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A loxodrome is a curve that makes a constant angle with the meridians. We use
conformal maps and the notion of parallel transport in differential geometry to
investigate loxodromes on hypersurfaces of revolution and their spiral behavior
near a pole.

1. Introduction

Loxodromes appear historically as mathematical tools in navigation, since they
provide efficient navigation routes from one point to another by making a constant
course angle with the meridians. Even modern technology relies on the ability
to calculate loxodromes [Alexander 2004]. Loxodromes are best understood via
conformal maps, maps that preserve angles locally. For example, the Mercator
projection map is a conformal map under which the meridians and curves of constant
latitude (parallels) are mapped to vertical and horizontal lines. A curve making a
constant angle with vertical lines as it crosses them is itself a straight line; therefore,
the Mercator projection map represents loxodromes as straight lines. As another
example of a conformal map, consider the stereographic projection which maps the
meridians and parallels to lines through the origin (radial lines) and circles centered
at the origin. The curves that make a constant angle with the radial lines are the
well-known logarithmic spirals. In other words, the stereographic projection maps
loxodromes to logarithmic spirals.

The construction of loxodromes on the sphere and oblate-spheroidal surfaces,
which approximate the shape of the earth, has been investigated previously [Bennett
1996; Carlton-Wippern 1992; Smart 1946; Williams 1950]. Spheres and spheroids
are examples of surfaces of revolution that we now define. Let η(t)= (u(t), v(t)),
where t ∈ (a, b), be a curve in the half-plane H = {(x, y, 0) ∈ R3

: y > 0}. By
rotating the profile curve η(t) around the x-axis in R3, one obtains a surface of
revolution parametrized as

x = u(t), y = v(t) cos θ, z = v(t) sin θ, where t ∈ (a, b), θ ∈ [0, 2π).
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The meridians of the surface are the curves of constant θ , while the parallels of the
surface are the curves of constant t . A curve on S is called a loxodrome of S if it
makes a constant angle with the meridians of S as it crosses them.

In Section 2, we derive the parametric equations of loxodromes on a surface of
revolution. We also define a stereographic projection on a given surface of revolution
that maps loxodromes to logarithmic spirals in the plane. Finally, we study the
distances along loxodromes as well as the spiral behavior of loxodromes near a pole.

In Section 3, we consider the case where the profile curve is a Jordan curve (and
so the resulting surface of revolution is a torus). In particular, we study closed
loxodromes and their density in the set of all loxodromes. We also show that
loxodromes are geodesics in a suitable metric on the surface.

Hypersurfaces of revolution are important and interesting geometric objects,
and they have been studied extensively by geometers [Coll and Harrison 2013;
do Carmo and Dajczer 1983; Zhang 2012]. In Section 4, we give a definition of
loxodromes on hypersurfaces of revolution. As an example, we also find parametric
equations of loxodromes on higher-dimensional spheres.

2. The loxodrome equation

Suppose that the profile curve of a surface of revolution S is given by y = f (x),
where f (x) is a differentiable function on the interval (a, b)⊆R such that f (x)> 0
for all x ∈ (a, b). Then S is parametrized by the cylindrical map

r(x, θ)= 〈x, f (x) cos θ, f (x) sin θ〉.

Let
γ (x)= 〈x, f (x) cos θ(x), f (x) sin θ(x)〉

be a loxodrome that makes a constant angle ψ0 with the meridians. The tangent
vector to the meridian r(x, θ), where θ is constant, is given by

a = ∂

∂x
r(x, θ)= 〈1, f ′(x) cos θ, f ′(x) sin θ〉,

while the tangent vector to γ at x ∈ (a, b) is given by

b= d
dx
γ (x)=

〈
1, f ′(x) cos θ − f (x)θ ′(x) sin θ, f ′(x) sin θ + f (x)θ ′(x) cos θ

〉
.

The constant-angle constraint gives (a · b)2 = ‖a‖2‖b‖2 cos2(ψ0), which yields

1+ ( f ′(x))2 =
(
1+ ( f ′(x))2+ ( f (x)θ ′(x))2

)
cos2(ψ0).

