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New algorithms for modular inversion and
representation by the form x2

+ 3xy+ y2

Christina Doran, Shen Lu and Barry R. Smith

(Communicated by Filip Saidak)

We observe structure in the sequences of quotients and remainders of the Eu-
clidean algorithm with two families of inputs. Analyzing the remainders, we
obtain new algorithms for computing modular inverses and representing prime
numbers by the binary quadratic form x2

+ 3xy+ y2. The Euclidean algorithm
is commenced with inputs from one of the families, and the first remainder less
than a predetermined size produces the modular inverse or representation.

1. The algorithms

Intuitively, the iterative nature of the Euclidean algorithm makes the sequences of
quotients and remainders “sensitive to initial conditions”. A small perturbation to
the inputs can induce a chain reaction of increasingly large perturbations in the
sequence of quotients and remainders, leading to considerable alterations to both
the lengths of the sequences and their entries. Later entries are especially prone to
change because of cumulative effects.

Our first result, Theorem 8, provides a surprising example of regularity under
perturbation. When v is a solution of the congruence v2

+ v− 1≡ 0 (mod u), we
show that the Euclidean algorithm with u and v− 1 always takes one step fewer
than the Euclidean algorithm with u and v. The sequences of quotients in both cases
are almost identical, differing only in their middle one or two entries. (They are
also symmetric outside of those middle entries.) We also obtain explicit formulas
for the remainders of the Euclidean algorithm with u and v − 1 in terms of the
remainders produced by u and v.

From these formulas we obtain a new algorithm for representing prime numbers
by the indefinite quadratic form x2

+ 3xy+ y2. When such a representation exists,

MSC2010: 11A05.
Keywords: number theory, continued fraction, binary quadratic form, algorithm.
This work was supported by a grant from The Edward H. Arnold and Jeanne Donlevy Arnold Program
for Experiential Education, which supports research experiences for undergraduates at Lebanon Valley
College.
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542 CHRISTINA DORAN, SHEN LU AND BARRY R. SMITH

the algorithm produces one with x > y > 0. Lemma 3 at the end of this section
shows this representation is unique.

Algorithm 1. Let p be a prime number congruent to 1 or 4 modulo 5. To compute
the unique representation p = b2

+ 3bc + c2 with b > c > 0, first compute a
solution v to the congruence v2

+ v− 1≡ 0 (mod p), then perform the Euclidean
algorithm with p and v. The first remainder less than

√
p/5 is c, and the remainder

just preceding is either b or b+ c.

This algorithm is similar to earlier algorithms that use the Euclidean algorithm to
produce representations by binary quadratic forms [Brillhart 1972; Cornacchia 1908;
Hardy et al. 1990a; 1990b; Matthews 2002; Wilker 1980]. Of these, [Matthews
2002] is the only one to produce representations by forms with positive discriminant,
namely, the forms x2

−wy2 with w = 2, 3, 5, 6, or 7. The algorithm we present is
a new contribution to this body of work.

We study a second family of inputs to the Euclidean algorithm, pairs u > v for
which (v±1)2≡ 0 (mod u). This condition implies that there must exist a, b, and c
with u = ab2 and v = abc± 1. Theorems 9 and 10 give an explicit description of
the quotients and remainders of the Euclidean algorithm with u and v in terms of
the quotients and remainders of the Euclidean algorithm with b and c.

The relationship between the quotients of the Euclidean algorithm with b and c
and with ab2 and abc±1 is essentially the “folding lemma” for continued fractions,
first explicated independently in [Mendès France 1973; Shallit 1979]. This lemma
has inspired a significant body of work concerning the quotients of continued
fractions. These works give attention only to continued fractions — the remainders
in the Euclidean algorithm are never explicitly considered. The description of the
entire Euclidean algorithm with ab2 and abc±1 in Theorems 9 and 10 is new. They
are unified by Theorem 11, which arithmetically characterizes the quotient pattern
that will appear in the Euclidean algorithm with u and v when (v±1)2≡ 0 (mod u).

Analysis of the remainders leads to another new algorithm, this time for modular
inversion.

Algorithm 2. If m and n are relatively prime positive integers, then the multiplica-
tive inverse of m modulo n is the first remainder less than n when the Euclidean
algorithm is performed with n2 and mn+ 1.

A similar algorithm was obtained by Seysen [2005]. In his algorithm, an integer f
is arbitrarily chosen with f > 2n, and the Euclidean algorithm is run with f n and
f m + 1. The algorithm is stopped at the first remainder r less than f + n, and
the modular inverse of m modulo n is then r − f (which can be negative). If f
were allowed to equal n, then this would be similar indeed to the algorithm above.
However, Seysen’s algorithm does not work generally in this case. For instance,
with n = 12 and m = 5, Seysen’s algorithm with f = 12 would say to run the
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Euclidean algorithm with 144 and 61, stopping at the first remainder less than 24.
This remainder is 22, and Seysen’s algorithm would output 10, which is not an
inverse for 5 modulo 12. Our algorithm above instead produces the inverse 5.

The inputs to Algorithm 2 are less than half the size of the inputs to Seysen’s.
But Seysen’s algorithm has the flexibility arising from choosing the factor f . It
would be interesting to see if both algorithms can fit in a common framework.

Our results are a new contribution to the literature on algorithmic number theory,
but we believe the modular inversion algorithm also has pedagogical value. Students
are less prone to mistakes working by hand with the new algorithm rather than the
extended Euclidean algorithm or Blankinship’s matrix algorithm [1963]. The new
algorithm might seem nonintuitive, but our proof is elementary and is an amalgam of
topics encountered by a student learning formal reasoning: the Euclidean algorithm,
congruences, and mathematical induction.

We conclude this section with the result guaranteeing the uniqueness of the
representation produced by Algorithm 1.

Lemma 3. If p is a prime number congruent to 1 or 4 modulo 5, then there is a
unique pair of positive integers b > c satisfying

p = b2
+ 3bc+ c2.

Proof. We work in the field Q(
√

5). The algebraic integers in this field are

O =
{1

2 m+ 1
2 n
√

5 : m, n,∈ Z,m ≡ n mod 2
}
.

Denote by τ the nontrivial automorphism of Q(
√

5) and by N the norm map Nγ =
γ γ τ. The unit ε= 3

2+
1
2

√
5 generates the group of units of norm 1 in Z[

√
5]. The map

(b, c) 7→
(
b+ 3

2 c
)
+
( 1

2 c
)√

5

gives a bijection between all pairs of integers (b, c) with b2
+ 3bc+ c2

= p and all
elements of O of norm p. The condition b> c> 0 for a pair with b2

+3bc+c2
= p

is equivalent to the corresponding element 1
2 x + 1

2 y
√

5 of O satisfying x > 5y > 0.
By quadratic reciprocity, p splits in Q(

√
5). The ring O is a principal ideal

domain, so we may pick a generator γ of one of the prime ideals dividing p.
Multiplying γ by 1

2 +
1
2

√
5 if necessary, we may assume γ has norm p.

There is therefore at least one algebraic integer with norm p of the form
1
2 x + 1

2 y
√

5. Among all such elements, let α be one for which x is positive and
is as small as possible (i.e., α has minimal positive trace). Replacing α by ατ if
necessary, we may assume also that y is positive. The lemma will be proved by
showing that α is the unique element 1

2 x+ 1
2 y
√

5 in O with norm p and x > 5y > 0.
Define an , bn as the integers for which

αεn
=

1
2an +

1
2 bn
√

5.
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Then
(αε−1)τ = 1

4(3a0− 5b0)+
1
4(a0− 3b0)

√
5.

If we suppose a0−3b0<0, then 1
4(5b0−3a0)>−

1
3a0. If 5b0−3a0 were negative,

then (αε−1)τ would have norm p and smaller positive trace than α, a contradiction.
Thus, again by our choice of α, we have 1

2(5b0−3a0)≥ a0; hence a0≤ b0. But then

Nα = 1
4(a

2
0 − 5b2

0)≤−b2
0 < 0,

which contradicts the assumption that α has norm p.
It must be then that a0 − 3b0 > 0, and thus, 3a0 − 5b0 > 0. Again using our

assumption on α, we have 1
2(3a0− 5b0) ≥ a0. It follows that a0 ≥ 5b0 > 0 (and,

in fact, a0 > 5b0 since p 6= 5).
It remains to show that α is the unique algebraic integer 1

2 x + 1
2 y
√

5 with
norm p satisfying x > 5y > 0. Suppose x and y are integers and set 1

2w+
1
2 z
√

5=( 1
2 x+ 1

2 y
√

5
)
ε. It is readily checked that if x>0 and y>0, thenw>0 and z>0 and

w< 5z. It follows that all for all n≥ 0, we have an > 0 and bn > 0, but an > 5bn only
when n = 0. Recall that αε−1

=
1
2a−1+

1
2 b−1
√

5. From the above two paragraphs,
we have a−1 > 0 and b−1 < 0. If we set 1

2w
′
+

1
2 z′
√

5=
( 1

2 x + 1
2 y
√

5
)
ε−1 and if

x > 0 and y < 0, then w′ > 0 and y′ < 0. Thus, an > 0 and bn < 0 for all n ≤−1.
The numbers in O of norm p are exactly ± 1

2an ±
1
2 bn
√

5 for n in Z. It follows
that the only possible element 1

2 x+ 1
2 y
√

5 with norm p and x > 5y> 0 other than α
is 1

2a−1−
1
2 b−1
√

5= 1
4(3a0−5b0)+

1
4(a0−3b0)

√
5. But 3a0−5b0 > 5(a0−3b0)

implies that a0 < 5b0, which we know is not true. The uniqueness is proved. �

2. Euclidean algorithm background

For positive integers u > v, the sequence of equations of the Euclidean algorithm
when commenced by dividing v into u has the form

u = q1v+ r1,

v = q2r1+ r2,

r1 = q3r2+ r3,

...

rs−3 = qs−1rs−2+ rs−1,

rs−2 = qsrs−1+ rs,

(1)

with rs−1 = gcd(u, v) and rs = 0. We define

r−1 = u and r0 = v.

Because rs−1 < rs−2, it follows that qs ≥ 2.
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Our study of the Euclidean algorithm is streamlined by allowing it to unfold
in two different ways. These parallel the two continued fraction expansions of a
rational number. The expansion of u/v with final quotient ≥ 2 is the sequence of
quotients of the Euclidean algorithm with u and v. We will modify the Euclidean
algorithm to make it produce the other expansion. If the Euclidean algorithm with u
and v is written as (1), we replace the final equation by the two equations

rs−2 = (qs−1− 1)rs−1+ rs−1, rs−1 = 1 · rs−1+ 0. (2)

This modification changes the length parities of the sequences of quotients and
remainders.

Definition. If u and v are positive integers and δ= 0 or 1, we denote by EA(u, v, δ)
the sequence of equations of the Euclidean algorithm when commenced with u
and v. When δ = 0, we use whichever of the standard or modified Euclidean
algorithms takes an even number of steps, and when δ = 1, whichever takes an odd
number. When considering only the standard algorithm, we write simply EA(u, v).
We denote the i-th equation by EAi (u, v, δ) or EAi (u, v) and call the associated
sequences (qi ) and (ri ) the sequence of quotients and sequence of remainders.

Reasoning about the Euclidean algorithm is facilitated by continuants. Properties
of continuants can be found in Section 6.7 of the book by Graham, Knuth, and
Patashnik [Graham et al. 1989].

Definition. Associated with a sequence (q1, . . . , qs) of integers, we define a doubly
indexed sequence of continuants

qi, j = qiqi+1, j + qi+2, j and qi+1,i = 1, qi+2,i = 0 (3)

for 1≤ i ≤ j + 2≤ s+ 2. When a more explicit description of the qi is required,
we will use alternate notation (for i ≤ j):

[qi , . . . , q j ] := qi, j .

The properties of continuants that we will need are the recursion (3) and the
surprising symmetry

[qi , . . . , q j ] = [q j , . . . , qi ],

which can be proved by induction. An illuminating combinatorial proof is in
[Benjamin et al. 2000]. From the symmetry of continuants and recurrence (3) we
obtain the alternate recurrence

qi, j = q jqi, j−1+ qi, j−2. (4)

Lemma 4. Let u and v be relatively prime integers. If (qi )
s
i=1 and (ri )

s
i=−1 are the

sequences of quotients and remainders of EA(u, v, δ) and qi, j are the continuants
corresponding to the sequence of quotients, then

ri = qi+2,s

for i =−1, . . . , s. In particular, u = q1,s and v = q2,s .
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Proof. Because u and v are relatively prime, we have rs−1 = 1 = qs+1,s and
rs = 0 = qs+2,s . The formula ri = qi+2,s follows from the observation that the
recurrence (3) with j = s is the same recurrence satisfied by the remainders. �

The continuants q1,i have a prominent role in studying the Euclidean algorithm.
They are the numerators of the convergents of the simple continued fraction expan-
sion of u/v, and they are the absolute values of coefficients commonly computed
as part of the extended Euclidean algorithm. We therefore make the following
definition.

Definition. Let q1, q2, . . . , qs be the sequence of quotients of EA(u, v, δ) with
associated continuants qi, j . We define the Bézout coefficients of u and v by

βi = q1,i

for −1≤ i ≤ s.

The following lemmas reveal a close connection between the sequence of re-
mainders of EA(u, v, δ) and the corresponding Bézout coefficients. Each makes a
fine exercise in mathematical induction.

Lemma 5. If (qi )
s
i=1 and (ri )

s
i=−1 are the sequences of quotients and remainders

of EA(u, v, δ) and (βi )
s
i=−1 are the Bézout coefficients, then

vβi ≡ (−1)iri (mod u) for −1≤ i ≤ s.

Proof. The cases i = −1 and i = 0 simply say that 0 ≡ −u (mod u) and v ≡
v (mod u). Further, if the congruence holds for i −1 and i with 0≤ i ≤ s−1, then

vβi+1 = vqi+1βi + vβi−1

≡ (−1)i qi+1ri + (−1)i−1ri−1 (mod u)

= (−1)i+1ri+1.

The lemma follows by induction. �

Lemma 6. If (qi )
s
i=1 and (ri )

s
i=−1 are the sequences of quotients and remainders

of EA(u, v, δ) and (βi )
s
i=−1 are the Bézout coefficients, then u = βiri−1+ βi−1ri

for 0≤ i ≤ s.

Proof. For i = 0, the equation is just u = u. Assume that u = βiri−1+ βi−1ri for
some i with 0≤ i ≤ s− 1. Then using (4),

u = βi (qi+1ri + ri+1)+ (βi+1− qi+1βi )ri = βi+1ri +βiri+1.

The lemma follows by induction. �

We now discuss background for studying structure in the Euclidean algorithm
quotients. Fix a positive integer k. In recent work [Smith 2015], it was proved that
if v with 0< v < u satisfies the congruence

v2
+ kv± 1≡ 0 (mod u),
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then the sequence of quotients of EA(u, v, δ) (with δ = 0 if the plus sign is used in
the above congruence and δ= 1 otherwise) fits one of a finite list of “end-symmetric”
patterns. The list of patterns depends only on k. We will use this result only when
k = 1, 2, or 3.

Lemma 7. The sequence of quotients of EA(u, v, 1) when v2
+v−1≡ 0 (mod u)

has the form

q1, . . . , qs−1, qs + (−1)s+1, 1, qs, qs−1, . . . , q1

for some positive integers q1, . . . , qs .
When v2

+ 3v+ 1 ≡ 0 (mod u), then EA(u, v, 0) has quotient sequence of the
form

q1, . . . , qs−1, qs + (−1)s+1
· 3, qs, qs−1, . . . , q1

for some positive integers q1, . . . , qs .
When v2

+ (−1)δ2v+ 1≡ 0 (mod u), that is, when

(v+ (−1)δ)2 ≡ 0 (mod u), (5)

then EA(u, v, 0) has quotient sequence fitting one of the patterns

q1, . . . , qs−1, qs − (−1)s+δ, qs + (−1)s+δ, qs−1, . . . , q1,

q1, . . . , qs−1, qs + 1, x, 1, qs, qs−1, . . . , q1,

q1, . . . , qs−1, qs − 1, 1, x, qs, qs−1, . . . , q1

(6)

for some positive integers q1, . . . , qs and x.

The patterns (6) are well known, being related to paper-folding sequences and
folded continued fractions [Shallit 1979; van der Poorten 2002]. What seems to be
new is their appearance in the quotients of the Euclidean algorithm with u and v
when v satisfies (5). Theorem 11 gives an arithmetical criteria for deciding which
of the patterns (6) describes the simple continued fraction expansion of u/v.

3. Explicating the Euclidean algorithm

Suppose u and v are positive integers with u >v and v2
+v−1≡ 0 (mod u). Then

v− 1 satisfies the congruence v2
+ 3v+ 1≡ 0 (mod u). According to Lemma 7,

EA(u, v, 1) has sequence of quotients of the form q1, . . . , qs+δ1, 1, qs+δ0, . . . , q1,
while EA(u, v − 1, 0) has sequence of quotients of the form q̃1, . . . , q̃s + δ1 · 3,
q̃s + δ0 · 3, . . . , q̃1. In both cases, δ1 = 1 if s is odd and 0 if s is even, while δ0 = 1
if s is even and 0 if s is odd. There is no a priori reason for the sequence of qi

to equal the sequence of q̃i . Nevertheless, that is the conclusion of the following
theorem, which also gives explicit formulas for the remainders of EA(u, v− 1, 0)
in terms of the remainders of EA(u, v, 1).
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Theorem 8. Let u and v be positive integers u > v, with v2
+ v− 1≡ 0 (mod u).

Write the sequence of quotients of EA(u, v, 1) as

q1, . . . , qs + δ1, 1, qs + δ0, . . . , q1.

Let (ri )
2s+1
i=−1 be the sequence of remainders, and for i =−1, . . . , s− 1, set

ti = ri + (−1)i+1r2s−i .

Then EA(u, v− 1, 0) is the sequence of 2s equations

ti−2 = qi · ti−1 + ti for 1≤ i ≤ s− 1,

ts−2 = (qs + δ1 · 3) · ts−1 + rs+1,

ts−1 = (qs + δ0 · 3) · rs+1+ rs+2,

ri−1 = q2s+1−i · ri + ri+1 for s+ 2≤ i ≤ 2s.

Proof. A quick check verifies that t−1= u and t0= v−1, which begin the remainder
sequence of EA(u, v − 1, 0). Because the sequence (ri )

2s+1
i=1 is decreasing, it is

clear that the purported quotients and remainders are all positive. We check that
the purported remainders form a strictly decreasing sequence (except that the final
two may be equal when EA(u, v − 1, 0) is computed using the modification (2)
of the Euclidean algorithm.) This is apparent for rs+1, . . . , r2s+1. Also, ts−1 ≥

rs−1−rs+1= rs ≥ rs+1. (The equality is because the middle quotient of EA(u, v, 1)
is 1. The final equality is strict unless u = 5 and v = 2.)

We must show ti > ti+1 for 1≤ i ≤ s− 2. From the division algorithm, we have
ri ≥ ri+1+ ri+2 for −1≤ i ≤ 2s− 1. Thus, for −1≤ i ≤ s− 3, we have

ri − ri+1 ≥ ri+2 ≥ ri+3+ ri+4 > r2s−i + r2s−i−1.

It follows that ti > ti+1 for 1 ≤ i ≤ s − 3. The above chain of inequalities also
holds with the final inequality replaced by an equality when i = s− 2. The second
inequality is strict when i = s− 2 unless qs + δ0 = 1, which only happens if s is
odd. But in that case, ts−2 = rs−2+ rs+2 > rs−1− rs+1 = ts−1 holds anyway.

To ensure the equations in the theorem are the steps of EA(u, v−1, 0), it remains
to check the algebraic validity of each step. The theorem will then follow from the
uniqueness of the quotients and remainders.

The equation ti−2 = qi · ti−1+ ti is equivalent to

(−1)i+1(ri−2− qiri−1− ri )= r2s−i − qir2s+1−i − r2s+2−i .

The expression on the left is 0. Also, examining the pattern of the sequence of
quotients of EA(u, v, 1), we see that q2s+2−i = qi for i = 1, . . . , s− 1. Thus, the
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(2s−i+1)-th step of EA(u, v, 1) is

r2s−i = qir2s+1−i + r2s+2−i , (7)

and the right side is also 0. Substituting 2s+ 1− i for i in (7), we find as well that
ri−1 = q2s+1−iri + ri+1 for s+ 2≤ i ≤ 2s, which verifies steps i = s+ 2 through
i = 2s in the theorem.

We now check the middle pair of equations. We know that the s-th through
(s+2)-th equations of EA(u, v, 1) are

rs−2 = (qs + δ1)rs−1+ rs,

rs−1 = rs + rs+1, (8)

rs = (qs + δ0)rs+1+ rs+2.

Assume first that s is odd so that δ1 = 1 and δ0 = 0. The equation

ts−2 = (qs + δ1 · 3)ts−1+ rs+1

is equivalent to

rs−2 = (qs + 3)(rs−1− rs+1)+ rs+1− rs+2.

Substituting in turn rs+2=rs−qsrs+1 and rs+1=rs−1−rs from (8), this is equivalent
to

rs−2 = (qs + 3)(rs−1− rs+1)+ rs+1− rs + qsrs+1

= (qs + 3)rs + rs−1− 2rs + qsrs−1− qsrs

= (qs + 1)rs−1+ rs,

which is the first of equations (8).
If, instead, s is even, so δ1 = 0 and δ0 = 1, then ts−2 = (qs + δ1 · 3)ts−1+ rs+1 is

equivalent to
rs−2 = qs(rs−1+ rs+1)+ rs+1+ rs+2.

Substituting in turn rs+2= rs−qsrs+1−rs+1 and rs+1= rs−1−rs , this is equivalent
to

rs−2 = qs(rs−1+ rs+1)+ rs − qsrs+1

= qs(2rs−1− rs)+ rs − qsrs−1+ qsrs

= qsrs−1+ rs,

which is the first of equations (8).
The verification that ts−1 = (qs+ δ0 ·3) · rs+1+ rs+2 is entirely similar, using the

latter two equations of (8). �

Proof of Algorithm 1. Let the quotients and remainders of EA(u, v, 1) be written
as in Theorem 8. Suppose first that s is odd. Applying Lemma 6 with i = s to
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EA(u, v, 1), we have u = [q1, . . . , qs−1, qs + 1]rs−1 + [q1, . . . , qs−1]rs . By the
symmetry of continuants and recurrence (4), it follows that

u = [qs + 1, qs−1, . . . , q1]rs−1+ [qs−1, . . . , q1]rs

= [qs−1, . . . , q1](rs−1+ rs)+ [qs, . . . , q1]rs−1.

Now use the “end-symmetric” form of the quotient sequence of EA(u, v, 1) and
Lemma 4 to obtain

u = rs+1(rs−1+ rs)+ rsrs−1.

Substituting out rs−1 using the middle of equations (8) gives

u = r2
s + 3rsrs+1+ r2

s+1.

Suppose now that s is even. Applying Lemma 6 with i = s to EA(u, v, 1) in this
case gives u = [q1, . . . , qs]rs−1+ [q1, . . . , qs−1]rs . Again using the recurrence (4),
it follows that

u = [qs + 1, qs−1, . . . , q1]rs−1+ [qs−1, . . . , q1](rs − rs−1),

and Lemma 4 shows
u = rsrs−1+ rs+1(rs − rs−1).

Substituting with (8) once more gives

u = (rs − rs+1)
2
+ 3(rs − rs+1)rs+1+ r2

s+1.

Thus, in either case, rs+1 = c in the unique representation p = b2
+ 3bc+ c2 with

b> c> 0. If s is odd, then rs = b, and if s is even, then rs = b+c. The inequalities
5b2 > b2

+ 3bc+ c2 > 5c2 show that

b+ c > b >
√

p
5
> c.

Therefore regardless of whether s is odd or even, c is the first remainder smaller
than
√

p/5. �

Fix anew positive integers b and c with gcd(b, c)= 1. We next give an explicit
description of the quotients and remainders of EA(b2, bc ± 1) in terms of the
quotients, remainders, and Bézout coefficients of EA(b, c). The algorithm for
computing inverses in modular arithmetic falls out of this description.

Theorem 9. Let b > c > 1 be integers with gcd(b, c)= 1. Let (qi )
s
i=1 and (ri )

s
i=−1

be the sequences of quotients and remainders of the standard (i.e., unmodified)
Euclidean algorithm with b and c, let (βi )

s
i=−1 be the corresponding Bézout coeffi-

cients, and set ti = ri b± (−1)iβi for −1≤ i ≤ s−1. Then EA(b2, bc±1, 0) is the
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sequence of 2s equations

ti−2 = qi · ti−1 + ti for 1≤ i ≤ s− 1,

ts−2 = (qs ± (−1)s) · ts−1 +βs−1,

ts−1 = (qs ± (−1)s−1) ·βs−1 +βs−2,

β2s+1−i = q2s+1−i ·β2s−i +β2s−1−i for s+ 2≤ i ≤ 2s.

Proof. The proof can be conducted in an analogous manner to the proof of Theorem 8.
One readily checks that the first two remainders are t−1 = b2 and t0 = bc± 1. The
observation qs ≥ 2 was made in the first paragraph of Section 2, so the purported
quotients are all positive. So are the remainders since b ≥ βi for −1≤ i ≤ s− 1.

For s + 2 ≤ i ≤ 2s, the equation β2s+1−i = q2s+1−i · β2s−i + β2s−1−i follows
from (4). For 1≤ i ≤ s− 1, the equality ti−2 = qi ti−1+ ti can be deduced from the
equation EAi (b, c) and (4). To verify the middle two equations, we first note that
because b and c are relatively prime, we have rs−1 = 1, ts−1 = b± (−1)s−1βs−1,
and qs = rs−2. The equations can then be verified using Lemma 6 with u= b, v= c,
and i = s− 1:

(qs ± (−1)s)ts−1+βs−1 = (rs−2± (−1)s)b± (−1)s−1rs−2βs−1

= rs−2 b± (−1)s−2βs−2

= ts−2

and
(qs ± (−1)s−1)βs−1+βs−2 = rs−2βs−1± (−1)s−1βs−1+βs−2

= b± (−1)s−1βs−1

= ts−1.

Finally, the remainders form a decreasing sequence. For −1 < i < s − 1, the
inequality (ri−ri+1)b>βi+βi+1 follows from Lemma 6 and implies ti > ti+1. The
inequality βs−1 < ts−1 follows from the equation ts−1 = (qs± (−1)s−1)βs−1+βs−2

verified in the last paragraph. And βi−1 < βi for 0 ≤ i ≤ s follows from the
recurrence (4). �

Proof of Algorithm 2. When m = 1, the algorithm is easily validated. If m > n,
then the third step of EA(n2,mn+ 1) will be division of rn+ 1 into n2, where r is
the remainder when m is divided by n. Thus, it suffices to assume n > m > 1, so
also s > 1.

Theorem 9 implies the first remainder less than n in EA(n2,mn + 1) is βs−1

when s is odd and ts−1 when s is even. We apply Lemma 5 to EA(n,m) to find
mβs−1 ≡ (−1)s−1 (mod n). Thus when s is odd, the product of m and the first
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remainder less than n is
mβs−1 ≡ 1 (mod n).

When s is even, the product is

mts−1 = mn−mβs−1 ≡ 1 (mod n). �

We now give a complete description of EA(ab2, abc± 1) for positive integers
a ≥ 2, b, and c and gcd(b, c)= 1.

Theorem 10. Let a, b, c, and k be integers with b> c> 1, gcd(b, c)= 1, and a≥ 2.
Let (qi )

s
i=1 and (ri )

s
i=−1 be the sequences of quotients and remainders in EA(b, c),

let (βi )
s
i=−1 be the corresponding Bézout coefficients, and set ti = abri + (−1)i+kβi

for−1≤ i ≤ s−1. If (−1)s+k
=−1, then EA(ab2, abc+(−1)k, 0) is the sequence

of 2s+ 2 equations

ti−2 = qi · ti−1 + ti for 1≤ i ≤ s− 1,

ts−2 = (qs − 1) · ts−1 + (ts−1− b),

ts−1 = 1 · (ts−1− b) + b,

ts−1− b = (a− 1) · b +βs−1,

b = qs ·βs−1 +βs−2,

β2s+3−i = q2s+3−i ·β2s+2−i +β2s+1−i for s+ 4≤ i ≤ 2s+ 2.

When (−1)s+k
= 1, steps s through s+ 3 change to

ts−2 = qs · ts−1 + b,

ts−1 = (a− 1) · b + (b−βs−1),

b = 1 · (b−βs−1)+βs−1,

b−βs−1 = (qs − 1) ·βs−1 +βs−2.

Proof. It follows as in the proof of Theorem 9 that the purported quotients and
remainders are positive (excluding the final remainder). The equations β2s+3−i =

q2s+3−i ·β2s+2−i +β2s+1−i and ti−2 = qi ti−1+ ti can be deduced as in the proof of
Theorem 9. The equations ts−1 = 1 · (ts−1−b)+b and b= 1 · (b−βs−1)+βs−1 are
clearly true. Lemma 4 shows that βs = b. Thus, the equations b = qs ·βs−1+βs−2

and b−βs−1 = (qs − 1)βs−1+βs−2 are consequences of (4).
Since gcd(b, c)= 1, we have rs−1= 1, ts−1= ab−(−1)s+kβs−1, and qs = rs−2.

From this, we obtain the equations ts−1−b= (a−1)b+βs−1 when (−1)s+k
=−1

and ts−1 = (a− 1)b+ (b−βs−1) when (−1)s+k
= 1.
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When (−1)s+k
=−1, the s-th equation is valid since

(qs − 1)ts−1+ (ts−1− b)= qs(ab+βs−1)−βs

= abrs−2+ (βs −βs−2)−βs,

= ts−2.

Similarly, when (−1)s+k
= 1,

qs ts−1+ b = qs(ab−βs−1)+ b

= abrs−2− (βs −βs−2)+βs

= ts−2.

When (−1)s+k
=−1, the inequality ts−1− b < ts−1 is clear and the inequality

b < ts−1 − b follows from the assumption that a ≥ 2. When (−1)s+k
= 1, the

inequality b< ts−1 follows from the assumption that a ≥ 2 and from b= βs >βs−1.
The inequality b− βs−1 < b is clear, and the inequality βs−1 < b− βs−1 follows
from b = qsβs−1+βs−2 and qs ≥ 2. That ti < ti−1 and βi > βi−1 for 1≤ i ≤ s− 1
follows as in the proof of Theorem 9. �

To conclude, we provide an arithmetical characterization of which quotient
pattern will appear when performing the Euclidean algorithm with u and v with
(v± 1)2 ≡ 0 (mod u).

Theorem 11. Let u be a positive integer and write u = ab2, where a is the square-
free part of u. Assume v with 0< v < u satisfies (v+ (−1)δ)2 ≡ 0 (mod u). Then
there is an integer c such that

v = abc+ (−1)δ+1.

Let q1, . . . , qs be the quotient sequence of the simple continued fraction expansion
of b/c.

The continued fraction expansion of u/v with even length has quotient sequence
fitting the first of the patterns (6) if and only if gcd(b, c)= a = 1. Otherwise, it fits
one of the other patterns with x = gcd(b, c)2 · a− 1. The second pattern appears if
s+ δ is odd, and the third if s+ δ is even.

Proof. By assumption, there exists some integer w such that (v+ (−1)δ)2 = uw.
Consideration of prime factorizations shows that a is also the square-free part of w,
say w = ac2. Then v = abc+ (−1)δ+1.

If gcd(b, c)= d and we set ã = ad2, b̃ = b/d, and c̃ = c/d , then

u = ãb̃2, v = ãb̃c̃+ (−1)δ+1, and gcd(b̃, c̃)= 1.

Theorem 11 now follows from Theorem 9 and Theorem 10. �
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New approximations for the area of
the Mandelbrot set

Daniel Bittner, Long Cheong, Dante Gates and Hieu D. Nguyen

(Communicated by Kenneth S. Berenhaut)

Due to its fractal nature, much about the area of the Mandelbrot set M remains to
be understood. While a series formula has been derived by Ewing and Schober
(1992) to calculate the area of M by considering its complement inside the
Riemann sphere, to date the exact value of this area remains unknown. This paper
presents new improved upper bounds for the area based on a parallel computing
algorithm and for the 2-adic valuation of the series coefficients in terms of the
sum-of-digits function.

1. Introduction

The Mandelbrot set (hereafter M) is defined as the set of complex numbers c ∈ C

such that the sequence {zn} defined by the recursion

zn = z2
n−1+ c, (1)

with initial value z0 = 0, remains bounded for all n ≥ 0. Douady and Hubbard
[1982] proved that M is connected and Shishikura [1998] proved that M has a
fractal boundary of Hausdorff dimension 2. However, it is unknown whether the
boundary has positive Lebesgue measure.

Ewing and Schober [1992] derived a series formula for the area of M by consider-
ing its complement, M̃ , inside the Riemann sphere C=C∪{∞}, i.e., M̃ =C−M. It
is known that M̃ is simply connected with mapping radius 1 [Douady and Hubbard
1982]. In other words, there exists an analytic homeomorphism

ψ(z)= z+
∞∑

m=0

bmz−m (2)

that maps the domain 1 = {z : 1 < |z| ≤ ∞} ⊂ C onto M̃ . It follows from the
classic result of Gronwall [1914/15] that the area of the Mandelbrot set M =C− M̃
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is given by

A = π
[

1−
∞∑

m=1

m|bm |
2
]
. (3)

The arithmetic properties of the coefficients bm have been studied in depth, first
by Jungreis [1985], then independently by Levin [1989; 2014], Bielefeld, Fisher,
and Haeseler [Bielefeld et al. 1993], Ewing and Schober [1990; 1992], and more
recently by Shimauchi [2015]. We note that the results of Levin [1989; 2014] and
Shimauchi [2015] hold for Multibrot sets defined by generalizing (1) to higher-order
recurrences.

There are three approaches to calculating the coefficients bm . The first approach
involves expressing bm as a contour integral, found independently by Levin [1989]
and by Ewing and Schober [1990]:

bm =−
1

2πmi

∫
|z|=R

pn(z)m/2
n

dz, (4)

where 1≤m ≤ 2n+1
−3 and R is chosen sufficiently large. The polynomials pn(w)

in (4) are defined recursively by

p0(w)= w,

pn(w)= p2
n−1(w)+w.

(5)

Ewing and Schober [1990] proved that the polynomials pn(w) are Faber polynomials
of degree 2n for M , i.e., pn(ψ(z)) = z2n

+ o(1) as z→∞, a fact that they used
to prove (4). Jungreis [1985] proved earlier that b2n+1 = 0 for n ≥ 1 (see also
[Bielefeld et al. 1993; Ewing and Schober 1990; Levin 1989]). Bielefeld, Fisher,
and Haeseler [Bielefeld et al. 1993] proved that no constants ε and K exist so that
|bm |< K/m1+ε for all m.

The second approach to calculating bm , due to [Bielefeld et al. 1993], involves
substituting (2) into (5) to obtain

pn(ψ(z))= p2
n−1(ψ(z))+ψ(z)= z2n

+ o(1),

and then equating coefficients to recursively solve for bm . In this paper, we follow
a variation of this approach, due to Ewing and Schober [1992], by expanding
pn(ψ(z)) in the form

pn(ψ(z))=
∞∑

m=0

βn,mz2n
−m, (6)
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where bm =β0,m+1. It follows that βn,m = 0 for n≥ 1 and 1≤m≤ 2n .Moreover, this
range of zero values can be extended to 1≤m ≤ 2n+1

−2 because of the recursion

βn,m = 2βn−1,m +

m−1∑
k=1

βn−1,kβm−1,m−k, (7)

which can be derived by substituting (6) into (5) and equating coefficients. Formula
(7) can then be manipulated to obtain the backward recursion formula [Ewing and
Schober 1992]

βn,m =
1
2

[
βn+1,m −

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k −β0,m−2n+1+1

]
, (8)

where βn,0 = 1 and β0,m = bm−1 for m ≥ 1.
No explicit formula is known for βn,m (nor for bm), except those at certain

positions. However, it is clear from (8) that βn,m is rational and that its denominator
equals a power of 2 when expressed in lowest terms. In their paper, Ewing and
Schober [1992] established the following upper bound on its 2-adic valuation.

Theorem 1 [Ewing and Schober 1992]. Let n ∈N and m be a positive integer. Then
22m+3−2n+2

βn,m is an integer, i.e.,

−ν(βn,m)≤ 2m+ 3− 2n+2 (9)

for nonzero βn,m .

Here, the 2-adic valuation ν(x) of a positive integer x is defined to be the greatest
integer for which 2ν(x) divides x , and if x/y is a fraction in lowest terms, then we
define ν(x/y)= ν(x)− ν(y). If x = 0, then we set ν(x)=∞. Observe that in the
special case bm = β0,m+1, (9) reduces to

−ν(bm)≤ 2m− 1. (10)

Zagier [Bielefeld et al. 1993] observed earlier that

−ν(bm)≤ ν((2m+ 2)!)

for 0 ≤ m ≤ 1000. Moreover, he observed that equality holds when m is odd
(or zero). These results were later proven by Levin [1989] and Shimauchi [2015].

Theorem 2 [Levin 1989]. If m is a positive odd integer, then

−ν(bm)= ν((2m+ 2)!). (11)

Theorem 3 [Shimauchi 2015]. Let m be a nonnegative integer. Then

−ν(bm)≤ ν((2m+ 2)!). (12)
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Moreover, equality holds precisely when m is odd.

Ewing and Schober [1992] used (8) to compute the first 240,000 coefficients for
bn by computer. Since

A ≤ AN ≡ π

[
1−

N∑
m=1

m|bm |
2
]
, (13)

their calculation of A240,000 ≈ 1.7274 yielded an upper bound for the area of M .
They were able to slightly improve their result to 1.72 by extending their com-
putations to the first 500,000 coefficients as reported by Ewing [1995]. They
also calculated a crude lower bound of 7π/16 ≈ 1.3744 by estimating the size
of the main cardioid (3π/8) and the main bulb (π/16). However, they reported a
discrepancy with their approximation of 1.52 obtained by pixel counting. More
recent calculations by Förstemann [2012] provide an estimate of 1.50659 based on a
resolution of almost 88 trillion pixels. In addition, Andreadis and Karakasidis [2015]
obtained an estimate of 1.5052 based on the boundary scanning method. Thus,
as noted by Ewing and Schober, either the series (3) converges so slowly that the
approximation A500,000 ≈ 1.72 is poor or else the pixel counting method fails to
account for the boundary of M. Recently, Buff and Chéritat [2012] found Julia sets
with positive area. Therefore, coupled with Shishikura’s result that the boundary
of M has Hausdorff dimension 2, it is not far-fetched to suspect that the boundary
of M may have positive area.

In this paper, we report on progress in obtaining new upper bounds for A and
new results involving the two-dimensional sequence βn,m . In particular, we were
able to compute the first five million coefficients for bn by developing a parallel
processing implementation of (8). This extends the calculation of the first one million
coefficients by Chen, Kawahira, Li, and Yuan [Chen et al. 2011] by five-fold, where
they reported the upper bound A1,000,000= 1.703927. As a result of our calculations,
we obtained the new upper bound

A5,000,000 ≈ 1.68288. (14)

Moreover, we were able to improve on (9) by establishing the tighter bound
(Theorem 9)

−ν(βn,m)≤ 2m− 2n+2
+ 4− s(n,m) (15)

for nonzero βn,m , where s(n,m) is the base-2 sum-of-digits function of degree n
(Definition 4). In the special case bm = β0,m+1, we obtain as a corollary

−ν(bm)≤ 2(m+ 1)− s(0,m+ 1). (16)

This is equivalent to Shimauchi’s result (12) because ν(k!) = k − s(0, k) for any
positive integer k. Observe that the equality in (16) holds for all odd values of m,
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which follows from Shimauchi’s result (Theorem 3), whereas (10) holds only when
m+ 1 equals a power of 2.

Our new upper bound (15) is significant on two levels. First, from a computational
perspective, it allows the values of βn,m to be calculated by integer arithmetic (as
discussed by Ewing and Schober [1992]) using less memory than (9). Such an
approach would increase the accuracy in which upper bounds for the area of the M
are calculated over floating-point arithmetic where the values of βn,m are stored as
truncated decimals. Secondly, (16) confirms Levin’s work that the sum-of-digits
function is a crucial ingredient in determining the exact area of M by using the
series formula (3).

2. Two-adic valuation of βn,m

In this section we consider the 2-adic valuation of βn,m and prove the bound (15),
which is a refinement of (9). We begin by defining the sum-of-digits function and
present a series of lemmas on properties of this function that will be utilized in
the proof. Throughout this paper, N denotes the set of nonnegative integers.

Definition 4. Let m ∈N with base-2 expansion m = dL2L
+dL−12L−1

+· · ·+d020,
where dL = 1 and di ∈ {0, 1} for i < L . We define the base-2 sum-of-digits function
s(n,m) of degree n by

s(n,m)=
L∑

i=n

di .

Lemma 5. Let m, n ∈ N. Then s(n,m) is subadditive, i.e.,

s(n, l +m)≤ s(n, l)+ s(n,m)

for all l ∈ N.

Proof. We follow the proof in [Rivoal 2008]. Let l = cK 2K
+cK−12K−1

+· · ·+c020

and m = dL2L
+ dL−12L−1

+ · · · + d020. Since s(n,m + 2i ) ≤ s(n,m) for i < n
and s(n,m+ 2i )≤ s(n,m)+ 1 for i ≥ n, it follows that

s(n, l +m)= s
(

n,m+
K∑

i=0

ci 2i
)
≤ s

(
n,m+

K∑
i=n

ci 2i
)
≤ s(n,m)+

K∑
i=n

ci

≤ s(n,m)+ s(n, l). �

Lemma 6. For all m, n ∈ N, we have

(a) 0≤ s(n,m)− s(n+ 1,m)≤ 1,

(b) s(n, 2n+1
− 1)= 1,

(c) s(0,m)≤ 2s
(
0, 1

2 m
)
− 1
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for positive even integers m.

