exist abstractly, we will need to appeal the latter
method to prove that (L An , ξ0) and (L(n+ 1, n), ξstd) are contactomorphic. As a
result, this proof is rather involved.

Our application of Gray’s stability theorem uses the flow of a Liouville vector
field to construct a 1-parameter family of contactomorphisms. First we prove that
L(n+1, n) is a contact manifold whose contact structure descends from the quotient
of S3.

Consider the standard symplectic form on C2 given by

ωC2 = dλC2,

λC2 =
1
2 i(udū− ūdu+ vd v̄− v̄dv).

(4-2)

The following proposition shows that λ0 restricts to a contact form on L(n+ 1, n).
We define ker λ= ξstd on L(n+ 1, n).

Proposition 4.3. The vector field

Y0 =
1
2

(
u
∂

∂u
+ ū

∂

ū
+ v

∂

∂v
+ v̄

∂

v̄

)
is a Liouville vector field on (C2/An, ωC2) away from the origin and transverse to
L(n+ 1, n).

Proof. We have that C2/An is a smooth manifold away from the origin because 0
is the only fixed point by the action of An . Write

S3/An = {(u, v) ∈ C2/An : |u|2+ |v|2 = 1}.

Then L(n+ 1, n)= S3/An is a regular level set of g(u, v)= |u|2+ |v|2 Choose a
Riemannian metric on C2/An and note that

Y0 =
1
4∇g.

Thus Y0 is transverse to L(n+ 1, n). Since

LY0ωC2 = d(iY0dλC2)= ωC2,

we may conclude that Y0 is indeed a Liouville vector field on (C2/An, ωC2) away
from the origin. Thus by Proposition 2.10, L(n+ 1, n) is a hypersurface of contact
type in C2/An . �

4B. The proof that (L An, ξ0) and (L(n + 1, n), ξstd) are contactomorphic. First
we set up L An and ϕ(L(n+1, n)) as hypersurfaces of contact type in { f −1

An
(0)}\{0}.

Define ρ : C3
→ R by

ρ(z)= 1
4 |z|

2
− 1= 1

4 z0z0+ · · ·+ z2z2− 1.
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The standard symplectic structure on C3 is given by

ωC3 =
1
2 i(dz0 ∧ dz0+ · · ·+ dz2 ∧ dz2).

Moreover,

Y =∇ρ = 1
2

2∑
j=0

z j
∂

∂z j
+ z j

∂

∂z j
(4-3)

is a Liouville vector field for (C3, ωC3). We define

λC3 = ιYωC3 .

A standard calculation analogous to the proof of Proposition 4.3 shows that Y is a
Liouville vector field on ({ f −1

An
(0)} \ {0}, ωC3).

Remark 4.4. Both ϕ(L(n + 1, n)) and L An are hypersurfaces of contact type in
({ f −1

An
(0)}\{0}, ωC3). Note that ϕ(L(n+1, n)) is in fact transverse to the Liouville

vector field Y because

ϕ(L(n+1, n))= ϕ({|u|2+|v|2 = 1}/An)

= ϕ({|u|4+2|u|2|v|2+|v|4 = 1}/An)

=
{
2|z0|

2
+41/(n+1)

|z1|
4/(n+1)

+41/(n+1)
|z2|

4/(n+1)
= 1

}
∩ f −1

An
(0).

We will want ϕ(L(n+ 1, n)) and L An to be disjoint in { f −1
An
(0)}. This is easily

accomplished by rescaling r in the definition of the link.

Definition 4.5. Define
Lr

An
= f −1

An
(0)∩ S5

r ,

with the assumption that r has been chosen so that ϕ(L(n + 1, n)) and Lr
An

are
disjoint in { f −1

An
(0)} and so that the flow of the Liouville vector field Y “hits”

ϕ(L(n+ 1, n)) before Lr
An

.

The first result is the following lemma, which provides a 1-parameter family of
diffeomorphic manifolds starting on ϕ(L(n+ 1, n)) and ending on Lr

An
. First we

set up some notation. Let
ψt : R× X→ X

be the flow of Y and ψt(z) = γz(t) the unique integral curve passing through
z ∈ ϕ(L(n+ 1, n)) at time t = 0. For any integral curve γ of Y we consider the
initial value problem

γ ′(t)= Y (γ (t)) and γ (0)= z ∈ ϕ(L(n+ 1, n)). (4-4)

By means of the implicit function theorem and the properties of the Liouville vector
field Y we can prove the following claim.
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Lemma 4.6. For every γz , there exists a τ(z) ∈ R>0 such that γz(τ (z)) ∈ Lr
An

. The
choice of τ(z) varies smoothly for each z ∈ ϕ(L(n+ 1, n)).

Proof. In order to apply the implicit function theorem, we must show for all (t, z)
with ρ ◦ γ = 0 that

∂(ρ ◦ γ )

∂t
6= 0.