After solving for θ ′(x) and integrating, one has

θ(x)= tan(ψ0)A(x), (2-1)
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where

A(x)=
∫ x

c

√
1+ ( f ′(x))2

f (x)
dx +C, (2-2)

with constants c ∈ (a, b) and C ∈ R.

2.1. The conformal stereographic projection. The stereographic projection on the
sphere has the property that it is conformal and it maps meridians and parallels
to lines through the origin and circles centered at the origin respectively. We now
describe a map with the same properties on the surface of revolution S with the
profile curve y = f (x). Let

L(r, s)= 〈ln(r2
+ s2), arctan(s/r)〉

and
F(x, θ)= 〈A−1(x), f (A−1(x)) cos θ, f (A−1(x)) sin θ〉,

where A(x) is given by (2-2).
We claim that the composition T = F ◦ L is a conformal map from an open

subset of R2 to S. The map L is the logarithmic conformal mapping such that
L−1 maps the horizontal and vertical lines in the (x, θ)-plane to lines through the
origin and circles centered at the origin respectively. The map F is also a conformal
map that maps the horizontal and vertical lines in the (x, θ)-plane to meridians and
parallels on the surface S. To see this, we note that with g(x)= A−1(x), one has

Fx = 〈g′(x), f ′ ◦ g(x)g′(x) cos θ, f ′ ◦ g(x)g′(x) sin θ〉, (2-3)

Fθ = 〈0, − f ◦ g(x) sin θ, f ◦ g(x) cos θ〉. (2-4)
Therefore,[

Fx ·Fx Fx ·Fθ
Fθ ·Fx Fθ ·Fθ

]
=

[
(g′(x))2(1+( f ′ ◦g(x))2) 0

0 ( f ◦g(x))2

]
. (2-5)

For F to be a conformal map from the (x, θ)-plane to the surface of revolution S,
the matrix in (2-5) must be a multiple of the identity matrix. By (2-2), one has

g′(x)= (A−1)′(x)=
1

A′(g(x))
=

f (g(x))√
1+ f ′(g(x))2

,

which implies that the matrix (2-5) is a multiple of identity; hence F is a conformal
map. It follows that T, being a composition of conformal maps, is a conformal map.
Moreover, T−1 maps the meridians and parallels of S to lines through the origin
and circles centered at the origin respectively. Therefore, every loxodrome on S is
mapped under T−1 to a logarithmic spiral in the (r, s)-plane.

A feature of the logarithmic spiral is its infinite spiraling around the origin. We
now study this spiral behavior of loxodromes in more detail.
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Figure 1. Left: spiral at a point. Right: spiral at infinity.

Theorem 1. Let y = f (x) be differentiable on the interval (a, b)⊆ R and suppose
that limx→b− f (x) = 0 or∞. Let γ (x) = (x, f (x) cos θ(x), f (x) sin θ(x)) be a
loxodrome, where θ(x) is given by (2-2) with tan(ψ0) 6= 0. Then

lim
x→b−

θ(x)=±∞, (2-6)

where the plus or minus sign is determined by sign(tan(ψ0)).

Proof. Let c ∈ (a, b). Then

|θ(x)− θ(c)| =
∣∣∣∣tan(ψ0)

∫ x

c

√
1+ ( f ′(x))2

f (x)
dx
∣∣∣∣≥ |tan(ψ0)|

∫ x

c

∣∣∣∣ f ′(x)
f (x)

∣∣∣∣ dx

≥ |tan(ψ0)||ln f (c)− ln f (x)| →∞,

as x→ b−, since limx→b− f (x)= 0 or∞, and in either case |ln f (x)| →∞. �

In the next theorem, we compute distances along loxodromes. We denote the
length of a curve γ by `(γ ) and the length of the graph of a function f by `( f ).

Theorem 2. Let y = f (x) be a differentiable positive function on the interval
(a, b)⊆R, and let γ (x)=〈x, f (x) cos θ(x), f (x) sin θ(x)〉 be a loxodrome, where
θ(x) is given by (2-2). Then

`(γ )= |sec(ψ0)|`( f )= |sec(ψ0)|

∫ b

a

√
1+ ( f ′(x))2 dx . (2-7)

Proof. By (2-1), we have

‖γ ′(x)‖2 = 1+( f ′(x) cos θ− f (x)θ ′(x) sin θ)2+( f ′(x) sin θ+ f (x)θ ′(x) cos θ)2

= 1+( f ′(x))2+( f (x)θ ′(x))2

= 1+( f ′(x))2+tan2(ψ0)(1+( f ′(x))2)

= sec2(ψ0)(1+( f ′(x))2),

which implies (2-7). �
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Figure 2. A toric loxodrome.