Proof. (a) We express m as in Definition 4. It follows that

s(n,m)− s(n+ 1,m)=
L∑

i=n

di −

L∑
i=n+1

di

= dn +

L∑
i=n+1

di −

L∑
i=n+1

di

= dn,

where dn must equal either 0 or 1. This completes the proof for (a).

(b) The result follows immediately from the fact that 2n+1
−1= 20

+· · ·+2n−1
+2n .

(c) Assume m is even. Then m can be expressed as

m =
L∑

i=r

di 2i

for some integers r , L , where r ≥ 1 by assumption. It follows that

1
2 m =

L−1∑
i=r−1

di+12i.

Therefore,
s(0,m)= s

(
0, 1

2 m
)
= 2s

(
0, 1

2 m
)
− s

(
0, 1

2 m
)

≤ 2s
(
0, 1

2 m
)
− 1,

since s
(
0, 1

2 m
)
≥ 1. �

Next, we present a lemma regarding the convolution described in (8).

Lemma 7. Let m ∈ N with m ≥ 2n+2
− 2:

(a) For even m, we have

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k = 2
[ m/2−1∑

k=2n+1−1

βn,kβn,m−k

]
+ (βn,m/2)

2. (17)

(b) For odd m, we have

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k = 2
[ (m−1)/2∑

k=2n+1−1

βn,kβn,m−k

]
. (18)
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Proof. When m is even, we have

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k =

m/2−1∑
k=2n+1−1

βn,kβn,m−k+

m/2∑
m/2

βn,kβn,m−k+

m−2n+1
+1∑

m/2+1

βn,kβn,m−k .

Letting h = m− k, we obtain

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k =

m/2−1∑
k=2n+1−1

βn,kβn,m−k+(βn,m/2)(βn,m/2)+

2n+1
−1∑

h=m/2−1

βn,m−hβn,h

= 2
[ m/2−1∑

k=2n+1−1

βn,kβn,m−k

]
+(βn,m/2)

2.

This proves (a).

On the other hand, when m is odd,

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k =

(m−1)/2∑
k=2n+1−1

βn,kβn,m−k +

m−2n+1
+1∑

k=(m+2)/2

βn,kβn,m−k .

Letting l = m− k, we have

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k =

(m−1)/2∑
k=2n+1−1

βn,kβn,m−k +

2n+1
−1∑

l=(m−1)/2

βn,m−lβn,l

= 2
[ (m−1)/2∑

k=2n+1−1

βn,kβn,m−k

]
.

This justifies (b). �

We now present one final lemma involving the right-hand side of (15).

Lemma 8. Let m, n ∈ N and define

p(n,m)= 2m− 2n+2
+ 4− s(n,m). (19)

Then the following inequalities hold:

(a) p(n,m)− 1≥ p(n+ 1,m).

(b) p(n,m)≥ p(n, k)+ p(n,m− k) for 0≤ k ≤ m.

(c) p(0,m)− 1≥ 2p(0,m/2) for m is even.

(d) p(n,m)− 1≥ p(0,m− 2n+1
+ 1).



562 DANIEL BITTNER, LONG CHEONG, DANTE GATES AND HIEU D. NGUYEN

Proof. (a) Since −1≤ s(n,m)− s(n+ 1,m)≤ 0 because of Lemma 6(a), we have

p(n,m)− 1− p(n+ 1,m)= 2n+3
− 2n+2

− 1− s(n,m)+ s(n+ 1,m)

= 2n+2
− 1+ s(n,m)− s(n+ 1,m)

≥ 2n+2
− 2≥ 0.

(b) Using subadditivity of s(n,m) (Lemma 5) and the fact that 2n+2
− 4 ≥ 0

for n ∈ N, we have

p(n,m)− p(n, k)− p(n,m− k)≥ s(n,m− k)+ s(n, k)− s(n,m)+ 2n+2
− 4

≥ s(n,m− k)+ s(n, k)− s(n,m)≥ 0.

(c) We have

p(0,m)− 1− 2p
(
0, 1

2 m
)
≥ 2s

(
0, 1

2 m
)
− 1− s(0,m)≥ 0,

where the last inequality above follows from Lemma 6(c).

(d) We have

p(n,m)− 1− p(0,m− 2n+1
+ 1)≥ s(0,m− 2n+1

+ 1)+ 1− s(n,m)≥ 0,

where last inequality above follows from Lemmas 5 and 6(b), namely

s(n,m)≤ s(n,m− 2n+1
+ 1+ 2n+1

− 1)≤ s(n,m− 2n+1
+ 1)+ s(n, 2n+1

− 1)

≤ s(0,m− 2n+1
+ 1)+ 1, �

We now have presented all lemmas needed to prove the following theorem.

Theorem 9. Let m, n∈N and assume m ≥ 2n+1
−1. Then 2p(n,m)βn,m is an integer,

i.e.,
−ν(βn,m)≤ p(n,m). (20)

Proof. From (8) we have

2p(n,m)βn,m = 2p(n,m)−1
[
βn+1,m −

m−2n+1
+1∑

k=2n+1−1

βn,kβn,m−k −β0,m−2n+1+1

]
whose right-hand side can be rewritten as

2p(n,m)−1βn+1,m

m−2n+1
+1∑

k=2n+1−1

2p(n,m)−1βn,kβn,m−k − 2p(n,m)−1β0,m−2n+1+1. (21)

It suffices to show that each term in (21) is an integer by induction on m, which
we will do so using properties of p(n,m) established in Lemma 8. Assume that
the values of βn,m are arranged in a two-dimensional array where the rows are
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indexed by n and the columns indexed by m. Since βn,m = 0 for n ≥ 1 and
1 ≤ m ≤ 2n+1

− 2, we shall call the values in this range trivial and those outside
this range, i.e., m ≥ 2n+1

− 1, nontrivial. It follows that each column has at most a
finite number of nontrivial entries.

Therefore, we shall apply induction by moving upwards along the nontrivial
values in each column from left to right following Ewing and Schober [1992]. We
first establish the base case. Assume n = 0 and m = 1. Since β0,1 = −

1
2 and

p(0, 1)= 1, it is clear that 2p(0,1)β0,1 =−1 is an integer.
Next, to prove that the result holds for βn,m , we assume inductively that 2p( j,k)β j,k

is an integer for all columns to the left of βn,m and all entries below it, i.e., for
1≤ k ≤ m− 1, we have 0≤ j ≤ log2 (k+ 1)− 1 and for k = m, we have n+ 1≤
j ≤ log2(m+ 1)− 1, respectively. Let us consider the first term 2p(n,m)−1βn+1,m in
(21). Since p(n,m)− 1≥ p(n+ 1,m) (due to Lemma 8(a)) and 2p(n+1,m)βn+1,m

is an integer by the assumption, it follows that 2p(n,m)−1βn+1,m is an integer.
Next, we rewrite the summation in (21) according to whether m is even or odd

by using Lemma 7. If m is odd, then

m−2n+1
+1∑

k=2n+1−1

2p(n,m)−1βn,kβn,m−k =

(m−1)/2∑
k=2n+1−1

2p(n,m)βn,kβn,m−k .

Since p(n,m)≥ p(n, k)+ p(n,m− k) for 0≤ k ≤ m from Lemma 8(b) and

(2p(n,k)βn,k)(2p(n,m−k)βn,m−k)

is an integer by the assumption, it follows that each term 2p(n,m)−1βn,kβn,m−k in
the summation must be an integer. On the other hand, if m is even, then

m−2n+1
+1∑

k=2n+1−1

2p(n,m)−1βn,kβn,m−k =

m/2−1∑
k=2n+1−1

2p(n,m)βn,kβn,m−k + 2p(n,m)−1(βn,m/2)
2.

By the same argument as before, we have that 2p(n,m)βn,kβn,m−k is an integer. More-
over, since p(n,m)−1≥ 2p

(
n, 1

2 m
)

(due to Lemma 8(c)) and 2p(n,m/2)βn,m/2 is an
integer by the assumption, it follows that 2p(n,m)−1(βn,m/2)

2 must also be an integer.
Thus, each term 2p(n,m)−1βn,kβn,m−k in the summation must also be an integer.

As for the last term 2p(n,m)−1β0,m−2n+1+1 in (21), we know from Lemma 8(d) that
p(n,m)− 1 ≥ p(0,m − 2n+1

+ 1). Since 2p(0,m−2n+1
−1)β0,m−2n+1+1 is an integer

by the assumption, it follows by the same reasoning that 2p(n,m)−1β0,m−2n+1+1 must
be an integer. �

3. Special values of βn,m

In this section we derive recurrences for special values of βn,m where m is restricted
to a certain interval. Recall that βn,m = 0 for 1≤m ≤ 2n+1

−2. We therefore begin
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with an unpublished result by Malik Ahmed and one of the authors regarding βn,m

in the interval 2n+1
− 1≤ m ≤ 2n+2

− 3.

Theorem 10 (Ahmed–Nguyen). Let n ∈ N and m be a positive integer satisfying
2n+1
− 1≤ m ≤ 2n+2

− 3. Then for all p ∈ N, we have

βn,m = βn+p,m+2n+1(2p−1) =−
1
2β0,m−2n+1+1. (22)

Proof. It follows from (8) that

βn,m =−
1
2β0,m−2n+1+1. (23)

Next, set
n′ = n+ p, m′ = m+ 2n+1(2p

− 1).

Then
m′− 2n′+1

+ 1= m− 2n+1
+ 1,

which proves
βn,m = βn′,m′, (24)

as desired. �

As a corollary of Theorem 10, we establish a special case of (9).

Corollary 11. Let n be a positive integer and m a positive integer satisfying 2n+1
≤

m ≤ 2n+2
− 3. Then 22m+2−2n+2

βn,m is an integer.

Proof. We know from (9) that

22(m−2n+1
+1)+3−22

β0,m−2n+1+1 = 22m+1−2n+2
β0,m−2n+1+1

is an integer. It follows from Theorem 10 that

22m+2−2n+2
βn,m = 22m+2−2n+2(

−
1
2β0,m−2n+1+1

)
=−22m+1−2n+2

β0,m−2n+1+1 (25)

must also be an integer. �

Observe that the corollary above fails for m = 2n+1
− 1. By Theorem 10 we have

βn,2n+1−1 =−
1
2β0,0, but (9) doesn’t apply to β0,0 = 1.

We next focus on deriving recurrences for special values of βn,m located at certain
positions for m between 2n+2

− 2 and 2n+2
+ 6.

Lemma 12. Let n ∈ N. Then

βn,2n+2−2 =−
1
2

(
β0,2n+1−1+

1
4

)
, (26)

βn,2n+2−1 =−
1
2

(
β0,2n+1 +

1
4

)
. (27)
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Proof. Recall that βn,m =−
1
2β0,m−2n+1+1 for n ≥ 0 and 2n+1

− 1≤ m ≤ 2n+2
− 3.

We have

βn,2n+2−2 =
1
2

[
βn+1,2n+2−2−

2n+1
−1∑

k=2n+1−1

βn,kβn,2n+2−2−k −β0,2n+1−1

]
=

1
2
[
0−β2

n,2n+1−1−β0,2n+1−1
]

=
1
2

[
−

1
4β

2
0,0−β0,2n+1−1

]
=−

1
2

[
β0,2n+1−1+

1
4

]
,

and

βn,2n+2−1 =
1
2

[
βn+1,2n+2−1−

2n+1∑
k=2n+1−1

βn,kβn,m−k −β0,2n+1

]
=

1
2

[
βn+1,2n+2−1− 2(βn,2n+1−1βn,2n+1)−β0,2n+1

]
=

1
2

[(
−

1
2β0,0

)
− 2

((
−

1
2β0,0

)(
−

1
2β0,1

))
−β0,2n+1

]
=−

1
2

[
β0,2n+1 +

1
4

]
. �

In the case where m = 2n+2, we find that βn,m is constant.

Lemma 13. Let n be a positive integer. Then βn,2n+2 =
1

16 .

Proof. Recall from Theorem 10 that βn,m =−
1
2β0,m−2n+1+1 for n≥ 0 and 2n+1

−1≤
m ≤ 2n+2

− 3. Moreover, recall that b2n+1 = 0 for n ≥ 1 [Jungreis 1985]. Using
these results, we have

βn,2n+2 =
1
2

[
βn+1,2n+2 −

2n+1
+1∑

k=2n+1−1

βn,kβn,2n+2−k −β0,2n+1+1

]
=

1
2

[
−

1
2β0,1− 2βn,2n+1−1βn,2n+1+1−β

2
n,2n+1 − b0,2n+1

]
=

1
2

[
−

1
2β0,1−

1
2β0,0β0,2−

1
4β

2
0,1− 0

]
=

1
2

[
−

1
2

(
−

1
2

)
−

1
2(1)

( 1
8

)
−

1
4

(
−

1
2

)2]
=

1
16 . �

We end this section by considering three other special cases.

Lemma 14. Let n ∈ N. Then:

(a) βn,2n+2+2 =−
1
2β0,2n+1+3 for n ≥ 2.

(b) βn,2n+2+4 =−
1
2β0,2n+1+5 for n ≥ 2.

(c) βn,2n+2+6 =−
1
2β0,2n+1+7 for n ≥ 3.
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Proof. We have

βn,2n+2+2 =
1
2

[
βn+1,2n+2+2−

2n+1
+3∑

k=2n+1−1

βn,kβn,2n+2+2−k −β0,2n+1+3

]

=
1
2

[
βn+1,2n+2+2− 2

2n+1∑
k=2n+1−1

βn,kβn,2n+2+2−k −β
2
n,2n+1+1−β0,2n+1+3

]

=
1
2

[
−

1
2β0,3−

1
2

1∑
j=0

β0, jβ0,4− j −
1
4β

2
0,2−β0,2n+1+3

]
=

1
2

[
−

1
2

(
−

1
4

)
−

1
2(β0,0β0,4+β0,1β0,3)−

1
4

(1
8

)2
−β0,2n+1+3

]
=

1
2

[
−

1
2

(
−

1
4

)
−

1
2

[
(1)
( 15

128

)
+
(
−

1
2

)(
−

1
4

)]
−

1
4

( 1
8

)2
−β0,2n+1+3

]
=−

1
2β0,2n+1+3.

This proves (a), and (b) and (c) can be proven in a similar manner. �

4. New area approximations

In this section, we describe a parallel processing algorithm to compute the values
of βn,m and present new upper bounds for the area of M that were calculated
using this algorithm. Assume as before that the values of βn,m are arranged in
a two-dimensional array with the rows indexed by n and columns indexed by m.
We recall Ewing and Schober’s backwards algorithm for computing the nontrivial
values of βn,m recursively one at a time by moving upwards along each column
from left to right as described in our induction proof of Theorem 9. Thus, the order
of computation would be β0,1, β0,2, β1,3, β0,3, β1,4, β0,4, . . .

Our new method is as follows: We calculate values of βn,m across multiple
columns simultaneously in a parallel fashion while moving up along them as before
until we reach a critical row near the top, where from this point on, all remaining
column values must be computed one at a time. This is then repeated for the next
set of columns, etc.

To illustrate our method, consider for example the calculation of β1,7 and β1,8 in
row n = 1 using the backward recursion formula (8):

β1,7 =
1
2

[
β2,7−

4∑
k=3

β1,kβ1,7−k −β0,4

]
=

1
2 [β2,7− 2β1,3β1,4−β0,4],

β1,8 =
1
2

[
β1,8−

4∑
k=3

β1,kβ1,8−k −β0,5

]
=

1
2 [β2,8− 2β1,3β1,5−β

2
1,4−β0,4].

These two values do not depend on each other and can be computed independently
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in parallel. However, this is not the case for β0,7 and β0,8 in the top row (n = 0),
where the latter depends on the former:

β0,7 =
1
2

[
β1,7−

6∑
k=1

β0,kβ0,7−k −β0,6

]
=

1
2 [β1,7− 2β0,1β0,6− 2β0,2β0,5− 2β0,3β0,4−β0,4],

β0,8 =
1
2

[
β1,8−

7∑
k=1

β0,kβ0,8−k −β0,7

]
=

1
2 [β1,8− 2β0,1β0,7− 2β0,2β0,6− 2β0,3β0,5−β

2
0,4−β0,7].

In general, the values βn,m and βn,m+1 and βn,m+2 in three consecutive columns
can be calculated in parallel as long as n ≥ 1. This is because βn,m+1 depends
only on the values βn,k in row n, where k = 3, 4, . . . ,m − 2, which are prior to
βn,m . Similarly, βn,m+2 depends only on βn,k , where k = 3, 4, . . . ,m−1. Since the
number of nonzero values in each column increases with m, this parallel algorithm
becomes more effective and asymptotically three times as fast than if calculating
the βn,m one at a time. This approach can be extended to calculate the values βn,m ,
βn,m+1, . . . , βn,m+6 in seven consecutive columns simultaneously as long as n ≥ 2.
More generally, if n ≥ N , then up to 2N+1

−1 columns can be computed in parallel.
We were able to use this parallel algorithm to calculate the first five million

terms of bm and obtain a new upper bound of A5,000,000 ≈ 1.68288 for the area
of the Mandelbrot set. This algorithm was implemented using the programming
language C++ and message passing interface Open MPI. In particular, we calculated
the values of βn,m across four columns in parallel for n ≥ 2, beginning with the
first group of columns βn,8, βn,9, βn,10, βn,11 (we initialized columns βn,0, . . . , βn,7

with their known values). Our code was executed on a Linux cluster with 32 GB of
available RAM and required four processors (1.05 Ghz AMD Opteron 2352 quad-
core processors) to execute it since each column was computed using a different
processor. After computing its column of values, each processor would pass these
values to the other three processors before calculating to its next designated column.
Thus, each processor was required to store all values of βm,n (generated from all four
processors) separately in its own RAM in order to compute its next column. This
parallel approach improved the performance of our implementation significantly;
asymptotically, the run-time was decreased by a factor of four in comparison to using
a single processor, but at the cost of quadrupling our RAM memory requirements. It
is possible to reduce this cost using shared memory; however, we did not implement
this approach since we had sufficient RAM available. The only computational cost
to our algorithm involves having each processor pass its values to the other three
processors. Since the number of nonzero values for βn,m in each column grows on
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N (millions) AN N (millions) AN

0.5 1.72 [Ewing and Schober 1992] 3 1.68895
1 1.70393 [Chen et al. 2011] 3.5 1.6874
1.5 1.69702 4 1.68633
2 1.69388 4.5 1.68447
2.5 1.69096 5 1.68288

Table 1. New upper bounds for the area of the Mandelbrot set.

the order of log2 m, the computational cost in passing these values is insignificant
in comparison to the cost of computing βn,m itself using (8), whose summation
term grows on the order of m since 2n+1

− 1≤ m ≤ 2n+2
− 2.

Table 1 gives values for the approximations AN , where N ranges from 500,000
to 5 million in increments of 500,000, based on our computed values of βn,m , and
thus bm = β0,m+1. These values were computed in batches over a five-month period
between August and December of 2014, although the actual total run-time was
approximately 3 months. Table 2 gives a sense of the run-time required to compute
bm in batches of 500,000 starting at m = 2,500,000.

To estimate the error in our upper bounds, we use Ewing and Schober’s [1992]
analysis of their calculation of βn,m using (8) and double-precision floating-point
arithmetic. First, they considered propagation error due to errors in computing
previous coefficients. They argued probabilistically that the propagation error is on
the same order of magnitude as machine error, so the computations for βn,m are
stable. That is, write

β̃n,m = βn,m + εn,m, (28)

where βn,m is the true value, β̃n,m the calculated value, and εn,m the corresponding
error. Substituting εn,m = βn,m − β̃n,m into (8) gives for the propagation error
εn,m

=
1
2

(
βn+1,m−β̃n+1,m−

m−2n+1
+1∑

k=2n+1−1

(βn,kβn,m−k−β̃n,k β̃n,m−k)−β0,m−2n+1+1+β̃0,m−2n+1+1

)

≈
1
2(−εn+1,m+ε0,m−2n+1+1)+

m−2n+1
+1∑

k=2n+1−1

βn,kεn,m−k, (29)

range of m (millions) 2.5–3 3–3.5 3.5–4 4–4.5 4.5–5

runtime to compute bm (days) 9 10.8 12.5 14.4 16.2

Table 2. Runtimes for calculating bm in batches of 500,000.
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where the quadratic error terms are ignored. Next, assume that εn,m is uniformly
distributed with a small probability of exceeding some threshold value ε. Moreover,
assume that the sum

En,m =

m−2n+1
+1∑

k=2n+1−1

|βn,k |

is bounded, which we verified in computing A5,000,000. In particular, we found
En,m to be approximately bounded by

En,m ≤ 13.2254

for m = 5,000,000 and 0 ≤ n ≤ 21 with equality holding when n = 9. It follows
from the law of large numbers that the error term in (29),

m−2n+1
+1∑

k=2n+1−1

βn,kεn,m−k, (30)

which we view as a weighted sum of independent and identically distributed random
variables, approaches zero as m →∞. Thus, (30) is negligible in contributing
towards the propagation error in (29). Hence, if all previous errors are bounded
by ε, then so is the propagation error.

To check the accuracy of our calculations, we compared our calculated values
of bm (in double-precision floating point format) with exact values that are given
by closed formulas at certain positions. For example, Levin [1989] and Ewing
and Schober [1992] proved independently that bm = 0 for all m = (2k + 1)2ν,
where k, ν ∈ N satisfy k + 3 ≤ 2ν . We confirmed this for our calculated values.
Moreover, Ewing and Schober [1992] proved that

bm =



−1
2ν+3(2ν−1)

(
2ν−5

2
2ν−2

)
, m = (2ν−1)2ν, ν ≥ 1,

3(2ν−6)
2ν+5(2ν+1)(2ν−5)

(
2ν− 3

2
2ν−1

)
, m = (2ν+1)2ν, ν ≥ 2,

−(214·23ν
−767·22ν

+146·2ν+452)
2ν+8(2ν+1−7)(22ν−1)(2ν+2)

(
2ν− 5

2
2ν−2

)
, m = (2ν+3)2ν, ν ≥ 2.

A comparison of these exact values of bm with our calculated values yielded a
maximum error of 5.00034 · 10−16. Thus, as summarized in [Ewing and Schober
1992], the computations suggest that the error in calculating bm for m ≤ 5,000,000
is at most 6 ·10−16 and it is expected that the error in our upper bound for A5,000,000

is at most 3 ·10−9. We note that our calculation of A1,000,000 ≈ 1.70393 agrees with
that reported in [Chen et al. 2011]. In Table 3, we give values for bm at certain
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m bm m bm

500,000 5.5221313 · 10−8 3,000,000 8.150385 · 10−9

1,000,000 −4.7138830 · 10−8 3,500,000 −3.911993 · 10−9

1,500,000 8.4477641 · 10−8 4,000,000 2.315128 · 10−9

2,000,000 −6.4378660 · 10−9 4,500,000 −8.87746 · 10−9

2,500,000 1.6594295 · 10−8 5,000,000 8.0532 · 10−11

Table 3. Some calculated values of bm at positions where no closed
formula is known.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1.68

1.69

1.7

1.71

1.72

A
N

N (millions)

Figure 1. Plot of AN .

positions where no closed formula is known so that the reader may verify our
calculations.

Figure 1 shows a plot of Table 1 that clearly reveals the slow convergence of AN .
If the exact value of A lies closer to 1.50659 as computed by pixel counting, then
certainly using AN to closely approximate A is impractical due to the extremely
large number of terms required. On the other hand, if the exact value lies closer to
1.68, then this would indicate that the boundary of the Mandelbrot set may have
positive area.

5. Conclusions

In this paper we presented new results which improve on known upper bounds
for the area of the Mandelbrot set and 2-adic valuations of the series coefficients
βn,m given by Ewing and Schober [1992]. Of course, our calculations of the first
five million terms of bm were performed using more powerful computers that those
available to Ewing and Schober two decades ago. Therefore, it would be interesting
to find out in the next two decades what improvements can be made to our results by
using computers that will be even more powerful, unless we are fortunate enough
to see the exact area calculated before then.
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Bases for the global Weyl modules
of sln of highest weight mω1

Samuel Chamberlin and Amanda Croan

(Communicated by Jim Haglund)

We utilize a theorem of B. Feigin and S. Loktev to give explicit bases for the global
Weyl modules for the map algebras of the form sln ⊗ A of highest weight mω1.
These bases are given in terms of specific elements of the universal enveloping
algebra, U(sln ⊗ A), acting on the highest weight vector.

1. Introduction

Let g be a simple finite-dimensional complex Lie algebra. For the loop algebras
g⊗C[t, t−1

], the global Weyl modules were introduced by Chari and Pressley [2001].
Feigin and Loktev [2004] extended these global Weyl modules to the case where
the Laurent polynomials above were replaced by the coordinate ring of a complex
affine variety. Chari, Fourier and Khandai [Chari et al. 2010] then generalized
this definition to the map algebras, g⊗ A, where A is a commutative, associative,
complex unital algebra. Feigin and Loktev [2004] also gave an isomorphism which
explicitly determines the structure of the global Weyl modules for the map algebras
of sln of highest weight mω1.

The goal of this work is to use the structure isomorphism given by Feigin and
Loktev to give nice bases for the global Weyl modules for the map algebras sln⊗ A
of sln of highest weight mω1. These bases will be given in terms of specific elements
of U(sln ⊗ A) acting on the highest weight vector. This was done in [Chamberlin
2011] in the case n = 2, but the case n > 2 has not previously appeared in the
literature.

2. Preliminaries

2.1. The structure of sln. Recall that sln is the Lie algebra of all complex traceless
matrices. The Lie bracket is the commutator bracket given by [A, B] = AB− B A.

MSC2010: 17B10.
Keywords: Lie algebra, module, representation, Weyl.
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Given any matrix [bi, j ], define εk([bi, j ]) := bk,k . For i ∈ {1, . . . , n− 1}, define
αi := εi − εi+1. Define

R± := {±(αi + · · ·+α j ) | 1≤ i < j ≤ n− 1}

to be the positive and negative roots respectively, and define R = R+ ∪ R− to
be the set of roots. Let ei, j be the n × n matrix with a one in the i-th row and
j-th column and zeros in every other position. Define hi := hαi = ei,i − ei+1,i+1,
for i ∈ {1, . . . , n − 1}. Then h := span{hi | 1 ≤ i ≤ n} is a Cartan subalgebra
of sln . Given α = αi + · · · + α j ∈ R+, define xα := ei, j and x−α := e j,i . Then
{hi , x±α | 1≤ i ≤n−1, α ∈ R} is a Chevalley basis for sln . Given i ∈{1, . . . , n−1},
define xi := xαi = ei,i+1 and x−i := x−αi = ei+1,i . Note that, for all 1≤ i ≤ n− 1,
span{x−i , hi , xi } ∼= sl2.

Define nilpotent subsuperalgebras n± := span{xα|α ∈ R±} and note that sln =
n− ⊕ h ⊕ n+. Define the set of fundamental weights {ω1, . . . , ωn−1} ⊂ h∗ by
ωi (h j )= δi, j for all i, j ∈ {1, . . . , n− 1}. Define P+ := spanZ≥0

{ω1, . . . , ωn−1} to
be the set of dominant integral weights.

2.2. Map algebras and Weyl modules. For the remainder of this work fix a com-
mutative, associative, complex unital algebra A. Define the map algebra of sln to
be sln ⊗ A with Lie bracket given by linearly extending the bracket

[z⊗ a, w⊗ b] = [z, w]⊗ ab

for all z, w ∈ sln and a, b ∈ A.
Define U(sln ⊗ A) to be the universal enveloping algebra of sln ⊗ A.
As in [Chari et al. 2010] we define the global Weyl model for sln⊗ A of highest

weight λ∈ P+ to be the module generated by a vector wλ, called the highest weight
vector, with relations

(x ⊗ a)wλ = 0, (h⊗ 1)wλ = λ(h)wλ, (x−i ⊗ 1)λ(hi )+1wλ = 0,

for all a ∈ A, x ∈ n+, h ∈ h, and 1≤ i ≤ n− 1.

2.3. Multisets. Given any set S, define a multiset of elements of S to be a multi-
plicity function χ : S→ Z≥0. Define F(S) := {χ : S→ Z≥0 : |suppχ |<∞}. For
χ ∈ F(S), define |χ | :=

∑
s∈S χ(s). Notice that F(S) is an abelian monoid under

function addition. For ψ, χ ∈ F(S), we write ψ ⊆ χ if ψ(s)≤ χ(s) for all s ∈ S.
Define F(χ)(S) := {ψ ∈ F(S) | ψ ⊆ χ}. In the case S = A, the S will be omitted
from the notation, so that F := F(A) and F(χ)= F(χ)(A).

If ψ, χ ∈ F with ψ ∈ F(χ) we define χ −ψ by standard function subtraction.
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Also define π : F −{0} → A by

π(ψ) :=
∏
a∈A

aψ(a),

and extend π to F by setting π(0)= 1. Define M : F→ Z by

M(ψ) :=
|ψ |!∏

a∈A ψ(a)!
.

M(ψ) ∈ Z for all ψ ∈ F because if suppψ = {a1, . . . , ak} then M(ψ) is the
multinomial coefficient (

|ψ |

ψ(a1), . . . , ψ(ak)

)
.

For s ∈ S, define χs to be the characteristic function of the set {s}. Then, for all
χ ∈ F(S),

χ =
∑
s∈S

χ(s)χs .

2.4. The symmetric tensor space. Given any vector space W , there is an action of
the symmetric group Sk on W⊗k

=W ⊗W ⊗ · · ·⊗W (k times) given by

σ(w1⊗w2⊗· · ·⊗wk)=wσ−1(1)⊗wσ−1(2)⊗· · ·⊗wσ−1(k), where w1, . . . , wk ∈W.

For any vector space W , define its k-th symmetric tensor space

Sk(W )= span
{∑
σ∈Sk

σ(w1⊗ · · ·⊗wk)

∣∣∣ w1, . . . , wk ∈W
}
.

Define V ∼= Cn to be an sln-module via left matrix multiplication and write the
basis as v1 := (1, 0, . . . , 0), and for i ∈ {1, . . . , n+m−1}, set vi+1 := x−ivi . Then
V ⊗ A is an sln ⊗ A-module under the action (z⊗ a)(w⊗ b)= zw⊗ ab.

Given ϕ1, . . . , ϕn ∈ F with k :=
∑n

i=1 |ϕi |, define

w(ϕ1, . . . , ϕn) :=
⊗

a1∈suppϕ1

(v1⊗a1)
⊗ϕ1(a1)⊗· · ·⊗

⊗
an∈suppϕn

(vn⊗an)
⊗ϕn(an)∈(V⊗A)⊗k

and
v(ϕ1, . . . , ϕn) :=

∑
σ∈Sk

σ
(
w(ϕ1, . . . , ϕn)

)
∈ Sk(V ⊗ A).

We will need the following theorem:

Theorem 2.4.1 [Feigin and Loktev 2004, Theorem 6]. For all m ∈N, WA(mω1)∼=

Sm(V ⊗ A) via the map given by

wmω1 7→ (v1⊗ 1)⊗m .

We will also need the following lemma:
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Lemma 2.4.2. Let B be a basis for A. Then the set

B :=

{
v(ϕ1, . . . , ϕn)

∣∣∣ ϕ1, . . . , ϕn ∈ F(B),
n∑

i=1

|ϕi | = m
}

is a basis for Sm(V ⊗ A).

Proof. B spans Sm(V⊗A) because B spans A and v1, . . . , vn span V . B is linearly
independent because the set{

(v j1 ⊗ b1)⊗ · · ·⊗ (v jm ⊗ bm)
∣∣ j1, . . . , jm ∈ {1, . . . , n}, b1, . . . , bm ∈ B

}
is a basis for (V ⊗ A)⊗m and hence is linearly independent. �

Given k ∈ N, define 1k−1
: U(sln ⊗ A)→ U(sln ⊗ A)⊗k by extending the map

sln ⊗ A→ U(sln ⊗ A)⊗k given by

1k−1(z⊗ a)=
k−1∑
j=0

1⊗ j
⊗ (z⊗ a)⊗ 1⊗k−1− j .

Note that 1k−1(1)= 1⊗k , not k1⊗k .
Since V ⊗ A is a U(sln ⊗ A)-module, (V ⊗ A)⊗m is a left U(sln ⊗ A)-module

with u acting as 1m−1(u) followed by coordinatewise module actions. Moreover
Sm(V ⊗ A) is a submodule under this action. Thus Sm(V ⊗ A) is a left U(sln⊗ A)-
module under this 1m−1 action.

2.5. For all i = 1, . . . , n−1 and χ, ϕ ∈F , recursively define qi (ϕ, χ)∈U(sln⊗A)
as follows:

qi (0, 0) := 1,

qi (0, χ) := −
1
|χ |

∑
06=ψ∈F(χ)

M(ψ)
(
hi ⊗π(ψ)

)
qi (0, χ −ψ),

qi (ϕ, χ) := −
1
|ϕ|

∑
ψ∈F(χ)

∑
d∈suppϕ

M(ψ)
(
x−i ⊗ dπ(ψ)

)
qi (ϕ−χd , χ −ψ).

Given ϕn, . . . , ϕn ∈ F , define

q(ϕ1, . . . , ϕn) := qn−1(ϕn, ϕn−1)qn−2
(
(|ϕn| + |ϕn−1|)χ1, ϕn−2

)
× · · ·× q2

(( n∑
j=3

|ϕ j |

)
χ1, ϕ2

)
q1

(( n∑
k=2

|ϕ j |

)
χ1, ϕ1

)
.

Remark. The qi (0, χ) coincide with the pi (χ) defined in [Bagci and Chamberlin
2014].
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3. Main theorem

The main result of this work is the theorem stated below.

Theorem 3.0.1. Given a basis B for A and m ∈ Z>0, the set{
q(ϕ1, . . . , ϕn)wmω1

∣∣∣ ϕ1, . . . , ϕn ∈ F(B),
n∑

i=1

|ϕi | = m
}

is a basis for WA(mω1).

The proof of this theorem will be given after several lemmas and propositions.

3.1. Necessary lemmas and propositions.

Proposition 3.1.1. For all k ∈ N 1k
= (1⊗k−1

⊗11) ◦1k−1.

Proof. The case k = 1 is trivial. For k ≥ 2 and u ∈ U(sln ⊗ A) we have

(1⊗k−1
⊗11)

(
1k−1(u)

)
= (1⊗k−1

⊗11)

( k−1∑
j=0

1⊗ j
⊗ u⊗ 1⊗k−1− j

)

= (1⊗k−1
⊗11)

( k−2∑
j=0

1⊗ j
⊗ u⊗ 1⊗k−1− j

+ 1⊗k−1
⊗ u

)

=

k−2∑
j=0

1⊗ j
⊗ u⊗ 1⊗k−2− j

⊗11(1)+ 1⊗k−1
⊗11(u)

=

k−2∑
j=0

1⊗ j
⊗ u⊗ 1⊗k−2− j

⊗1⊗1+1⊗k−1
⊗ (u⊗1+1⊗ u)

=

k−2∑
j=0

1⊗ j
⊗ u⊗ 1⊗k− j

+ 1⊗k−1
⊗ u⊗ 1+ 1⊗k−1

⊗ 1⊗ u

=

k∑
j=0

1⊗ j
⊗ u⊗ 1⊗k− j

=1k(u).
�

Given χ ∈ F and k ∈ N, define

Bk(χ)=

{
ψ : {1, . . . , k} → F(χ)

∣∣∣ k∑
j=1

ψ( j)= χ
}
.

Lemma 3.1.2. For all i ∈ {1, . . . , n− 1},

1k−1(qi (ϕ, χ)
)
=

∑
ψ∈Bk(χ)
φ∈Bk(ϕ)

qi
(
φ(1), ψ(1)

)
⊗ · · ·⊗ qi

(
φ(k), ψ(k)

)
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Proof. This can be proven by induction on k. The case k = 1 is trivial. In the case
k = 2 the lemma becomes

11(qi (ϕ, χ)
)
=

∑
ψ∈F(χ)
φ∈F(ϕ)

qi (φ, ψ)⊗ qi (ϕ−φ, χ −ψ).

This can be proven by induction on |ϕ|. For k > 2 use Proposition 3.1.1. The details
in the sl2 case can be found in [Chamberlin 2011]. This can be extended to the sln
case via the injection �i : sl2⊗ A→ sln ⊗ A given by

�i (x−⊗ a)= x−i ⊗ a, �i (h⊗ a)= hi ⊗ a, �i (x+⊗ a)= xi ⊗ a,

for all i ∈ {1, . . . , n− 1} and a ∈ A. �

Lemma 3.1.3. For all ϕ, χ ∈ F with |ϕ| + |χ | > 1 and all i ∈ {1, . . . , n − 1},
qi (ϕ, χ)(vi ⊗ 1)= 0.

Proof. Assume that ϕ = 0. This case will proceed by induction on |χ | > 1. If
|χ | = 2 (so that χ = {a, b} for some a, b ∈ A) we have

qi (0, {a, b})(vi ⊗ 1)= [(hi ⊗ a)⊗ (hi ⊗ b)− (hi ⊗ ab)](vi ⊗ 1)

= (hi ⊗ a)⊗ (vi ⊗ b)− (vi ⊗ ab)

= (vi ⊗ ab)− (vi ⊗ ab)

= 0.

For the next case assume that |χ |> 2 then

qi (0, χ)(vi ⊗ 1)=−
1
|χ |

∑
∅6=ψ∈F(χ)

M(ψ)
(
hi ⊗π(ψ)

)
qi (χ −ψ)(vi ⊗ 1)= 0

by induction. Now assume that |ϕ| = 1 (or ϕ = χb for some b ∈ A). Then

qi (χb, χ)(vi ⊗ 1)

=−

∑
ψ∈F(χ)

M(ψ)
(
x−i ⊗ bπ(ψ)

)
qi (0, χ −ψ)(vi ⊗ 1)

=−M(χ)
(
x−i ⊗ bπ(χ)

)
(vi ⊗ 1)

−

∑
a∈suppχ

M(χ −χa)
(
x−i ⊗ bπ(χ −χa)

)
qi (0, χa)(vi ⊗ 1)

=−M(χ)
(
vi+1⊗ bπ(χ)

)
−

∑
a∈suppχ

M(χ −χa)
(
x−i ⊗ bπ(χ −χa)

)
(−hi ⊗ a)(vi ⊗ 1)

=−M(χ)
(
vi+1⊗ bπ(χ)

)
+

∑
a∈suppχ

M(χ −χa)
(
x−i ⊗ bπ(χ −χa)

)
(vi ⊗ a)
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=−M(χ)
(
vi+1⊗ bπ(χ)

)
+

∑
a∈suppχ

M(χ −χa)
(
vi+1⊗ bπ(χ)

)
=−M(χ)

(
vi+1⊗ bπ(χ)

)
+

∑
a∈suppχ

(|χ | − 1)!∏
c∈supp(χ−χa)

(χ −χa)(c)!

(
vi+1⊗ bπ(χ)

)
=−M(χ)

(
vi+1⊗ bπ(χ)

)
+

∑
a∈suppχ

(|χ | − 1)!∏
c∈suppχ

c 6=a

χ(c)!
(
χ(a)− 1

)
!

(
vi+1⊗ bπ(χ)

)

=−M(χ)
(
vi+1⊗ bπ(χ)

)
+

∑
a∈suppχ

χ(a)
|χ |

M(χ)
(
vi+1⊗ bπ(χ)

)
=−M(χ)

(
vi+1⊗ bπ(χ)

)
+M(χ)

(
vi+1⊗ bπ(χ)

)
= 0.

Finally assume that |ϕ|> 1. Then

qi (ϕ, χ)(vi ⊗ 1)

=−
1
|ϕ|

∑
ψ∈F(χ)

∑
d∈suppϕ

M(ψ)
(
x−i ⊗ dπ(ψ)

)
qi (ϕ−χd , χ −ψ)(vi ⊗ 1)

=−
1
|ϕ|

∑
ψ∈F(χ)

∑
d∈suppϕ

M(ψ)

(
−

1
|ϕ| − 1

∑
ψ1∈F(χ−ψ)

∑
d1∈supp(ϕ−χd )

M(ψ1)

(
x−i ⊗ dπ(ψ)

)(
x−i ⊗ d1π(ψ1)

)
qi (ϕ−χd −χd1, χ −ψ −ψ1)

)
(vi ⊗ 1)

= 0,

because at least two x−i terms act on a single vi as 0. �

Lemma 3.1.4. For all i ∈ {1, . . . , n− 1} and ϕ, χ ∈ F with |ϕ| + |χ | = k we have

qi (ϕ, χ)(vi ⊗ 1)⊗k
= (−1)kv(0, . . . , 0, χ, ϕ, 0, . . . , 0),

where χ is in the i-th position and ϕ in the (i+1)-st.

Proof. We have qi (ϕ, χ)(vi ⊗1)⊗ki =1k−1
(
qi (ϕ, χ)

)
(vi ⊗1)⊗k . By Lemma 3.1.2,

this equals( ∑
ψ∈Bk(χ)
φ∈Bk(ϕ)

qi
(
φ(1), ψ(1)

)
⊗ · · ·⊗ qi

(
φ(k), ψ(k)

))
(vi ⊗ 1)⊗k,
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which can be rewritten as∑
ψ∈Bk(χ)
φ∈Bk(ϕ)

(
qi (φ(1), ψ(1))(vi ⊗ 1)

)
⊗ · · ·⊗

(
qi (φ(k), ψ(k))(vi ⊗ 1)

)
.

By Lemma 3.1.3 we see that the only potentially nonzero terms in the sum are those
for which |φ( j)|+ |ψ( j)| ≤ 1 for all j ∈ {1, . . . , k}. Since |ϕ|+ |χ | = k if we have
|ψ( j)| + |φ( j)| = 0 for some j ∈ {1, . . . , n− 1}, then there is a r ∈ {1, . . . , n− 1}
such that |ψ(r)|+ |φ(r)|> 1. So the only potentially nonzero terms in the sum are
those for which |φ( j)|+ |ψ( j)| = 1 for all j ∈ {1, . . . , k}. Suppose that φ( j)= χa

and ψ( j)= 0 for some j ∈ {1, . . . k} and some a ∈ A. Then

qi (χa, 0)(vi ⊗ 1)=−(x−i ⊗ a)(vi ⊗ 1)=−(vi+1⊗ a).