Note that ρ ◦ γ is smooth. By the chain rule,

∂(ρ ◦ γ )

∂t

∣∣∣∣
(s,p)
= grad ρ|γ (s,p) · γ̇ |(s,p),

where γ̇ |(s,p) = ∂γ /∂t |(s,p).
If grad ρ|γ (s,p) ·γ̇ |(s,p)= 0, then grad ρ is not transverse along {(ρ◦γ ) (s, p)= 0}

or γ̇ |(s,p) = 0, since grad ρ 6= 0. By construction, grad ρ =∇ρ is a Liouville vector
field transverse to Lr

An
. Furthermore, the conformal symplectic nature of a Liouville

vector field implies that for any integral curve γ satisfying the initial value problem
given by (4-4), γ̇ |(s,p) 6= 0. Thus we see that the conditions for the implicit function
theorem are satisfied and our claim is proven. �

Remark 4.7. The time τ(z) can be normalized to 1 for each z, yielding a 1-
parameter family of diffeomorphic contact manifolds (Mt , ζt) for 0≤ t ≤ 1 given by

Mt = ψt
(
ϕ(L(n+ 1, n))

)
, ζt = TMt ∩ JC3(TMt),

where

M0 = ψ0
(
ϕ(L(n+ 1, n))

)
= ϕ(L(n+ 1, n)), M1 = ψ1

(
ϕ(L(n+ 1, n))

)
= L An .

Moreover, we can relate the standard contact structure on L(n+ 1, n) under the
image of ϕ. To avoid excessive parentheses, we use S3/An in place of L(n+ 1, n)
in this lemma.

Lemma 4.8. On ϕ(S3/An),

ϕ∗(ξstd)= T (ϕ(S3/An))∩ JC3
(
T (ϕ(S3/An))

)
.

Proof. Since An ⊂ SL(2,C), we have

ϕ̃(JC2 T S3)= JC3(T ϕ̃(S3)).

Examining ϕ∗(ξstd) yields

ϕ∗(T (S3/An)∩ JC2 T (S3/An))= ϕ̃∗(T S3
∩ JC2(T S3))= ϕ̃∗(T S3)∩ ϕ̃∗(JC2(T S3))

= ϕ̃∗(T S3)∩ JC3 ϕ̃∗(T S3)= T ϕ̃(S3)∩ JC3(T ϕ̃(S3))

= T (ϕ(S3/An))∩ JC3(Tϕ(S3/An)). �
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Lemmas 4.6 and 4.8 in conjunction with Remark 4.7 and Lemma 2.11 yield the
following proposition.

Proposition 4.9. The image of the lens space (ϕ(L(n+ 1, n)), ϕ∗ξstd) is contacto-
morphic to (L An , ξ0).

It remains to show that (ϕ(L(n+ 1, n)), ϕ∗ξstd) and (L(n+ 1, n), ξstd) are con-
tactomorphic. To accomplish this, we use Moser’s lemma to prove the following
lemma.

Lemma 4.10. The manifolds (C2
\ {0}, dλC2) and (C2

\ {0}, dϕ̃∗λC3) are contacto-
morphic.

Proof. Consider the family of 2-forms

ωt = (1− t)ωC2 + t ϕ̃∗ωC3

for 0 ≤ t ≤ 1. Then ωt is exact because Y0 and Y are Liouville vector fields for
C2
\0 equipped with the symplectic forms ωC2 and ωC3 respectively; thus dλt =ωt

for
λt = (1− t)λC2 + t ϕ̃∗(λC3)

for 0≤ t ≤ 1. We claim that λt is a family of contact forms for each t ∈ [0, 1].
We compute

2
i
ϕ̃∗dλC3 = d(uv)∧d(uv)+d(un+1)∧d(ūn+1)+d(vn+1)∧d(v̄n+1)

= ((n+1)2|u|2n
+|v|2)du∧dū+2<(uv̄dv∧dū)

+((n+1)2|v|2n
+|u|2)dv∧d v̄.

Since ωt is exact for each t ∈[0, 1], we know d(ωt)=0 for each t ∈[0, 1]. Moreover,
a simple calculation reveals that ωt ∧ωt is a volume form on C2 for each t ∈ [0, 1].
Thus we may conclude that ωt is a symplectic form for each t ∈ [0, 1]. Applying
Moser’s argument, Theorem 2.3, yields the desired result. �

This yields the desired corollary.

Corollary 4.11. The manifolds (L(n+1, n), ker λC2) and (L(n+1, n), kerϕ∗λC3)

are contactomorphic.

Proof. Let φ : (C2
\ {0}, dλC2) and (C2

\ {0}, dϕ̃∗λC3) be the symplectomorphism,
which exists by Lemma 4.10. It induces the desired contactomorphism. On C2

\{0},

φ∗d(ϕ∗λC3)= dλC2;

thus,
dφ∗(ϕ∗λC3)= dλC2 .

So on L(n+ 1, n),

φ∗(ξstd)= φ∗(ker λC2)= kerϕ∗λC3 = ϕ∗ξstd.
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Proposition 4.9 and Corollary 4.11 complete the proof of Theorem 1.8. �
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