3. Loxodromes on the torus

Let C be a simple plane curve parametrized by arc length, C(t) = (x(t), y(t)),
where x(t) and y(t) are differentiable functions of t ∈ (a, b) and y(t) > 0 for all
t ∈ (a, b). Rotating C around the x-axis yields a surface of revolution with the
parametrization

u(t, θ)= 〈x(t), y(t) cos θ, y(t) sin θ〉. (3-1)

Suppose that
η(t)= 〈x(t), y(t) cos θ(t), y(t) sin θ(t)〉

is a loxodrome. A similar calculation to that the previous section implies

θ(t)= tan(ψ0)B(t), (3-2)
where

B(t)=
∫

dt
y(t)

. (3-3)

In the next theorem, we discuss closed loxodromes on surfaces of revolution with
periodic profile curves.

Theorem 3. Let C(t) = 〈x(t), y(t)〉, y(t) > 0, be a simple closed differentiable
curve parametrized by the arc length and with period T > 0, i.e., C(t + T )= C(t)
for all t ∈ R. Let S be the surface of revolution with profile curve C(t). Let η(t) be
a loxodrome on S, making a constant angle ψ0 with the meridians of S. Then η(t)
is a closed curve if and only if

tan(ψ0) ·
1

2π

∫ T

0

dt
y(t)
∈Q. (3-4)

In particular, closed loxodromes on S are dense in the set of all loxodromes. In
addition, if a loxodrome is not closed, then the loxodrome is dense in S.

Proof. Since C is parametrized by arc length, we have from (3-2) that

θ(mT + t)− θ(t)= tan(ψ0)

∫ mT+t

t

dt
y(t)
= m tan(ψ0)

∫ T

0

dt
y(t)

. (3-5)
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For η(t) to be a closed curve, we must have θ(mT + t)− θ(t) = 2nπ for some
integers m, n with m 6= 0. It follows that

m tan(ψ0)

∫ T

0

dt
y(t)
= 2πn,

which is equivalent to (3-4).
The set of angles ψ0 for which (3-4) holds is dense in R, and so the set of periodic

loxodromes is dense among all loxodromes on S.
Next, suppose that η(t) is not closed, and so (3-4) fails. It follows from (3-5) that

θ(mT + t)− θ(t)= 2πmλ, where λ is a fixed irrational number. By Kronecker’s
approximation theorem, the set {2πmλ (mod 2π) : m ∈ Z} is dense in the interval
[0, 2π). Therefore, the set {η(mT + t) : m ∈ Z} is dense in the parallel obtained by
rotating η(t) around the x-axis. In other words, if η intersects a parallel of S then it
is dense in that parallel of S. Since η intersects every parallel of S, we conclude
that η is dense in S. �

The flat metric on the torus has the property that every geodesic (paths that are
locally of shortest length) is either periodic or dense in the torus. This resembles
the property we discussed in Theorem 3 for loxodromes of S. In fact, there exists
a metric on S for which the loxodromes are exactly the geodesics. The metric is
simply the pullback of the Euclidean flat metric on R2 by the map R−1, where

R(s, θ)=
〈
x(B−1(s)), y(B−1(s)) cos θ, y(B−1(s)) sin θ

〉
,

where B(t) is defined by (3-3).

4. Hypersurfaces of revolution

In this section, we give a definition of loxodromes on hypersurfaces of revolution.
Let M be an (n−2)-dimensional submanifold of Rn−1

×{0} ⊆ Rn, and consider a
local parametrization of M

〈x, 0〉 = 〈x1, . . . , xn−1, 0〉 : U→ Rn, (4-1)

where U ⊆ {〈x1, . . . , xn−1, 0〉 : xn−1 > 0} is open. There is a natural embedding of
M ×S1 in Rn defined by

〈x, 0, θ〉 7→ R(x, θ)= 〈x1, . . . , xn−2, xn−1 cos θ, xn−1 sin θ〉. (4-2)

We call this embedded (n−1)-dimensional submanifold S of Rn the hypersurface
of revolution and call M the profile manifold. By the meridians of S we mean the
submanifolds of S given by the images of R(x, θ) for constant θ -values. We denote
the meridians of S by Mθ , where θ ∈ R.
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Let γ : (a, b)→ N be a smooth curve so that

γ (t)=
〈
x1(t), . . . , xn−2(t), xn−1(t) cos θ(t), xn−1(t) sin θ(t)

〉
.