Suppose that φ( j) = 0 and ψ( j) = χa for some j ∈ {1, . . . k} and some a ∈ A.
Then

qi (0, χa)(vi ⊗ 1)=−(hi ⊗ a)(vi ⊗ 1)=−(vi ⊗ a).

So −(vi+1⊗ a) and −(vi ⊗ a) are the only possibilities for factors in the tensor
product above. Since we are summing over all possible submultisets of ϕ and χ ,
we have the result. �

Lemma 3.1.5. For all m ∈ N and all ϕ1, . . . , ϕn ∈ F with
∑n

i=1 |ϕi | = m,

q(ϕ1, . . . , ϕn)(v1⊗ 1)⊗m
= (−1)

∑n
j=1 j |ϕ j |v(ϕ1, . . . , ϕn).

Proof. Since for all j ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n},

x− jvk = δ j,kv j+1, h jvk = δ j,kv j − δ j+1,kv j+1,

so by Lemma 3.1.4 we have

q(ϕ1, . . . , ϕn)(v1⊗ 1)⊗m

= qn−1(ϕn, ϕn−1)qn−2
(
(|ϕn| + |ϕn−1|)χ1, ϕn−2

)
× · · ·× q1

(( n∑
j=2

|ϕ j |

)
χ1, ϕ1

)
(v1⊗ 1)⊗m

= (−1)mqn−1(ϕn, ϕn−1) . . . q2

(( n∑
j=3

|ϕ j |

)
χ1, ϕ2

)
v

(
ϕ1,
( n∑

j=2

|ϕ j |

)
χ1, 0, . . . , 0

)
= (−1)|ϕ1|+2

∑n
j=2 |ϕ j |qn−1(ϕn, ϕn−1)

× · · ·× q3

(( n∑
j=4

|ϕ j |

)
χ1, ϕ3

)
vi
(
ϕ1, ϕ2,

( n∑
j=3

|ϕ j |

)
χ1, 0, . . . , 0

)
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= (−1)
∑n−2

j=1 j |ϕ j |qn−1(ϕn, ϕn−1)v
(
ϕ1, . . . , ϕn−2, (|ϕn−1| + |ϕn|)χ1, 0

)
= (−1)

∑n
j=1 j |ϕ j |v(ϕ1, . . . , ϕn). �

3.2. The proof of Theorem 3.0.1.

Proof. By Lemmas 3.1.5 and 2.4.2{
q(ϕ1, . . . , ϕn)(v1⊗ 1)⊗m

∣∣∣ ϕ1, . . . , ϕn ∈ F(B),
n∑

i=1

|ϕi | = m
}

is a basis for Sm(V ⊗ A). Therefore by Theorem 2.4.1{
q(ϕ1, . . . , ϕn)wmω1

∣∣∣ ϕ1, . . . , ϕn ∈ F(B),
n∑

i=1

|ϕi | = m
}

is a basis for WA(mω1). �
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Leverage centrality of knight’s graphs
and Cartesian products of regular graphs

and path powers
Roger Vargas, Jr., Abigail Waldron, Anika Sharma,

Rigoberto Flórez and Darren A. Narayan

(Communicated by Kenneth S. Berenhaut)

In 2010, Joyce et al. defined the leverage centrality of a graph as a means to
analyze connections within the brain. In this paper we investigate this property
from a mathematical perspective and determine the leverage centrality for knight’s
graphs, path powers, and Cartesian products.

1. Introduction

We recall that the degree of a vertex v is the number of edges incident to v and is
denoted deg v. Joyce, Laurienti, Burdette, and Hayasaka [Joyce et al. 2010] defined
the property of leverage centrality based on vertex degrees.

Definition 1. Leverage centrality is a measure of the relationship between the
degree of a given node v and the degree of each of its neighbors vi , averaged over
all neighbors of v, denoted Nv, and is defined as

l(v)=
1

deg v

∑
vi∈Nv

deg v− deg vi

deg v+ deg vi
.

This property was used by Joyce et al. [2010] in the analysis of functional
magnetic resonance imaging (fMRI) data and has been used to analyze real-world
networks including airline connections, electrical power grids, and coauthorship
collaborations [Li et al. 2015]. The leverage centralities of complete multipartite
graphs and the Cartesian product of paths were investigated by Sharma, Vargas,
Waldron, Flórez, and Narayan [Sharma et al. 2017]. Bounds on leverage centrality
were determined by Li, Li, Van Mieghem, Stanley, and Wang [Li et al. 2015]. We
restate one of their results as our first theorem.

MSC2010: 05C07.
Keywords: leverage centrality, knight’s graphs.
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Figure 1. The 3×3, 4×4, 5×5 and 6×6 knight’s graphs.

Theorem 2. For any vertex v, we have |l(v)| ≤ 1− 2
n . Furthermore, these bounds

are tight in the cases of stars and complete graphs.

We note that the bounds are also tight for regular graphs with degree r > 1.

In this paper we investigate leverage centrality for various families of graphs
including the knight’s graphs, path powers, and the Cartesian products of graphs.

2. Leverage centrality of a knight’s graph

We define an n × n knight’s graph to be the graph with n2 vertices in which
every vertex represents a square in an n × n chessboard. The vertices on the
n× n chessboard can be placed in an n× n table where two vertices vi and v j are
adjacent if they are exactly four entries apart (including the entries of vi and v j )
and they form an “L” shape. We give examples of knight’s graphs of small order in
Figure 1, where in each graph all of the vertices of same degree are the same color.

We next state the leverage centrality of each vertex in the n× n knight’s graph.
We use t j to denote the j-th triangular number 1

2 j ( j + 1).

Theorem 3. Let Gn be the n× n knight’s graph.

(1) The leverage centrality of every vertex of G3 is zero.

(2) If n = 4, 6, or 8, then Gn has exactly tn/2 distinct leverage centralities.

(3) If n = 5 or 7, then Gn has exactly t(n+1)/2− 1 distinct leverage centralities.

(4) If n ≥ 9, then Gn has exactly 15 distinct leverage centralities.

Proof. We first find the degree of each vertex in the knight’s graph on an n × n
chessboard, where n ≥ 3. To describe the degree of each vertex in the graph Gn , we
will arrange the vertices of Gn in an n×n table. The vertices corresponding to entries
(1, 1), (1, n), (n, 1), and (n, n) have degree 2. Those corresponding to entries (1, 2),
(1, n− 1), (2, 1), (2, n), (n− 1, 1), (n, 2), (n− 1, n), and (n, n− 1) have degree 3.
Those corresponding to entries (2, 2), (2, n−1), (n−1, 2), (n−1, n−1) and (1, i),
(i, 1), (n, i), and (i, n), where i = 3, 4, . . . , n−2, have degree 4. Those correspond-
ing to entries (2, i), (i, 2), (n−1, i), and (i, n−1), where i = 3, 4, . . . , n−2, have
degree 6. Vertices corresponding to entries (i, j), where i = 3, 4, . . . , n− 3 and
j = 3, 4, . . . , n− 2, have degree 8; see, for example, Figure 2 (left).
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Figure 2. The 10×10 knight’s graph (left) and the 9×9 knight’s
graph (right).

If n is even we subdivide the knight’s graph’s vertical and horizontal axes and
the two diagonals to obtain eight regions. Each region forms a right triangle where
the legs have 1

2 n vertices; see, for example, Figure 2 (left). Using symmetry we can
calculate the leverage centrality of all vertices by only analyzing a single triangle.

If n is odd, as in Figure 2 (right), we do the same subdivision; however, in this
case two adjacent triangles will overlap — the legs of the right triangle will have
1
2(n+ 1) vertices.

We choose the triangle with vertices

v1 = (1, 1), v2 = (1, 2), v3 = (2, 2), v4 = (1, 3), v5 = (2, 3),

v6 = (3, 3), v7 = (1, 4), v8 = (2, 4), v9 = (3, 4), v10 = (4, 4),

v11 = (1, 5), v12 = (2, 5), v13 = (3, 5), v14 = (4, 5), v15 = (5, 5).

(2-1)

Note that if n < 10, we take triangles with vertices vi for i = 1, 2, . . . , k, where
k = 1

2 n if n = 2(k) or k = 1
2(n+ 1) if n = 2(k)− 1.

Proof of (1). Since G3 is regular, the leverage centrality of all of its vertices is 0.

Proof of (2). For case n = 4, it is easy to see that l(v1) = −
1
3 , l(v2) = −

1
21 , and

l(v3)=
5

21 .
Now consider the cases n = 6 and n = 8. From the above analysis we only need

to calculate the leverage centrality for a triangle with legs that have 1
2 n vertices (see

Figure 2 (left) for an example of those triangles). Thus, to calculate the leverage
centrality of these special cases, we consider the triangle with vertices v1, . . . , vti ,
where ti is the i-th triangular number where i = 1, 2, . . . , 1

2 n, and then use Tables 1
and 3, respectively.
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vertex vi deg vi AD(vi ) l(vi )

v1 2 6, 6 −1/2
v2 3 4, 6, 8 −215/693
v3 4 4, 4, 8, 8 −1/6
v4 4 3, 6, 4, 8 −41/420
v5 6 2, 3, 4, 6, 6, 8 187/1260
v6 8 3, 3, 4, 4, 4, 4, 6, 6 73/231

Table 1. Leverage centrality when n = 6. Here AD(vi ) denotes
the degrees of vertices adjacent to vi .

vertex vi deg vi AD(vi ) l(vi )

v1 2 6, 6 −1/2
v2 3 4, 6, 8 −215/693
v3 4 4, 4, 8, 8 −1/6
v4 4 3, 6, 6, 8 −31/210
v5 6 2, 4, 4, 6, 8, 8 43/420
v6 8 3, 3, 4, 4, 6, 6, 8, 8 215/924
v7 4 4, 4, 8, 8 −1/6
v8 6 3, 3, 6, 6, 8, 8 4/63
v9 8 4, 4, 4, 4, 6, 6, 8, 8 17/84
v10 8 6, 6, 6, 6, 6, 6, 6, 6 1/7

Table 2. Leverage centrality when n = 7. Here AD(vi ) denotes
the degrees of vertices adjacent to vi .

Proof of (3). First consider the case n= 5. From the above analysis we only need to
calculate the leverage centrality for a triangle with legs that have three vertices. It is
easy to see that l(v1)=−

1
2 , l(v2)=−

19
77 , l(v3)=−

1
35 , l(v4)=−

1
35 , l(v5)=

3
10 , and

l(v6)=
5

11 . This shows that there are only five distinct leverage centralities in G5.
Now consider the case n = 7. From the above analysis we only need to calculate

the leverage centrality for a triangle with legs that have four vertices. From Table 2
we can see that G7 has only nine distinct leverage centralities.

Proof of (4). For n= 8 and n= 10, the proof is similar to those of parts (2) and (3).
We now suppose n > 10. Consider the 15 vertices in the triangle given in (2-1)

and their relevant data, given in Table 3.
The analysis for the remaining vertices in the triangle is as follows. From the defi-

nition of the knight’s graph we know that if two vertices vi and v j are adjacent, then
they are four entries apart (including the entries of vi and v j ) and they form an “L”
shape. This implies that if n≥ 11 then the leverage centrality of every vertex located
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n vertex vi deg vi AD(vi ) l(vi )

8, 9, 10 v1 2 6, 6 −1/2
8, 9, 10 v2 3 4, 6, 8 −215/693
8, 9, 10 v3 4 4, 4, 8, 8 −1/6
8, 9, 10 v4 4 3, 6, 6, 8 −31/210
8, 9, 10 v5 6 2, 4, 4, 6, 8, 8 43/420
8, 9, 10 v6 8 3, 3, 4, 4, 6, 6, 8, 8 215/924
8, 9, 10 v7 4 4, 6, 8, 8 −13/60
8, 9, 10 v8 6 3, 4, 6, 8, 8, 8 11/630
8, 9, 10 v9 8 4, 4, 4, 6, 6, 8, 8, 8 9/56
8, 9, 10 v10 8 6, 6, 6, 6, 8, 8, 8, 8 1/14
9, 10 v11 4 6, 6, 8, 8 −4/45
9, 10 v12 6 4, 4, 8, 8, 8, 8 −1/35
9, 10 v13 8 4, 4, 6, 6, 8, 8, 8, 8 5/42
9, 10 v14 8 6, 6, 8, 8, 8, 8, 8, 8 1/28
9, 10 v15 8 8, 8, 8, 8, 8, 8, 8, 8 0

Table 3. Leverage centrality with n = 8, 9, 10. Here AD(vi ) de-
notes the degrees of vertices adjacent to vi .

in entries (r, t) is zero for r =5, 6, . . . , k and t=5, 6, . . . , k, where k= 1
2 n if n=2k

or k = 1
2(n+1) if n = 2k−1. Moreover, every vertex located in position (i, j) will

have the same leverage centrality as the vertices located in entries (i, 6), where i =
1, 2, . . . , k and j =7, . . . , k, where k= 1

2 n if n=2k or k= 1
2(n+1) if n=2k−1. �

3. Leverage centralities of P k
n

Let Pk
n be the graph with vertices v1, v2, . . . , vn and edges (vi , v j )when 1≤|i− j |≤

k≤ n−1. In this paper we will assume n> 1. This family contains both paths (when
k = 1) and complete graphs (when k = n−1). Note that deg vi =min{i+k−1, 2k}.
The neighbors of vi are vi−1, vi−2, . . . , vi−s and vi+1, vi+2, . . . , vi+t , where s =
min{k, i − 1} and t =min{k, n− i}. The above conditions can be combined in the
next lemma to give the leverage centrality of any vertex in Pk

n .

Lemma 4. Suppose the vertex vi ∈ V (Pk
n ) has neighbors vi−1, vi−2, . . . , vi−s and

vi+1, vi+2, . . . , vi+t , where s =min{k, i − 1} and t =min{k, n− i}. Then

l(vi )=
1
δi

∑
i−s≤ j≤i+t

δi − δ j

δi + δ j
,

where δx =min{x + k− 1, 2k} for x = i, j .

We begin by determining the leverage centrality of vertices in a path Pn , where
n ≥ 2. We note that by symmetry l(vi ) = l(vn+1−i ) for all 1 ≤ i ≤ n. We start
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with small values of n. When n = 2, both vertices have a leverage centrality of
zero. When n = 3, the two vertices of degree 1 have leverage centrality 1−2

1+2 =−
1
3

and the vertex of degree 2 has leverage centrality 2−1
1+2 =

1
3 . When n = 4, the two

vertices of degree 1 have leverage centrality 1−2
1+2 = −

1
3 and the two vertices of

degree 2 have leverage centrality 1
2

( 2−1
1+2 +

2−2
2+2

)
=

1
6 .

Next, we use the operation of edge subdivision to handle cases where n ≥ 5.
Recall that in an edge subdivision an edge u − v is replaced by a path on three
vertices u−w− v. We note that if we extend the length of a path by subdividing
the edge between vertices c and d , the new vertices will have a leverage centrality
of zero. Further subdivision of an edge connecting two vertices with degree 2 will
include a new vertex with leverage centrality zero. Hence, there will be exactly three
distinct leverage centralities in any path with five or more vertices. The general
result follows.

Theorem 5. Let Pn be a path where n ≥ 5. Then l(v1) = l(vn) = −
1
3 , l(v2) =

l(vn−1)=
1
6 , and for all 3≤ i ≤ n− 2, we have l(vi )= 0.

3.1. Leverage centralities of P2
n . We now calculate the leverage centralities for

paths P2
n . Again by symmetry, we have l(vi )= l(vn+1−i ) for all 1≤ i ≤ n.

• n = 3: For 1≤ i ≤ 3, we have l(vi )= 0.

• n = 4: l(v1)=−
4
15 and l(v2)=

2
15 .

• n = 5: l(v1)=−
4
15 , l(v2)=

2
105 and l(v3)=

5
21 .

• n = 6: l(v1)=−
4
15 , l(v2)=−

1
35 and l(v3)=

13
84 .

• n = 7: l(v1)=−
4
15 , l(v2)=−

1
35 l(v3)=

5
42 and l(v4)=

3
28 .

• n = 8: l(v1)=−
4
15 , l(v2)=−

1
35 , l(v3)=

5
42 and l(v4)=

1
28 .

• n≥9: l(v1)=−
4
15 , l(v2)=−

1
35 , l(v3)=

5
42 l(v4)=

1
28 and for all 5≤ i≤n−4,

l(vi )= 0.

It is clear that to calculate the leverage centralities of all vertices in Pk
n for all k

in this manner would require lengthy computation. However by noticing that the
leverage centralities become fixed when n becomes large enough (n ≥ 4k+ 1), we
can compute the leverage centralities in a more formal manner.

First we give an elementary result with the leverage centralities for the first vertex
in any path power.

Proposition 6. If v1 ∈ V (Pk
n ), then

l(v1)=

k∑
i=1

−i
2k+ i

.
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Proof. The vertex v1 has k neighbors, with degrees k+ 1, k+ 2, . . . , 2k. Then

l(v1)=
1
k

(
k

k∑
i=1

−i
2k+ i

)
=

k∑
i=1

−i
2k+ i

. �

We continue with three lemmas which will help us determine the relationships
between the leverage centralities of different vertices in Pk

n .

Lemma 7. If i is an integer and 1< 1
2a ≤ i < a then we have

1
a

(
a− i
a+ i

)
>

1
a− 1

(
a− 1− i
a− 1+ i

)
.

Proof. Let 1
2a ≤ i < a. This implies

2ia− a2
+ (a− i) > 0⇒−a2

+ a+ 2ia− 1− i > 0

⇒ a3
− 2a2

+ (2+ i)a− 1− i > a3
− a2
+ (1− i)a

⇒ (a− i)(a− 1)(a− 1+ i) > a(a+ i)(a− 1− i)

⇒
1
a

(
a− i
a+ i

)
>

1
a− 1

(
a− 1− i
a− 1+ i

)
. �

Lemma 8. For all 1≤ a ≤ 2k, we have

1
a

(
−1

2a+ 1

)
>
−1

(a− 1)a
.

Proof. We first note that when a = 2k,

1
a

(
a− (a+ 1)
a+ a+ 1

)
>

1
a− 1

(
a− 1− (a+ 1)
a− 1+ a+ 1

)
is clear since the left side is positive and the right side is negative.

Let 1≤ a. Then

2a2
+ a > a2

+ 1⇒
−1

2a2+ a
>
−1

a2+ 1

⇒
1
a

(
−1

2a+ 1

)
>

1
a+ 1

(
−2
2a

)
⇒

1
a

(
a− (a+ 1)
a+ a+ 1

)
>

1
a− 1

(
a− 1− (a+ 1)
a− 1+ a+ 1

)
⇒

1
a

(
−1

a+ a+ 1

)
>

1
a− 1

(
−2

a− 1+ a+ 1

)
. �

Lemma 9. Let 2≤ i ≤ k− 1. Then

1
k+ 1

(
1− i

2k+ 1+ i

)
>

1
k

(
−i

2k+ i

)
.
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Proof. Note that

0>
1− i

2k+ i + 1
>

−i
2k+ i + 1

>
−i

2k+ i
.

Hence
0>

k+ 1− (k+ i)
k+ 1+ k+ i

>
k− (k+ i)
k+ k+ i

.

Since 1
k+1 <

1
k , we have

0>
1

k+ 1

(
1− i

k+ 1+ k+ i

)
>

1
k

(
−i

k+ k+ i

)
. �

Proposition 6 and Lemmas 7, 8, and 9 can be combined as follows.

Proposition 10. Let G = Pk
n , where n ≥ 4k+ 1. Then:

(i) l(vi )= l(vn+1−i ).

(ii) For all 0≤ j ≤ k− 1,

l(vk+ j+1)=
1

2k

( 2k−1∑
i=k+ j

2k− i
2k+ i

)
.

(iii) For all 0≤ j ≤ k− 1,

l(vk− j )=
1

2k− j − 1

2k−1∑
i=k

2k− j − i
2k− j + i

+
k− j

2k− 1− j

(
2k− j − 1− 2k
2k− j − 1+ 2k

)
.

(iv) For all 2k+ 1≤ j ≤ n− 2k, we have l(v j )= 0.

This leads to the following theorem.

Theorem 11. Let G = Pk
n , where n ≥ 4k + 1. Then the vertex with the largest

leverage centrality in G is vk+1, and furthermore l(vk+1) > l(vk) > · · ·> l(v1) and
l(vk+1) > l(vk+2) > · · ·> l(v2k+1).

Proof. For the first part, we recall that

l(vk+1)=
1

2k

2k−1∑
i=k

(
2k− i
2k+ i

)
+

k
2k

(
2k− 2k
2k+ 2k

)
,

and for 0≤ j ≤ k− 1,

l(vk− j )=
1

2k− j − 1

2k−1∑
i=k

2k− j − i
2k− j + i

+
k− j

2k− 1− j

(
2k− j − 1− 2k
2k− j − 1+ 2k

)
.

We seek to show that l(vk+1) > l(vk) > · · ·> l(v1). When comparing terms from
l(vr ) with l(vr−1) for a fixed i , five cases are needed to show that the i-th term of
l(vr ) is larger than the i-th term of l(vr−1).
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Case (i): 2k− j − i > 1. Use Lemma 7.

Case (ii): 2k − j − i = 1. In the i-th term, the numerator is positive for the j-th
term and the numerator is zero for ( j + 1)-th term.

Case (iii): 2k− j − i = 0. In the i-th term, the numerator is zero for the j-th term
and the numerator is negative for ( j + 1)-th term.

Case (iv): 2k− j − i < 0. Use Lemma 8.

Case (v):

k− j
2k− 1− j

(
2k− j − 1− 2k
2k− j − 1+ 2k

)
>

k− ( j + 1)
2k− 1− ( j + 1)

(
2k− ( j + 1)− 1− 2k
2k− ( j + 1)− 1+ 2k

)
.

Use Lemma 8.
The combination of these five cases yields l(vk+1) > l(vk) > · · · > l(v1). For

the second part we note that for 0 ≤ r ≤ k − 1, we have l(vk+r ) > l(vk+r+1) as
terms with positive value are replaced by zeros in each successive case. Hence,
l(vk+1) > l(vk+2) > · · · > l(v2k+1). We note that we have not obtained a linear
ordering, but two separate linear orderings both starting with the largest leverage
centrality l(vk+1). �

4. Cartesian product of graphs

In this next section we give some general results about the leverage centrality of
the Cartesian product of graphs. These build upon results by Sharma et al. [2017].

Definition 12. Given a graph F with vertex set V (F) and edge set E(F), and a
graph H with vertex set V (H) and edge set E(H), we let G define the Cartesian
product of F and H to be the graph G = F × H , which is defined as

V (G)= {(u, v) | u ∈ V (F) and v ∈ V (H)},

E(G)=
{
(u1, v1), (u2, v2)

∣∣ u1 = u2 and (v1, v2) ∈ E(H),
or v1 = v2 and (u1, u2) ∈ E(F)

}
.

We next present an elementary result from graph theory.

Lemma 13. If G = F×H , then the degree of a vertex (u, v) in G is the sum of the
degrees of vertices u and v, where u ∈ V (F) and v ∈ V (H).

Theorem 14. Let G be a graph and let RGr be a regular graph where each vertex
has degree r. Let u ∈ V (RGr ) and let vi and v j be vertices in G with degrees ki

and k j respectively. For each vertex (u, vi ) ∈ V (RGr ×G) we have

l(u, vi )=
1

r + ki

∑
j 6=i

ki − k j

2r + ki + k j
.
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Proof. Consider a vertex (u, vi ) ∈ V (RGr ×G). We note that

deg(u, vi )= deg u+ deg vi = r + ki .

Then
l(u, vi )=

1
r + ki

∑
j 6=i

ki − k j

2r + ki + k j
. �

We conclude by posing the following problem where the graphs may not be
regular.

Problem 15. Given graphs F and H where the leverage centralities are known for
all vertices in F and H, determine the leverage centralities for all vertices in F×H.
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Equivalence classes of GL(p,C)×GL(q,C) orbits
in the flag variety of gl(p+ q,C)

Leticia Barchini and Nina Williams
(Communicated by Ken Ono)

We consider the pair of complex Lie groups

(G,K )=
(
GL(p+ q,C),GL(p,C)×GL(q,C)

)
and the finite set {Q : K -orbits on the flag variety B}. The moment map µ of
the G-action on the cotangent bundle T ∗B maps each conormal bundle closure
T ∗QB onto the closure of a single nilpotent K -orbit, OK . We use combinatorial
techniques to describe µ−1(OK )= {Q ∈B : µ(T ∗QB)=OK }.

Introduction

We consider the pair (G,K ) of complex groups equal to(
GL(p+ q,C),GL(p,C)×GL(q,C)

)
.

Such a pair comes from the real Lie group U (p, q), and K is the complexification
of the maximal compact subgroup KR = U (p)×U (q). We denote by g the Lie
algebra of G. The group K acts with finitely many orbits both on N, the nilpotent
cone of g, and on B, the flag variety of g. The points in the cotangent bundle T ∗B
can be thought of as pairs (b, ξ) consisting of a Borel subalgebra b= h⊕ n and a
covector ξ ∈ n∗. The projection µ : (b, ξ)→ ξ from the cotangent bundle T ∗B to
N is the moment map for the G-action on T ∗B. If Q is a K -orbit on B, the image
µ(T ∗QB) lies in N and it is the closure of a nilpotent K -orbit. We write OK for the
nilpotent K -orbit. We give a combinatorial algorithmic description, amenable to
computer computations, of the set

µ−1(OK )= {Q∈B : µ(T ∗QB)=OK }. (0.1)

This is the content of Theorem 4.3. Our approach relies heavily on work by
Devra Garfinkle [1993], and on work by Peter Trapa [1999]. Our goal is to keep
the presentation accessible to an advanced undergraduate student. Some of our

MSC2010: primary 22E47; secondary 22E46.
Keywords: nilpotent orbits, flag variety, Young tableaux.
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arguments can be simplified by using advanced results in representation theory, but
we choose instead a combinatorial approach.

We use the combinatorial notion of a clan to parametrize K -orbits in B, as in
[Matsuki and Oshima 1990]. For each nilpotent orbit, OK , we identify a distin-
guished clan cdis ∈ µ

−1(OK ). All other clans in µ−1(OK ) are obtained from the
distinguished clan in a combinatorial manner. Following [Garfinkle 1993], we attach
to each clan c a pair of equally shaped tableaux, one signed and the other numbered.
It is known, see [Trapa 1999], that the signed tableau determines µ(T ∗Qc

B)=OK ,
where Qc is the K -orbit parametrized by c. The resulting map

E : {clans} → {(T±, STc)}

is a bijection. Thus, if we fix OK and we let T dis
±

be the signed tableau that
corresponds to cdis ∈ µ

−1(OK ) under E , we have

µ−1(OK )= {Qc clans : E(c)=(T dis
±
, STc)}.

That is, µ−1(OK ) is the set of K -obits on B parametrized by clans c having T dis
±

as the signed tableau in E(c). In order to explicitly describe the set µ−1(OK ), we
use combinatorially defined operators Ti, j acting both on clans and on numbered
tableaux. The bijection E is compatible with the action of such operators. We
conclude that if c ∈ µ−1(OK ), then so is Ti, j c. We argue that any clan in µ−1(OK )

can be obtained from the distinguished clan by applying an appropriate sequence of
operators Ti, j . This is the content of Theorem 4.3. If n= p+q , and the shape of the
tableau is fixed, then the action of operators Ti, j on numbered tableaux of that given
shape determines µ−1(OGL(r,C)×GL(s,C)) for any (r, s) with r + s = n. This implies
that the algorithm is in a sense independent of the real form; see Theorem 4.5.
When nilpotent K -orbits are parametrized by two-column signed tableaux, we give
explicit effective sequences of operators Ti, j to generate µ−1(OK ). We use this
result to describe the clans in µ−1(OK ) in special cases. The two column case is
discussed in Section 5.

The problem of describingµ−1(OK )when K =GL(p,C)×GL(q,C), considered
in this paper, is a particular instance (and an easy one) of a more general question
posted by David Vogan.

The paper is organized as follows. We fix notation, and we introduce combinato-
rial parametrizations of nilpotent orbits and K -orbits in B in Section 1. In Section 2,
we summarize Garfinkle’s algorithm, we describe some of its properties, and we
introduce the notion of distinguished clan. We include in Section 3 the definition
of operators Ti, j at both the tableau and clan level, and we explain some of their
properties. We obtain an algorithmic description of µ−1(OK ) and prove our main
theorem in Section 4. In Section 5, we restrict our attention to nilpotent K -orbits
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parametrized by two-column signed tableaux and give a detailed description of
µ−1(OK ) in special cases.

1. Preliminaries

The real form U( p, q). In this section we carefully define the real form of interest.
Assume p and q are positive integers with p ≥ q . Write n = p+ q, and let

Ip,q =

(
Ip×p 0

0 −Iq×q

)
,

where Ip×p, Iq×q are identity matrices. Define

GR =U (p, q)= {g∈ GL(n,C) : ḡT Ip,q g= Ip,q}.

The map 2 given by

2 : GL(n,C)→ GL(n,C),

A 7→ Ip,q AIp,q ,

is an involution. We call 2 the Cartan involution. Then,

GL(n,C)2 =
{

A∈ GL(n,C) :2(A)=A
}
= K

=

{(
Z1 0
0 Z2

)
: Z1∈ GL(p,C), Z2∈ GL(q,C)

}
.

Similarly, we have
U (p, q)2 =U (p)×U (q)= KR.

The differential of 2, denoted by θ , is an involution at the Lie-algebra level.
That is θ : gl(n,C)→ gl(n,C) has θ2

= 1. The ±-eigenspace decomposition of
gl(n,C) is

g= gl(n,C)= k⊕ p,

where

k=

{(
z1 0
0 z2

)
: z1∈ gl(p,C), z2 ∈ gl(q,C)

}
,

p=

{(
0 A
B 0

)
: A∈M(p× q), B∈M(q × p)

}
.

Define h⊂ k as the Cartan subalgebra consisting of diagonal matrices of the form
diag(t1, t2, . . . , tp+q). This is a maximally abelian subalgebra of g. The matrices
Ei, j with all entries zero but for a 1 in the intersection of the i-th row, j-th column
satisfy

[diag(t1, t2, . . . , tp+q), Ei, j ] = (ti − t j ) Ei, j .
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In other words, the Ei, j are common eigenvectors of the matrices in h. They are
called root vectors. Their eigenvalues εi − ε j , given by

(εi − ε j )(diag(t1, t2, . . . , tp+q))= ti − t j ,

are called roots. A root εi − ε j is said to be positive if i < j . We set

n=
⊕
i< j

CEi, j , b= h⊕ n, upper triangular matrices. (1.1)

The subalgebra b⊂ g is a Borel subalgebra.

K-orbits on the flag variety of G. The flag variety of G is the variety of Borel
subalgebras of g. We describe this variety geometrically as follows.

Definition 1.2. A flag of G is a sequence of n + 1 complex vector spaces, F =
(V0, V1, . . . , Vn), satisfying the conditions

(1) dim Vi = i ;

(2) {0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn.

We define B= {flags in Cn
}.

The group G acts on B via

g ·F = (g · V0, g · V1, . . . , g · Vn).

Let {e1, . . . , en} denote the standard basis of Cn, and for each integer 1≤ i ≤ n, set
V 0

i = 〈e1, . . . , ei 〉. Define F0 = ({0}, V 0
1 , . . . , V 0

n ). It is not difficult to see that for
any flag, F , there exists a g ∈ G so that F = g ·F0. This implies that the action
of G on B is transitive.

Theorem 1.3. G acts transitively on B.

If F0 =
(
{0}, 〈e1〉, 〈e1, e2〉, . . . , 〈e1, . . . , en−1〉,Cn

)
, then G · F0 ∼= B ∼= G/B,

where

B = StabG(F0)=


e11 e12 · · · · · · e1n

0 e22
...

...
. . .

. . .
...

... 0
. . .

. . .
...

0 · · · · · · 0 enn

.

The following known theorem will play an important role in our work.

Theorem 1.4. K acts on B with finitely many orbits.
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Clan parametrization of K-orbits on the flag variety of G. It will be useful to
parametrize K -orbits in B in a combinatorial manner. To this end, we use the
notion of clans. Clans have been introduced in [Matsuki and Oshima 1990]. We
follow the presentation in [Yamamoto 1997].

Definition 1.5. An n-indication is a sequence of symbols (c1 · · · cn) so that

(1) ci is +, −, or a natural number;

(2) if ci = a ∈ N, then there exists a unique cj with ci = cj = a;

(3) #{i : ci=+} + #{pairs of equal numbers} = p.

We define an equivalence relation between two indications. Two indications
(c1 · · · cn) and (c′1 · · · c

′
n) are equivalent if and only if there exists a permutation σ

so that

ci =


σ(c′i ) if c′i ∈ N,

+ if c′i =+,
− if c′i =−.

A clan is an equivalence class of indications with respect to the equivalence
relation.

Define V+ = 〈e1, . . . , ep〉 and V− = 〈ep+1, . . . , ep+q〉.

Proposition 1.6 [Yamamoto 1997, Proposition 2.2.7]. Let p+ q = n. Given a flag
F = (V0, V1, . . . , Vn) there exists a clan c= (c1 · · · cn) so that

(1) dim Vi ∩ V+ = #{l : cl= + for l ≤ i} + #{a∈N : cs=ct=a for s < t ≤ i};

(2) dim Vi ∩ V− = #{l : cl= − for l ≤ i} + #{a∈N : cs=ct=a for s < t ≤ i};

(3) dim Vi − dim Vi ∩ V+− dim Vi ∩ V− = #{a∈N : cs=ct=a for s ≤ i < t};

(4) dim V j +π+(Vi )= j + #{a∈N : cs=ct=a for s ≤ i < j < t}.

Moreover, the set of flags that corresponds to a given clan c, constitutes a K -orbit
in B.

The converse of the proposition also holds. Hence, we have the following
theorem.

Theorem 1.7 [Yamamoto 1997]. Clans parametrize K -orbits in B.

Example. Assume GR =U (2, 2).

• The clan (+ + −−) corresponds to the flag

F0 =
(
{0} ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 ⊂ C4).

• The clan (1 2 2 1) corresponds to the flag

F =
(
{0} ⊂ 〈e1〉 ⊂ 〈e1, e2+ e3〉 ⊂ 〈e1, e2, e3〉 ⊂ C4).
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Example. Assume GR=U (4, 4). We attach a flag Fc, satisfying (1) through (4) of
Proposition 1.6, to the clan c= (1 2+ 3 1− 2 3)= (c1 c2 c3 c4 c5 c6 c7 c8). Write
F = (V0={0}, V1, V2, . . . ,C8). As c1 = c5 = 1, we set V1 = 〈e1+ e5〉. Note that{

dim V1 ∩ V+ = 0,
dim V1 ∩ V− = 0.

Similarly, we note that c2 = c7 = 2 and define V2 = 〈e1+ e5, e2+ e7〉. Next, as
c3=+, we set V3= 〈e1+e5, e2+e7, e3〉. It is easy to check, as c1= c5 and c2= c7,
that dim V3∩V+= 1, dim V3∩V−= 0, and dim V3−dim V3∩V+−dim V3∩V−= 2.

Continuing in similar manner we get

Fc =
(
〈e1+ e5〉 ⊂ 〈e1+ e5, e2+ e7〉 ⊂ 〈e1+ e5, e2+ e7, e3〉

⊂ 〈V3, e4+ e8〉 ⊂ 〈V4, e1− e5〉 ⊂ 〈V5, e6〉 ⊂ 〈V6, e2− e7〉 ⊂ C8).
Example. Assume GR =U (3, 2). The flag(

{0} ⊂ 〈e1〉 ⊂ 〈e1, e2+ e4〉 ⊂ 〈e1, e2+ e4, e3〉 ⊂ 〈e1, e3, e4, e5〉 ⊂ C5)
is parametrized by (+ 1+ 1−).

Young diagrams. We introduce some combinatorial tools used in our work.

Definition 1.8. A partition of n is a tuple [d1, d2, . . . , dk] of positive integers with

(1) d1 ≥ d2 ≥ · · · ≥ dk > 0, and

(2)
∑

dk = n.

Given a partition [d1, d2, . . . , dk], we form a left-justified array of n rows of
empty boxes so that the i-th row has length di . This is called a Young diagram.

Definition 1.9. A signed tableau is a labeled Young diagram in which boxes are
labeled by + and − signs in such a way that the signs alternate along rows. Two
signed tableaux are regarded as equal if and only if one can be obtained from the
other by interchanging rows of equal length.

Definition 1.10. The signature of a signed tableau is a pair of numbers (i, j), where
i = #{+ signs in the tableau} and j = #{− signs in the tableau}.

Definition 1.11. A standard tableau is a labeled Young diagram in which boxes are
labeled by numbers that monotonically increase along rows (from left to right) and
increase strictly along columns (from top to bottom). We write bi, j for the box in
the intersection of the i-th row and j-th column.
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Nilpotent G and K-orbits. We think of a nilpotent matrix Xn×n as a linear trans-
formation

TX : C
n
→ Cn such that T k

= 0 for some k.

Linear algebra tells us that we can write

Cn
= Vp1 ⊕ Vp2 ⊕ · · ·⊕ Vpr

as a sum of vector subspaces with the following properties:

• TX : Vpi → Vpi .

• Each Vpi admits a basis such that

ei
pi

TX
−→ ei

pi−1
TX
−→· · ·

TX
−→ ei

1
TX
−→ 0.

In this basis TX is represented by its Jordan form J. Moreover, if Y = g−1 Xg
for some g ∈ G, then the matrix of TY with respect to the basis {g−1ei

} is also J.
We conclude that G acts on the set of nilpotent matrices by conjugation and that
this action yields a finite number of orbits.

The Jordan decomposition theorem implies that we can attach to each nilpotent
G-orbit, G · X , a Young diagram which is completely determined by the Jordan
form of X . Indeed, the lengths of the rows of the corresponding Young diagram are
given by the size of the Jordan blocks. The following known proposition states that
the map from nilpotent G-orbits to Young diagrams is a bijection.

Proposition 1.12 [Collingwood and McGovern 1993]. There is a one-to-one cor-
respondence between the set of nilpotent orbits and the set of partitions of n. The
correspondence sends a nilpotent element X to the partition determined by the
block-size of its Jordan form. The orbit 0 corresponds to the partition [1, 1, . . . , 1].

The group K acts by conjugation of the set N ∩ p of nilpotent matrices of
the form

X =
(

0 Ap×q

Bq×p 0

)
.

If we write

Cn
= V+⊕ V−, where V+= 〈e1, . . . , ep〉, V−= 〈ep+1, . . . , ep+q〉,

then
X : V+→ V−,

X : V−→ V+.
(1.13)

A generalized version of the Jordan decomposition theorem, combined with
(1.13), yields a parametrization of K -orbits on N ∩ p via Young diagrams with
boxes labeled by alternating signs, + and −. Our next proposition is well-known
and follows from the above discussion.
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Proposition 1.14. There is a one-to-one correspondence between K -orbits in N ∩p
and signed tableaux.

We fix p ≥ q with p+ q = n and a partition λ = [r1, r2, . . . , r`] of n. Such a
partition determines a Young diagram of size n. Let [p1, p2, . . . , pr ] be the length
of the columns of the Young diagram determined by λ.

Proposition 1.15. Fix p ≥ q with p+q = n, and fix [p1, p2, . . . , pr ] integers with∑
pi = n. There is a bijection{

nilpotent K -orbits OK parametrized by
tableaux of column lengths [p1, . . . , pr ]

}
←→

{
(t1, . . . , ts) integers, s ≤ p1,

t1 < t2 < · · ·< ts

}
.

Proof. Assume OK is a nilpotent K -orbit parametrized by a signed tableau of
shape λ. Note that such a signed tableau is completely determined by its shape
and the position of the − signs on the first column of the tableau. The proposition
follows by letting t1 < t2 < · · ·< ts denote the positions of the − signs in the first
column of the parametrizing tableau. �

2. Garfinkle’s algorithm

In this section we describe the algorithm defined in [Garfinkle 1993]. The algorithm
assigns to each clan a pair of equally shaped tableaux; one signed, the other
numbered. The resulting map has significant representational theoretical meaning.
The relevance of the algorithm in our work is explained in the introduction.

Garfinkle’s algorithm. Starting with a clan c= (c1, c2, . . . , cn) form a sequence
of pairs

(i, εi ) if ci = εi ,

(i, j) if ci = cj .

Arrange the pairs in order by the largest entry, with the convention that a sign has
numerical size 0. Write π1, . . . , πr for the resulting ordered sequence. Suppose
that a smaller, equally shaped pair of tableaux (T±, ST ) has been constructed from
π1, . . . , π j−1. If π j = (k, εk), then first add the sign εk to the topmost row of (a
signed tableau in the equivalence class of) T± so that the resulting tableau has signs
alternating across rows. Then add the integer k to ST in the unique position so that
the two new tableaux have the same shape. If π j = (k, `), first add k to ST using
the Robinson–Schensted bumping algorithm to get a new tableau ST ′, and then add
a sign ε (either + or − as needed) to T± so that the result is a signed tableau T ′

±
of

the same shape as ST ′. Then add (`,−ε) (by the same recipe as the first case) to
the first row strictly below the row to which ε was added.

Example. Assume GR = U (2, 2), and consider the clan (1− + 1). Attach to
(1−+ 1) the sequence (2,−)(3,+)(1, 4).
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We associate to (2,−)(3,+) a pair of tableaux, one a signed tableau, the other a
standard tableau:

− + 2 3

Next, we add (1, 4) to obtain

− +

+

−

1 3
2
4

The algorithm assigns to (1−+ 1) the signed tableau

− +

+

−

Example. Assume GR = U (5, 4), and consider the K -orbit parametrized by the
clan (+ 1+ 2 3 3 2− 1). Attach to (+ 1+ 2 3 3 2− 1) the sequence

(1,+)(3,+)(5, 6)(4, 7)(8,−)(2, 9).

We associate to (1,+)(3,+)(5, 6) a pair of tableaux, one a signed tableau, the
other a standard tableau:

+ −

+

+

1 5
3
6

Next we add (4, 7) to obtain

+ −

+ −

+

+

1 4
3 5
6
7

Our next goal is to include the pair (8,−). This gives

+ −

+ −

+ −

+

1 4
3 5
6 8
7
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The next step is a little different. When we add the pair (2, 9), we get

+ −

+ −

+ −

+

+

−

1 2
3 4
5 8
6
7
9

Theorem 2.1 [Trapa 2005; 1999, Theorem 5.6]. (1) Garfinkle’s algorithm defines
a bijection between {Q ∈ K/B} and the set of pairs {(T±, ST )} consisting of a
signed Young tableau and a standard Young tableau of the same shape.

(2) If T±,Q is the signed tableau attached via Garfinkle’s algorithm to Q, then T±,Q
parametrizes µ(T ∗Q (B)).

A distinguished set of K-orbits in B that parametrizes nilpotent K-orbits.

Definition 2.2. Fix p ≥ q with p+ q = n, and fix [p1, p2, . . . , pr ] integers with∑
pi = n. Define Sdis to be the set of clans of length n satisfying the following

conditions:

(1) The first p1 components of the clan (from left to right) are of the form

(1 · · · a1 ε1 · · · ε1 a1 · · · 1),

where ε1 is either + or −.

(2) Components (c∑i−1
1 pk+1 · · · c∑i

1 pk
) are of the form

( i−1∑
1

ak + 1 · · ·
i−1∑

1

ak + ai εi · · · εi

i−1∑
1

ak + ai · · ·

i−1∑
1

ak + 1
)
,

where εi is either + or −.

(3) a1 ≥ a2 ≥ · · · ≥ ar .

(4) q =
∑

ai +
∑
δε j ,− with δεi ,− = 1 if εi =− and δεi ,− = 0 if εi =+.

An element of Sdis is called a distinguished clan.

Example. The clan (1 2+++ 2 1 3 4− 4 3 5 5) is a distinguished clan. Observe
that p1= 7, p2= 5, p3= 2; a1= a2= 2, a3= 1, and q = 6. The clan (1 2 3 4 4 3 2 1)
is distinguished.

Proposition 2.3. Fix p ≥ q > 0 integers so that p+ q = n. Let [p1 · · · pr ] be a
sequence of positive integers with

∑
i pi = n. Denote by O[p1···pr ] the nilpotent
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G-orbit parametrized by a tableau with column lengths p1, . . . , pr . There is a
bijection {

nilpotent K -orbits OK such that
G ·OK =O[p1···pr ]

}
←→ S [p1···pr ]

dis .

Proof. Let OK be a nilpotent K -orbit. Assume the signed tableau that parametrizes
OK has columns of lengths p1, p2, . . . , pr . By Proposition 1.15, OK is completely
determined by the position of− signs in the first column of its corresponding signed
tableau T±. Counting the numbers of the boxes that contain a − sign from top to
bottom, list the position of the − signs in the first column as (t1, t2, . . . , ts). Define

`1 = #{− signs in the first column of T±},

`2 = #{ti : ti ≤ p2},

...

`r = #{ti : ti ≤ pr }.

We assign to the nilpotent K -orbit, OK , a distinguished K -orbit Q ⊂ B. We
describe the clan cQ that identifies Q as follows. Write

cQ =
(
c1 · · · cp1cp1+1 · · · cp1+p2cp1+p2+1 · · · c∑ pi

)
.

The first p1 entries of cQ are given by

(c1 · · · cp1)=

{
(1 · · · `1+ · · ·+ `1 · · · 1) if p1 ≥ 2`1,

(1 · · · (p1− `1)− · · ·− (p1− `1) · · · 1) if p1 < 2`1.

Note that `1 =
1
2 #{ci ∈ N}+ #{ci =−}.

The next p2 entries are(
cp1+1 · · · cp1+p2

)
=

{
(a1 · · · a`2 − · · ·− a`2 · · · a1) if p2 ≥ 2`2,

(a1 · · · ap2−`2 + · · ·+ ap2−`2 · · · a1) if p2 < 2`2,
(2.4)

where the integers ai are consecutive and

a1 =

{
`1+ 1 if p1 ≥ 2`1,

p1− `1+ 1 if p1 < 2`1.

Note that `2=
1
2 #{ci ∈N : p1+1≤ i ≤ p1+ p2}+#{ci =+: p1+1≤ i ≤ p1+ p2}.

Continuing inductively we define the remaining entries in cQ.
The above construction assigns to OK a unique distinguished cQ. It is easy to

check that Garfinkle’s algorithm attaches to cQ a pair of tableaux with the signed
tableau parametrizing OK . By Theorem 2.1 , the orbit Q is such that µ(T ∗QB)=OK .
The definition of distinguished clan guarantees that the map from nilpotent orbits
to distinguished clans is onto. �
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Example. Consider the nilpotent orbit OK corresponding to

+ − + − + − +
− + − +

+ − +

+ −

We have p1 = p2 = 4, p3 = 3, p4 = 2, p5 = p6 = p7 = 1 and `i = 1 for
all 1 ≤ i ≤ 7. The construction described in the proof of Proposition 2.3 gives
cQ =

(
1++ 1 2−− 2 3+ 3 4 4+−+

)
. In particular the K -orbit Q parametrized

by clan cQ belongs to µ−1(OK ).

3. The operators Tα,β

We now describe some combinatorial tools that will play an important role in our
work. Indeed, given a nilpotent K -orbit OK , we have defined a distinguished clan
cdis so that cdis ∈ µ

−1(OK ). We will show in Section 4 that each c ∈ µ−1(OK ) can
be obtained from cdis by applying an appropriate sequence of operators T·,· . These
operators are defined both at the level of standard tableaux and at the level of clans.

Tα,β on standard tableaux. We follow [Garfinkle 1993, Chapter 3] and we let T
be a standard tableau.

Definition 3.1. We say that a root αi = εi − εi+1 is in the τ -invariant of T if the
box in T labeled i lies on a row above that containing the box labeled i + 1.

Example. The τ -invariant of

T =

1 5
2 6
3 7
4 8
9 11

10

is τ(T )= {α1, α2, α3, α5, α6, α7, α8, α9}.

Definition 3.2. Given α = εi − εi+1 and β = εi+1− εi+2, we say that T is in Dα,β ,
the domain of Tα,β , if α /∈ τ(T ) and β ∈ τ(T ). This is the case when either (a) the
row containing label i + 2 is below the row containing label i , which in turn is
equal to or below the row that contains i +1 or (b) the row containing label i +1 is
above the row containing label i , which in turn is equal to the row that contains
i + 2. We define

Tα,β : Dα,β→ Dβ,α,

T 7→ Tα,β(T ),
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by switching the labels i + 1 and i + 2 in case (a) and by switching the labels i and
i + 1 in case (b).

Remark 3.3. The above definition is extended to the case β = αi−1 = εi−1− εi in
the obvious manner. We often use the abbreviated notation Ti, j for Tαi ,α j .

Example. The operator T4,5 maps the tableau

T =

1 5
2 6
3 7
4 8
9 11

10

to the tableau
1 4
2 6
3 7
5 8
9 11
10

Theorem 3.4 [Vogan 1979]. Fix λ a partition of n and denote by Sλ the set of
standard tableaux of a fixed shape λ. The operators Tα,β act transitively on Sλ.

Tα,β on clans. In this subsection we introduce the notion of τ -invariant on clans
and define operations Tα,β on clans. These notions are not new. The work of
Borho, Jantzen and Duflo established the important invariant of an irreducible
representation, its τ -invariant. This is a subset of simple roots defined in terms of
wall-crossing. As part of an important study of wall-crossing, [Speh and Vogan
1980] and [Vogan 1979] give formulas for the τ -invariant of a representation and
related Tα,β in terms of Z2-data (in type A, Z2-data can be interpreted as clan-data).
Our combinatorial description of τ -invariant and Tα,β-operations on clans agrees
with the work in [Speh and Vogan 1980].

Definition 3.5. Let c= (c1, c2, . . . , cn) be a clan. We define the τ -invariant of c as{
εi − εi+1 : (ci , ci+1) is a pair of equal signs,

(ci , ci+1) is a pair of equal numbers,

(ci , ci+1)= (±, a) so that there is j < i with cj = a ∈ N,

(ci , ci+1)= (a,±) so that there is j > i + 1 with cj = a ∈ N,

(ci , ci+1)= (a, b) so that there are j < k with cj = b, ck = a ∈ N
}
.
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Remark 3.6. At the Lie-algebra level, each clan determines a Borel subalgebra

bc = hc⊕ nc ⊂ g.

The parametrization of K -orbits in G/B via clans is arranged to have the following
property: there is a unique automorphism of g carrying bc to the Borel b= h⊕n of
equation (1.1). Using such an automorphism, one can keep track of the action of θ
on 1(nc). In particular if α ∈1(hc, nc) corresponds to εi − εi+1 via the mentioned
automorphism, then θ(α) corresponds to

εi − εk if ci is a sign and ci+1 = ck ∈ N,

εk − εi+1 if ci+1 is a sign and ci = ck ∈ N,

εk − ε` if ci = ck ∈ N and ci+1 = c` ∈ N,

εi − ε j if ci , c j are signs.

We say that α ∈1(nc) corresponding to εi − εi+1 is
imaginary compact if (ci , ci+1) is a pair of equal signs,
imaginary noncompact if (ci , ci+1) is a pair of distinct signs,
real if (ci , ci+1) is a pair of equal numbers,
complex otherwise.

We write in for imaginary noncompact roots, ic for imaginary compact roots,
and r for real roots. For α, a positive complex root with θ(α) > 0, we write C+.
For α, a positive complex root with θ(α) < 0, we write C−.

Hence, the τ -invariant of clan c is

τ(c)= {simple roots α ∈1(nc) : α is ic or r or C−}.

In order to define the combinatorial Tα,β-action on clans we introduce a technical
definition.

Definition 3.7. Let c be a clan, and write bc = hc⊕nc for the corresponding Borel
subalgebra. Write ε for a sign (could be + or −). Let αi ∈ 1(nc), where αi

corresponds to εi − εi+1.

(1) If αi is imaginary noncompact (in), we define the Cayley map

Cayi (c1 · · · ci=ε ci+1= − ε · · · cn)= (c1 · · · ci=1 ci+1=1 · · · cn).

(2) If αi is real (r), we define the inverse Cayley map

Cay−1
i (c1 · · · ci=1 ci+1=1 · · · cn)

=
{
(c1 · · · ci= + ci+1= − · · · cn); (c1 · · · ci= − ci+1= + · · · cn)

}
.
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(3) If αi is complex (C+), the θ(αi ) corresponds to ε j − εk with j < k. We define
the cross-action si × c as

si × (c1 · · · ci=ε ci+1=a · · · a · · · cn)= (c1 · · · ci=a ci+1=ε · · · a · · · cn),

si × (c1 · · · a · · · ci=a ci+1=ε · · · cn)= (c1 · · · a · · · ci=ε ci+1=a · · · cn),

si × (c1 · · · ci=a ci+1=b · · · cn)= (c1 · · · ci=b ci+1=a · · · cn)

for any clan c with the companion of a to the left of the companion of b.

(4) If αi is complex (C−), the θ(αi ) corresponds to ε j − εk with j > k. We define
the cross-action

si × (c1 · · · a · · · ci=ε ci+1=a · · · cn)= (c1 · · · a · · · ci=a ci+1=ε · · · cn),

si × (c1 · · · ci=a ci+1=ε · · · a · · · cn)= (c1 · · · ci=ε ci+1=a · · · cn),

si × (c1 · · · ci=a ci+1=b · · · cn)= (c1 · · · ci=b ci+1=a · · · cn)

for any clan with the companion of a to the right of the companion of b.

Definition 3.8. Given c, a clan, we define Dc
α,β = {clans : α /∈ τ(c) and β ∈ τ(c)},

and we define Tα,β : Dc
α,β→ Dc

β,α as

Tα,β(c)=



sα × c if α ∈ C+, β ∈ C− and α+β ∈ {C+, in},

sα × c if α ∈ C+, β ∈ ic and α+β ∈ C+,

sα × c if α ∈ C+, β ∈ r and θ(α+β) 6= α,
sβ × c if α ∈ C+, β ∈ C− and α+β ∈ {C−, ic, r},
sβ × c if α ∈ in, β ∈ C−,

Cayα c if α ∈ in, β ∈ ic,

Cay−1
β c∩ Dβ,α if α ∈ C+, β ∈ r and θ(α+β)= α.

Remark 3.9. We verify that Tα,β in Definition 3.8 is well-defined, i.e., Tα,β(c) ∈
Dc
β,α , by using the formulas given in Definition 3.7 and the definition of τ -invariant

of a clan.

Compatibility of Tα,β-actions. We have defined operators Tα,β both at the level of
clans and of standard tableaux. In representation theoretic language these actions
correspond to actions on Z2-data and on primitive ideals. Crucial to our work is the
following theorem.

Theorem 3.10 [Garfinkle 1993, Section 4.2]. Assume p > q. Let

E : {clans of signature (p, q)} ≡ {Q ∈ K/B} → {(T±, ST )},

c 7→ (T c
±
, STc),

be the bijection between {Q : K -orbits on B} and pairs of equally shaped tableaux
(the first one signed and the second one standard) induced by Garfinkle’s algorithm.
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Then if α, β ∈ Dα,β(clan c), then α, β ∈ Dα,β(STc). Moreover,

E(Tα,β c)= (T c
±
, Tα,β(STc)).

Remark 3.11. Each clan c determines an orbit Q∈B. Via the Beilinson–Bernstein
classification, such a Q determines an irreducible Harish-Chandra module with
trivial infinitesimal character, X (c) = X (Q). By [Trapa 2005, Theorem 5.6], T c

±

parametrizes the associated variety of X (Q) (which, under our assumptions, agrees
with µ(T ∗c B). A result by Vogan guarantees that Tα,β preserves associated variety.
Hence it preserves signed tableaux.

4. Characterization of µ−1(OK )

In this section we identify K -orbits on B with their clan parametrization. Then, we
freely write “τ -invariant of Q” meaning the τ -invariant of the associated clan, as
given in Section 3. Similarly we write “Tα,β of an orbit”, meaning the corresponding
action on clans. Theorem 4.3 gives a combinatorial description of the set µ−1(OK ).
Theorem 4.5 implies that the combinatoric in Theorem 4.3 is independent of the
real form.

Definition 4.1. Given c, c′ two clans parametrizing K -orbits Q,Q′∈B, we write
Q 7→ Q′ if there exist simple adjacent roots α, β with α /∈ τ(c), β ∈ τ(c) so
that Tα,β c = c′. We say that Q and Q′ are τ -linked if there exists a sequence
(Q0,Q1, . . . ,Qr ) of K -orbits on B so that Q0=Q, Qr=Q

′ and Q0 7→Q1 7→· · · 7→Qr .

Lemma 4.2. The τ -linked relation on the set K/B is an equivalence relation.

Proof. The lemma holds since in type A the operators Tα,β are injective. �

Theorem 4.3. Let OK be a nilpotent K -orbit. Then, Q,Q′ ∈ µ−1(OK ) if and only
if Q and Q′ are τ -linked.

Proof. By Theorem 2.1, two orbits Q,Q′ belong to µ−1(OK ) if and only if
E(T ∗QB) = (T

Q
±
, STQ) and E(T ∗Q′B) = (T

Q′

±
, STQ′) have T Q

±
= T Q′

±
. On the other

hand, by Theorem 3.4 there exists a sequence {Tαi ,βi } so that STQ′ = Tαr ,βr ◦ · · · ◦

Tα1,β1 STQ. Now the theorem follows from Theorem 3.10. �

Definition 4.4. Fix a partition [r1, r2, . . . , rk] of n = p+ q. Define a τ -graph of
standard tableaux of shape [r1, r2, . . . , rk] as follows. The vertices of the graph
are the standard tableaux of shape [r1, r2, . . . , rk]. Two standard tableaux (T1, T2)

are linked if there is a pair of adjacent simple roots with (α, β) with α /∈ τ(T1)

β ∈ τ(T1) and T2 = Tα,βT1.

Theorem 4.5. Fix a partition [r1, r2, . . . , rk] of n. Let (r, t) be any pair of integers
so that r+t=n. Let OK be a nilpotent GL(r,C)×GL(s,C)-orbit with parametrizing
tableau of shape [r1, r2, . . . , rk]. Let c be the distinguished clan associated to OK as
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in Proposition 2.3. Then, µ−1(OK ) is completely determined by c and the τ -graph
of standard tableaux of shape [r1, r2, . . . , rk].

Proof. The distinguished clan c parametrizes an orbit Q0 ∈ µ
−1(OK ). Garfinkle’s

algorithm attaches to Q0 a pair (T c
±
, STc) of shape [r1, r2, . . . , rk]. By Theorem 4.3,

Q ∈ µ−1(OK ) if and only if Q is τ -linked to Q0. Since Garfinkle’s map commutes
with the action of operators Tα,β , we conclude that Q ∈ µ−1(OK ) if and only if
the standard tableau associated to Q via Garfinkle’s map belongs to the τ -graph
of STc. �

Remark 4.6. The previous theorems imply that the equivalence relation Q ' Q′

if and only if µ(T ∗QB) = µ(T ∗Q′B) is independent of the real form U (r, t) of
GL(n = r + t,C).

Remark 4.7. It is important to note that the sequence of operators {Tαi ,βi } that link
two standard tableaux of the same shape is not unique. Our next example illustrates
Theorem 4.5. The example concerns tableaux of shape [2, 2, 2, 1, 1]. We show that
each standard tableau T of shape [2, 2, 2, 1, 1] can be obtained from

1 6
2 7
3 8
4
5

by a sequence of Ti, j . This sequence is not unique. In Section 5, in the setting of
two-column standard tableaux, we give explicit effective sequences of operators Ti, j

to generate µ−1(OK ).

Example. We illustrate Theorem 4.5 in an example. First we draw the τ -graph
of tableaux of shape [2, 2, 2, 1, 1]. This is a connected graph. In order to fit
the diagram, we have divided the graph into halves, shown in Figures 1 and 2.
The tableaux on the first row of Figure 2 are indeed obtained by applying T7,6 to
appropriate tableaux listed in Figure 1.

Next we consider two different real forms, U (5, 3) and U (4, 4). We set

T1 =

+ −

+ −

+ −

+

+

, T2 =

− +

− +

+ −

+

+

, and T3 =

− +

+ −

+ −

+

−

.

We describe µ−1(T1), µ
−1(T2) and µ−1(T3).
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We start with the standard tableau

ST =

1 6
2 7
3 8
4
5

and we choose a sequence of operators T·,· that generates all standard tableaux
of shape [2, 2, 2, 1, 1]. Next, we determine ci

dis ∈ µ
−1(Ti ) for i = 1, 2, 3. It is

useful to observe that E(ci
dis)= (Ti , ST ). We show that the chosen sequence of

operators T·,· allows us to describe µ−1(T1), µ−1(T2) and µ−1(T3) simultaneously
when applied to ci

dis. The example illustrates Theorem 4.5.

1 6
2 7
3 8
4
5

T5,4
//

1 5
2 7
3 8
4
6

T4,3
//

1 4
2 7
3 8
5
6

T6,5
��

T3,2
//

1 3
2 7
4 8
5
6

T6,5
��

T2,1
//

1 2
3 7
4 8
5
6

T6,5
��

1 5
2 6
3 8
4
7

1 4
2 6
3 8
5
7

T4,3
oo

1 3
2 6
4 8
5
7

T5,4
��

1 2
3 6
4 8
5
7

T5,4
��

1 4
2 5
3 8
6
7

1 3
2 5
4 8
6
7

T4,3
oo

1 2
3 5
4 8
6
7

T4,3
��

1 2
3 4
5 8
6
7

T3,2
//

1 3
2 4
5 8
6
7

Figure 1
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1 2
3 4
5 7
6
8

T6,5
��

1 2
3 5
4 7
6
8

T6,5
��

1 3
2 5
4 7
6
8

T6,5
��

1 3
2 4
5 7
6
8

T6,5
��

1 4
2 5
3 7
6
8

T6,5
��

1 2
3 4
5 6
7
8

T5,4
��

1 2
3 6
4 7
5
8

1 3
2 6
4 7
5
8

1 3
2 4
5 6
7
8

T5,4
��

1 4
2 6
3 7
5
8

T5,4
��

1 2
3 5
4 6
7
8

1 3
2 5
4 6
7
8

T4,3
��

1 5
2 6
3 7
4
8

1 4
2 5
3 6
7
8

Figure 2

The GL(5,C)×GL(3,C)-orbits in B that belong to µ−1(T1) are parametrized
by the clans

+++++−−−
T5,4
// ++++11−−

T4,3
// +++1+1−−

T6,5
��

T3,2
// ++1++1−−

T6,5
��

T2,1
// +1+++1−−

T6,5
��

++++1−1− oo
T4,3

// +++1+−1− ++1++−1−

T5,4
��

+1+++−1−

T5,4
��

+++1221− ++1+221−
T4,3

oo +1++221−

T4,3
��

+1+2+21−

T3,2
��

++12+21−
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+1+2+2−1
T6,5
��

+1++22−1
T6,5
��

++1+22−1
T6,5
��

++12+2−1
T6,5
��

+++122−1
T6,5
��

+1+2+−21
T5,4
��

+1+++−−1 ++1++−−1 ++12+−21
T5,4
��

+++1+−−1
T5,4
��

+1++2−21 ++1+2−21
T4,3
��

++++1−−1

+++12−21

The GL(5,C)×GL(3,C)-orbits in B that belong to µ−1(T2) are parametrized
by the clans

12+213+3
T5,4
// 12+231+3

T4,3
// 12+321+3

T6,5
��

T3,2
// 123+21+3

T6,5
��

T2,1
// 132+21+3

T6,5
��

12+23+13 oo
T4,3

// 12+32+13

T5,4
��

123+2+13

T5,4
��

132+2+13

T5,4
��

1223++13 1232++13
T4,3

oo 1322++13

T4,3
��

13−+++13

T3,2
��

1−3+++13

13−++1+3

T6,5
��

1322+1+3

T6,5
��

1232+1+3

T6,5
��

1−3++1+3

T6,5
��

1223+1+3

T6,5
��

13−+1++3

T5,4
��

13221++3 12321++3 1−3+1++3

T5,4
��

12231++3

T5,4
��

13−1+++3 1−31+++3

T4,3
��

12213++3

1−13+++3

The GL(4,C)×GL(4,C)-orbits in B that belong to µ−1(T3) are parametrized
by the clans

12+213−3
T5,4
// 12+231−3

T4,3
// 12+321−3

T6,5
��

T3,2
// 123+21−3

T6,5
��

T2,1
// 132+21−3

T6,5
��

12+23−13
T4,3

// 12+32−13

T5,4
��

123+2−13

T5,4
��

132+2−13

T5,4
��

12+3−213 123+−213
T4,3

oo 132+−213

T4,3
��

13+2−213

T3,2
��

1+32−213
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13+2−123

T6,5
��

132+−123

T6,5
��

123+−123

T6,5
��

1+32−123

T6,5
��

12+3−231

T6,5
��

13+21−23

T5,4
��

132+1−23 123+1−23 1+321−23

T5,4
��

12+32−31

T5,4
��

13+12−23 1−312−23

T4,3
��

12+23−31

1+132−23

5. The two-column case

Explicit computations of the action of Tα,β-operators on two-column standard
tableaux.

Proposition 5.1. Assume T is a standard tableau of shape [2t , 1r−t
]. Further

assume that T has its br,1 box labeled r + ` with ` ≤ t , and has its b1,2 box
labeled j . Then, there exists a tableau T̃ with b̃r,1 labeled r + `− 1 so that one of
the following holds:

(1) `= 1 and T = Tr,r−1(T̃ ).

(2) ` > 1 and T = Tr+`−2,r+`−3 ◦ Tr+`−1,r+`−2(T̃ ).

(3) ` > 1 and T = Tr+`−1,r+`(T̃ ).

(4) T has box b`,2 labeled by an integer k ≥ j + `− 1, the box with label k− 1 is
on the first column, and T = Tk,k−1 ◦ · · · ◦ Tr+`−2,r+`−3 ◦ Tr+`−1,r+`−2(T̃ ).

(5) T has box b`,2 labeled by an integer k ≥ j + `− 1, the box with label k − 1
is on the second column, and there is a label s with j − 1≤ s ≤ k− 1 so that
T = Ts,s−1 ◦ · · · ◦ Tk−1,k−2 ◦ Tk,k−1 ◦ · · · ◦ Tr+`−2,r+`−3 ◦ Tr+`−1,r+`−2(T̃ ).

The proposition is proved by induction on the label of the box br,1 in the in-
tersection of the last row and first column of T. As the standard tableau T has
shape [2t , 1r−t

], the box br,1 is labeled by an integer of the form r + ` for some
`≥ 0. For expository purposes we first prove the proposition when `= 1 and `= 2.
Lemma 5.2 concerns the case `= 1. Lemma 5.3 treats the case `= 2.

Let To be the standard tableau of shape [2t , 1r−t
] with box br,1 labeled r and

box bt,2 labeled r + t .

Lemma 5.2. Assume T is a standard tableau of shape [2t , 1r−t
]. Further assume

that T has its br,1 box labeled r + 1. Then, there exists a tableau T̃ with b̃r,1

labeled r such that either

(1) T = Tr,r−1(T̃ ), or

(2) T = T j, j−1 ◦ · · · ◦ Tr−1,r−2 ◦ Tr,r−1(T̃ ) for some integer j < r .
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Proof. T has br,1 labeled r + 1. Then br−1,1 is either labeled r − 1 or is labeled r .
There is exactly one such tableau with br−1,1 labeled r−1. This is Tr,r−1(To). Thus
T̃ = To and T = Tr,r−1(To). If the label of br−1,1 is r , then T is of the form

T =

1 j
· r+2
· ·

· ·

· r+ t
·

·

r

r+1

.

In this case, T = T j, j−1 ◦ · · · ◦ Tr−1,r−2 ◦ Tr,r−1(To). �

Lemma 5.3. Assume T is a standard tableau of shape [2t , 1r−t
]. Further assume

that T has its br,1 box labeled r + 2.

(1) If b1,2 has label r and r + 1 is the label of b2,2, then there exists a tableau T̃
with b̃r,1 labeled r + 1 such that T = Tr,r−1 ◦ Tr+1,r (T̃ ).

(2) If b1,2 has label j < r and r+1 is the label of b2,2, then there exists a tableau T̃
with b̃r,1 labeled r + 1 such that T = Tr+1,r (T̃ ).

(3) If the label of br−1,1 is r + 1, then there exists a tableau T̃ with b̃r,1 labeled
r + 1 such that

T = Ti,i−1 ◦ Ti+1,i ◦ · · · ◦ Tr,r−1 ◦ Tr+1,r (T̃ )

for some integer i < r .

Proof. Assume first that r + 1 is the label of b2,2. Then b1,2 has label j with j ≤ r .
When j 6= r , we have

T = Tr+1,r



1 j
· r+2
· ·

· ·

· r+t
·

·

r
r+1


,

When j = r , we have T = Tr,r−1 ◦ Tr+1,r (T̃ ), where b̃1,2 = r − 1.
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We next consider the tableaux T with br−1,1 labeled r + 1. Observe that T is of
the form

1 j
· k
· r+3
· r+4
· ·

· ·

· r+t
·

·

r+1
r+2

where k ≤ j + 1.
When k = j+1, the tableau Tr−1,r ◦ · · · ◦T j, j+1 ◦T j−1, j (T ) has box br,1 labeled

r + 2 and b2,2 labeled r + 1. We have Tr−1,r ◦ · · · ◦ T j, j+1 ◦ T j−1, j (T )= Tr+1,r (T̃ ),
with T̃ a tableau of shape [2t , 1r−t

] having b̃r,1 labeled r + 1. As the operators
Tz,z−1 are injective (with inverses Tz−1,z), we have

T = T j, j−1 ◦ T j+1, j ◦ · · · ◦ Tr,r−1 ◦ Tr+1,r (T̃ ).

When k 6= j + 1, some box in the first column of T has label k− 1. Then, T is
of the form

T =

1 j
· k
· r+3
· r+4
· ·

· ·

k−1 ·

k+1 ·

· r+t
·

·

·

·

r+1
r+2

.

Hence, Tr−1,r ◦ · · · ◦ Tk,k+1 ◦ Tk−1,k(T ) is a tableau with box b2,2 labeled r + 1.
By part (2) of this lemma, we have Tr−1,r ◦ · · · ◦ Tk,k+1 ◦ Tk−1,k(T ) = Tr+1,r (T̃ ),
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where T̃ is a tableau of shape [2t , 1r−t
] having b̃r,1 labeled r +1. We conclude that

T = Tk,k−1 ◦ Tk+1,k ◦ · · · ◦ Tr,r−1 ◦ Tr+1,r (T̃ ).
Note that our argument above is independent of r and t . �

Proof of Proposition 5.1. The proof is by induction on the label of the box in the
intersection of the last row first column of T. Assume T is a standard tableau of
shape [2t , 1r−t

]. By Lemmas 5.2 and 5.3, the proposition holds when ` = 1, 2.
Assume the statement of the proposition holds for any tableau of shape [2n, 1r−n

]

with box br,1 labeled r+m with m < `. We prove that the result holds for a tableau
of shape [2t , 1r−t

] with box br,1 labeled `+ r . We have two cases. Either r + `− 1
occurs as a label of a box in the second column of T or r+`−1 is the label of br−1,1.

Assume that r + `− 1 occurs as label of a box in the second column of T. Such
a T is of the form

T =

1 j
· ·

· ·

· r+`−1
· r+`+1
· ·

k−1 ·

k+1 ·

· r+t
·

·

·

r+`

.

Observe that Tr+`,r+`−1(T )= T̃ is a tableau with b̃r,1 labeled r + `− 1. Since the
T·,· are injective, we conclude that T = Tr+`−1,r+`(T̃ ).

If r + `− 1 is the label of br−1,1, then T is of the form

T =

1 j
· ·

· ·

· k
· r+`+1
· ·

k+1 ·

k+2 ·

· r+t
·

·

r+`−1
r+`
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with k ≥ `−1+ j . Note that k−1 can be either in the first or in the second column.
We consider the smaller tableau

T̂ =

1 j
· ·

· ·

· k
·

·

r+`−1

.

By induction hypothesis there exists ˜̂T , with the box in the intersection of the
last row and first column labeled r + `− 2, so that T̂ is either

• T̂ = Tk,k−1 ◦ · · · ◦ Tr+`−2,r+`−3
(˜̂T )= S1

(˜̂T ),
• T̂ = Ts,s−1 ◦ · · · ◦ Tk,k−1 ◦ · · · ◦ Tr+`−2,r+`−3

(˜̂T )= S2
(˜̂T ) with j − 1≤ s, or

• T̂ = Tr+`−3,r+`−4 ◦ Tr+`−2,r+`−3
(˜̂T )= S3

(˜̂T ).
In each case, ˜̂T has r+`−2 occurring in the first column. Enlarge ˜̂T to a tableau

of shape [2t, 1r−t
] by adding a box with label r + ` to the first column and t − `

boxes to the end of the second column with consecutive labels r + `+ 1 to r + t .
Call this new tableau T̃. It is useful to note that T̃ has box b̃r−1,1 labeled r + `− 2
and box b̃`,2 labeled r + `− 1. It follows that

T = Si
(
T̃
)

with i ∈ {1, 2, 3}. (5.4)

On the other hand, as T̃ has box b̃r−1,1 labeled r + `− 2 and box b̃`,2 labeled
r + `− 1,

Tr+`−2,r+`−1
(
T̃
)
= ˜̃T with ˜̃b r,1 labeled r + `− 1. (5.5)

Combining equations (5.4) and (5.5) we have that T can be obtained from ˜̃T
with ˜̃b r,1 labeled r + `− 1 by a sequence of operators T·,· as prescribed by the
proposition. �

Example. Consider the standard tableau

T =

1 5
2 6
3 7
4 8
9 11
10

.
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We have r = 6, `= 4, and k = 8. Observe that k− 1= 7, k− 2= 6, and k− 3= 5
are labels of boxes in the second column of T. Take s = 5. Then

T = T5,4 ◦ T6,5 ◦ T7,6 ◦ T8,7 ◦ T9,8


1 4
2 5
3 6
7 10
8 11
9

 .

The equivalence class of +++· · ·+−− · · ·−.

Proposition 5.6. Let O be the nilpotent K -orbit parametrized by a two-column
tableau with length-sizes (p, q) having all boxes in the first column labeled by +.
Assume that c is a clan that parametrizes a K -orbit in µ−1(O). Then:

(1) c1 =+.

(2) The first p-entries of c are either + signs or natural numbers.

(3) The last q-entries of c are either − signs or natural numbers.

(4) If ck is the last integer entry in c, then for all t > k ct =−.

(5) If j ≤ p and cj ∈ N, then there is exactly one i ≥ p+ 1 so that cj = ci .

(6) If i < j and (ci , cp+t) and (cj , cp+s) are pairs of equal numbers, then s < t .

(7) If j < p and cj ∈ N, then #{ct ∈ N with t ≤ j} ≤ #{ct =+ with t < j}.

Proof. We first observe that if c ∈ µ−1(OK ), then c1 = +. This is an easy conse-
quence of Garfinkle’s algorithm, as otherwise the algorithm would produce a signed
tableau having both a + sign and a − sign in the first column. Call cj the first entry
in c (counting from left to right) such that cj = a ∈ N. Let ci be the unique entry
of c with i 6= j and ci = cj . Then we know that each entry ct ∈ c with t < j is a
+ as otherwise the algorithm would not produce a two-column tableau. Similar
considerations allow us to conclude that i ≥ p+ 1 and that all entries in c with
indices larger than i are − signs. Hence, we can write ci = cp+` with `≥ 1.

Our proof is by induction on `. We first prove that all clans in µ−1(OK ) for which
the last integer entry (counting from left to right) is cp+1 satisfy the proposition.
Let c be one such clan. As q = #{− signs in c} + #{pairs of equal numbers}, we
have

c= (+ · · ·+ 1+ · · ·+ 1− · · ·−), with cj = cp+1 = 1.

Hence, c satisfies the proposition.
Assume next that clans with last numerical entry in position p+ `− 1 satisfy

the proposition. We prove that it is so for those clans with last numerical entry
in position p + `. Let c` be a clan that parametrizes an orbit Qc` ∈ µ

−1(OK )
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such that the last numerical entry in c` is in position p+ `. By Theorem 4.3 and
Proposition 5.1, there exists an orbit Qc`−1 ∈ µ

−1(OK ) which is τ -linked to Qc` . In
particular, c` can be obtained from a clan c`−1, having its last numerical entry in
position p+ `− 1, by an appropriate sequence of operators T·,· as prescribed by
Proposition 5.1. By our induction hypothesis, clan c`−1 satisfies the proposition;
that is:

(a) Each of the first p entries is either a + sign or a natural number with c1 =+.

(b) If (ci , cj ) is a pair of equal numbers, then i ≤ p and j ≥ p+ 1.

(c) After the last numerical entry, the clan consists of − signs.

(d) For each cj ∈ N with j ≤ p, #{ct ∈ N with t ≤ j} ≤ #{ct =+ with t < j}.

In order to show that c` also satisfies the proposition, we study the effect of the
sequence of operators T·,· on c`−1. The sequence of relevant operators T·,· is that of
Proposition 5.1. The first operator in the sequence is Tp+`−1,p+`−2. Since c`−1 ∈

Dp+`−1,p+`−2 and it satisfies the proposition, its entries cp+`−2, cp+`−1, cp+` are of
the form (· · · a · · · b · · · | · · · b a−) or (· · · a · · · + | a−). Thus, Tp+`−1,p+`−2(c`−1)

gives (· · · a · · · b · · · | · · · b − a) or (· · · a · · · + | − a). All such new clans satisfy
the proposition. The action of Tp+`−2,p+`−3 on one such new clan depends on its
cp+`−3 entry. We have the following possibilities:

(· · ·a · · ·b · · · | · · · − b− a), (· · ·a · · · ++ |− a), (· · ·a · · ·b · · · + | b− a),

(· · ·a · · ·b · · ·c · · · | · · ·c b− a), (· · ·a · · ·b | b−a), (· · ·a · · ·b+ |−b · · ·a).

Thus, Tp+`−2,p+`−3 applied to the clans above gives

(· · ·a · · ·b · · · | · · ·b−− a), (· · ·a · · · + b | b a), (· · ·a · · ·b · · ·+ |− b a),

(· · ·a · · ·b · · ·c · · · | · · ·c− b a), (· · ·a · · ·+ |−− a), (· · ·a · · ·+ b | − b · · ·a).

The clans so produced clearly satisfy the proposition. When studying the con-
secutive action of T·,·, as prescribed by Proposition 5.1, we need to also consider
clans containing the patterns

(· · · + + a · · · | · · · a), (· · · + a + b · · · | · · · b − a), (· · · + a + c | c · · · a),

(· · · a b + c | c − b · · · a), (· · · + + a | · · · a).

In these cases, Ti,i+1 maps the above clans to new clans containing the patterns

(· · · + a + · · · | · · · a), (· · · + + a b · · · | · · · b − a), (· · · + + a c | c − a),

(· · · a + b c | c − b · · · a), (· · · + a + | · · · a).
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Conditions (1) through (6) of the proposition are clearly satisfied by these new
clans. The only nonobvious conclusion is that the clans

c′ = T·,·
(
c=(· · · + + a · · · | · · · a · · · )

)
= (· · · + a + · · · | · · · a · · · )

and
c′ = T·,·

(
c= · · ·+ + a | · · · a · · · )

)
= (· · · + a + | · · · a · · · )

satisfy condition (7). Let A = #{+ signs in c that occur to the left of a}, and let
B = #{ct ∈ c : integer entry to the left or at the position of a}. By the induction
hypothesis we have B ≤ A. If B < A, then c′ satisfies (7). We assume that A = B
and derive a contradiction. Write the first p-entries of c as [+ γ + + a · · · ]. Let
Aγ denote the number of + signs in γ and let Bγ denote the number of integers
in γ . We have A = Aγ + 3= B = Bγ + 1. Hence,

Bγ = Aγ + 2. (5.7)

If the last numerical entry in γ is ctγ then, as c satisfies (7) by the induction
hypothesis,

Bγ ≤ #{+ signs to the left of ctγ }. (5.8)

On the other hand,
Aγ = #{+ signs in c to the left of ctγ }

+ #{+ signs in γ occurring to the right of ctγ }− 1. (5.9)

Combining the identities in (5.7) and (5.9) with the inequality (5.8), we obtain

#{+ signs to the left of ctγ }+#{+ signs in γ occurring to the right of ctγ }+1

≤ #{+ signs to the left of ctγ }. (5.10)

As inequality (5.10) cannot hold, we conclude that A < B. �

Corollary 5.11. Let OK be the nilpotent K -orbit parametrized by a two-column
tableau with length-sizes (p, q) having all boxes in the first column labeled by +.
Assume that c is a clan that parametrizes a K -orbit in µ−1(OK ). Then,

0≤ #{ pairs of equal numbers in c} ≤min
{[ 1

2 p
]
, q
}
.

Proof. Garfinkle’s algorithm assigns to c a signed tableau and a standard tableau.
The algorithm is such that each pair of equal numbers in c produces a − sign in the
corresponding signed tableau. Hence, under our assumptions

#{pairs of equal numbers in c} ≤ q.

On the other hand, part (7) of Proposition 5.6 implies

#{pairs of equal numbers in c} ≤
[ 1

2 p
]
.

The corollary follows. �
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On µ−1(OK ) for orbits OK parametrized by a two-column signed tableau. A
bijection between the set of nilpotent K -orbits and a set consisting of distinguished
clans is exhibited in Proposition 2.3. In this subsection we give the explicit
parametrization of nilpotent K -orbits in terms of clans in the two-column case. We
introduce some notation. We consider two-column tableaux with column lengths
(r, t) with r + t = p+ q = n. Set

L1 = #{− signs in the first column}, (5.12)

L2 = #{+ signs in the second column}. (5.13)

Proposition 5.14. Let OK be a nilpotent K -orbit. Assume that the signed tableau
parametrizing O has two columns. Then µ−1(OK ) contains the K -orbit Qc in B
for exactly one of the following:

(1) c=
(
12 · · ·r−L1−·· ·−r −L1 · · ·1r+1 · · ·r+t−L2+·· ·+r+t−L2 · · ·r+1

)
,

with L1 ≥
[ r

2

]
, L2 ≥

[ t
2

]
.

(2) c=
(
1 2 · · ·r − L1−·· ·− r − L1 · · ·1 r + 1 · · ·r + L2−·· ·− r + L2 · · ·r + 1

)
,

with L1 ≥
[ r

2

]
, L2 ≤

[ t
2

]
.

(3) c=
(
1 2 · · · L1 +·· ·+ L1 · · ·1 r + 1 · · ·r + t − L2 +·· ·+ r + t− L2 · · ·r + 1

)
,

with L1 ≤
[ r

2

]
, L2 ≥

[ t
2

]
.

(4) c=
(
1 2 · · · L1 +·· ·+ L1 · · ·1 r + 1 · · ·r + L2 −·· ·− r + L2 · · ·r + 1

)
, with

L1 ≤
[ r

2

]
, L2 ≤

[ t
2

]
.

Proof. The proposition follows from Proposition 2.3 and Garfinkle’s algorithm. �

Proposition 5.15. Keep the notation just introduced. Assume c ∈µ−1(OK ), and let
Nc = #{pairs of equal numbers in c}. Then one has the following:

(1) If L1 ≥
[ r

2

]
, L2 ≥

[ t
2

]
, and

M =min
{[ 1

2 max{2L1− r, 2L2− t}
]
,min{2L1− r, 2L2− t}

}
,

then for each integer k with

n− (L1+ L2)≤ k ≤ n− (L1+ L2)+M,

there exists a clan ck ∈ µ
−1(OK ) so that Nck = k.