To be a loxodrome on S, we require the curve γ to have the property that its
relative position to the meridians stays constant. We need to be able to compare the
relative position of γ (t) to Mθ(t) for different values of t . To do this, one uses the
isomorphism Mθ→M to bring the position and velocity vectors along γ back on M.
One obtains the curve η(t)= R(γ (t),−θ(t))= 〈x(t), 0〉 on M and the vector field

V (t)= R(γ ′(t),−θ(t))= 〈x′(t), xn−1(t)θ ′(t)〉 (4-3)

along η. Therefore, to compare the relative positions of γ (t) to Mθ(t) at differ-
ent values of t , we instead compare V (t) along η(t) on M at different t-values.
This requires a way of comparing the geometry of M at different points along
the curve η(t), which is exactly what parallel transport along η can do. Let ∇
denote the connection on M induced by the Euclidean metric on Rn. We define a
loxodrome γ (t), where t ∈ (a, b), by the equation

∇η′(t)V (t)= 0 for all t ∈ (a, b).

From (4-3), we have V (t) = η′(t)+ xn−1(t)ψ ′(t) EN , where EN = 〈0, . . . , 0, 1〉,
the unit normal vector to Rn−1

×{0}. It follows that

0=∇η′(t)V (t)=∇η′(t)
(
η′(t)+ xn−1(t)ψ ′(t) EN

)
=∇η′(t)η

′(t)+ d
dt
(xn−1(t)ψ ′(t)) EN + xn−1ψ

′(t)∇η′(t) EN

=∇η′(t)η
′(t)+ d

dt
(xn−1(t)ψ ′(t)) EN ,

which is equivalent to the pair of equations{
∇η′(t)η

′(t)= 0,

ψ ′(t)xn−1(t)= c,
(4-4)

where c is a constant. The first equation in the coupled system (4-4) is the geodesic
equation, and the second equation gives the angle of rotation along the geodesic η.
In other words, each loxodrome on S is obtained by rotating a geodesic of M by
the angle ψ(t)= k

∫
dt/xn−1(t), where k is a constant and xn−1(t) is the (n−1)-th

component of the geodesic. Note that our definition of loxodrome is consistent
with the definition of loxodrome on surfaces, since on a surface η(t)= γ (t) and
the second equation in (4-4) is the same as (3-2).

Example 4. The (n−1)-dimensional sphere Sn−1 is a hypersurface of revolution
with profile manifold Sn−2. To obtain the parametric equations of an arbitrary loxo-
drome on Sn−1, we first need to find the parametric equations of an arbitrary geodesic
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on Sn−2. Geodesics on Sn−2 are the great circles. Each great circle is the intersection
of the sphere with a two-dimensional plane P that passes through the origin. Choose
an orthonormal basis {u, v} in P . Then the great circle S2

∩P can be parametrized as

γ (θ)= u cos θ + v sin θ, 0≤ θ ≤ 2π.

From (4-4), we must have

ψ ′(θ)=
c

un−1 cos θ + vn−1 sin θ
= A · sec(θ + θ0),

where A and θ0 are constants that depend on un−1, vn−1. It follows that

ψ(θ)= A ln|sec(θ + θ0)+ tan(θ + θ0)| + B,

and consequently, the general equation of a loxodrome on S3 is given by

xi (θ)= ui cos θ + vi sin θ, 1≤ i ≤ n− 2,

xn−1(θ)= (un−1 cos θ + vn−1 sin θ) cos
(

A ln|sec(θ + θ0)+ tan(θ + θ0)| + B
)
,

xn(θ)= (un−1 cos θ + vn−1 sin θ) sin
(

A ln|sec(θ + θ0)+ tan(θ + θ0)| + B
)
.
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