(2) If L1 ≤
[ r

2

]
, L2 ≤

[ t
2

]
, and

M =min
{[ 1

2 max{r − 2L1, t − 2L2}
]
,min{r − 2L1, t − 2L2}

}
,

then for each integer k with

L1+ L2 ≤ k ≤ (L1+ L2)+M,

there exists a clan ck ∈ µ
−1(OK ) so that Nck = k.
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(3) If L1 ≤
[ r

2

]
and L2 ≥

[ t
2

]
, then for each integer k with

t − L2 ≤ k ≤ t − L2+ L1,

there exists a clan ck ∈ µ
−1(OK ) so that Nck = k.

(4) If L1 ≥
[ r

2

]
and L2 ≤

[ t
2

]
, then for each integer k with

L2 ≤ k ≤ r − L1+ L2,

there exists a clan ck ∈ µ
−1(OK ) so that Nck = k.

Proof. We prove that (2) holds. Statements (1), (3), and (4) can be proved using
similar arguments. By Proposition 5.6 it is enough to show that clans of the form(

a1 b1 b2 · · · bL2 a2 · · · aL1 + · · ·+ − − · · ·− aL1 · · · a1 bL2 · · · b1
)

(5.16)

are in µ−1(OK ).
We start by observing that Proposition 5.14 guarantees that µ−1(OK ) contains

the clan

c=
(
a1 a2 · · · aL1 + · · ·+ aL1 · · · a1 b1 · · · bL2 − · · ·− bL2 · · · b1

)
.

By Theorem 4.3, the proposition is settled once an appropriate sequence of operators
T·,· , when applied to c, produces clans of the desired shape.

Clan c is in the domain of Tr,r−1. Hence, by Theorem 4.3, Tr,r−1c ∈ µ−1(OK ).
Similarly, we argue that T2,1 ◦ T3,2 ◦ · · · ◦ Tr,r−1(c) ∈ µ−1(OK ). That is,

c′ =
(
a1 b1 a2 · · · aL1+ · · ·+aL1 · · · a1 b2 · · · bL2− · · · −bL2 · · · b1

)
,

c′′ =
(
a1 b1 b2 · · · bL2 a2 · · · aL1 + · · · + aL1 · · · a1 − · · ·− bL2 · · · b1

)
are clans in µ−1(OK ). The next operator in the sequence is Tr+L2,r+L2+1, which
when applied to c′′ gives

c′′′ =
(
a1 b1 b2 · · · bL2 a2 · · · aL1 + · · · + − aL1 · · · a2 − a1 − · · · − bL2 · · · b1

)
.

Next, we compute Tr−L1+L2,r−L1+L2−1 ◦ · · · ◦ Tr+L2,r+L2+1(c′′) to obtain

civ
=
(
a1 b1 b2 · · · bL2 a2 · · · aL1 + · · ·+ − aL1 · · · a2 − · · ·− a1 bL2 · · · b1

)
.

Note that now, at “the center” of the clan we have the + + · · ·+ − pattern. Further
applications of similar operators yield the clan in (5.16). �
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Global sensitivity analysis in a mathematical model
of the renal insterstitium

Mariel Bedell, Claire Yilin Lin,
Emmie Román-Meléndez and Ioannis Sgouralis

(Communicated by Suzanne Lenhart)

The pressure in the renal interstitium is an important factor for normal kidney
function. Here we develop a computational model of the rat kidney and use it to
investigate the relationship between arterial blood pressure and interstitial fluid
pressure. In addition, we investigate how tissue flexibility influences this rela-
tionship. Due to the complexity of the model, the large number of parameters,
and the inherent uncertainty of the experimental data, we utilize Monte Carlo
sampling to study the model’s behavior under a wide range of parameter values
and to compute first- and total-order sensitivity indices. Characteristically, at ele-
vated arterial blood pressure, the model predicts cases with increased or reduced
interstitial pressure. The transition between the two cases is controlled mostly
by the compliance of the blood vessels located before the afferent arterioles.

1. Introduction

Kidneys are the core organs in the urinary system. Their principal functions are to
remove metabolic waste from the blood and to regulate blood salt and water levels
[Eaton et al. 2009]. Through the regulation of salt and water, kidneys also play an
important role in the regulation of arterial blood pressure [Cowley 1997; Wolgast
et al. 1981]. To perform these functions, each kidney adjusts the composition of
the urine it produces.

Each kidney has an outer layer, called the cortex, and an inner layer, known as
the medulla [Kriz and Bankir 1988]. Much of the space in these regions is filled
by the functional units of the kidney, which are termed nephrons. Depending on
the organism, each kidney contains thousands to millions of nephrons. Nephrons
are responsible for the production of urine.

Kidneys contain two types of nephrons, cortical (short) and juxtamedullary
(long) nephrons, each of which is surrounded by a net of capillaries. Cortical
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nephrons remain almost entirely in the cortex, while juxtamedullary nephrons ex-
tend deep into the medulla. Each nephron consists of a glomerulus and a renal
tubule. Furthermore, each renal tubule consists of various permeable or imper-
meable segments [Eaton et al. 2009; Kriz and Bankir 1988]. Additionally, each
nephron has access to a collecting duct for removal of the produced urine.

Kidneys are connected with the rest of the body by two blood vessels, the renal
artery, which carries blood into the kidney, and the renal vein, which carries blood
out of the kidney to recirculate into the body. In addition, urine is excreted from
the body through the ureter. Blood coming from the renal artery is delivered to the
afferent arterioles. A steady flow of blood coming from the afferent arteriole of
a nephron is filtered in the glomerulus and flows into the renal tubule. The blood
flow is maintained constant in each glomerulus by the constriction or relaxation
of its afferent arteriole [Holstein-Rathlou and Marsh 1994; Sgouralis and Layton
2015]. Nearly all of the fluid that passes through the renal tubules is reabsorbed and
only a minor fraction results in urine. Fluid is reabsorbed from the renal tubules in
two stages: first by the renal interstitium and then by the surrounding capillaries.
The processes underlying reabsorption are driven by the pressures in the interstitial
spaces [Cowley 1997; Wolgast et al. 1981].

The pressures in the renal interstitium are important determinants of kidney
function. There is a lack of investigations that look at the factors affecting them. We
develop a computational model of the rat kidney, for which several experimental
data exist, and use it to study the relationship between arterial blood pressure and
interstitial fluid pressure. In addition, we study how tissue flexibility affects this
relationship and how the model predictions are affected by the uncertainty of key
model parameters. We model the uncertain parameters as random variables and
quantify their impact using Monte Carlo sampling and global sensitivity analysis.

2. Methods

2.1. Model description. The model consists of a collection of compartments that
follow the characteristic anatomy of the kidneys of mammals [Kriz and Bankir
1988; Moffat and Fourman 1963]. The compartments fall in three categories:

(i) regions that model the cortical and medullary interstitial spaces,

(ii) pipes that model the blood vessels and renal tubules, and

(iii) spheres that model the glomeruli.

A schematic diagram depicting the arrangement of the compartments (1–35) is
shown in Figure 1 and a summary is given in Table 1. To facilitate the description of
the model equations below, we use a set of nodes (c1–c32) to mark the connections
of the compartments; these nodes are also included in Figure 1 and Table 1.
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renal capsule

1

2

cortex

medulla

to
renal
vein

to
ureter

from
renal
artery

Figure 1. Schematic diagram of the model kidney. It shows the
arrangement of blood vessels (red) and nephrons (yellow) within
the interstitial spaces (gray). With the exceptions of the capil-
laries, the schematic displays only one of each of the different
compartments contained in the full model. Nodes c1–c32 mark
the connections of the compartments.

Briefly described, blood enters through the renal artery (node c1) and splits into
a number of large arteries (compartments 3–5) that drain to the afferent arterioles
(compartments 6 and 12). Each afferent arteriole supplies one glomerulus (com-
partments 21 and 27). In the glomeruli, blood is divided between the efferent
arterioles (compartments 8 and 14) and the renal tubules (compartments 22–26
and 28–32). Leaving the efferent arterioles, blood passes through the cortical
microcirculation (compartments 9 and 10) or the medullary microcirculation (com-
partments 15–18), before it rejoins in large veins (compartments 11, 19, and 20)
and leaves through the renal vein (node c18).

The model represents short (compartments 21–26) and long nephrons (compart-
ments 27–32) that both drain in the same collecting duct (compartments 33–35),
which, in turn, drains to the ureter (node c32). The model accounts for the spacial
as well as the anatomical differences between the two nephrons that are developed
in the mammalian kidney [Kriz and Bankir 1988; Moffat and Fourman 1963]. For
example, the model accounts for differences in the location within the cortex or
medulla, in the pre- and postglomerular vascular supply, dimensions, reabsorptive
capacity, etc.
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Qin
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P in
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Qin
i
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i
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−→
Pout

i

Ji
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Figure 2. Model pipes: impermeable pipe, left, and permeable pipe, right.

2.1.1. Model pipes and spheres. Blood vessels and renal tubules are modeled as
distensible pipes, while glomeruli are modeled as distensible spheres. Fluid flows
through a compartment i at a volumetric rate of Qi (Figure 2). Following the phys-
iology, some of the pipes are considered permeable while others are impermeable
[Eaton et al. 2009]. For simplicity, we assume that the only pipes modeling blood
vessels that are permeable are those that model capillaries.

The flow that passes through the walls of a permeable pipe is denoted by Ji .
According to the common convention, Ji > 0 denotes fluid leaving the pipe and
Ji < 0 denotes fluid entering the pipe. Due to conservation of mass, the flow that
leaves from an impermeable pipe Qout

i is the same as the flow that enters Qin
i , thus

Qout
i = Qin

i , (1)

while the flow that leaves a permeable pipe is given by

Qout
i = Qin

i − Ji . (2)

We assume that the flow crossing through the walls of renal tubules and glomerular
capillaries is a constant fraction of the corresponding inflow

Ji = fi Qin
i , (3)

where fi is the fraction of fluid that crosses through the pipe’s wall. For the coeffi-
cients fi we use the values listed in Table 1, which are chosen such that the model
predicts flows similar to the antidiuretic rat model in [Moss and Layton 2014].

Flows through the walls of the cortical and medullary capillaries are computed
by the Starling equation [Wolgast et al. 1981]:

J9 = K 9
f (P9− P1+π9−π1), (4)

J16 = K 16
f (P16− P2+π16−π2), (5)

where K 9
f = 1.59µm3/mmHg/min and K 16

f = 2.28µm3/mmHg/min are the filtra-
tion coefficients of the cortical and medullary capillaries and π1, π2, π9, and π16

are the oncotic pressures and P1, P2, P9, and P15 are the hydrostatic pressures in the
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i compartment (type) number P int
i Pext

i nodes frac.
coeff.

1 Cortical interstitium (region) 1 P1 - - -
2 Medullary interstitium (region) 1 P2 - - -
3 Medullary artery (pipe) 8 P3 P2 c1–c2 0
4 Arcuate artery (pipe) 24 P4

1
2 (P1+ P2) c2–c3 0

5 Cortical radial artery (pipe) 864 P5 P1 c3–c4 0
6 Afferent arteriolesn (pipe) 20736 P6 P1 c4–c5 0
7 Glomerular capillarysn (pipe) 5598720 P7 Pc19 c5–c6 3/28

8 Efferent arteriolesn (pipe) 20736 P8 P1 c6–c7 0
9 Cortical capillary (pipe) 1658880 P9 P1 c7–c8 see (4)

10 Venulesn (pipe) 20736 P10 P1 c8–c9 0
11 Cortical radial vein (pipe) 864 P10 P1 c9–c16 0
12 Afferent arterioleln (pipe) 10368 P12 P1 c3–c10 0
13 Glomerular capillaryln (pipe) 4302720 P13 Pc24 c10–c11 3/28

14 Efferent arterioleln (pipe) 10368 P14 P1 c11–c12 0
15 Descending vas rectum (pipe) 207360 P15 P2 c12–c13 0
16 Medullary capillary (pipe) 10368000 P16 P2 c13–c14 see (5)
17 Ascending vas rectum (pipe) 414720 P17 P2 c14–c15 0
18 Venulesn (pipe) 10368 P18 P1 c15–c16 0
19 Arcuate vein (pipe) 24 P19

1
2 (P1+ P2) c16–c17 0

20 Medullary vein (pipe) 8 P20 P2 c17–c18 0
21 Glomerulussn (sphere) 20736 Pc19 P1 c19 –
22 Proximal tubulesn (pipe) 20736 P22 P1 c19–c20 2/3

23 Descending limbsn (pipe) 20736 P23 P2 c20–c21 3/10

24 Medullary ascending limbsn (pipe) 20736 P24 P2 c21–c22 0
25 Cortical ascending limbsn (pipe) 20736 Pc24 P1 c22–c23 0
26 Distal tubulesn (pipe) 20736 P26 P1 c23–c29 13/84

27 Glomerulusln (sphere) 10368 P24 P1 c24 –
28 Proximal tubuleln (pipe) 10368 P28 P1 c24–c25 2/3

29 Descending limbln (pipe) 10368 P29 P2 c25–c26 5/12

30 Medullary ascending limbln (pipe) 10368 P30 P2 c26–c27 0
31 Cortical ascending limbln (pipe) 10368 P31 P1 c27–c28 0
32 Distal tubuleln (pipe) 10368 P32 P1 c28–c29 0
33 Cortical collecting duct (pipe) 144 P33 P1 c29–c30 13/84

34 Medullary collecting duct (pipe) 144 P34 P2 c30–c31 12/13

35 Papillary collecting duct (pipe) 8 P35 P2 c31–c32 0

Table 1. Summary of the compartments contained in the kidney
model. Superscripts sn and ln denote short and long nephrons,
respectively. Number refers to the total number of compartments
contained in the full model.
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associated compartments. The oncotic pressures are obtained by an approximation
of the Landis–Pappenheimer relation

πi = αCi +βC2
i , (6)

where α = 1.63 mmHg·dl/gr and β = 0.29 mmHg·dl2/gr2 as used in [Deen et al.
1972]. In (6), Ci denotes the concentration of protein in the compartment i . We
assume a fixed protein concentration of the blood entering through the renal artery
of Ca = 5.5 gr/dl and compute concentrations throughout the blood vessels (com-
partments 3–9 and 12–16) by taking into consideration conservation of mass:

Cout
i =

Qin
i

Qin
i − Ji

C in
i , (7)

where C in
i and Cout

i denote the inflow and outflow concentrations of the compart-
ment i . The oncotic pressures π9 and π16 in (4) and (5) are computed based on the
averages

C9 =
1
2(C

in
9 +Cout

9 ), (8)

C16 =
1
2(C

in
19+Cout

19 ). (9)

In each pipe and glomerulus, the internal pressure is denoted P int
i and the ex-

ternal Pext
i . For pipes, P int

i is computed by the average of the pressures at the
associated inflow and outflow nodes (Figure 1). For the glomeruli, internal pressure
equals to the pressure of the associated node (Figure 1 and Table 1). For all pipes
and glomerulus compartments, the external pressures equal the internal pressure
of the surrounding compartment, which, in the case of the cortical and medullary
regions, are denoted by P1 and P2, respectively. Exceptions to this are the arcuate
arteries and veins (compartments 4 and 19, respectively), which anatomically are
located between the cortex and the medulla [Kriz and Bankir 1988], so we compute
Pext

i for these compartments by the average of P1 and P2.
The volumes of the compartments, besides the regions and the afferent arterioles

(compartments 1, 2, 6, and 12), depend passively on the pressure difference that is
developed across their walls:

Vi = V ref
i + si (P int

i − Pext
i +1P ref

i ), (10)

where V ref
i , 1P ref

i , and si are constants. In particular, V ref
i and 1P ref

i denote a
reference volume and the pressure difference across the walls of the compartment
when Vi equals V ref

i , respectively. The parameters si are a measure of the dis-
tensibility of the compartments. A large si value indicates a compartment that is
very distensible, while a low value si indicates a more rigid compartment. In the
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model, we use si ≥ 0 such that an increase in P int
i or a decrease in Pext

i leads to an
expansion of the volume Vi , and vice versa.

For a model pipe, let P in
i and Pout

i denote the pressures at its inflow and out-
flow nodes, respectively. These pressures are related by a modified form of the
Poiseuille law:

P in
i − Pout

i =
8µi L i

πR4
i

(
Qin

i −
2
3 Ji
)
, (11)

where µi is the viscosity of the flowing fluid, L i is the length of the pipe, and
Ri is its radius. In the model, we assume µi and L i to be constants, while we
compute Ri based on the compartment’s volume (i.e., Vi =πR2

i L i ). Equation (11)
reduces to the common Poiseuille equation for the impermeable pipes [Sgouralis
and Layton 2015], while for the permeable pipes, it is assumed that Ji is linearly
distributed along the length of the pipe with a value of zero at the end of the pipe.

Pressure at node c1 equals the arterial blood pressure Pa , which in our model is
a free variable. Pressures at nodes c18 and c32 are kept constant at 4 mmHg and
2 mmHg, respectively, in agreement with the values of venous and ureter pressures
used in previous modeling studies [Moss and Thomas 2014; Layton et al. 2012].

2.1.2. Model afferent arterioles. The afferent arterioles are unique vessels in the
sense that they actively adjust radii such that blood flows through them at a fixed
rate [Holstein-Rathlou and Marsh 1994; Sgouralis and Layton 2015]. In the model,
we assume that blood flows in the afferent arterioles that feed the short and long
nephrons (i.e., Q6 and Q12, respectively) are fixed at 280 nl/min and 336 nl/min,
respectively, as in previous modeling studies of renal hemodynamics (see, for ex-
ample, [Moss and Layton 2014; Fry et al. 2014; Sgouralis and Layton 2014]).

We compute the radii of the afferent arterioles by using the Poiseuille equation
[Sgouralis and Layton 2015], which yields

R6 =

(
8µ6L6

π

Q6

Pc4− Pc5

)1/4

, (12)

R12 =

(
8µ12L12

π

Q12

Pc3− Pc10

)1/4

. (13)

Note that (12) and (13) imply that whenever the pressure difference along the
afferent arterioles Pc4 − Pc5 and Pc3 − Pc10 increases, the radii R6 and R12 de-
crease. This, in turn, implies that whenever the arterial blood pressure Pa in-
creases, the afferent arterioles constrict, and thus the total volumes occupied by
them, V6 = πR2

6 L6 and V12 = πR2
12L12, are reduced.

2.1.3. Model interstitial regions. The cortical and medullary interstitial spaces,
i.e., compartments 1 and 2, lie outside of the compartments 3–35 and therefore
must be calculated separately using a different set of equations. We obtain the first



632 M. BEDELL, C. Y. LIN, E. ROMÁN-MELÉNDEZ AND I. SGOURALIS

of such relationships by assuming that the net accumulation of interstitial fluid
within the cortex and medulla is zero. That is,

J9+
1
80 J22+

1
80 J26+

1
160 J28+

1
160 J32 = 0, (14)

J16+
1

500 J23+
1

1000 J29+
1

72000 J34 = 0, (15)

where the flows Ji are weighted based on the total number of the compartments
contained in the full model (Table 1).

Equations (4) and (5) require the oncotic pressures π1 and π2, which in turn
require the cortical and medullary protein concentrations C1 and C2 for (6). Protein
concentrations in the cortical and medullary regions are computed assuming that
the total mass of protein contained in each region, M1 and M2, respectively, remains
constant. Thus,

C1 = M1/V1, (16)

C2 = M2/V2. (17)

We use the values M1 = 1.93 mgr and M2 = 1.25 mgr, which are computed such
that the resulting model predicts reference pressures in the renal cortex and medulla
of ∼ 6 mmHg, similar to those estimated experimentally [Cowley 1997].

Cortical and medullary interstitial volumes V1 and V2 are assumed to change
proportionally; thus,

V1/V2 = κ, (18)

where κ is the proportionality constant. The combined volume of the interstitial
regions V1+V2 is calculated based on the total volume of the kidney V0 according to

V1+ V2 = V0− Vcortex− Vmedulla, (19)

where Vcortex and Vmedulla are found by summing the total volumes of the pipe and
glomerulus compartments contained within each region. Finally, the total volume
of the kidney V0 is calculated by

V0 = V ref
0 + s0 (P1− Pext

0 +1P ref
0 ), (20)

where in this case Pext
0 refers to the pressure external to the kidney, which is set to

0 mmHg. Equation (20) assumes that the total volume of the kidney is determined
by the distensibility of the renal capsule s0, which is stretched by the difference of
the pressures developed across it, i.e., P1− Pext

0 .

2.2. Model parameters. Values for the model parameters are given in Table 2.
These values are chosen such that at a reference arterial blood pressure P ref

a =
100 mmHg, the model predicts pressures and volumes that are in good agreement
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i
L i

µi
P ref

i 1P ref
i Rref

i V ref
i σ̃i ci P ref

ci
µm mmHg mmHg µm µm3 mmHg

1 - - 6 - - 7.62 · 1010 - c1 100
2 - - 6 - - 4.92 · 1010 - c2 97.51
3 7 · 103 µL 98.75 −92.75 270 1.60 · 109 σ̃G4 c3 95.02
4 2 · 103 µL 96.26 −90.26 150 1.41 · 108 σ̃G4 c4 93.97
5 3 · 103 µL 94.50 −88.50 75 5.30 · 107 σ̃G4 c5 51.17
6 300 µA 72.57 −66.57 10 9.42 · 104 - c6 48.08
7 80 µC 49.62 −37.27 4.2 4.43 · 103 σ̃G5 c7 14.38
8 310 µE 31.23 25.23 11 1.17 · 105 σ̃G5 c8 8.92
9 40 µC 11.65 −5.65 4.2 2.21 · 103 σ̃G5 c9 5.44

10 50 µL 7.17 −1.18 12 2.26 · 104 σ̃G5 c10 50.52
11 3 · 103 µL 5.40 0.60 150 2.12 · 108 σ̃G5 c11 47.51
12 260 µA 72.77 −66.77 10 8.16 · 104 - c12 12.94
13 100 µC 49.02 −35.35 4.2 5.54 · 103 σ̃G5 c13 9.88
14 265 µE 30.22 −24.22 11 1.00 · 105 σ̃G5 c14 9.12
15 210 µE 11.41 −5.41 9 5.34 · 104 σ̃G5 c15 7.78
16 60 µC 9.50 −3.50 4.2 3.32 · 103 σ̃G5 c16 5.37
17 210 µA 8.45 −2.45 9 5.34 · 104 σ̃G5 c17 4.41
18 30 µA 6.58 −0.58 12 1.35 · 104 σ̃G5 c18 4
19 2 · 103 µL 4.89 1.11 190 2.26 · 108 σ̃G5 c19 12.36
20 7 · 103 µL 4.20 1.79 425 3.97 · 109 σ̃G5 c20 11.73
21 - - 12.36 −6.36 80 2.14 · 106 σ̃G2 c21 11.30
22 14 · 103 µN 12.04 −6.04 15 9.89 · 106 σ̃G3 c22 10.93
23 2 · 103 µN 11.51 −5.51 8.5 4.53 · 105 σ̃G3 c23 10.79
24 2 · 103 µN 11.12 5.11 8.5 4.53 · 105 σ̃G3 c24 13.66
25 3 · 103 µN 10.86 −4.86 12 1.35 · 106 σ̃G3 c25 12.90
26 5 · 103 µN 10.73 −4.73 13.5 2.86 · 106 σ̃G3 c26 11.76
27 - - 13.66 −7.66 100 4.18 · 106 σ̃G2 c27 10.84
28 14 · 103 µN 13.28 −7.28 55 9.89 · 106 σ̃G3 c28 10.79
29 5 · 103 µN 12.33 −6.33 8.5 1.13 · 106 σ̃G3 c29 10.66
30 5 · 103 µN 11.30 −5.30 8.5 1.13 · 106 σ̃G3 c30 6.64
31 1 · 103 µN 10.82 −4.82 12 4.52 · 105 σ̃G3 c31 2.00
32 5 · 103 µN 10.73 −4.73 13.5 2.86 · 106 σ̃G3 c32 2
33 1.5 · 103 µN 8.65 −2.65 16 1.20 · 106 σ̃G3

34 4.5 · 103 µN 4.32 1.68 16 3.61 · 106 σ̃G3

35 2.5 · 103 µN 2.00 4.00 2.3 4.15 · 1010 σ̃G1

Table 2. Parameter and reference values for the model compart-
ments (indexed by i) and nodes (indexed by ci). Values for vis-
cosity and flexibility are given in Table 3.
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viscosity values (min·mmHg) flexibility values (mmHg−1)

µL = 6.4 · 10−7 σ̃G1 = 0.002
µA = 2 · 10−6 σ̃G2 = 0.005
µE = 2.5 · 10−6 σ̃G3 = 0.045
µC = 4.9 · 10−6 σ̃G4 = 0.004
µN = 5.4 · 10−8 σ̃G5 = 0.065

Table 3. Viscosity and flexibility values.

with either direct experimental measurements [Nyengaard 1993; Nordsletten et al.
2006; Jensen and Steven 1977; Heilmann et al. 2012; Cortes et al. 1996] or previous
modeling studies [Moss and Layton 2014; Moss and Thomas 2014; Edwards and
Layton 2011; Sgouralis and Layton 2012; 2013; 2016; Oien and Aukland 1991;
Sgouralis et al. 2015; Chen et al. 2011].

The pressure-volume relationships used in the model, (10) and (20), require
values for the parameters si . We assume that

(i) si scale proportionally to the reference volumes

si = σi V ref
i , (21)

and

(ii) the coefficients σi depend only on the histology of the associated compart-
ment.

That is, we group the compartments as follows:

Group G1: renal capsule (s0) and papillary collecting duct (s35),

Group G2: glomeruli (s21 and s27),

Group G3: renal tubules (s22–s26) and proximal collecting ducts (s28–s34),

Group G4: preafferent arteriole blood vessels (s3–s5),

Group G5: postafferent arteriole blood vessels (s7–s11 and s13–s20).

Then we assign the same flexibility value σi to all members of each group
(Table 2). With this formulation, the model compartments in each histological
group experience the same fractional change in volume whenever they are chal-
lenged by the same pressure gradient P int

i − Pext
i .

The available experimental data do not permit an accurate estimate of the values
of the flexibility parameters. For this reason, we treat the flexibilities of the five
groups σg as independent random variables. To facilitate the comparison among
the different groups, we set

σg = σ̃g3g, (22)
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Figure 3. Probability densities of the flexibility parameters3g of
the histological groups G1–G5 used in this study.

where σ̃g are constants, and 3g are random variables configured to have mode 1.
We estimate the values of σ̃g empirically based on ex vivo measurements reported
in [Hebert et al. 1975; Zhu et al. 1992; Cortes et al. 1996; Cortell et al. 1973;
Yamamoto et al. 1983] (Table 2).

For each simulation, 3g are drawn from the log-normal distribution (Figure 3),
which is chosen such that

(i) sg attain nonnegative values,

(ii) arbitrarily large values of sg are allowed, and

(iii) low sg values are more frequent than large ones.

We choose the latter condition assuming that the experimental procedures (anes-
thesia, renal decapsulation, tissue isolation, etc.) utilized in [Hebert et al. 1975;
Cortes et al. 1996; Cortell et al. 1973; Yamamoto et al. 1983] likely increase rather
than decrease tissue flexibility, thus our computed σ̃g likely overestimate rather
than underestimate σg.

Finally, we configure the log-normal distributions such that 3G1 and 3G2 have
a log-standard deviation of 1.1, and 3G3, 3G4, and 3G5 have a log-standard devi-
ation of 1.25 (Figure 3). According to our experience, such configuration reflects
the degree of the uncertainty in our estimated values of σ̃g, for which we consider
σ̃G3, σ̃G4, and σ̃G5 less accurately estimated than σ̃G1 and σ̃G2.

2.3. Sensitivity analysis.

2.3.1. Formulation. For the sensitivity analysis of the model described in the pre-
vious sections, we adopt a variance-based method which is best suited for nonlin-
ear models [Saltelli et al. 2000; Sobol’ 2001]. Let

y = f (x1, x2, . . . , xk) (23)
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denote a generic model, where y is an output value and x1, x2, . . . , xk are some ran-
dom inputs (in our case those represent the uncertain parameters). For a factor xg,
the first- and total-order sensitivity indices are given by

Sg =
V(E(y | xg))

V(y)
, (24)

Tg = 1−
V(E(y | x−g))

V(y)
, (25)

respectively [Saltelli et al. 2000; Saltelli 2002; Sobol’ 2001]. In the equations
above, E and V denote mean value and variance, respectively. In (24), first the
mean of y is computed by fixing the factor xg to some value x̃g, and then the
variance of the mean values is computed over all possible x̃g. In (25), first the
mean value is computed by fixing all factors except xg (which is denoted by x−g),
and then the variance of the mean values is computed over all possible x−g.

According to the above definitions, the first-order index Sg indicates the fraction
by which the variance of y will be reduced if only the value of the factor xg is
certainly specified [Saltelli et al. 2000]. Similarly, the total-order index Tg indicates
the fraction of the variance of y that will be left if all factors besides xg are certainly
specified [Saltelli et al. 2000]. We compute both indices, because generally for a
nonlinear model the factors are expected to interact in a nonadditive way, and
therefore Tg is expected to be larger than Sg. The difference Tg− Sg characterizes
the extent of the interactions with the other factors that xg is involved with.

2.3.2. Evaluation of sensitivity indices. To better characterize the contribution of
the individual factors 3g of (22), in the variance of P1 and P2, we calculate their
first- and total-order sensitivity indices given in (24) and (25). We compute the
indices according to the method proposed by Saltelli [2002], which is computa-
tionally less demanding than a straightforward application of the formulas (24)
and (25).

Briefly, according to the Saltelli method we form two input matrices:

MA =


3

1,A
G1 3

1,A
G2 3

1,A
G3 3

1,A
G4 3

1,A
G5 3

1,A
G6

3
2,A
G1 3

2,A
G2 3

2,A
G3 3

2,A
G4 3

2,A
G5 3

2,A
G6

...
...

...
...

...
...

3
N ,A
G1 3

N ,A
G2 3

N ,A
G3 3

N ,A
G4 3

N ,A
G5 3

N ,A
G6

 , (26)

MB =


3

1,B
G1 3

1,B
G2 3

1,B
G3 3

1,B
G4 3

1,B
G5 3

1,B
G6

3
2,B
G1 3

2,B
G2 3

2,B
G3 3

2,B
G4 3

2,B
G5 3

2,B
G6

...
...

...
...

...
...

3
N ,B
G1 3

N ,B
G2 3

N ,B
G3 3

N ,B
G4 3

N ,B
G5 3

N ,B
G6

 (27)
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by generating Monte Carlo samples 3 j,A
g and 3

j,B
g for the factors 3g. Sub-

sequently, for each factor, we form a matrix Mg. Each Mg is formed by the
columns of MA, except the column that corresponds to the factor 3g, which is
taken from MB . For instance, MG2 is given by

MG2 =


3

1,A
G1 3

1,B
G2 3

1,A
G3 3

1,A
G4 3

1,A
G5 3

1,A
G6

3
2,A
G1 3

2,B
G2 3

2,A
G3 3

2,A
G4 3

2,A
G5 3

2,A
G6

...
...

...
...

...
...

3
N ,A
G1 3

N,B
G2 3

N ,A
G3 3

N ,A
G4 3

N ,A
G5 3

N ,A
G6

 . (28)

We use each row of the matrices MA, MB , and Mg to solve the model equations at
Pa = 180 mmHg and combine the solutions in the vectors

mk
A =


P1,A

k

P2,A
k
...

P N ,A
k

 , mk
B =


P1,B

k

P2,B
k
...

P N ,B
k

 , mk
g =


P1,g

k

P2,g
k
...

P N ,g
k

 , (29)

where k = 1 corresponds to the pressure in the cortical region P1, and k = 2 to the
pressure in the medullary region P2. The first- and total-order sensitivity indices
are then computed by

Sk
g =

1/(N − 1)
∑N

j=1(P
j,A

k P j,g
k )− 1/N

∑N
j=1(P

j,A
k P j,B

k )

V(mk
A)

, (30)

T k
g = 1−

1/(N − 1)
∑N

j=1(P
j,B

k P j,g
k )−

(
1/N

∑N
j=1 P j,B

k

)2

V(mk
B)

, (31)

respectively. In (30) and (31), V denotes the sample variance. For further details
on the method, see [Saltelli 2002].

2.4. Numerical methods. For the numerical solution, we combine the model equa-
tions (1)–(20) into a system of 69 coupled nonlinear equations. Given a value for
the arterial blood pressure Pa and a choice for the flexibility parameters 3g, the
resulting system is solved to yield the values for the pressures at the interstitial
regions P1 and P2, the pressures at the model nodes Pc1–Pc32, and the volumes of
the compartments V1–V35.

To obtain solutions, we implement the system in MATLAB and use the stan-
dard root-finding function (fsolve). This function computes solutions to the model
equations iteratively by starting from a given initial approximation. For the initial
approximation we use the reference values from literature (Table 2). Note that by
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Figure 4. Model predictions for selected parameter choices. Up-
per panels: radii of the afferent arterioles. Lower panels: pressures
in the interstitial regions.

the construction of the model, the solution at reference can be obtained trivially,
and thus no root-finding is necessary for this step.

3. Results

3.1. Selected case studies. In the first set of simulations, we investigate how the
pressures in the interstitial regions P1 and P2 are affected by the arterial blood
pressure Pa for selected choices of the flexibility parameters when Pa varies in
the range 80–180 mmHg. In particular, we make the following choices for the
flexibility parameters:

Case 1: 3G1 =3G2 =3G3 =3G4 =3G5 = 0,

Case 2: 3G1 =3G2 =3G3 =3G4 =3G5 = 1,

Case 3: 3G1 =3G2 =3G3 =3G4 =3G5 = 4,

Case 4: 3G3 = 0 and 3G4 = 0.27 and 3G5 = 0.2.

Figure 4 shows key solution values.
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Case 1 corresponds to a kidney with rigid compartments. In this case, pressure
does not affect the volume of the compartments except for the two afferent arteri-
oles V6 and V12. For example, at elevated Pa , the pressure differences along the
afferent arterioles Pc4 − Pc5 and Pc3 − Pc10 increase. As a result, the arterioles
constrict in order to maintain constant blood flow; see (12) and (13). Given that
total kidney volume V0, given by (20), does not change, the reduction in afferent
arteriole volume increases the volume of the interstitial regions V1 and V2 given
by (18). In turn, increases in interstitial volumes reduce the protein concentrations
C1 and C2 by (16) and (17) and the oncotic pressures π1 and π2 that promote uptake
J9 and J16 of interstitial fluid by (4) and (5). However, due to tubular reabsorp-
tion J22–J34, the flow of fluid into the interstitial spaces is kept constant; see (14)
and (15). Thus, in order to maintain a constant uptake and avoid accumulation of
interstitial fluid, P1 and P2 increase. Vice versa, a decrease in Pa has the opposite
effect and results in a decrease of P1 and P2. Because the total volume of the
afferent arterioles is only a minor fraction of the volume of the interstitial regions
(∼ 2%, see Table 2), even large changes in R6 and R12 induce small changes in
π1 and π2. Therefore, the total change in P1 and P2, across the full range of Pa

variation, is in the order of 0.1 mmHg (see blue curves in Figure 4).
Case 2 corresponds to a kidney with distensible compartments. This case is

similar to Case 3; however, the changes in P1 induced by the constriction of the
afferent arterioles is followed by an expansion of the renal capsule (20), which in-
creases whole kidney volume V0. In this case, the cortical and medullary interstitial
volumes V1 and V2 increase to a larger extent compared with Case 1 in order to
accommodate the expansion of V0. As a result, interstitial protein concentrations
C1 and C2, and oncotic pressures π1 and π2 drop by larger amounts than in Case 1.
Consequently, significant drops in P1 and P2 follow (see orange curves in Figure 4).

Case 3 corresponds to a kidney with very flexible compartments and renal cap-
sule. Through the same effects as in Cases 1 and 2, changes in arterial pressure Pa

lead to similar changes in P1 and P2. Because in this case the expansion of whole
kidney volume V0 is greater than in Case 2, due to the increased flexibility of the
renal capsule s0, the interstitial pressures are affected to a greater extent (see yellow
curves in Figure 4).

Case 4 shows a different behavior that corresponds to a kidney with a flexible
capsule but relatively rigid compartments. As in all cases, Pa affects severely
the pressures in the preafferent arteriole vascular compartments P3, P4, and P5 —
see (11) — which are not regulated by the active constriction/dilation of the afferent
arterioles. As a result, whenever Pa increases, P3, P4, and P5 also increase, leading
to an increase of the associated preafferent arteriole vascular volumes V3, V4, and
V5. Note that the increase of V3, V4, and V5 opposes the reduction of V6 and V12

caused by constriction of the afferent arterioles. In this particular case, opposite to
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what happens in Cases 1–3, the increase of the total volume of the preafferent arte-
riole compartments V3, V4, and V5 exceeds the reduction of the total volume of the
afferent arterioles V6 and V12. As a result, the interstitial regions are compressed,
which in turn leads to increases of the protein concentrations C1 and C2 and oncotic
pressures π1 and π2. Because the uptake of interstitial fluid is maintained constant,
this leads to reductions of P1 and P2. Finally, the reductions of P1 and P2 are further
amplified by constriction of the renal capsule that follows the reduction of P1.

3.2. Sensitivity analysis. From the previous section, it is apparent that the predic-
tions of the model depend on the choice of the flexibility parameters 3g, which
are not well-characterized (Section 2.2). To assess the degree to which different
choices affect the pressures in the interstitial regions P1 and P2, we sample the pa-
rameter space. For each sample point, we evaluate the model solution at an elevated
arterial blood pressure Pa . For all simulations, we keep Pa constant at 180 mmHg.

3.2.1. Summary statistics. The model utilizes five factors that correspond to the
flexibility parameters associated with the histological groups of Section 2.2. We
use a sample size of N = 41 · 103 and perform sampling with the Monte Carlo
method. The resulting probability densities and cumulative distributions of P1 and
P2 are shown in Figure 5.

As can be seen in Figure 5, the model predicts mostly increased P1 and P2 at
elevated Pa . However, the uncertainty in the flexibility parameters 3g induces a
significant degree of variability for both pressures. The mean values of P1 and
P2 are 9.1 and 8.6 mmHg, and the standard deviations are 4.1 and 3.7 mmHg,
respectively. Both pressure distributions are heavily skewed towards large values.

Interestingly, the model also predicts low or even negative pressures. Negative
pressure values indicate that the pressures in the interstitial regions fall below the
pressure in the space surrounding the kidney Pext

0 , which in this study is set to
0 mmHg. In summary, 84% of P1 and 77% of P2 values at Pa = 180 mmHg are
above the corresponding values at Pa = 100 mmHg, and 16% of P1 and 11% of P2

values lie below 0 mmHg or above 15 mmHg.
Scatter plots between the input factors 3g and the computed pressures P1 and

P2 are shown in Figure 6. Only 3G4 shows a clear influence on P1 and P2, with
high values of 3G4 being associated generally with higher interstitial pressures.
No apparent trend can be identified for the rest of the factors. Linear regressions
between the computed pressures and the input factors (shown by the dashed lines
in Figure 6) yield low R2. Precisely, values of R2 for 3G4 equal 0.25 for P1 and
0.16 for P2. The rest of the factors yield R2 for 0.02 or less. Such low R2 indicate
strong nonlinear dependencies of the interstitial pressures on the input factors, a
behavior that most likely stems from the inverse-forth-power in the Poiseuille law
given by (11).
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Figure 5. Probability densities of P1, left panels, and P2, right
panels, at elevated arterial blood pressure (Pa = 180 mmHg) as
estimated by model simulations. Vertical lines indicate the values
at the reference arterial blood pressure (Pa = 100 mmHg).

Correlation coefficients computed between the input factors 3g and the com-
puted pressures P1 and P2 are shown in Figure 7, left panels. As is suggested by
Figure 6, 3G4 is positively correlated (weakly) with P1 and P2. From the rest of
the factors,3G1,3G3, and3G5 are negatively correlated with P1 and P2 to an even
weaker extent than for 3G4, and 3G2 shows no correlation with either P1 or P2.

In contrast to the apparent lack of any trend between the computed pressures P1

and P2 and the input factors 3G4, the model predicts a high degree of correlation
between P1 and P2. The associated correlation coefficient reaches as high as 0.95
(Figure 7 right panels), which indicates that P1 and P2 are predicted to change in
tandem in a seemingly linear way.

3.2.2. Sensitivity indices. To better characterize the contribution of the individual
factors 3g in the variance of P1 and P2, we calculate their first- and total-order
sensitivity indices shown in (24) and (25). Details on the adopted computational
methods can be found in Section 2.3.
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Figure 7. Correlation coefficients between the input factors 3g

and the computed pressures in the cortical and medullary intersti-
tial spaces P1 and P2, respectively.

Figure 8 shows the computed indices. Evidently, the flexibility of the preafferent
arteriole vascular segments (group G4) accounts for most of the variation in P1 or
P2 with respect to either the first- or total-order indices. The postafferent arteriole
vasculature (group G5) has the second-most significant contribution. Groups G1–
G3 have only minor contributions according to the first-order sensitivity indices.
However, this is not the case with the total-order indices, which indicate that G1
and G3 are involved to a significant degree in interactions. On the contrary, the
glomeruli (group G2) have only a minor involvement in interactions.
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Figure 8. First-order, upper panel, and total-order, middle panel,
sensitivity indices of P1 and P2 at elevated arterial blood pressure
(Pa = 180 mmHg). Lower panel shows the difference between the
first- and total-order sensitivity indices.

For all groups, it is observed that T 1
g < T 2

g and T 1
g − S1

g < T 2
g − S2

g , which
indicate that the medullary pressure P2 is more susceptible to interactions than
cortical pressure P1. This behavior is expected, given that the afferent arterioles
(compartments 6 and 12), which initiate the changes in P1 and P2, are located
exclusively in the cortex, while the medulla is susceptible mostly to secondary
interactions initiated by the expansion/constriction of the renal capsule.

4. Conclusions

We developed a multicompartmental computational model of the rat kidney. The
model is constructed using conservation laws (2) and (7), fluid dynamics (11),
simplified pressure-volume relationships (10) and (20), and constitutive equations
specific to the physiology of the kidney (3) and (14) and (15).

We assigned values to the model parameters (Tables 1 and 2) using experimen-
tal measurements when such measurements were available and previous modeling
studies when direct measurements were not available. However, the data required
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for the flexibility parameters σi are sparse and do not suffice for an accurate esti-
mation of their values. To that end, we chose to model these parameters as random
variables with probability distributions that permit values spanning multiple orders
of magnitude (Section 2.2 and Figure 3).

To determine the probability distributions of the random variables, we defined
five histological groups within the model kidney. Group G1 models thick and rel-
atively inflexible structures, for which we used pressure-mass data obtained from
whole kidneys in dogs [Hebert et al. 1975; Zhu et al. 1992]. Group G2 models the
glomeruli, for which we used pressure-volume data measured in rats [Cortes et al.
1996]. Group G3 models the various segments of the nephrons and the proximal
parts of the collecting duct, for which we used pressure-radius measurements of the
rat proximal tubule [Cortell et al. 1973]. Groups G4 and G5 model the blood ves-
sels, for which we used pressure-volume measurements of the systemic circulation
measured in rats [Yamamoto et al. 1983]. We combined the postafferent arteriole
vasculature in one group (group G5), despite that it consists of segments of the
arterial and venous vascular trees [Kriz and Bankir 1988]. We were motivated
to do so by the fact that these vascular segments have considerably thinner walls
and therefore should be considerably more flexible than the preafferent arteriole
segments [Rhodin 1980].

Output from the model leads to a range of predictions depending on the choices
of the flexibility values. Generally, increased arterial blood pressure is predicted
to increase the pressure in both interstitial spaces (Figure 5). As arterial blood
pressure increases from 100 mmHg to 180 mmHg, interstitial pressures are pre-
dicted to increase on average by ∼ 3 mmHg. Changes of similar magnitude have
been observed in the kidneys of rats [Garcia-Estan and Roman 1989; Khraibi et al.
2001; Skarlatos et al. 1994; Khraibi 2000] and dogs [Majid et al. 2001; Granger
and Scott 1988]. Upon a limited number of flexibility choices, however, the model
predicts decreased interstitial pressures as a result. Furthermore, the model predicts
a tight correlation between the cortical and the medullary pressures (Figure 7, right
panels) which is also in agreement with the experimental observations reported in
[Garcia-Estan and Roman 1989]. Concerning the four case studies of Section 3.1,
Cases 2 and 3 are in best agreement with the experimental observations in [Garcia-
Estan and Roman 1989; Khraibi et al. 2001; Skarlatos et al. 1994; Khraibi 2000;
Majid et al. 2001; Granger and Scott 1988]. In contrast, Case 4 deviates from the
experimental observations.

As arterial blood pressure Pa increases, mainly two distinct pathways that lead
to interstitial pressure P1 and P2 changes can be identified (Figure 9). The first
pathway (denoted with red) leads to an increase of interstitial pressure upon con-
striction of the afferent arterioles. The second pathway (denoted with blue) leads
to a decrease of interstitial pressure upon dilation of the preafferent arteriole blood
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Pa

P3,P4,P5

V3,V4,V5

Pc3,Pc4

R6,R12 Pc5, Pc10
V7 . . . V11
V13 . . . V35

3G4

Vtot−(V6+V12)−(V3+V4+V5)

V1+ V2

Vtot

V1 C1 π1 P1

V2 C2 π2 P2

A B

A B increase of A induces decrease of B

increase of A induces increase of B

V6, V12

3G5

3G1

Figure 9. A summary of the mechanism relating arterial blood
pressure Pa and interstitial pressures P1 and P2. Changes in Pa are
transmitted to P1 and P2 primarily by two pathways: one is medi-
ated by afferent arteriole volumes (V6, V12) which is marked with
red arrows, the other is mediated by preafferent arteriole volumes
(V3, V4, V5) and is marked with blue arrows. The two pathways
have competing effects. Secondary interactions are denoted with
dashed lines. For simplicity, some of the secondary interactions
are omitted.

vessels. Primarily, both pathways lead to changes in interstitial volumes V1 and V2,
which are subsequently transmitted to protein concentrations C1 and C2, oncotic
pressures π1 and π2, and finally to P1 and P2. The two pathways have competing
effects; the first leads to changes of P1 and P2 towards the same direction as Pa ,
while the second leads to changes of P1 and P2 towards the opposite direction of Pa .
It is important to note that, in general, both pathways are active. However, the
model results (Figure 5) indicate that under most circumstances the first pathway
dominates over the second.

The model predictions appear particularly sensitive to the flexibility of the preaf-
ferent arteriole blood vessels (histological group G4) (Figure 8). Such behavior is
attributed mostly to the fact that blood pressure is only regulated by the affer-
ent arterioles, which are located after these vessels [Sgouralis and Layton 2015].
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The lack of pressure regulation, in the preafferent arteriole compartments, leads
to larger internal pressure P int

i changes upon increases in arterial pressure Pa than
in the rest of the compartments. For example, as Pa increases from 100 mmHg to
180 mmHg, assuming an increase in the interstitial pressures of∼ 5 mmHg, we see
that the compartments of group G4 are stretched by a pressure difference of ∼ 70–
75 mmHg, while the walls of the rest of the compartments are stretched by a pres-
sure difference of∼5 mmHg. Thus, in view of the pressure-volume relations given
by (10), the resulting change in total kidney volume V0, which mediates the changes
in interstitial pressures, is mostly affected by sG4 rather than sG1, sG2, sG3, or sG5.

The model developed in this study uses several simplifications. For example,
the current model assumes perfect autoregulation of blood flow for equations (12)
and (13), which limits its applicability to cases with arterial blood pressures be-
tween 80 mmHg and 180 mmHg [Sgouralis and Layton 2015]. The model does not
account for the differences in tubular reabsorption, e.g., coefficients fi in (3), oc-
curring between diuretic and antidiuretic animals or for pressure-diuretic responses
[Cowley 1997; Moss and Thomas 2014]. Furthermore, the model assumes linear
pressure-volume relationships for (10) and (20). Lifting those limitations requires
a more detailed model, the development of which will be the focus of future stud-
ies. Despite these limitations, the present model could be a useful component in
comprehensive models of renal physiology.
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Sums of squares in quaternion rings
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Lagrange’s four squares theorem states that any positive integer can be expressed
as the sum of four integer squares. We investigate the analogous question for
quaternion rings, focusing on squares of elements of quaternion rings with inte-
ger coefficients. We determine the minimum necessary number of squares for
infinitely many quaternion rings, and give global upper and lower bounds.

1. Introduction and definitions

Waring’s problem.

Theorem 1.1 (Waring’s problem/Hilbert–Waring theorem). For every integer k ≥ 2
there exists a positive integer g(k) such that every positive integer is the sum of at
most g(k) k-th powers of integers.

Generalizations of Waring’s problem have been studied in a variety of settings
(for example, number fields [Siegel 1921] and polynomial rings over finite fields
[Car 1973]). Additionally, calculation of the exact values of g(k) for all k ≥ 2 was
completed only relatively recently. For an excellent and thorough exposition of the
research on Waring’s problem and its generalizations, see Vaughan and Wooley
[2002]. We will examine a generalization of Waring’s problem to quaternion rings.

Definition 1.2. Let Qa,b denote the quaternion ring

{α0+α1 i +α2 j +α3k | αn, a, b ∈ Z, i2
=−a, j2

=−b, i j =− j i = k}.

Let Qn
a,b denote the additive group generated by all n-th powers in Qa,b.

Note here that k2
=−ab, and if a = b= 1, we have what are called the Lipschitz

quaternions. We then have the following analogue of Waring’s Problem.

Conjecture 1.3. For every integer k ≥ 2 and all positive integers a, b there exists a
positive integer ga,b(k) such that every element of Qk

a,b can be written as the sum
of at most ga,b(k) k-th powers of elements of Qa,b.
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Main results. We will examine sums of squares in quaternion rings, that is, when
k = 2. We are therefore looking to generalize Lagrange’s four squares theorem, the
inspiration for Waring’s initial conjecture.

Theorem 1.4 (Lagrange’s four squares theorem). Any positive integer can be writ-
ten as the sum of four integer squares.

We prove the following general result giving the upper and lower bounds for
ga,b(2) for any positive integers a and b.

Theorem 1.5. For all positive integers a, b, we have

3≤ ga,b(2)≤ 5.

Additionally, each possible value of ga,b(2) (i.e., 3, 4, and 5) occurs infinitely often.

We prove the general upper and lower bounds in Section 2; more specific results,
including the proof of the latter half of Theorem 1.5, are given in Section 3. Note
that for any positive integers a and b, the quaternion rings Qa,b and Qb,a are
naturally isomorphic; we therefore generally assume a ≤ b.

2. Squares of quaternions — upper and lower bounds

In this section we prove the upper and lower bounds of Theorem 1.5. We will use
the following classical result on sums of squares extensively; for this result and a
more general look at sums of squares of integers, see [Grosswald 1985].

Theorem 2.1 (Legendre’s three squares theorem). A positive integer N can be
written as the sum of three integer squares if and only if N is not of the form
4m(8`+ 7) with `,m nonnegative integers.

To study ga,b(2), we first need to establish the general form of squares of
quaternions, and to characterize elements of Q2

a,b.
Let α = α0 + α1 i + α2 j + α3k ∈ Qa,b. We call α0 the real part of α and

α1 i+α2 j+α3k the pure part of α, with α1, α2, α3 the pure coefficients. Then note
that

α2
= α2

0 − aα2
1 − bα2

2 − abα2
3 + 2α0α1 i + 2α0α2 j + 2α0α3k. (1)

We therefore have that all the pure coefficients of squares of quaternions, and
therefore the pure coefficients of all elements of Q2

a,b, are even. Additionally, any
set of even pure coefficients can be achieved (for example, set α0 = 1 in (1)), as can
any negative real coefficient (since we are assuming a, b ≥ 1). We therefore have

Q2
a,b = {α0+ 2α1 i + 2α2 j + 2α3k | αn ∈ Z}. (2)

In 1946, Niven computed g1,1(2) and studied extensions of Waring’s problem in
other various settings, including complex numbers.
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Theorem 2.2 [Niven 1946]. Every element in Q2
1,1 can be written as the sum of at

most three squares in Q1,1. Additionally, 6+ 2i is not expressible as the sum of two
squares in Q1,1, so g1,1(2)= 3.

We extend this result to Qa,b for all positive integers a, b. The proofs for the
lower bounds are similar to Niven’s work (i.e., finding examples); the proofs for
the upper bounds take more work.

Lemma 2.3. Suppose a and b are positive integers.

(1) If a ≡ 1 or 2 mod 4, then 2+ 2i is not expressible as the sum of two squares
in Qa,b.

(2) If a ≡ 0 or 3 mod 4, then 4+ 2i is not expressible as the sum of two squares
in Qa,b.

Proof. Let x = x0+x1 i+x2 j+x3k, and y= y0+ y1 i+ y2 j+ y3k, with xm, yn ∈Z

for m, n ∈{0, 1, 2, 3}. Then if x2
+y2
=α with α=α0+2α1 i+2α2 j+2α3k∈ Q2

a,b,
we have

α0 = x2
0 + y2

0 − a(x2
1 + y2

1)− b(x2
2 + y2

2)− ab(x2
3 + y2

3), (3)

α1 = x0x1+ y0 y1, (4)

α2 = x0x2+ y0 y2, (5)

α3 = x0x3+ y0 y3. (6)

Case 1 (a ≡ 1, 2 mod 4): Suppose a ≡ 1, 2 mod 4, and let α = 2+ 2i , so α0 = 2,
α1 = 1, and α2 = α3 = 0. Since α1 = 1, (4) and Bézout’s identity then imply that x0

and y0 must be relatively prime, since they have a linear combination equal to 1.
Then, by (5), we must have x0 | y2 and y0 | x2. However, since b ≥ 1, if x2, y2 6= 0,
(3) then implies α0 ≤ 0. As α0 = 2, we must have x2 = y2 = 0. A similar argument
using (6) implies x3 = y3 = 0.

By (4), since α1 = 1, we have that exactly one of the products x0x1 and y0 y1

must be odd; we therefore assume y0 and y1 are odd. The following table shows
that (3) has no solutions mod 4 if a ≡ 1, 2 mod 4:

x0 x1 equation (3) mod 4

even odd α0 = 2≡ 1− 2a
even even α0 = 2≡ 1− a
odd even α0 = 2≡ 2− a

Therefore 2+ 2i cannot be written as the sum of two squares in Qa,b.

Case 2 (a ≡ 0, 3 mod 4): Suppose a ≡ 0, 3 mod 4. Then let α = 4+ 2i . By the
same argument as above, we get three possibilities for (3) mod 4, none of which
have solutions. Therefore 4 + 2i cannot be written as the sum of two squares
in Qa,b. �
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As both 2+2i and 4+2i are in Q2
a,b, this gives us the lower bound in Theorem 1.5.

We then turn to the upper bound; we establish an algorithm for expressing every
element as a sum of squares.

Lemma 2.4. Every element in Q2
a,b can be written as a sum of at most five squares

in Qa,b.

Proof. Let α = α0 + 2α1 i + 2α2 j + 2α3k ∈ Q2
a,b; we want to show that we can

represent α as a sum of squares of no more than five quaternions.
Let v = 1+U i +α2 j +α3k for some U ∈ Z, and note that

α− v2
= α0− 1+ aU 2

+ bα2
2 + abα2

3 + 2(α1−U )i .

If we also let A = α0− 1+ aα2
1 + bα2

2 + abα2
3 , we have

α− v2
= A+ a(U 2

−α2
1)+ 2(α1−U )i . (7)

We then have three cases:

(1) A ≥ 0,

(2) A < 0 and A cannot be written as 4m(8`+ 7) for any nonnegative integer m
and ` ∈ Z, and

(3) A < 0 and A = 4m(8`+ 7) for some nonnegative integer m and ` ∈ Z.

Case 1 (A ≥ 0): If A ≥ 0, then by Theorem 1.4, there exists w, x, y, z ∈ Z such
that A = w2

+ x2
+ y2
+ z2. Letting U = α1, (7) becomes

α− v2
= A = w2

+ x2
+ y2
+ z2,

so we can represent α as the sum of five squares.

Case 2 (A < 0 and A 6= 4m(8`+ 7)): Here we again let U = α1, so α − v2
= A.

Then let e1 be the greatest exponent of 4 such that 4e1 divides A, and let e2 be the
least exponent of 4 such that 42e2 + A ≥ 0. We then let e=max{e1+1, e2}, and let
w = 4e i .

We then have α− v2
−w2

= A+ a42e
≥ 0. Additionally, since 2e ≥ 2e1+ 2,

if A cannot be written in the form 4m(8`+ 7), then neither can A+ 42e. Therefore
by Theorem 2.1, there exist x, y, z ∈ Z such that A+ 42e

= x2
+ y2
+ z2. So

α− v2
−w2

= A+ 42e
= x2
+ y2
+ z2,

so we can represent α as the sum of five squares.

Case 3 (A < 0 and A = 4m(8`+ 7)): We first treat the case when m > 0. Here we
let

w = 2m−1
+

(
α1−U
2m−1

)
i

and choose U = α1+ 2m−1U1, where U1 satisfies the following three conditions:
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(a) 4m+1
|U1,

(b) U1 >−(2mα1)/(4m−1
+ 1), and

(c) U1 > (A− 4m−1)/a.

Note that it is always possible to meet these conditions; for example,

U1 = 4m+1
|A| ·max{1, |α1|}

satisfies all three. We then have

α− v2
−w2

= (A+ a(U 2
−α2

1)+ 2(α1−U )i)

−

(
4m−1

+ 2(α1−U )i − a
(
α1−U
2m−1

)2)
= A+ a(α2

1 + 2mα1U1+ 4m−1U 2
1 −α

2
1)− 4m−1

+ aU 2
1

= A− 4m−1
+ aU1(2mα1+ (4m−1

+ 1)U1).

Note that condition (b) on U1 ensures the quantity in parentheses must be positive,
and condition (c) ensures that α − v2

−w2 is positive. Letting A = 4m(8`+ 7)
and since 4m+1 divides U1, the remainder of the equation equals 4m+1`1 for some
`1 ∈ Z, we have

α− v2
−w2

= 4m(8`+ 7)− 4m−1
+ 4m+1`1

= 4m−1(4(8`+ 7)− 1+ 16`1)

= 4m−1(8(4`+ 3+ 2`1)+ 3).

Since this is not of the form excluded by Legendre’s Three Squares Theorem, there
exist x, y, z ∈ Z such that α− v2

−w2
= x2
+ y2
+ z2, so we can represent α as

the sum of five squares.
Lastly, we treat the case when A= 8`+7 for some negative integer `. Here we let

U =α1+U1 andw= 1+U1 i , choosing U1 such that 8 |U1 and U1>max{|A|, |α1|}.
Then

α− v2
−w2

= (A+ a(U 2
−α2

1)+ 2(α1−U )i)− (1−U1 i)2

= A+ a(2α1U1+U 2
1 )− 1+ aU 2

1

= 8`+ 6+ 8`1,

where we have `1+ `≥ 0 by the conditions on U1. Since this is a positive number
that is 6 mod 8, it is expressible as the sum of three integer squares by Legendre’s
three squares theorem. So we can represent α as the sum of five squares here and
in all cases. �

Lemmas 2.3 and 2.4 combined give the bounds for ga,b(2) in Theorem 1.5.



656 ANNA COOKE, SPENCER HAMBLEN AND SAM WHITFIELD

3. Values of ga,b(2)

In this section, we establish exact values for ga,b(2) for several infinite families of
quaternion rings, and for each of the possible values of ga,b(2). We note that the
methods for showing each are different: for example, to show ga,b(2)= 3, all we
need is an algorithm to express every element in Q2

a,b as a sum of three squares,
and to show ga,b(2)= 5, all we need is to find an element that cannot be expressed
as the sum of four squares.

Quaternion rings with ga,b(2) = 3. We examine Q1,b, where b ∈ N. We can
view Q1,b as an extension of the Gaussian integers Z[

√
−1]= {x+y

√
−1 | x, y ∈Z}

by adjoining j and k. The following lemma then provides a shortcut for representing
elements of Q1,b as sums of squares.

Lemma 3.1 [Niven 1940, Theorem 2]. The equation α0+2α1 i = x2
+y2 is solvable

in Z[
√
−1] if 1

2α0 and α1 are not both odd integers.

Note that this lemma also implies that gZ[
√
−1](2)= 3.

Theorem 3.2. For all b ∈ N, every element in Q2
1,b can be written as the sum of at

most three squares in Q1,b. Therefore g1,b(2)= 3 for all b ∈ N.

Proof. Let α = α0+ 2α1 i + 2α2 j + 2α3k ∈ Q2
1,b; we wish to find x, y, z ∈ Q1,b

such that α = x2
+ y2
+ z2. Since Z[

√
−1] ⊂ Q1,b, Lemma 3.1 implies that it is

sufficient to find z ∈ Q1,b such that α− z2
∈ Z[
√
−1] and satisfies the hypotheses

of Lemma 3.1.
Therefore, let z = 1+U i + α2 j + α3k, where U = 0 if α1 is even and U = 1

if α1 is odd. We then examine α− z2:

α− z2
= α0+2α1 i+2α2 j+2α3k−1+U 2

+bα2
2+bα2

3−2U i−2α2 j−2α3k

= α0−1+U 2
+bα2

2+bα2
3+2(α1−U )i .

Note that if α1 is even, then U = 0, so α1 −U is even; conversely, if α1 is odd,
then U = 1, so α1−U is again even. We can therefore apply Lemma 3.1 to find
x, y ∈ Z[

√
−1] ⊂ Q1,b such that α− z2

= x2
+ y2. �

We note that the proof relies on the fact that squares in the Gaussian integers
can be easily characterized. This is not generally true of imaginary quadratic fields
(see [Eljoseph 1954; Niven 1940, Theorem 3]).

Quaternion rings with ga,b(2) = 4. We combine a standard lower bound proof
and a constructive upper bound proof to find a family of quaternion rings with
ga,b(2)= 4.

Lemma 3.3. There exist elements in Q2
4m,4n+3 that are not the sum of three squares.
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Proof. Suppose that there exist x, y, z ∈ Q4m,4n+3 such that x2
+ y2
+ z2
= 9+ 2 j .

Letting
x = x0+ x1 i + x2 j + x3k,

y = y0+ y1 i + y2 j + y3k,

z = z0+ z1 i + z2 j + z3k,

the resulting equations for the real and j coefficients of 9+ 2 j are, respectively,

x2
0 + y2

0 + z2
0− 4m(x2

1 + y2
1 + z2

1)− (4n+ 3)(x2
2 + y2

2 + z2
2)

− (4m)(4n+ 3)(x2
3 + y2

3 + z2
3)= 9, (8)

x0x2+ y0 y2+ z0z2 = 1. (9)

Examining (8) mod 4, we have

x2
0 + y2

0 + z2
0+ x2

2 + y2
2 + z2

2 ≡ 1 mod 4. (10)

Recall then that for all integers `, we have `2
≡ 0 mod 4 (if ` is even) or

`2
≡ 1 mod 4 (if ` is odd). From this we have two possibilities that satisfy (10):

we must have either 1 or 5 of x0, y0, z0, x2, y2, z2 odd in order for the left side of
(10) to sum to 1 mod 4.

If only one of the terms is odd, then the left side of (9) will be even since the
lone odd term must be multiplied by an even term, and therefore cannot equal 1.
Likewise, if there are five odd terms, the left side of (9) will be the sum of two odd
terms and one even term, which cannot sum to 1.

Since (8) and (9) cannot simultaneously be satisfied, 9+ 2 j cannot be expressed
as the sum of three squares in Q2

4m,4n+3. �

When a is a sum of two integer squares. When a is a sum of integer squares, we
can construct an algorithm to express elements of Q2

a,b as the sum of four squares.
This gives us a general result when combined with the lower bound results of
Lemma 3.3.

Lemma 3.4. Every element of Q2
a,b is the sum of at most four squares in Qa,b in

the following two cases:

• a = n2
1+ n2

2 with gcd(n1, n2)= 1; or

• a = n2
1+ n2

2 with gcd(n1, n2)= 2 and n1 ≡ 0 mod 4, and b 6≡ 0 mod 4.

Note that we allow n1 = 0 only if n2 = 1 or 2; in the latter case we get a = 4,
which will be useful in light of Lemma 3.3.

Proof. Let α= α0+2α1 i+2α2 j+2α3k. If we let z = 1+α1 i+α2 j+α3k ∈ Qa,b,
then α− z2

∈ Z. We claim that every integer can be represented as the sum of three
squares in Qa,b; we could then represent α as the sum of four squares.
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Let x = n1`+ r , y = n2`+ s, and w = `i + δ j for some `, r, s, δ ∈ Z. We then
have

x2
+ y2
+w2

= (n1`+ r)2+ (n2`+ s)2+ (`i + δ j)2

= 2(rn1+ sn2)`+ r2
+ s2
− bδ2. (11)

Our method will be to choose r and s to determine a “modulus” (rn1+ sn2) and
residue class (r2

+ s2
− bδ2). Since ` is independent of r and s, we will therefore

be able to represent every integer in that residue class (we will only use δ in one
particularly troublesome case).

Recall that by Bézout’s identity there exist r0, s0 ∈ Z such that r0n1 + s0n2 =

gcd(n1, n2) ∈ {1, 2}; these will inform our choices of r and s. We then have three
cases (relabeling if necessary) which we address separately:

(a) n1 odd, n2 even, and gcd(n1, n2)= 1;

(b) n1, n2 odd, and gcd(n1, n2)= 1; and

(c) 1
2 n1 even, 1

2 n2 odd, and gcd(n1, n2)= 2.

Case (a): Our modulus here will be 2. Note that if r = r0, s = s0, and δ = 0, we
have from (11)

x2
+ y2
+w2

= 2`+ r2
0 + s2

0 .

Next, if r = r0− n2, s = s0+ n1, and δ = 0, (11) yields

x2
+ y2
+w2

= 2`+ (r0− n2)
2
+ (s0+ n1)

2.

Recalling that n1 is assumed to be odd and n2 is assumed to be even, we
necessarily have that r2

0 + s2
0 and (r0− n2)

2
+ (s0+ n1)

2 cover all residue classes
mod 2 with the two equations above. With a proper choice of `, we can therefore
directly find x, y, w ∈ Qa,b such that α− z2

= x2
+ y2
+w2, and so we can write α

as a sum of four squares in Qa,b.

Case (b): Our modulus here will be 4. Since n1 and n2 are here both odd, we may
assume without loss of generality that r0 is odd and s0 is even.

We then use three choices of r and s to represent all possible residue classes
mod 4; we let δ = 0 for all subcases. First, let r = r0 and s = s0. Equation (11) is
then

x2
+ y2
+w2

= 2`+ r2
0 + s2

0 ,

which represents all odd integers, since r0 is odd and s0 is even.
If we then let r = 2r0 and s = 2s0, (11) then yields

x2
+ y2
+w2

= 4`+ 4(r2
0 + s2

0).

This allows us to represent all multiples of 4.
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If, instead, we let r = 2r0− n2 and s = 2s0+ n1, (11) then yields

x2
+ y2
+w2

= 4`+ (2r0− n2)
2
+ (2s0+ n1)

2.

As 2r0− n2 and 2s0+ n1 are necessarily both odd, this allows us to represent all
integers that are 2 mod 4. Combined with the above two choices, this covers all
residue classes mod 4, and so, similarly to Case (a), we are done.

Case (c): Our modulus here will be 8. We will need four choices of r and s, along
with letting δ = 1 if α− z2

≡ 3 mod 4. Note that we are assuming n2 ≡ 2 mod 4,
so we know that 1

2 n2 is odd. Additionally, we may assume that s0 is odd and r0 is
even.

First, let r = r0 and s = s0. Equation (11) is then

x2
+ y2
+w2

= 4`+ r2
0 + s2

0 . (12)

If we let r = r0−
1
2 n2 and s = s0+

1
2 n1, (11) yields

x2
+ y2
+w2

= 4`+ (r0−
1
2 n2)

2
+ (s0+

1
2 n1)

2. (13)

Since s0 and 1
2 n2 are both odd, while r0 and 1

2 n1 are even, (12) represents all integers
that are 1 mod 4, while (13) represents all integers that are 2 mod 4.

Next, let r = 2r0 and 2s = s0. Equation (11) is then

x2
+ y2
+w2

= 8`+ 4(r2
0 + s2

0).

As r0 is even and s0 is odd, this represents all integers that are 4 mod 8.
If we let r = 2r0− n2 and s = 2s0+ n1, (11) yields

x2
+ y2
+w2

= 8`+ (2r0− n2)
2
+ (2s0+ n1)

2.

Since 2r0 ≡ n1 ≡ 0 mod 4 and 2s0 ≡ n2 ≡ 2 mod 4, this represents all integers that
are 0 mod 8, and we therefore have all integers that are 0 mod 4.

We still need to represent integers that are 3 mod 4; this is where δ comes in. If
we let δ = 1, (11) becomes

x2
+ y2
+w2

= 2(rn1+ sn2)`+ r2
+ s2
− b.

If b 6≡ 0 mod 4 and α− z2
≡ 3 mod 4, this allows us to represent α− z2

+ b via
one of the choices of r and s above. Therefore we can always represent α as the
sum of four squares in Qa,b in Case (c). �

If a = n2
1+ n2

2 with gcd(n1, n2)= 2, then necessarily a ≡ 0 mod 4; we can then
combine Lemmas 3.3 and 3.4 to get the following theorem.

Theorem 3.5. Suppose a= n2
1+n2

2, where n1, n2 ∈N are such that gcd(n1, n2)= 2,
and m ∈ N. Then ga,4m+3 = 4.

Specifically, if n1 = 0 and n2 = 2, we get that g4,4m+3 = 4 for all m ∈ N.
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Quaternion rings with ga,b(2) = 5. In this section, we find a, b ∈ N such that
there exists elements of Qa,b that require five squares, which by Lemma 2.4 gives
us that ga,b(2)= 5.

Theorem 3.6. For all m, n ∈ N, there are elements of Q2
4m,4n that are not the sum

of four squares in Q4m,4n . Therefore g4m,4n(2)= 5 for all m, n ∈ N.

Proof. Suppose that there exist w, x, y, z ∈ Q4m,4n such that w2
+ x2
+ y2
+ z2
=

8+ 2k. Letting

w = w0+w1 i +w2 j +w3k,

x = x0+ x1 i + x2 j + x3k,

y = y0+ y1 i + y2 j + y3k,

z = z0+ z1 i + z2 j + z3k,

the resulting equations for the real, i , j , and k coefficients are, respectively,

w2
0 + x2

0 + y2
0 + z2

0− 4m(w2
1 + x2

1 + y2
1 + z2

1)

− 4n(w2
2 + x2

2 + y2
2 + z2

2)− 16mn(w2
3 + x2

3 + y2
3 + z2

3)= 8, (14)

w0w1+ x0x1+ y0 y1+ z0z1 = 0, (15)

w0w2+ x0x2+ y0 y1+ z0z1 = 0, (16)

w0w3+ x0x3+ y0 y3+ z0z3 = 1. (17)

We start by examining (17) mod 2, and note that at least one of w0, x0, y0, z0

must be odd, as otherwise the sum of the terms would be even. Since at least one of
these terms must be odd, we assume without loss of generality that w0 ≡ 1 mod 2.
With that in mind, (14) mod 8 is

1+x2
0+ y2

0+z2
0−4m(w2

1+x2
1+ y2

1+z2
1)−4n(w2

2+x2
2+ y2

2+z2
2)≡ 0 mod 8. (18)

Recall then that for all odd `, we have `2
≡1 mod 8, and for all even `, `2

≡ 0 or 4
mod 8. Since the left side of (18) is 1 added to three squares followed by multiples
of 4; in order for it to sum to 0 mod 8, the values of x2

0 , y2
0 , z2

0 must all be 1 mod 8.
So w2

0, x2
0 , y2

0 , z2
0 are odd.

Then w2
0 + x2

0 + y2
0 + z2

0 ≡ 4 mod 8, so an odd number of w2
1, x2

1 , y2
1 , z2

1 or
w2

2, x2
2 , y2

2 , z2
2 must be odd to contribute an additional 4 mod 8. But this forces an

odd number of odd terms on the left side of either (15) or (16), which contradicts
their even sums.

Since the equations required for 8+ 2k to be a sum of four squares in Q4m,4n

cannot hold, 8+ 2k cannot be expressed as a sum of four squares in Q4m,4n . �
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4. Other individual cases

We were able to find ga,b(2) in several other cases for specific values of a and b.
We include these here for completeness but also to demonstrate the methods used,
which vary significantly from those used in Section 3.

Theorem 4.1. g2,2(2)= g2,3(2)= 3.

These proofs rely of the theory of quadratic forms — specifically, representations
of integers via ternary diagonal quadratic forms. A ternary diagonal quadratic form
is a function f (x, y, z) = r x2

+ sy2
+ t z2; for our purposes, we have r, s, t ∈ N.

We say a ternary diagonal quadratic form represents n ∈N if there exists an integer
solution to f (x, y, z) = n. Lastly, we say that a ternary diagonal quadratic form
is regular if the only positive integers it does not represent coincide with certain
arithmetic progressions. The most common example of this is Legendre’s three
squares theorem: every positive integer not of the form 4m(8`+7) can be represented
in the form x2

+ y2
+ z2 with x, y, z ∈Z. For more information on representation of

integers via quadratic forms, see [Jones and Pall 1939] or (more recently) [Hanke
2004].

Noting that
(x i + y j + zk)2 =−(ax2

+ by2
+ abz2),

for our theorem, we will examine the expressions 2x2
+2y2

+4z2 and 2x2
+3y2

+6z2.
Dickson has a complete list of regular diagonal ternary quadratic forms, from whence
we get the following lemma.

Lemma 4.2 [Dickson 1939, Table 5]. (1) Let f2,2(x, y, z) = 2x2
+ 2y2

+ 4z2.
Then f2,2 represents all even integers not of the form 2 · 4n(16`+ 14).

(2) Let f2,3(x, y, z)= 2x2
+ 3y2

+ 6z2. Then f2,3 represents all positive integers
not of the form 4n(8`+ 7) or 3m+ 1.

Proof of Theorem 4.1. Let α = α0 + 2α1 i + 2α2 j + 2α3k ∈ Q2
a,b. Then, letting

x = 1+α1 i +α2 j +α3k, we have

α− x2
= α0− 1+ aα2

1 + bα2
2 + abα2

3 := A ∈ Z. (19)

It then suffices to find elements y, z ∈ Qa,b with y= y0 ∈Z and z= z1 i+z2 j+z3k
such that

A = y2
+ z2
= y2

0 − az2
1− bz2

2− abz2
3, (20)

as we would then have α = x2
+ y2
+ z2.

Case 1 (a = b = 2): In light of Lemma 4.2 and the regularity of the associated
quadratic form, we know that if we can represent the residue class of A mod 32,
then we can find y0, z0, z1, z2 that satisfy (20).
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We let Sa,b;m be the set of residue classes mod m that are completely represented by

fa,b(z0, z1, z2)= az2
0+ bz2

1+ abz2
2.

For example, 2 ∈ S2,2;32 since f2,2(1, 0, 0) = 2, 2 6≡ 2 · 4n(16`+ 14) mod 32 for
any n, ` ∈ N, and by Lemma 4.2 f2,2 represents all even integers not of the form
2 · 4n(16`+ 14). But 16 6∈ S2,2;32 since 16≡ 2 · 41(16`+ 14) mod 32.

When a = b = 2 and m = 32, we have

S2,2;32 = {2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 30};

our goal then is to show that for any A∈Z, we can find y0∈Z and s∈ S2,2;32 such that
A≡ y2

0−s mod 32. By Lemma 4.2, there would then exist z= z1 i+z2 j+z3k∈Q2,2

such that −s ≡ z2 mod 32 and A = y2
0 + z2.

We can then break this search for y0 and s into cases:

• if A 6≡ 0, 1, 4, 5, 16, or 17 mod 32, then A is congruent to either −s or 1− s
for some s ∈ S2,2;32;

• if A ≡ 0, 16 mod 32, then A ≡ 4− s mod 32 for s = 4, 20 ∈ S2,2;32;

• if A ≡ 1, 5, 17 mod 32, then A ≡ 9− s mod 32 for s = 8, 4, 24 ∈ S2,2;32; and

• if A ≡ 4 mod 32, then A ≡ 16− s mod 32 for s = 12 ∈ S2,2;32.

Therefore we can represent A as a sum of two squares from Q2,2, and so we can
always express α as a sum of three squares from Q2,2.

Case 2 (a = 2, b = 3): We again use the set Sa,b;m , letting m = 24; this yields

S2,3;24 = {2, 3, 5, 6, 9, 11, 14, 17, 18, 21}.

Similarly to Case 1, we search for y0 ∈ Z and s ∈ S2,3;24 such that A ≡ y2
0 − s

mod 24:

• if A 6≡ 0, 1, 2, 5, 9, 12, or 17 mod 24, then A is congruent to either −s or 1−s
for some s ∈ S2,3;24;

• if A ≡ 1, 2, 17 mod 24, then A ≡ 4− s mod 24 for s = 3, 2, 11 ∈ S2,3;24;

• if A ≡ 0, 12 mod 24, then A ≡ 9− s mod 24 for s = 9, 21 ∈ S2,3;24;

• if A ≡ 5 mod 24, then A ≡ 16− s mod 24 for s = 11 ∈ S2,3;24; and

• if A ≡ 9 mod 24, then A ≡ 36− s mod 24 for s = 3 ∈ S2,3;24.

Therefore as above we can always express α as a sum of three squares from Q2,3.
Given the lower bound for ga,b(2) in Lemma 2.3, we therefore have ga,b(2)= 3 in
both cases. �
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The proof of Theorem 4.1 relies entirely on the regularity of the associated ternary
quadratic forms given in Lemma 4.2. There are, unfortunately, only finitely many
regular diagonal ternary quadratic forms ([Dickson 1939, Table 5] is a complete
list), so this exact method has limited general use. Nonetheless, there does seem
to be a close relationship between these quaternion rings and ternary quadratic
forms, and one might be able to relax the regularity condition slightly and be able
to represent “enough” integers to use a similar method as in Theorem 4.1.

5. Open questions

There are many questions left to explore here. It seems like it should be possible
to find ga,b(2) for all a and b positive; at the very least, we’d like to know the
proportion of such quaternion rings that have each of the possible values of ga,b(2).
We have also been using as our analog of the integers the Lipschitz quaternions;
the Hurwitz Quaternions would be an equally good choice, especially since we
would get unique factorization. Lastly, we have been focusing on the cases when i2

and j2 are negative; one could easily investigate the cases when one or both are
positive.
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On the structure of symmetric spaces of
semidihedral groups

Jennifer Schaefer and Kathryn Schlechtweg
(Communicated by Scott T. Chapman)

We investigate the symmetric spaces associated to the family of semidihedral
groups of order 2n. We begin this study by analyzing the structure of the automor-
phism group and by determining which automorphims are involutions. We then
determine the symmetric spaces corresponding to each involution and the orbits
of the fixed-point groups on these spaces.

1. Introduction

Real symmetric spaces were first introduced by Élie Cartan [1926; 1927] as a special
class of homogeneous Riemannian manifolds. They were later generalized by Berger
[1957] who gave classifications of the irreducible semisimple symmetric spaces.
Since then the theory of symmetric spaces, a theory that plays a key role in many ar-
eas of active research, including Lie theory, differential geometry, harmonic analysis,
and physics, has developed into an extensive field. The theory of symmetric spaces
also has numerous generalizations. Symmetric varieties, symmetric k-varieties,
Vinberg’s theta-groups, spherical varieties, Gelfand pairs, Bruhat–Tits buildings,
Kac–Moody symmetric spaces, and generalized symmetric spaces are among these
generalizations which have found importance in many areas of mathematics and
physics such as number theory, algebraic geometry, and representation theory.

The majority of these generalizations can be studied in the context of generalized
symmetry spaces. Generalized symmetric spaces are defined as the homogeneous
spaces G/H with G an arbitrary group and H =Gθ

= {g ∈G | θ(g)= g} the fixed-
point group of an order-n automorphism θ . Of special interest are automorphisms
of order 2, also called involutions. If G is an algebraic group defined over a field
k and θ an involution defined over k, then these spaces are also called symmetric
k-varieties, first introduced in [Helminck 1994].

For involutions there is a natural embedding of the homogeneous spaces G/H
into the group G as follows. Let τ : G → G be a morphism of G given by
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τ(g)= gθ(g)−1 for g ∈ G, where θ is an involution of G. The map τ induces an
isomorphism of the coset space G/H onto τ(G)= {gθ(g)−1

| g ∈G}. We will take
the image Q = {gθ(g)−1

| g ∈ G} as our definition of the generalized symmetric
space determined by (G, θ). In addition, we define the extended symmetric space
determined by (G, θ) as R={g ∈G | θ(g)= g−1

}. Extended symmetric spaces play
an important role in generalizing the Cartan decomposition for real reductive groups
to reductive algebraic groups defined over an arbitrary field. While for real groups
it suffices to use Q for the Cartan decomposition, in the general case one needs the
extended symmetric space R. Symmetric spaces and symmetric k-varieties are well
known for their role in many areas of mathematics. They are probably best known
for their fundamental role in representation theory. The generalized symmetric
spaces as defined above are of importance in a number of areas as well, including
group theory, number theory, and representation theory.

In this paper, we investigate the symmetric spaces associated to one particular
family of finite groups, namely the semidihedral groups of order 2n. Semidihedral
groups, also known as quasidihedral groups, appear as Sylow-2 subgroups of certain
finite simple groups (see [Alperin et al. 1970]). In Section 2, we analyze the family
of semidihedral groups of order 2n, SD2n , for n > 4. In Section 3, we classify the
automorphisms of SD2n and determine which automorphisms are involutions. In
Section 4, we describe the fixed-point group H , the generalized symmetric space Q,
and the extended symmetric space R associated with each involution of SD2n . In
Section 5, we study the orbit decomposition of Q by H and SD2n . Finally in the
Appendix, we provide the H , Q, and R associated to each involution of SD16.

The symmetric spaces associated to the more general family of semidihedral
groups of order 8k, SD8k , where k > 1 are considered in [Raza and Imran 2014].
Their result, Lemma 6, regarding the automorphism group of SD8k is incorrect and
as a consequence their results about H, Q, and R associated with each involution of
SD8k are not completely accurate. The techniques used in our paper and based on
the undergraduate honors thesis of the second author under the supervision of the
first author could be utilized to consider this more general family of semidihedral
groups and the associated symmetric spaces.

2. Preliminaries

Throughout this paper, we consider the semidihedral group SD2n , which can be
described using the following presentation from [Gorenstein 1968]:

SD2n = 〈r, s | r2n−1
= s2
= 1, sr = r2n−2

−1s〉,

where n ≥ 4 is an integer. This particular presentation is convenient for describing
the automorphism group of SD2n .
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We begin by providing some basic facts relating to the structure and properties
of the elements of SD2n that will be useful. It is clear from the group presentation
given above that SD2n is a non-Abelian group. The first result we state provides
a commutation relation which we will use to simplify the structure of the group’s
elements.

Lemma 1. For any integer k ≥ 1, we have sr k
= r (2

n−2
−1)ks.

Using the relation r2n−1
= s2
= 1 and the outcome of Lemma 1 repeatedly, we

have the following results.

Theorem 2. Every element of SD2n has a unique presentation as r i s j, where i
and j are integers with 0≤ i < 2n−1 and j ∈ {0, 1}.

We call the presentation given in Theorem 2 the normal form of an element of
SD2n and by writing all elements of the group in their normal form, we have the
subsequent corollary.

Corollary 3. The non-Abelian group SD2n has order 2n and consists of the elements
1, r , r2, . . . , r (2

n−1
−1), s, rs, . . . , r (2

n−1
−1)s.

When determining the automorphism group and the future symmetric spaces,
it will be necessary to know the order of each group element and its inverse. The
next two results provide this information.

Theorem 4. For any integer i with 0≤ i < 2n−1, we have

|r i
| =

2n−1

gcd(i, 2n−1)
,

|r i s| = 2 when i is even, and |r i s| = 4 when i is odd.

Proof. Because |SD2n | = 2n, we know that the order of every element of SD2n

is a power of 2. By basic properties of cyclic groups, |r i
| = 2n−1/gcd(i, 2n−1).

Consider r i s where i = 2l for some l ∈ Z. Then by Lemma 1 and the relation
r2n−1
= s2
= 1,

r i sr i s = r i+i(2n−2
−1)s2

= r2n−2(2l)
= r2n−1(l)

= 1.

Consider r i s where i = 2k+ 1 for some k ∈ Z. Then

(r i s)2 = (r i s)(r i s)= r2n−2i
= r2n−2(2k+1)

= r2n−2
6= 1.

However, it follows that (r i s)4 = (r2n−2
)2 = r2n−1

= 1. �

Theorem 5. For any integer i with 0≤ i < 2n−1, we have (r i )−1
= r2n−1

−i. When i
is even, (r i s)−1

= r i s and when i is odd, (r i s)−1
= r i+2n−2

s.
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Proof. Using the relation r2n−1
=1, it follows that (r i )−1

= r2n−1
−i and by Theorem 4,

we know that (r i s)−1
= r i s when i is even. Consider r i s where i = 2k+1 for some

k ∈ Z. Then again by Lemma 1 and the relation r2n−1
= s2
= 1, we have

r i sr i+2n−2
s = r ir (i+2n−2)(2n−2

−1)s2
= r (2

n−2)i+(2n−2)(2n−2
−1)

= r (2
n−2)[(2k+1)+(2n−2

−1)]
= r2n−1(k+2n−3)

= 1.

Thus the result follows. �

3. Automorphisms and involutions of SD2n

In this section, we investigate the automorphism group of SD2n , which we denote
by Aut(SD2n). We begin by analyzing the structure of each automorphism and
then move to proving some properties of the automorphism group as a whole. We
conclude this section by determining which elements of Aut(SD2n) are involutions.

Theorem 6. A homomorphism φ : SD2n → SD2n is an automorphism if and only if
φ(r)= ra and φ(s)= rbs, where a is odd and b is even.

Proof. Let φ ∈ Aut(SD2n). Then by properties of automorphisms, r must map
to an element of order 2n−1 and s must map to an element of order 2 under φ.
Thus by Theorem 4, φ(r) = ra , where a is odd, and φ(s) = rbs or r2n−2

, where
b is even. However, φ would not be onto if s mapped to r2n−2

. Therefore, if φ is
an automorphism, φ(r) = ra and φ(s) = rbs, where a is odd and b is even. The
converse of this statement can easily be shown. �

Based on the results of Theorem 6, we can represent each automorphism uniquely
as φab where φab(r)= ra and φab(s)= rbs, where a is odd and b is even. Using
this notation, we see that φab maps an arbitrary element r i s j to rai+bj s j and φ10

denotes the identity automorphism.

Corollary 7. The automorphism group, Aut(SD2n ), has order 22n−4.

Proof. Since there are 2n−2 elements ra where a is odd and 2n−2 elements rbs
where b is even, |Aut(SD2n )| = 2n−2

· 2n−2
= 22n−4. �

As one of the most important examples of an automorphism of a group G is
provided by conjugation by a fixed element in G, it is interesting to determine which
elements of Aut(SD2n ) are inner automorphisms. Given an arbitrary group G and
an element g ∈ G, we will let ψg ∈ Aut(G) denote conjugation by g and Inn(G)
denote the collection of inner automorphisms of G.

Theorem 8. The inner automorphisms of SD2n are φ1b and φ(2n−2−1)b where b ∈
Z2n−1 is even.
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Proof. Consider ψg for some g ∈ SD2n . Suppose g = r i. Then

ψr i (r)= r irr2n−1
−i
= r2n−1

+1
= r,

ψr i (s)= r i sr2n−1
−i
= r ir (2

n−2
−1)(2n−1

−i)s = r2i−2n−2i s = r2(i−2n−3i)s.

Next, consider g = r i s where i ∈ Z2n−1 is even. Then

ψr i s(r)= r i srr i s = r ir (1+i)(2n−2
−1)s2

= r2n−2
−1

and ψr i s(s) = r i ssr i s = r2i s. Finally, consider the case when g = r i s where
i ∈ Z2n−1 is odd. Then

ψr i s(r)= (r
i s)r(r i+2n−2

s)= r ir (2
n−2
−1)(1+i+2n−2)s2

= r2n−2
−1,

ψr i s(s)= r i ssr i+2n−2
s = r2i+2n−2

s = r2(i+2n−3)s.

Conversely, consider φ1b ∈ Aut(SD2n ). Note that conjugation by r (b/2)(1−2n−3)−1

gives
r (b/2)(1−2n−3)−1

rr−(b/2)(1−2n−3)−1
= r

and
r (b/2)(1−2n−3)−1

sr−(b/2)(1−2n−3)−1
= rbs.

Thus, φ1b ∈ Inn(SD2n ). Similarly, consider φ(2n−2−1)b ∈ Aut(SD2n ). If b/2 is even,
then conjugation by rb/2s gives

rb/2srrb/2s = r2n−2
−1

and
rb/2ssrb/2s = rbs.

If b/2 is odd, then conjugation by rb/2−2n−3
s gives

rb/2−2n−3
srrb/2−2n−3

+2n−2
s = r2n−2

−1

and
rb/2−2n−3

ssrb/2−2n−3
+2n−2

s = rbs.

Thus, φ(2n−2−1)b ∈ Inn(SD2n ). Therefore, φab is an inner automorphism of SD2n if
and only if a is 1 or 2n−2

− 1 and b ∈ Z2n−1 is even. �

It follows from this result that 2n−1 of the 22n−4 automorphisms in Aut(SD2n )

are inner automorphisms, which one knew would be the case as Inn(SD2n ) ∼=

SD2n /Z(SD2n ) and |Z(SD2n )| = 2 (see [Gorenstein 1968]). In Section 4, we will
find it useful to understand the structure of the involutions arising from inner
automorphisms because it will allow us to simplify the presentation of the fixed-
point groups, the generalized symmetric spaces, and the extended symmetric spaces
in these cases.
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Before we characterize the automorphisms of finite order, and in particular the
involutions, we provide the following lemma.

Lemma 9. For any φab, φcd ∈ Aut(SD2n), we have

φab ◦φcd = φ[ac mod 2n−1][ad+b mod 2n−1].

Proof. Let r i s j
∈ SD2n , where i, j ∈ Z such that 0 ≤ i ≤ 2n−1

− 1 and 0 ≤ j ≤ 1.
Then

φab ◦φcd(r i s j )= φab(r ci+d j s j )= ra(ci+d j)+bj s j
= r (ac)i+(ad+b) j s j

= φ[ac mod 2n−1][ad+b mod 2n−1](r
i s j ). �

This result concerning composition of automorphisms of SD2n is quite useful. It
allows to us to answer our question regarding automorphisms of finite order via a
straightforward modulo 2n−1 calculation.

Theorem 10. Let φab∈Aut(SD2n). Then (φab)
d
=φ10 if and only if ad

≡1 mod 2n−1

and b(1+ a+ a2
+ · · ·+ ad−1)≡ 0 mod 2n−1.

Proof. Consider φab ∈ Aut(SD2n). By repeated use of Lemma 9, we find that
(φab)

d(r) = rad
and (φab)

d(s) = rb(1+a+a2
+···+ad−1)s. Since rad

= r when ad
≡

1 mod (2n−1) and rb(1+a+a2
+···+ad−1)s = s when b(1 + a + a2

+ · · · + ad−1) ≡

0 mod 2n−1, the result follows. �

We are now able to determine which automorphisms of SD2n are involutions and
the number of involutions in Aut(SD2n) for any n.

Corollary 11. Let φab∈Aut(SD2n). Then (φab)
2
=φ10 if and only if a2

≡1 mod 2n−1

and b(1+ a)≡ 0 mod 2n−1.

Corollary 12. For integers n > 4, Aut(SD2n) contains 2n−1
+ 3 involutions.

Proof. By Corollary 11, for any odd integer a in Z2n−1 such that a2
≡ 1 mod 2n−1,

we have gcd(a+1, 2n−1) even elements b in Z2n−1 such that b(1+a)≡ 0 mod 2n−1.
There are four elements a in Z2n−1 with a2

≡ 1 mod 2n−1 by [Burton 2011], namely
1, −1, 1+ 2n−2, and −1+ 2n−2. Thus we have 2+ 2n−2

+ 2+ 2n−2
= 2n−1

+ 4
elements φab ∈ Aut(SD2n) with (φab)

2
= φ10. Because φ10 has order 1, it follows

that there are 2n−1
+ 3 involutions in Aut(SD2n). �

Example. Consider SD16. Then by Corollary 12 there are 11 involutions in
Aut(SD16), namely φ14, φ30, φ32, φ34, φ36, φ50, φ54, φ70, φ72, φ74, φ76.

As stated earlier, it is useful to know which of these involutions arise from inner
automorphisms. Using Theorem 8 and Corollary 11, it is clear that when a=1,
b must have order 2n−2 to satisfy the equation b(1+ a)≡ 0 mod 2n−1. However,
in the case that a = 2n−2

− 1, it is not as restrictive, for the equation b(1+ a) =
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b(2n−2)≡ 0 mod 2n−1 is satisfied by any even in Z2n−1 . Thus, we have the following
result that characterizes which inner automorphisms are also involutions.

Theorem 13. The involutions of SD2n which arise from inner automorphisms are
φ12n−2 and φ(2n−2−1)b, where b ∈ Z2n−1 is even.

Example. Consider SD16. It follows from Theorem 13 that the involutions in
Aut(SD16) that arise from inner automorphisms are φ14, φ30, φ32, φ34, and φ36.

We complete this section by determining which elements of Aut(SD2n) are
equivalent, for equivalent involutions produce the same generalized symmetric
spaces.

Definition 14. Let G be a group and φ, σ ∈ Aut(G). Then φ and σ are said
to be isomorphic, written φ ∼ σ , if and only if there exists ρ ∈ Aut(G) such
that ρφρ−1

= σ , i.e., φ and σ are conjugate to each other. Two isomorphic
automorphisms are said to be in the same equivalence class.

Theorem 15. For any φab, φcd ∈ SD2n , we have φ−1
ab = φcd if and only if c = a−1

and d ≡ a−1(−b) mod 2n−1.

Proof. Consider φab, φcd ∈ SD2n . It follows by Lemma 9 that

φab ◦φcd = φ[ac mod 2n−1][(ad+b) mod 2n−1] = φ10

if and only if ac≡ 1 mod 2n−1 and ad+b≡ 0 mod 2n−1. Now c must equal a−1 to
satisfy ac≡ 1 mod 2n−1. Next, ad+b≡ 0 mod 2n−1 becomes ad ≡−b mod 2n−1.
Then, by multiplying both sides by a−1, we get d ≡ a−1(−b) mod 2n−1. �

Theorem 16. For any φab, φcd ∈ SD2n , we have

φab ◦φcd ◦φ
−1
ab = φ[c mod 2n−1][(−bc+ad+b) mod 2n−1].

Proof. Consider φab, φcd ∈ SD2n . Then

φab ◦φcd ◦φ
−1
ab = φab ◦φcd ◦φ[a−1][a−1(−b) mod 2n−1]

= φab ◦φ[a−1c mod 2n−1][(c(a−1(−b))+d) mod 2n−1]

= φ[aa−1c mod 2n−1][(a(−ca−1b+d)+b) mod 2n−1]

= φ[c mod 2n−1][(−bc+ad+b) mod 2n−1]. �

Theorem 17. Two elements φab, φcd ∈ Aut(SD2n) are equivalent if there exists an
φe f ∈ Aut(SD2n) such that a = c and d ≡ ( f (1− a)+ be) mod 2n−1.

Proof. Let φab, φcd ∈ Aut(SD2n). These elements are conjugate if there exists an
φe f ∈ Aut(SD2n) such that φe f ◦ φab ◦ φ

−1
e f = φcd . Thus, using the results of the

previous theorem, φcd = φ[a mod 2n−1][−a f+be+ f mod 2n−1]. This is true if and only if
a = c and d ≡ ( f (1− a)+ be) mod 2n−1. �
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Example. Consider SD16 and the 11 involutions in Aut(SD16), namely φ14, φ30,
φ32, φ34, φ36, φ50, φ54, φ70, φ72, φ74, φ76. Then by the previous theorem, the equiva-
lence classes of involutions in Aut(SD16) are {φ14}, {φ30, φ32, φ34, φ36}, {φ50, φ54},
and {φ70, φ72, φ74, φ76}.

4. Fixed-point groups and symmetric spaces of SD2n

Recall again from the Introduction that we are interested in determining the fixed-
point group H, the generalized symmetric space Q, and the extended symmetric
space R for each involution of SD2n found in Corollary 11. It is important to note
that for the remainder of this paper we will let a ≡ b represent a ≡ b mod 2n−1.

Theorem 18. For an involution φab ∈ Aut(SD2n), the fixed-point group is

Hφab = {r
i s j
∈ SD2n | i(a− 1)+ jb ≡ 0},

where i ∈ Z2n−1 and j ∈ Z2.

Proof. Let φab ∈ Aut(SD2n). Then Hφab = {r
i s j
∈ SD2n | φab(r i s j )= r i s j

}, where
i ∈ Z2n−1 and j ∈ Z2.

Case 1. Let j = 0. Then φab(r i )= rai
= r i if and only if ia ≡ i or i(a− 1)≡ 0.

Case 2. Let j = 1. Then φab(r i s) = rai+bs = r i s if and only if ai + b ≡ i or
i(a− 1)+ b ≡ 0. �

Example. Consider SD16 and four of its involutions: φ14, φ36, φ54, and φ70. Using
the results of Theorem 18, we have Hφ14 = {1, r, . . . , r

7
}, Hφ36 = {1, r

4, rs, r5s},
Hφ54 = {1, r

2, r4, r6, rs, r3s, r5s, r7s}, and Hφ70 = {1, r
4, s, r4s}.

Theorem 19. For an involution φab∈Aut(SD2n), the generalized symmetric space is

Qφab = {r
i(1−a)− jb

| i ∈ Z2n−1 and j ∈ Z2}.

Proof. Let φab be an involution of SD2n . Then Qφab={(r
i s)φab(r i s)−1

|r i s j
∈SD2n },

where i ∈ Z2n−1 and j ∈ Z2.

Case 1. Let j = 0. Then (r i )φab(r i )−1
= r i (rai )−1

= r ir2n−1
−ai
= r i(1−a).

Case 2. Let j = 1. Then (r i s)φab(r i s)−1
= (r i s)(rai+bs)−1. Notice that ai + b

can be even or odd depending on the value of i since a is odd and b is even.

(i) Suppose i is even. It follows that ai + b is even. Then

(r i s)(rai+bs)−1
= r i srai+bs = r ir (2

n−2
−1)(ai+b)s2

= r i−(ai+b)
= r i(1−a)−b.

(ii) Suppose i is odd. It follows that ai + b is odd. Then

(r i s)(rai+bs)−1
= (r i s)(r (ai+b)+2n−2

s)

= r ir (2
n−2
−1)((ai+b)+2n−2)s2

= r i−ai−b+(ai−1)2n−2
= r i(1−a)−b

since ai − 1 is even. �
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Theorem 20. For an involution φab ∈ Aut(SD2n), the extended symmetric space is

Rφab = {r
i
∈ SD2n | i(a+ 1)≡ 0}

∪ {r i s ∈ SD2n | i(a− 1)+ b ≡ 0 mod 2n−1 and i is even}

∪ {r i s ∈ SD2n | i(a− 1)+ b ≡ 2n−2 mod 2n−1 and i is odd}.

Proof. Let φab be an involution of SD2n . Then

Rφab = {r
i s j
∈ SD2n |φab(r i s j )= (r i s j )−1

}.

Case 1. Let j = 0. Then φab(r i )= rai
= r−i

= r2n−1
−i if and only if ai ≡ 2n−1

− i .
In other words, i(a+ 1)≡ 0.

Case 2. Let j = 1 and i be even. Then φab(r i s)= rai+bs = (r i s)−1
= r i s if and

only if ai + b ≡ i . In other words, i(a− 1)+ b ≡ 0.

Case 3. Let j = 1 and i be odd. Then φab(r i s) = rai+bs = (r i s)−1
= r i+2n−2

s if
and only if ai + b ≡ i + 2n−2. In other words, i(a− 1)+ b ≡ 2n−2. �

Example. Consider SD16 and four of its involutions: φ14, φ36, φ54, and φ70. Using
the results of Theorem 19, we have that Qφ14 = {1, r

4
}, Qφ36 = {1, r

2, r4, r6
},

Qφ54 = {1, r
4
}, and Qφ70 = {1, r

2, r4, r6
}. However, by Theorem 20, we have

that Rφ14 = {1, r
4, rs, r3s, r5s, r7s}, Rφ36 = {1, r

2, r4, r6, r3s, r7s}, Rφ54 = {1, r
4
},

and Rφ70 = {1, r, . . . , r
7, s, r4s}. We see that Qab ⊆ Rab in all instances, which

should be, as Q ⊆ R for all arbitrary groups and all of their respective involutions.
However, it is usually the case that Q 6= R. Thus the fact that Qφ54 = Rφ54 for SD16

is noteworthy. We provide the fixed-point group, the generalized symmetric space,
and the extended symmetric space for each involution of SD16 in the Appendix.

The descriptions of H, Q, and R are more specific when φab is an inner au-
tomorphism. Recall that from Theorem 13, an involution arising from an inner
automorphism is of the form φ12n−2 or φ(2n−2−1)b, where b ∈ Z2n−1 is even.

Theorem 21. Let φab be an involution of SD2n−1 which arises from an inner auto-
morphism.

(1) If a = 1 and b= 2n−2, then Hφab = {1, r, r
2, . . . , r2n−2

}, Qφab = {1, r
2n−2
}, and

Rφab = {1, r
2n−2

, rs, r3s, . . . , r2n−1
−1s}.

(2) If a= 2n−2
−1 and b is even, then Hφab ={1, r

2n−2
}∪{r i s | i(2n−2

−2)+b≡ 0},
Qφab = {1, r

2, r4, . . . , r2n−1
−2
}, and

Rφab = {r
i
∈ SD2n | i is even}

∪ {r i s ∈ SD2n | i(2n−2
− 2)+ b ≡ 0 mod 2n−1 and i is even}

∪ {r i s ∈ SD2n | i(2n−2
− 2)+ b ≡ 2n−2 mod 2n−1 and i is odd}.
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5. Orbits

By Theorem 18, we can view Hφab as the disjoint union of {r i
∈ SD2n | i(a−1)≡ 0}

and {r i s ∈ SD2n | i(a− 1)+ b ≡ 0}. The first set will contain at least the identity
and r2n−2

. However, the second set may be empty if there is no solution, i , to the
equation i(a−1)+b≡ 0 for fixed a and b. The question of the existence of such a
solution produces two possible outcomes for the Hφab -orbits on Qφab .

Theorem 22. Let φab be an involution of SD2n .

(1) If there is no solution, i , to the equation i(a − 1)+ b ≡ 0 for fixed a and b,
then the Hφab -orbits on Qφab are

Hφab\Qφab =
{
{r k
}
∣∣ k = i(1− a)− jb where i ∈ Z2n−1 and j ∈ Z2

}
.

(2) If there is a solution, i , to the equation i(a− 1)+ b ≡ 0 for fixed a and b, then
the Hφab -orbits on Qφab are

Hφab\Qφab =
{
{r k, r−k

}
∣∣ k = i(1− a)− jb where i ∈ Z2n−1 and j ∈ Z2

}
.

Proof. In general, a group G acts on its extended symmetric space R, and thus its
generalized symmetric space Q, via θ -twisted conjugation defined as g.r=grθ(g)−1

for g∈G and r ∈ R, where θ is an involution of G. Given that Hφab is the fixed-point
group of φab, the action of Hφab on Qφab reduces to conjugation. In addition, we
found in Theorem 19 that Qφab ⊂ 〈r

2
〉 ⊂ SD2n . Thus to determine the orbits of Hφab

on Qφab , it is sufficient to evaluate the action of Hφab on a general element r k , keeping
in mind that k is even. Let r i

∈ Hφab such that i(a− 1)≡ 0. Then r ir k(r i )−1
= r k

and it follows that elements of the form r i
∈ Hφab fix Qφab pointwise. Now suppose

r i s ∈ Hφab such that i(a− 1)+ b ≡ 0. Consider the case when i is even. Then

(r i s)(r k)(r i s)−1
= (r i s)(r k)(r i s)

= (r i s)(r k+i s)= r ir (2
n−2
−1)(k+i)s2

= r (2
n−2
−1)k
= r−k

since k is even. Finally, suppose i is odd. Then

(r i s)(r k)(r i s)−1
= (r i s)(r k)(r i+2n−2

s)

= (r i s)(r k+i+2n−2
s)= r ir (2

n−2
−1)(k+i+2n−2)s2

= r2n−2(i−1)−k
= r−k

since k and i − 1 are both even. �

Theorem 23. Let φab be an involution of SD2n . There is one SD2n -orbit on Qφab ,
i.e., SD2n \Qφab = {Qφab}.

Proof. We proceed by proving that every element of SD2n is in the SD2n -orbit of
the identity, 1, in Qφab . By Theorem 19, every element of Qφab can be written in
the form r i(1−a) or r i(1−a)−b for some i ∈ Z2n−1 . We know r i

∈ SD2n for i ∈ Z2n−1
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and r i.1= r iφab(r i )−1
= r i (rai )−1

= r ir−ai
= r i(1−a). We also know r i s ∈ SD2n

for i ∈ Z2n−1 . In the case that i is even,

r i s . 1= r i sφab(r i s)−1

= r i s(rai+bs)−1
= r i s(rai+bs)= r ir (2

n−2
−1)(ai+b)s2

= r i(1−a)−b

by ai + b even. Likewise when i is odd,

r i s . 1= r i sφab(r i s)−1

= r i s(rai+bs)−1
= r i s(rai+b+2n−2

s)= r ir (2
n−2
−1)(ai+b+2n−2)s2

= r i(1−a)−b

since ai − 1 is even. �

Example. Again, consider the involutions φ14, φ36, φ54, and φ70 of SD16 and their
respective fixed-point groups and generalized symmetric spaces from Section 4. By
applying Theorem 22, we find that because i(0)+ 4≡ 0 has no solution for i and
Q = {1, r4

},
Hφ14\Qφ14 =

{
{1}, {r4

}
}

for φ14;

because i(2)+ 6≡ 0 has i = 1 as a solution and Q = {1, r2, r4, r6
},

Hφ36\Qφ36 =
{
{1}, {r4

}, {r2,r6
}
}

for φ36;

because i(4)+ 4≡ 0 has i = 1 as a solution and Q = {1, r4
},

Hφ54\Qφ54 =
{
{1}, {r4

}
}

for φ54;

because i(6)+ 0≡ 0 has i = 4 as a solution and Q = {1, r2, r4, r6
},

Hφ70\Qφ70 =
{
{1}, {r4

}, {r2,r6
}
}

for φ70.

Appendix: Symmetric spaces and fixed-point groups for SD16

involution H Q R

φ14 {1,r, . . . ,r7
} {1,r4

} {1,r4,rs,r3s,r5s,r7s}
φ30 {1,r4,s,r4s} {1,r2,r4,r6

} {1,r2,r4,r6,s,r4s}
φ32 {1,r4,r3s,r7s} {1,r2,r4,r6

} {1,r2,r4,r6,rs,r5s}
φ34 {1,r4,r2s,r6s} {1,r2,r4,r6

} {1,r2,r4,r6,r2s,r6s}
φ36 {1,r4,rs,r5s} {1,r2,r4,r6

} {1,r2,r4,r6,r3s,r7s}
φ50 {1,r2,r4,r6,s,r2s,r4s,r6s} {1,r4

} {1,r4,s,rs, . . . ,r7s}
φ54 {1,r2,r4,r6,rs,r3s,r5s,r7s} {1,r4

} {1,r4
}

φ70 {1,r4,s,r4s} {1,r2,r4,r6
} {1,r, . . . ,r7,s,r4s}

φ72 {1,r4,rs,r5s} {1,r2,r4,r6
} {1,r, . . . ,r7,r3s,r7s}

φ74 {1,r4,r2s,r6s} {1,r2,r4,r6
} {1,r, . . . ,r7,r2s,r6s}

φ76 {1,r4,r3s,r7s} {1,r2,r4,r6
} {1,r, . . . ,r7,rs,r5s}
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Spectrum of the Laplacian on graphs
of radial functions

Rodrigo Matos and Fabio Montenegro

(Communicated by Martin J. Bohner)

We prove that if M is a complete, noncompact hypersurface in Rn+1, which is
the graph of a real radial function, then the spectrum of the Laplace operator on
M is the interval [0,∞).

1. Introduction

Let M be a simply connected Riemannian manifold. The Laplace operator 1 :
C∞0 (M)→ C∞0 (M), defined as 1 = div ◦ grad and acting on C∞0 (M) (the space
of smooth functions with compact support), is a second-order elliptic operator and,
provided M is complete, it has a unique extension 1 to an unbounded self-adjoint
operator on L2(M) whose domain is Dom(1) = { f ∈ L2(M) : 1 f ∈ L2(M)};
see [Grigor’yan 2009, Theorem 11.5]. Since −1 is positive and symmetric, its
spectrum is the set of λ ≥ 0 such that 1+ λI does not have a bounded inverse.
Sometimes we say “spectrum of M” rather than “spectrum of −1”, and we denote
it by σ(M). One defines the essential spectrum, σess(M), to be those λ in the
spectrum which are either accumulation points of the spectrum or eigenvalues of
infinite multiplicity. The discrete spectrum is the set σd = σ(M) \ σess(M) of all
eigenvalues of finite multiplicity which are isolated points of the spectrum.

There is a vast literature on the spectrum of the Laplace operator on complete
noncompact manifolds. The first result we mention was published by Tayoshi
[1971]. He showed the absence of eigenvalues of −1 for a class of surfaces of
revolution, determined by nonnegative radial growth.

Donnelly [1981] showed

σess(M)=
[
(n− 1)2 1

4 c2,∞
)
,

provided M is a Hadamard manifold whose sectional curvature approaches −c2

at infinity. Karp [1984] gave sufficient conditions for a class of manifolds to have
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Keywords: Complete surface, Laplace operator, spectrum.
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purely continuous spectrum (σd(M)=∅) under some curvature conditions. Eight
years later, Donnelly and Garofalo [1992] obtained results in a similar direction,
using the hypothesis of nonnegative radial sectional curvature, without restrictions
on the metric.

Cheng and Zhiqin Lu [1992] proved σess(M)=[0,∞) when M has nonnegative
radial sectional curvature and Li [1994] proved σess(M)= [0,∞), provided M has
nonnegative Ricci curvatures and a pole. Zhou [1994] proved σess(M) = [0,∞)
when M has nonnegative sectional curvatures, generalizing the work of Escobar
and Freire [1992].

Kumura [1997] found a result which generalized [Donnelly 1981]. He showed
σess(M)=

[ 1
4 c2,∞

)
whenever

lim
n→∞

sup
t>n
|1t − c| = 0,

where t denotes the distance function on M .
Wang [1997] showed that the spectrum of a complete, noncompact Riemannian

manifold with asymptotically nonnegative Ricci curvature is equal to [0,∞).
Zhiqin Lu and Detang Zhou [2011] proved that the L p essential spectrum of M

is equal to [0,∞) when
lim inf
x→∞

RicM(x)= 0

and M is noncompact and complete. We should mention here that almost all the
above works were strongly motivated by the decomposition principle [Donnelly
and Li 1979], which states that the essential spectrum of a Riemannian manifold
is invariant under compact perturbations of the metric, thus it is a function of
the geometry of the ends. In [Monte and Montenegro 2015], it was proved that
σess(M)⊃

[
(n− 1)2 1

4 c2,∞
)

for a class of Riemannian manifolds, not necessarily
complete, whose metric is given by

gM = dr2
+ψ2(rw)gSn−1,

using curvature conditions only in a neighborhood of a ray.
See also [Bessa et al. 2010; 2012; 2015; Donnelly and Li 1979; Kleine 1988;

1989; Tayoshi 1971] for geometric conditions implying the discreteness of the
spectrum, σess(M)=∅.

In this work we consider complete hypersurfaces which are graphs of radial
functions. Our main result is the following theorem.

Theorem 1. Let M be a complete hypersurface in Rn+1, which is the graph of a
real radial function. Then, the spectrum of the Laplace operator on M is [0,∞).

Without loss of generality, we may assume the domain Dom f to be connected
and symmetric with respect to 0 ∈ Rn. From the completeness of M we further
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deduce Dom f is an open ball or annulus. The theorem above allows us to construct
a bounded hypersurface with the same spectrum of Rn+1 by taking M to be the
graph of the real function f (x)= cos

(
tan
( 1

2π |x |
))

defined on the unit open ball.
Throughout the following discussion, for simplicity, we deal with the case where

f : D → R is defined in an open ball. Let X : [0, R) × � → D be defined
by X (r, x1, . . . , xn−1) = rw(x1, . . . , xn−1), where 0 < R ≤ +∞ and w is a co-
ordinate system on Sn−1 defined on an open set � of Rn. Note that M has a
natural coordinate system Y : [0, R) × � → M , given by Y (r, x1, . . . , xn−1) =

(rw(x1, . . . , xn−1), f (r)), but we are interested in the spherical coordinate system
for M on p = (0, f (0)). Consider t : [0, R)→ [0,∞), given by

t (r)=
∫ r

0

(
1+ f ′(τ )2

)1/2 dτ.

We claim that t is a diffeomorphism. Observe that t is increasing and

lim
r→R

t (r)=+∞.

We denote by r : [0,∞) → [0, R) the inverse diffeomorphism. By the inverse
function theorem,

0< r ′(t)=
(
1+ f ′(r)2

)−1/2
≤ 1. (1)

Finally, the system of spherical coordinates on M , denoted Z : [0,∞)×�→ M ,
is defined by

Z(t, x1, . . . , xn−1)=
(
r(t)w(x1, . . . , xn−1), f ◦ r(t)

)
.

The metric of M on such a system is given by

gM = dt2
+ r(t)2gSn−1 .

Because of this observation, Theorem 1 is a simple consequence of the theorem
below.

Theorem 2. Let I ⊂ R be an unbounded interval and M = I ×Sn−1 with metric
given by gM = dt2

+ r2(t)gSn−1 , where 0< r ′(t) ≤ c for all t . Then, the spectrum
of the Laplace operator on M is [0,∞).

Remark. (1) If M has a pole at p∈M , then expp :Tp M→M is a diffeomorphism
so that M isometric to Tp M with the pullback metric. Therefore, Theorem 2
implies that if M has a pole p and gM = dt2

+ r2(t)gSn−1 with respect to p
and 0< r ′(t) < c, then M has spectrum equal to [0,∞).

(2) To the best of our knowledge, this natural result has only been verified in less
general settings. For instance, since r ′(t)> 0, then r(t) is increasing and there
are only two possibilities:
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(a) lim
t→∞

r(t)=∞, or
(b) lim

t→∞
r(t)= R.

In the first case, since r ′(t) is bounded, we have

lim
t→∞

1t = lim
t→∞

r ′(t)
r(t)
= 0.

By [Kumura 1997, Theorem 1.2], it follows that the spectrum of M is purely
continuous and equal to [0,∞). In the second case, if r ′→ 0 we still have
r ′(t)/r(t)→ 0. Therefore, the main contribution of this paper is the proof of
the case where r ′(t) does not converge to zero and limt→∞ r(t)= R <+∞.
This is the scenario for the graph of the function f (x) = cos

(
tan
( 1

2π |x |
))

presented above.

In the next section we prove Theorem 2. The Appendix is devoted to the Sturm–
Liouville theory used in this note.

2. Proof of Theorem 2

We concentrate our efforts for the case where limt→∞ r(t) = R. Our approach is
variational, based on the following lemma.

Lemma 3 [Davies 1995, Lemma 4.1.2]. A number λ ∈ R lies in the spectrum
of a self-adjoint operator H if and only if there exists a sequence of functions
fn ∈ Dom H with ‖ fn‖ = 1 such that

lim
n→∞
‖H fn − λ fn‖ = 0.

To deduce Theorem 2 from Lemma 3 we will construct, for each λ > 0, a
sequence of radial smooth functions f p : M→ R with compact support such that

‖1 f p + λ f p‖L2(M) ≤
c
p
‖ f p‖L2(M) (2)

for any natural p, where c is a constant which does not depend on p. It will follow
that gp = f p/‖ f p‖ has norm one and

lim
p→∞
‖1gp + λgp‖L2(M) = 0.

Therefore, by Lemma 3, λ belongs to the spectrum. To construct the function f p,
we fix t0 > 0 and prove that there are t1(λ) > t0 and a radial function u = u(t)
solution of the problem 

1u+ λu = 0 in [t0, t1],
u(t0)= u(t1)= 0,
u > 0 in (t0, t1).

(3)
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Using Sturm–Liouville theory, we showed that u can be extended to the whole
interval [t0,∞) and it has infinite zeros t0 < t1 < · · · < tp < · · · . The next step is
to consider (for each p) a smooth bump function h p whose support is the interval
[t0, t3p]. We then define f p = uh p and show that each f p in this sequence satisfies
(2). The function t 7→ rn−1(t) has a geometric meaning and plays an important
role in the proof, thus deserving a special notation. In the sequence of the paper,
we let v(t)= rn−1(t).

We observe that the first equation in (3) is equivalent to

(v(t)u′(t))′+ λv(t)u(t)= 0 (4)

if u = u(t) is a radial function. By Theorem 9 in the Appendix, given positive t0
and λ, (4) has a solution defined on [t0,∞) and satisfying u(t0)= 0.

Moreover, Corollary 8 allows us to consider a sequence of zeros t0 < t1 < · · ·
of u.

For p ∈N, we choose a smooth bump function h = h p : R 7→ R with 0≤ h ≤ 1
satisfying {

h(t)= 0, t ∈ (−∞, t0] ∪ [t3p,∞),

h(t)= 1, t ∈ [tp, t2p].

Such a function can be defined in the following way: let ϕ∈C∞0 (R) be nonnegative
with suppϕ = [0, 1] and

∫
ϕ = 1. Let

h p(t)=
∫ t

−∞

ϕp(s) ds,

where

ϕp(t)=
1

tp − t0
ϕ

(
t − t0
tp − t0

)
−

1
t3p − t2p

ϕ

(
t − t2p

t3p − t2p

)
.

This construction is useful since it leads to the following estimates:

‖h′p‖∞ ≤max
{
‖ϕ‖∞

tp − t0
,
‖ϕ‖∞

t3p − t2p

}
≤

C
p
,

‖h′′p‖∞ ≤max
{
‖ϕ′‖∞

(tp − t0)2
,
‖ϕ′‖∞

(t3p − t2p)2

}
≤

C
p2 .

(5)

Here, we have made use of Corollary 11 in the Appendix.
Consider f = f p = uh p. We are going to prove that such a function satisfies

the inequality in (2). Computing 1 f + λ f, we obtain

1 f + λ f = 2u′h′+ uh′′+ (n− 1)r
′

r
h′u.
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Using the inequalities in (5), together with the fact that r is increasing and r ′ is
bounded, we have

|1 f + λ f | ≤ c
p
(|u′| + |u|)χ[t0,t3p].

Then,
|1 f + λ f |2 ≤

c
p2 (|u

′
|
2
+ |u|2)χ[t0,t3p],∫

M
|1 f + λ f |2 d M ≤

c
p2

(∫ t3p

t0
|u′|2v dt +

∫ t3p

t0
|u|2v dt

)
.

Multiplying (4) by u and using integration by parts we find∫ t3p

t0
|u′|2v(t) dt = λ

∫ t3p

t0
|u|2v(t) dt,

‖1 f p + λ f p‖L2(M) ≤
c
p
‖u ·χ[t0,t3p]‖L2(M) ≤

c
p
‖u ·χ[tp,t2p]‖L2(M) ≤

c
p
‖ f p‖L2(M),

where the second inequality comes from Lemma 4 below.

Lemma 4. There is a positive constant C independent on p such that∫ t3p

t0
u2v dt ≤ C

∫ t2p

tp

u2v dt,

where u is solution of (4) and t0 < t1 < · · · are zeros of u.

This result is a manifestation of the oscillatory behavior of u. Before justifying
its veracity, we state a useful way of estimating u between two zeros.

Lemma 5. Let u be a solution of (4), and choose tk , tk+1 to be consecutive zeros
for u. Define

αk(t)= ak sin
(
λ1/2 Rn−1

∫ t

tk
v−1(s) ds

)
and

βk(t)= bk sin
(
λ1/2v(tk)

∫ t

tk
v−1(s) ds

)
,

where ak = v(tk)bk/(Rn−1λ1/2) and bk = u′(tk)/λ1/2. Then |αk | ≤ |u| on (tk, t̃k)
and |u| ≤ |βk | on (tk, tk+1), where t̃k is the next zero of αk after tk .

To make the exposition more fluid, we postpone the proof until the Appendix.

Proof of Lemma 4. Observe that multiplying (4) by v(t)u′ we get

(v(t)u′)′v(t)u′+ λv2uu′ = 0,

and so, (
(v(t)u′)2

)′
+ λv2(u2)′ = 0.
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Integrating from t0 to tk , we have

v(tk)2u′(tk)2− v(t0)2u′(t0)2 =−λ
∫ tk

t0
v2(s)(u2(s))′ ds.

Integrating the right hand side by parts, we find

v(tk)2u′(tk)2− v(t0)2u′(t0)2 = 2λ
∫ tk

t0
vv′u2 ds. (6)

Since r, r ′ > 0, we have v, v′ > 0. Also, r(t) < R and as a consequence,

u′(tk)2 >
v(t0)2u′(t0)2

R2(n−1) (7)

for k ≥ 1.
To obtain an estimate in the other direction, we observe that the function β =

β0(t) in Lemma 5 satisfies β ′(t0)= u′(t0) > 0 and

(v(t)β ′(t))′+
λv(t0)2

v(t)
β(t)= 0. (8)

Multiplying by v(t)β ′ we get, as in the preceding computations,

(v(t)2(β ′)2)′+ λv(t0)2(β2)′ = 0. (9)

Now, if t1 is the next root of β after t0, integrating the last equation we find

v(t1)2β ′(t1)2 = v(t0)2β ′(t0)2

= v(t0)2u′(t0)2.
(10)

We take k = 1 and estimate the right side of (6) as follows:

λ

∫ t1

t0
(v2)′u2 dt ≤ λ

∫ t1

t0
(v2)′β2 dt

≤ λ

∫ t1

t0
(v2)′β2 dt

=−λ

∫ t1

t0
v2(β2)′ dt

=−
1

v(t0)2

∫ t1

t0
v2(λv(t0)2β2)′ dt.

(11)
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By (9) we infer

−
1

v(t0)2

∫ t1

t0
v2(λv(t0)2β2)′ dt =

1
v(t0)2

∫ t1

t0
v2(v2(β ′)2)′ dt

=
1

v(t0)2

∫ t1

t0
(v4(β ′)2)′− (v2)′v2(β ′)2 dt

<
v4(t1)(β ′)2(t1)− v4(t0)(β ′)2(t0)

v(t0)2
.

(12)

Now, using (10) and that β ′(t0)= u′(t0), we find

λ

∫ t1

t0
(v2)′u2

≤ (v(t1)2− v(t0)2)u′(t0)2 dt.

Then, by (6),

v(t1)2u′(t1)2− v(t0)2u′(t0)2 ≤
(
v(t1)2− v(t0)2

)
u′(t0)2.

Since v(t) is increasing, it follows that

v(t1)2u′(t1)2 ≤ v(t1)2u′(t0)2

≤ v(t2)2u′(t0)2.
(13)

Then,

u′(t1)2 ≤
v(t2)2

v(t0)2
u′(t0)2.

Using the same argument, one shows by induction that

u′(tk)2 ≤
v(tk+1)

2v(tk)2

v(t1)2v(t0)2
u′(t0)2.

Since r(t) < R, we find that

u′(tk)2 ≤
R4(n−1)

v(t0)2v(t1)2
u′(t0)2. (14)

Now, using Lemma 5, it’s easy to check that∫ t3p

t0
u2v dt =

3p−1∑
k=0

∫ tk+1

tk
u2v(t) dt

≤
1
λ

3p−1∑
k=0

u′(tk)2
∫ tk+1

tk
sin2

(
λ1/2v(tk)

∫ t

tk

ds
v(s)

)
v(t) dt.

(15)

Letting

τ = λ1/2v(tk)
∫ t

tk

ds
v(s)

,
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the change of variables formula shows that

1
λ

3p−1∑
k=0

u′(tk)2
∫ tk+1

tk
sin2

(
λ1/2v(tk)

∫ t

tk

ds
v(s)

)
v(t) dt

=
1
λ3/2

3p−1∑
k=0

u′(tk)2

v(tk)

∫ π

0
sin2(τ )v2(τ (t)) dτ

≤
πR2(n−1)

2λ3/2rn−1(t0)

3p−1∑
k=0

u′(tk)2

= C
3p−1∑
k=0

u′(tk)2.

(16)

By (7) and (14), the following inequalities hold:

3p−1∑
k=0

u′(tk)2 ≤ 3Cpu′(t0)2

≤ C
2p−1∑
k=p

u′(tk)2.

(17)

We have ∫ t3p

t0
u2v dt ≤ C

2p−1∑
k=p

u′(tk)2. (18)

Here, the last inequality comes from (7), for some suitable constant C > 0. Again
by the change of variables formula (this time applied to each αk) and by Lemma 5,
one sees that if t̃k is the next zero of αk after tk we have∫ t2p

tp

u2v(t) dt =
2p−1∑
k=p

∫ tk+1

tk
u2v(t) dt

≥

2p−1∑
k=p

∫ t̃k+1

tk
α2

kv(t) dt

≥ C
2p−1∑
k=p

u′(tk)2.

(19)

From (18) we conclude that∫ t3p

t0
u2rn−1 dt ≤ C

∫ t2p

tp

u2rn−1 dt
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for every p ∈ N and for a constant C = C(λ, R), independent of p.

Appendix: Elements of Sturm–Liouville theory

For the convenience of the reader, we present some facts about Sturm–Liouville
problems used in the previous section. Our motivation relies on the study of

(v(t)u′)′+ λv(t)u = 0 t ≥ t0 > 0, (20)

where v(t)= rn−1(t) for fixed n ∈N. In the following we assume the function r(t)
to be positive; moreover:

(I) 0< r ′(t)≤ c.

(II) lim
t→∞

r(t)= R <+∞.

We start with a classical terminology.

Definition 6. Equation (20) is said to be oscillatory if any of its solutions has
arbitrarily large zeros.

The following theorem is a practical criterion for oscillation.

Theorem 7. Let v(t) be a positive continuous function on [t0,∞) and λ> 0. Then,
the equation

(v(t)u′)′+ λv(t)u = 0

for t ≥ t0 is oscillatory, provided
∫
∞

t0
v(t) dt =+∞ and

∫ t
t0
v(t) dt ≤Cta, for some

positive constants C and a.

The proof is discussed in [do Carmo and Zhou 1999, Theorem 2.1]. Since
limt→∞ r(t)= R, we easily have the following.

Corollary 8. Equation (20) is oscillatory.

Theorem 9. For positive v, any solution u of (20) on a interval [t0, t0 + δ] with
initial values u(t0)= x0 and u′(t0)= x1 can be extended to [t0,∞).

Again, the proof is presented in [do Carmo and Zhou 1999, Theorem 2.2].
The next propositions appear in the literature as Sturm comparison theorems;

see [Hartman 1982, Theorem 3.1]. These are standard results, but for the sake of
self-containment we decided to present their proofs. They emerge as useful ways
to compare solutions for ordinary differential equations, as we did in Section 2.

Proposition 10. Let x, y be nontrivial solutions for{
(p(t)x ′)′+ q(t)x = 0,
(p1(t)y′)′+ q1(t)y = 0,
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where p(t)≥ p1(t) > 0 and q1(t)≥ q(t) for every t ∈ I . If t1 < t2 are consecutive
zeros of x , then either y has a zero on J = (t1, t2) or there is a d ∈ R for which
y = dx on J .

Proof. As a starting point, note that if y(ti )=0, then by uniqueness we have y=dx
for d = y′(ti )/x ′(ti ). Uniqueness also implies that the set of zeroes of x does not
have a cluster point, so the interval J is well-defined. Therefore, it is enough to
consider the case where x and y are linearly independent. Observe that if y does
not have a zero on J , then(

x
(p(t)x ′y− p1(t)xy′)

y

)′
= (q1− q)x2

+ (p− p1)(x ′)2+
p1(x ′y− xy′)2

y2 .

Integrating from t1 to t2, we have∫ t2

t1
(q1− q)x2 dt +

∫ t2

t1
(p− p1)(x ′)2 dt +

∫ t2

t1
p1
(x ′y− xy′)2

y2 dt = 0.

Then, if y is not multiple of x , the Wronskian (xy′− x ′y) is nonzero on J and we
get a contradiction with the last equation. �

As a consequence, we obtain a universal estimate from below to the distance
between two consecutive zeros of a solution of (20).

Corollary 11. Let {tp}
∞

p=1 be an increasing sequence of zeros of u. There is a
universal constant C > 0 such that tp+1− tp > C for any p ∈ N.

Proof. Given p ∈N, define ϕ(t)= sin(2(n−1)/2λ1/2(t − tp)). Then, ϕ has a zero at
t = tp and ( 1

2 R
)n−1

ϕ′′+ λRn−1ϕ = 0.

Now,
( 1

2 R
)n−1

< v(t) < Rn−1 for t sufficiently large, lets say for t > c0. As a
consequence, if p is sufficiently large, we can apply Proposition 10 for u and ϕ to
conclude that the next zero of ϕ is on (tp, tp+1).

Since the next zero of ϕ after tp is on t = tp +π/(2(n−1)/2λ), we have

tp+1− tp >
π

2(n−1)/2λ

for tp > c0, from which the corollary follows. �

Proposition 12. Let x, y be nontrivial solutions for{
(p(t)x ′)′+ q(t)x = 0,
(p1(t)y′)′+ q1(t)y = 0,

on an interval [a, b], where p ≥ p1 > 0, q1 > q and x(a) = 0. Suppose that
c ∈ (a, b] is such that x(c) 6= 0, y(c) 6= 0 and x has the same number of zeros as y
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on (a, c). Then
p(c)x ′(c)

x(c)
≥

p1(c)y′(c)
y(c)

.

Proof. We only deal with the case where y is different from dx , otherwise there is
nothing to prove. Let a = a0, . . . , an be the zeros of x on [a, c) and b0, . . . , bn−1

be the zeros of y on (a, c). By Proposition 10, we have

ai < bi < ai+1

for i = 0, . . . , n−1. Consequently, y has no zero on (an, c). Now, we can use the
same idea from the proof of Proposition 10 to conclude that(

(px ′y− p1xy′) x
y

)′
≥ 0

on (an, c). Integrating both sides from an to c and using that x(an)= 0, we get

(px ′y− p1xy′)(c) x(c)
y(c)
≥ 0,

and since we can always assume that x(c)y(c) > 0, we find

p(c)x ′(c)
x(c)

≥
p1 y′(c)

y(c)
. �

Proof of Lemma 5. Observe that αk(tk)= 0, α′k(tk)= u′k(tk) and

(v(t)α′k)
′
+ λ

R2(n−1)

v(t)
αk = 0.

Since
R2(n−1)

v(t)
≥ Rn−1

≥ v(t)

for all t ≥ tk , we can apply Proposition 12 to u and αk and establish that

u′(t)
u(t)
≥
α′k(t)
αk(t)

, t ∈ (tk, t̃k).

So, taking ε > 0 and integrating the inequality above from tk + ε to t , we get

log
(
|u(t)|
|u(tk + ε)|

)
≥ log

(
|αk(t)|
|αk(tk + ε)|

)
,

|u(t)|
|αk(t)|

≥
|u(tk + ε)|
|αk(tk + ε)|

.

Sending ε→ 0 and using that u′(tk)= α′k(tk) 6= 0, we find |αk | ≤ |u|.
The proof of the other inequality follows the same ideas and is omitted.
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A generalization of Eulerian numbers
via rook placements

Esther Banaian, Steve Butler, Christopher Cox,
Jeffrey Davis, Jacob Landgraf and Scarlitte Ponce

(Communicated by Jim Haglund)

We consider a generalization of Eulerian numbers which count the number of
placements of cn rooks on an n× n chessboard where there are exactly c rooks
in each row and each column, and exactly k rooks below the main diagonal. The
standard Eulerian numbers correspond to the case c = 1. We show that for any
c the resulting numbers are symmetric and give generating functions of these
numbers for small values of k.

1. Introduction

Rook placements on boards have a wonderful and rich history in combinatorics
(see, e.g., [Butler et al. 2011]). Traditionally the rooks are placed in a nonattacking
fashion (i.e., at most one rook in each row and column) and the combinatorial
aspects come from considering variations on the board shapes.

Instead of varying the board, we could also change the restrictions on how many
rooks are allowed in each row and each column. If we have a square board and the
number of rooks in each column and row is fixed, then this corresponds to counting
nonnegative matrices with fixed row and column sums; see A000681, A001500,
A257493, etc., in the On-Line Encyclopedia of Integer Sequences (OEIS).

In this paper, we will look at this latter case of placing multiple rooks in each row
and column more closely. We begin in Section 2 by exploring the connections be-
tween these rook placements and juggling patterns. In Section 3, we look at Eulerian
numbers (which correspond to the number of nonattacking rook placements on an
n×n board with a fixed number of rooks below the main diagonal) and in Section 4
generalize to the case in which c rooks are placed in each row and each column.
In Section 5, we provide generating functions for special cases of these generalized
Eulerian numbers. We end with concluding remarks and open problems in Section 6.

MSC2010: 05A15.
Keywords: Eulerian numbers, juggling, recursion, multiplex.
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2. Minimal juggling patterns and rook placements

Juggling patterns can be described by a siteswap sequence listing the throws that
the pattern requires, i.e., t1t2 · · · tn where at time s ≡ i (mod n) we throw the ball
so that it will land ti beats in the future. A sequence of throws can be juggled if
and only if there are no collisions, i.e., two balls landing at the same time, which is
equivalent to 1+ t1, 2+ t2, . . . , n+ tn being distinct modulo n. One well-known
property of siteswap sequences is that the average of the throws is the number of
balls needed to juggle the pattern (see [Buhler et al. 1994; Polster 2003]).

A minimal juggling pattern is a valid juggling pattern t1t2 · · · tn with 0 ≤ ti ≤
n− 1. These form the basic building blocks of juggling patterns since all juggling
patterns of period n arise by starting from some minimal juggling pattern and
adding multiples of n to the various throws (such additions do not affect modular
conditions). More about this approach was found by Buhler, Eisenbud, Graham
and Wright [1994].

This naturally leads to the problem of enumerating minimal juggling patterns.
This is done by relating such patterns to rook placements on a square board. In
particular we will consider the n× n board Bn , with labels on each cell (i, j) given
by the rule {

j − i if j ≥ i,
n+ j − i if j < i.

We can interpret the rows of Bn as the throwing times (modulo n) and the columns
of Bn as the landing times (modulo n). The label of the cell (i, j) is then the
smallest possible throw required to throw at time i and land at time j .

Given a minimal juggling pattern t1t2 · · · tn , we form a rook placement by placing
a rook in row i on the cell labeled ti for 1≤ i ≤ n (note that this forces the rook to be
placed in the column corresponding to the landing time modulo n). Since landing
times are unique modulo n, no two rooks will be in the same column, so this forms
a nonattacking rook placement with n rooks. Conversely, given a nonattacking
rook placement with n rooks we can form a minimal juggling pattern by reading
off the cell labels of the covered square starting at the first row and reading down.
This establishes the bijective relationship between minimal juggling patterns and
nonattacking rook patterns on Bn . An example of this is shown in Figure 1 for the
minimal juggling pattern 24234.

We can extract information about the minimal juggling pattern by properties of
the rook placements, including, for example, the number of balls.

Proposition 1. The number of rooks below the main diagonal in a nonattacking
rook placement on Bn is the same as the number of balls necessary to juggle the
corresponding minimal juggling pattern.
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Figure 1. A nonattacking rook placement on B5 corresponding to
the minimal juggling pattern 24234.

Proof. Suppose there are k rooks below the main diagonal in a placement of
n nonattacking rooks on Bn . Then when we sum the labels of all the cells covered
by a rook, i.e., we sum the throw heights for the juggling sequence, we have

n∑
`=1

t` = kn+
n∑

j=1

j −
n∑

i=1

i = kn.

Since the average of the throws is the number of balls needed for the sequence, the
claim follows. �

Note that in Figure 1 there are three rooks below the main diagonal and that the
juggling pattern 24234 requires three balls to juggle.

2.1. Multiplex juggling and c-rook placements. A natural variation in juggling is
to allow multiple balls to be caught and thrown at a time. This is known as multiplex
juggling, and we will see that many of the basic ideas generalize well to this setting.

We will let c denote a hand capacity; i.e., at each beat we make c throws (allowing
some of the throws to be 0, which happens when the number of actual balls thrown
is less than c). Siteswap sequences of period n now correspond to a sequence
of n sets, T1T2 · · · Tn , where each Ti is a (multi)set of the form {ti,1, ti,2, . . . , ti,c},
denoted in shorthand notation as [ti,1ti,2 · · · ti,c]. A multiplex juggling sequence
is valid if and only if the juggling modular condition is satisfied. Namely, every
1≤ `≤ n appears exactly c times in the multiset

{ti, j + i (mod n)}1≤i≤n
1≤ j≤c

.

In other words, no more than c balls land at each time.1 As in standard juggling
patterns, the number of balls b needed to juggle the pattern relates to an average.
In particular,

1
n

n∑
i=1

c∑
j=1

ti, j = b.

1A 0 throw indicates a ball is not landing.
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Figure 2. A 2-rook placement on B5 corresponding to the minimal
multiplex juggling pattern [24][02][14][22][03].

We say a multiplex juggling sequence is a minimal multiplex juggling sequence if
and only if 0≤ ti, j ≤ n− 1 for all throws ti, j .

There is a relationship between period n, hand capacity c, multiplex juggling
sequences and placements of “rooks” on Bn . This is done by generalizing from
nonattacking rook placements to c-rook placements, placements of cn rooks with
exactly c rooks in every row and column, where multiple rooks are allowed in cells.

There is a bijection between minimal multiplex juggling patterns of period n
with hand capacity c and c-rook placements on Bn . In particular, for each i we
place c rooks in the i-th row corresponding to ti,1, . . . , ti,c. Conversely, given a
c-rook placement we can form a minimal multiplex juggling sequence by letting Ti

denote the cells covered by the rooks in row i (with appropriate multiplicity). An
example of this is shown in Figure 2 for the minimal multiplex juggling pattern
[24][02][14][22][03].

By the same argument used for Proposition 1 we have the following.

Proposition 2. The number of rooks below the main diagonal in a c-rook placement
on Bn is the same as the number of balls necessary to juggle the corresponding
minimal multiplex juggling pattern.

For example, the multiplex juggling pattern in Figure 2 requires four balls to
juggle.

3. Eulerian numbers

The Eulerian numbers, denoted
〈n

k

〉
, are usually defined as the number of permu-

tations of [n], π = π1π2 · · ·πn , with k ascents (πi < πi+1), or equivalently the
number of permutations with k descents (πi > πi+1). There is a bijection between
permutations of [n] with k descents and permutations with k drops (i > πi ), so that〈 n

k

〉
also counts permutations of [n] with k drops (see [Buhler et al. 1994]). Given an

n×n board, with rows and columns labeled 1, 2, . . . , n, we can use our permutation
to form a nonattacking rook placement by placing rooks at positions (i, πi ). A drop
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n ↓ k→ 0 1 2 3 4 5 6

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1

Table 1. The Eulerian numbers
〈n

k

〉
for 1≤ n ≤ 7.

in the permutation corresponds to a rook below the main diagonal, so we will call
any rook below the main diagonal a drop.

By Proposition 1, the number of drops in a nonattacking rook placement equals
the number of balls necessary for the corresponding juggling pattern. Therefore,〈 n

k

〉
also counts the number minimal juggling patterns of period n using k balls.

The Eulerian numbers have many nice properties, some of which can be seen in
Table 1. For example, they are symmetric, i.e.,

〈n
k

〉
=
〈 n

n−k−1

〉
. This can be shown

by noting if we start with a permutation with k ascents and reverse the permutation,
we now have n − 1− k ascents (i.e., ascents go to descents and vice-versa; and
there are n− 1 consecutive pairs). We will give a different proof of this symmetry
in the next section using rook placements.

Another well-known property of the Eulerian numbers is a recurrence relation.

Proposition 3. The Eulerian numbers satisfy
〈 n

k

〉
= (n− k)

〈 n−1
k−1

〉
+ (k+ 1)

〈 n−1
k

〉
.

This recurrence is again proven using permutations and ascents. Here, we provide
an alternate proof using rook placements and drops.

Proof. Start by considering a nonattacking rook placement on an (n− 1)× (n− 1)
board with k − 1 drops. Add an n-th row and n-th column, and place a rook in
position (n, n). The newly added rook is not below the diagonal and so we have
not created any new drops. We can now create one additional drop by taking any
rook (other than the one just added) which is on or above the main diagonal, say in
position (i, j), move that rook to position (n, j) and move the rook in position (n, n)
to position (i, n). This moves the rook in the j -th column below the main diagonal
creating a new drop. Since no other rook moves, we now have precisely k drops and
a nonattacking rook placement. Note that there are (n− 1)− (k− 1)= n− k ways
we could have chosen which rook to move, so that in total this gives (n− k)

〈 n−1
k−1

〉
boards of size n× n with k drops.

Now, consider a nonattacking rook placement on an (n − 1)× (n − 1) board
with k drops. Add an n-th row and n-th column, and place a rook in position (n, n).
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As before we switch, but now only switch with a rook which is below the main
diagonal (i.e., a drop). This will not change the number of drops, so the result
is a nonattacking rook placement on an n × n board with k drops. There are
k rooks we can choose to switch with, or alternatively, we can leave the n-th rook
in position (n, n); thus, there are k+ 1 ways to build the desired rook placement,
so that in total this gives (k+ 1)

〈 n−1
k

〉
boards of size n× n with k drops.

Finally, we note that each n×n board with k drops is formed uniquely from one
of these operations. This can be seen by taking such a board and then noting the
location of the rook(s) in the last row and in the last column. Suppose these are in
positions (i, n) and (n, j), respectively. We then move these rooks to positions (i, j)
and (n, n). This can at most decrease the number of drops by one (i.e., moving the
rook in the last column does not affect the number of drops). Now removing the
last row and column gives an (n− 1)× (n− 1) board having a nonattacking rook
placement with either k or k− 1 drops. �

4. Generalized Eulerian numbers

The generalized Eulerian numbers, denoted
〈 n

k

〉
c, are the number of c-rook place-

ments on the n × n board with k drops. Just as the Eulerian numbers count the
number of minimal juggling patterns of period n with k balls, the generalized
Eulerian numbers count the number of minimal multiplex juggling patterns of
period n with k balls and hand capacity c. Notice that the generalized Eulerian
numbers reduce to the Eulerian numbers when c = 1. In Table 2 we give some of
the generalized Eulerian numbers for c = 2 and 3.

n ↓ k→ 0 1 2 3 4 5 6 7 8

1 1
2 1 1 1
3 1 4 11 4 1
4 1 11 72 114 72 11 1
5 1 26 367 1492 2438 1492 367 26 1

n ↓ k→ 0 1 2 3 4 5 6 7 8 9

1 1
2 1 1 1 1
3 1 4 11 23 11 4 1
4 1 11 72 325 595 595 325 72 11 1

Table 2. Small values of the generalized Eulerian
〈 n

k

〉
c numbers

for c = 2 (top) and 3 (bottom).
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These numbers appear to satisfy a symmetry property similar to Eulerian numbers.
We will give two proofs of this symmetry, one in terms of rook placements and the
other using minimal multiplex juggling patterns.

Theorem 4. Let n, k and c be nonnegative integers. Then
〈 n

k

〉
c =

〈 n
c(n−1)−k

〉
c.

Proof. We construct a bijection between the rook placements with k rooks below
the main diagonal and those with c(n− 1)− k rooks below the diagonal. Consider
a rook placement with c rooks in every row and column, and k rooks below the
diagonal. Now, shift every rook one space to the right cyclically. Let us consider
the number of rooks which are strictly above the main diagonal.

• All c rooks in the last column were shifted to the first column. So, none of
these rooks are above the main diagonal.

• All of the k rooks that were initially below the main diagonal are now either
on or still below the main diagonal.

• All other rooks will be above the diagonal.

Since there are cn rooks on the board total, there are cn − c− k = c(n − 1)− k
rooks above the diagonal after this shift. Finally, we switch the rows and columns
of the board. This flips the rook placement across the main diagonal. After this
transformation, there are now c(n− 1)− k rooks below the main diagonal. This
composition of transformations is invertible by switching rows and columns then
shifting every rook left one space. Thus, the transformation gives a bijection,
completing the proof. �

Before we can give the second proof, we must first establish some basic properties
of (multiplex) juggling sequences.

Lemma 5. If the sequence T1T2 · · · Tn satisfies the juggling modular conditions with
hand capacity c, and α∈Zn with gcd(α, n)=1, then (αT1α−1)(αT2α−1) · · · (αTnα−1),
where

αTi := {αti,1, . . . , αti,c},

and the subscripts are taken modulo n, also satisfies the juggling modular condi-
tions.

Proof. We have

A = {αtiα−1, j + i}1≤i≤n
1≤ j≤c

= {α(tiα−1, j + iα−1)}1≤i≤n
1≤ j≤c

= {α(ti ′, j + i ′)}1≤i ′≤n
1≤ j≤c

,

where we use that gcd(α, n)= 1 so that α is invertible modulo n and as i ranges
between 1 and n, then so does i ′ := iα−1. Since {ti, j + i}1≤i≤n,1≤ j≤c has c occur-
rences each of 1 through n, then scaling by α and taking terms modulo n we also
have that A will have c occurrences each of 1 through n. �
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Lemma 6. If the sequence T1T2 · · · Tn satisfies the juggling modular conditions of
hand capacity c, and β ∈ Z, then (T1+β)(T2+β) · · · (Tn +β), where

Ti +β := [ti,1+β, ti,2+β, . . . , ti,c+β],

still satisfies the juggling modular conditions.

Proof. The multiset
A = {(ti, j +β)+ i} 1≤i≤n

1≤ j≤c

is found by taking {ti, j + i}1≤i≤n,1≤ j≤c and shifting each element by β. Since
T1T2 · · · Tn satisfy the juggling modular conditions then so also must A. �

Juggling proof of Theorem 4. We show there is a bijection between the minimal
multiplex juggling sequences using k balls and those using c(n− 1)− k balls for a
fixed length n and hand capacity c. So let T1T2 · · · Tn be a valid minimal multiplex
juggling sequence with k balls and hand capacity c. By Lemma 5 and Lemma 6, if
we scale each Ti by −1 (reversing the indexing) and add n− 1 then the resulting
sets still satisfy the modular juggling conditions. In particular we have that the
following satisfies the modular juggling condition:

(n− 1− Tn)(n− 1− Tn−1) · · · (n− 1− T1).

We also note the resulting throws all lie between 0 and n−1 so that this is indeed a
minimal juggling pattern.

The number of balls in the new juggling sequence is

1
n

n∑
i=1

c∑
j=1

((n− 1)− ti, j )=
1
n

(
cn(n− 1)−

n∑
i=1

c∑
j=1

ti, j

)
= c(n− 1)− k.

Finally, we note that this operation is its own inverse, and thus gives the desired
bijection. �

5. Generalized Eulerian numbers for small k

We now look at determining the values of the generalized Eulerian numbers
〈n

k

〉
c

for small k. This depends of course on both n and c. However, for a fixed k there
are only finitely many c that need to be considered. This is a consequence of the
following lemma.

Lemma 7. For c ≥ k we have
〈 n

k

〉
c =

〈 n
k

〉
k .

Proof. It will suffice to establish the following claim.

Claim. Every c-rook placement with k drops has at least c−k rooks in every entry
on the main diagonal.
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We proceed to establish this by using induction on k+ c. For k+ c= 1, the only
possible case is k = 0 and c= 1 for which there is only one placement, namely one
rook in each cell on the main diagonal.

Now assume that we have established the claim for all k, c with k+ c < `, and
let k + c = `. Let S be a c-rook placement with k drops. We can interpret the
rook placement as an incidence relationship of a regular bipartite graph. By Hall’s
marriage theorem, we know we can find a perfect matching in this bipartite graph
which corresponds to T, a 1-rook placement contained in S. Suppose there are
i drops in T. Then, S − T is a (c−1)-rook placement with k − i drops. Since
(c − 1) + (k − i) < c + k = `, by our induction hypothesis, there are at least
c− k + i − 1 rooks on each entry on the main diagonal in S− T, and hence also
in S. If i ≥ 1, we are done. If i = 0, then T is again the unique 1-rook placement
where every rook is on the main diagonal, so S still has at least c− k rooks on each
entry on the main diagonal. �

This can also be established in terms of minimal multiplex juggling patterns.

Juggling proof of Lemma 7. If there are k balls, then at each step we can throw
at most k balls, i.e., each Ti has at least c− k entries of 0. It follows that in the
corresponding c-rook placement each row has at least c−k rooks on the diagonal. �

We will be looking at the generalized Eulerian numbers
〈 n

k

〉
c for k = 1, 2, 3. By

Lemma 7 this reduces down to only six cases to consider, namely,
〈 n

1

〉
1,
〈 n

2

〉
1,
〈 n

2

〉
2,〈 n

3

〉
1,
〈 n

3

〉
2 and

〈 n
3

〉
3. Since

〈 n
k

〉
1=

〈n
k

〉
, the cases

〈 n
1

〉
1,
〈 n

2

〉
1 and

〈 n
3

〉
1 have been previously

determined (see A000295, A000460 and A000498, respectively, in the OEIS). So
that leaves

〈 n
2

〉
2,
〈n

3

〉
2 and

〈 n
3

〉
3 and in Table 3 we give the generating function for these

three sequences. In the remainder of this section we will demonstrate the techniques
used to determine the generating functions by working through the case for

〈 n
2

〉
2.

5.1. Placing rooks in a generic rook placement. We break the problem of count-
ing c-rook placements into several subproblems according to the way the rooks
below the main diagonal are placed relative to one another (i.e., relative placements
instead of absolute placements). Given some generic placement of the k rooks below
the main diagonal we can determine the number of ways to place the remaining
rooks on or above the main diagonal. We then combine the results over all possible
generic placements.

We will carefully work through the rook placement shown in Figure 3, which
consists of two rooks below the main diagonal and where both rooks are in the same
column and different rows. Here a, b, c and d are the number of rows between the
various transition points (a transition point to passing a rook, or rooks, in a row or
a column as we move along the main diagonal).

We place the remaining rooks one row at a time starting from the bottom and
going to the top. For each new row, the way we place rooks will depend on all of
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∑
n≥0

〈
n
2

〉
2
xn
= x2
+ 11x3

+ 72x4
+ 367x5

+ 1630x6
+ 6680x7

+ 26082x8
+ · · ·

=
x2
− x3
− x4
− 3x5

+ 5x6

(1− x)3(1− 2x)2(1− 5x + 5x2)∑
n≥0

〈
n
3

〉
2
xn
= 4x3

+ 114x4
+ 1492x5

+ 13992x6
+ 109538x7

+ 769632x8
+ · · ·

=

4x3
+ 2x4

− 300x5
+ 1748x6

− 4676x7
+ 7058x8

− 6648x9
+ 4397x10

− 2206x11
+ 625x12

(1− x)4(1− 2x)3(1− 5x + 5x2)2(1− 8x + 13x2)

∑
n≥0

〈
n
3

〉
3
xn
= x2
+ 23x3

+ 325x4
+ 3368x5

+ 28819x6
+ 218788x7

+ · · ·

=

x2
− 7x3

+ 39x4
− 336x5

+ 1844x6
− 5545x7

+ 9697x8

− 10404x9
+ 7532x10

− 4558x11
+ 2435x12

− 700x13

(1− x)4(1− 2x)3(1− 5x + 5x2)2(1− 10x + 27x2− 20x3)

Table 3. Generating functions for some of the generalized Eulerian numbers.

×

× a

b

c

d

Figure 3. A 2-rook placement with two rooks below the main diag-
onal where both rooks are in the same column and different rows.

the choices we have made previously. However, it suffices to know only what is
happening locally. In particular, we only need to know how many columns can have
rooks placed into them, as well as the respective numbers that can go into those
columns. We can represent these by a partition of what we will call the excess (the
total number of rooks that can still be placed in the columns after the row has had
its rooks placed). As we move one row up the board we will gain a new column
(from the diagonal) and the excess will change in one of several ways.

• There are no rooks below or to the left of the new diagonal cell. Initially we
now have a new column that can take up to c rooks, and we place c rooks in
the row. The excess remains unchanged.

• There are τ rooks below the new diagonal cell. Initially we have the new
column, but that can only take up to c− τ rooks (i.e., τ rooks have already
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gone into the column), and we still have to place c rooks in the row. The
excess decreases by τ .

• There are σ rooks to the left of the new diagonal cell. Initially we have the
new column that can take up to c rooks, and we place c− σ rooks in the row
(i.e., σ rooks have already gone into the row). The excess increases by σ .

We note that it is possible for the last two situations to occur simultaneously.
In going from row to row we will transition from partitions of the old excess to

partitions of the new excess. We illustrate this with an example in which case the
excesses are both 2. We indicate a column which can still have r rooks placed into
it by r , then underneath look at all possible ways we can place 2 rooks into those
columns, and finally note the resulting set of columns contributing to the new excess:

2 2

2 0 → 2

0 2 → 2

1 1 → 1 1

2 1 1

2 0 0 → 1 1

1 1 0 → 1 1

1 0 1 → 1 1

0 1 1 → 2

This can be modeled by a transition matrix where the columns of the transition
matrix correspond to the excess of the original row and the rows of the transition
matrix correspond to the partitions of the excess of the new row:

( 2 1 1

2 2 1
1 1 1 3

)
.

Repeating this for all possible situations that might arise for transitioning between
excesses 0, 1, or 2, we get the transition matrices in the following table:

transition from

tr
an

si
tio

n
to ∅ 1 2 1 1

∅ (1) (1) (1 1)
1 (1) (2) (2 3)
2

1 1

(
1
0

) (
1
1

) (
2
1

1
3

)
We now start below the bottom row (in one possible way) and we move up from

row to row and multiply on the left by the transition that we perform between the
two rows. At any point we stop, the resulting vector will denote the number of
ways to fill up the board to that row with a particular excess. In particular, if we
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carry this procedure all the way to the top we will get a 1×1 matrix whose entry is
the number of ways to fill in the rooks on and above the main diagonal.

For Figure 3, where we have of runs of a, b, c and d rows as well as three other
transitions to make, the resulting product that gives our count is

(1)d(1 1)
(

2 1
1 3

)c (
1
1

)
(2)b(1)(1)a.

Finally, for this generic rook placement we sum over all possible choices of a, b, c
and d that gives an n× n board, i.e.,∑

a+b+c+d=n−3

(1)d(1 1)
(

2 1
1 3

)c (
1
1

)
(2)b(1)(1)a.

In order to help evaluate this sum, we will add in an extra parameter x that keeps
track of how many of each transition we made, or viewed another way, the power
of x corresponds to the number of rows we have. Therefore when counting the
number of placements on an n× n board, we are interested in the coefficient of xn

of the expression ∑
a,b,c,d≥0

(x)d x(1 1)
(

2x x
x 3x

)c

x
(

1
1

)
(2x)bx(x)a.

This sum can be decomposed as a combination of geometric sums giving∑
a,b,c,d≥0

(x)d x (1 1)
(

2x x
x 3x

)c

x
(

1
1

)
(2x)bx(x)a

= x3
(∑

d≥0

xd
)
(1 1)

(∑
c≥0

(
2x x
x 3x

)c )(
1
1

)(∑
b≥0

(2x)b
)(∑

a≥0

xa
)

= x3
·

1
1− x

· (1 1)
(

I −
(

2x x
x 3x

))−1 (1
1

)
·

1
1− 2x

·
1

1− x

=
x3

(1− x)2(1− 2x)
· (1 1)

(
1

1− 5x + 5x2

(
1− 3x x

x 1− 2x

))(
1
1

)
=

x3(2− 3x)
(1− x)2(1− 2x)(1− 5x + 5x2)

.

This is the generating function for one of the generic ways to place rooks. We
can now repeat this procedure for every way in which we can place rooks below
the main diagonal and add the individual generating functions together. All the
seven generic cases, with their corresponding generating functions, are shown in
Figure 4. Adding the individual generating functions together then gives us the
overall generating function that was given in Table 3.
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×

×

××

×

×

x4

(1− x)3(1− 2x)2
x2(1− 2x)

(1− x)2(1− 5x + 5x2)

2x3

(1− x)2(1− 2x)2

×

×

×

×

x4(5− 7x)
(1− x)2(1− 2x)2(1− 5x + 5x2)

x4(5− 7x)
(1− x)2(1− 2x)2(1− 5x + 5x2)

×

×

××

x3(2− 3x)
(1− x)2(1− 2x)(1− 5x + 5x2)

x3(2− 3x)
(1− x)2(1− 2x)(1− 5x + 5x2)

Figure 4. All generic 2-rook placements and corresponding gen-
erating functions.

This same process works for determining the generating function of
〈 n

k

〉
c for any

fixed k and c. The main challenge lies in that the number of generic cases that have
to be considered grows drastically as we increase c and k. This is demonstrated in
Table 4. It is possible to automate this process, which was used for determining the
generating functions for k = 3 given in Table 3.
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k ↓ c→ 1 2 3 4 5 6 7

1 1
2 4 7
3 26 68 75
4 236 940 1090 1105
5 2752 16645 20360 20790 20821
6 39208 360081 464111 477242 478376 478439
7 660032 9202170 12492277 12933423 12974826 12977688 12977815

Table 4. The number of generic c-rook placements with k rooks
below the main diagonal.

6. Conclusion

The generalized Eulerian numbers are a natural extension of the Eulerian numbers,
at least in regards to the interpretation coming from rook placements. We have also
seen that these numbers exhibit a symmetry similar to that of the Eulerian numbers.
It would be interesting to know which other properties and relationships involving
Eulerian numbers generalize. Some natural candidates to try and generalize include
the following:

• Is there a generalization of the recurrence in Proposition 3 for Eulerian numbers
to generalized Eulerian numbers? Related to this, is there a simple generating
function for the generalized Eulerian numbers?

• Is there a generalization of Worpitzky’s identity, xn
=
∑

k

〈 n
k

〉(x+k
n

)
, to general-

ized Eulerian numbers? Worpitzky’s identity is used in counting the number
of juggling patterns (see [Buhler et al. 1994]), so a generalization might be
useful in counting multiplex juggling patterns.

• Is there a generalization of the identity of Chung, Graham and Knuth [2010],∑
k

(a+b
k

)〈 k
a− 1

〉
=

∑
k

(a+b
k

)〈 k
b− 1

〉
?

Note that this uses the convention
〈 0

0

〉
= 0.

More about the Eulerian numbers and various identities and relationships that could
be considered are given by Graham, Knuth and Patashnik [1994, §6.2].

We also note the original motivation for investigating these numbers was looking
into the mathematics of multiplex juggling. There is a close connection between
the mathematics of juggling and the mathematics of rook placements. We hope to
see this relationship strengthened in future work.
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The H -linked degree-sum parameter
for special graph families

Lydia East Kenney and Jeffrey Scott Powell

(Communicated by Jerrold Griggs)

For a fixed graph H, a graph G is H -linked if any injection f : V (H)→ V (G)
can be extended to an H -subdivision in G. The concept of H -linked generalizes
several well-known graph theory concepts such as k-connected, k-linked, and
k-ordered. In 2012, Ferrara et al. proved a sharp σ2 (or degree-sum) bound
for a graph to be H -linked. In particular, they proved that any graph G with
n > 20|E(H)| vertices and σ2(G) ≥ n + a(H)− 2 is H -linked, where a(H)
is a parameter maximized over certain partitions of V (H). However, they do
not discuss the calculation of a(H) in their work. In this paper, we prove the
exact value of a(H) in the cases when H is a path, a cycle, a union of stars, a
complete graph, and a complete bipartite graph. Several of these results lead
to new degree-sum conditions for particular graph classes while others provide
alternate proofs of previously known degree-sum conditions.

1. Introduction

We only consider finite, undirected graphs. Let G and H be graphs with vertex sets
V (G) and V (H) and edge sets E(G) and E(H), respectively. Let P(G) denote the
set of paths in G. An H-subdivision in G is a pair of mappings f1 : V (H)→ V (G)
and f2 : E(H)→ P(G) such that:

(i) f1 is injective.

(ii) For every edge xy ∈ E(H), the image f2(xy) in a path in G from f1(x) to
f1(y) and distinct edges of H map to internally disjoint paths in G.

Note that the existence of an H -subdivision in G means that H is a topological
minor of G and, as a result, H is also a minor of G. See Figure 1 for an illustration
of an H -subdivision.

A graph G is H-linked if any injection f : V (G)→ V (H) can be extended to
an H -subdivision. The concept of H -linked was introduced in [Jung 1970], and

MSC2010: primary 05C35, 05C38; secondary 05C83.
Keywords: H-linked, path, cycle, degree-sum, Ore condition.
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v2 v3

v1 v4

f (v1)

f (v2)
f (v3) f (v4)

H : G:

Figure 1. An H -subdivision: the vertices v1, v2, v3, . . . , v4 of H
are mapped via an injection f to vertices in G. The subgraph in
G induced by the thick edges and the vertices incident with these
edges is an H -subdivision in G.

for appropriate choices of H with |V (H)| = k, H -linked generalizes several graph
properties including k-connected, k-linked, and k-ordered.

Several recent publications have proven degree conditions for a graph to be
H -linked. In [Ferrara et al. 2006; Gould et al. 2006; Kostochka and Yu 2005], sharp
minimum degree conditions were proved. Degree-sum conditions were proved in
[Kostochka and Yu 2008; Ferrara et al. 2012], and as this paper examines a parameter
related to these conditions, we will examine them in further detail. Let σ2(G) denote
the minimum degree sum of nonadjacent vertices in G. The minimum degree sum
required to guarantee the existence of a property is known as a degree-sum condition
or a σ2 condition. Kostochka and Yu [2008] proved a sharp σ2 condition for G to
be H -linked for every graph H with minimum degree at least two.

Theorem 1.1 [Kostochka and Yu 2008]. Let G be a graph of order n and let H be
a simple graph with k edges and minimum degree at least two. If

σ2(G)≥


⌈

n+ 1
2(3k− 9)

⌉
, n > 2.5k− 5.5,⌈

n+ 1
2(3k− 8)

⌉
, 2k ≤ n ≤ 2.5k− 5.5,

2n− 3, k ≤ 2.5k− 1,

then G is H-linked.

Note that Theorem 1.1 provides an upper bound on the minimum degree-sum
required for any possible H with minimum degree at least two, but it does not
supply the optimal bound for every choice of H. A sharp σ2 bound for this latter
case was proved by Ferrara et al. [2012]. Their bound is a function of a parameter
of H, called a(H), that is maximized over certain partitions of V (H) into two
nonempty sets A and B. We use (A, B) to denote a specific partition of V (H) into
these two sets. Let e(A, B) denote the number of edges with one vertex in A and
one vertex in B. We will say that these edges “cross the partition”. For a vertex v,
we let dB(v) denote the number of neighbors of v in B. For the partition of H
given by (A, B), let 1B(A) equal the maximum value of dB(v) for all v ∈ A.
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We are now ready to define a(H). Let

a(H)= max
A∪B=V (H)
e(A,B)≥1

(
e(A, B)+ |B| −1B(A)

)
.

Using a(H), one can find a sharp σ2(G) condition for G to be H -linked:

Theorem 1.2 [Ferrara et al. 2012]. Let H be a simple graph and G be a graph on
n vertices with n > 20|E(H)|. If

σ2(G)≥ n+ a(H)− 2,

then G is H-linked. This result is sharp.

The same paper also gave a sharp σ2(G) bound for when H is a multigraph.
However, in this paper, we restrict our attention to the case when H is a graph.
Ferrara et al. [2012] assert that, for particular choices of H, Theorem 1.2 has
(as corollaries) the previously proven σ2 conditions for k-linked and k-ordered.
However, no formal proof for these assertions is included and no further examination
of the parameter a(H) is presented for any particular H.

In this paper, we prove the value of a(H) when H is a path, cycle, union of stars,
complete graph, or complete bipartite graph. Some of these proofs specify new σ2

conditions while others provide alternate proofs of well-known conditions. One of
our aims is to supply some initial results for a(H), as Theorem 1.2 could potentially
be a useful tool when routing specific paths between arbitrarily chosen vertices.
Additionally, we hope that these initial results for a(H) encourage further study of
this unusual parameter. To that end, two examples are given in the conclusion to
illustrate some surprising properties of a(H).

To continue, we need some further notation. For a given graph H, let P(H)
be the set of all possible partitions of V (H) into two nonempty sets with at least
one edge of H that crosses the partition. For a partition (A, B) ∈ P(H), let
a(A, B)= e(A, B)+ |B| −1B(A). Thus,

a(H)= max
(A,B)∈P(H)

a(A, B).

For a partition (A, B), we say that F is an induced subpartition of H if F is
an induced subgraph of H and the vertices of F are partitioned in the exact same
manner in which they were partitioned in H. Note that it is possible for an induced
subpartition not to have any edges that cross the partition. See Figure 2 for an
illustration of these terms.

Additionally, note that for a partition (A, B), we will often speak of “moving”
a vertex from A to B or from B to A. In that language, the labels A and B refer
to the two sides of the partition in addition to the sets themselves. For terms and
notation not defined here, see [West 1996].
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z

y

x

u

v

z

y

u

v

x

z

y

u

x

Figure 2. Suppose the graph shown on the left is H. The partition
(A, B) ∈ P(H) with A = {y, z} and B = {u, v, x} is illustrated in
the center. The vertical line is a visual aid to distinguish between
the sets A and B. Note that in this case, a(A, B)= 4. The graph
on the right is an induced subpartition of the partition (A, B).

2. Lemmas

To start, we prove two lemmas regarding the structure of optimal partitions of H, i.e.,
partitions (A, B) ∈ P(H) for which a(A, B)= a(H). The first lemma notes that
certain subpartitions cannot be induced subpartitions of an optimal partition of H.

Let H1 be the induced subpartition consisting of an induced path of length two
with all three vertices in A. Let H2 be the induced subpartition consisting of an
induced path of length three with one edge in A, one edge that crosses the partition,
and one edge in B. See Figure 3 for H1 and H2.

This first lemma proves that H1 and H2 cannot be induced subpartitions in any
optimal partition of the graph H.

Lemma 2.1. Let H be any graph. Suppose (A, B) ∈ P(H) with a(A, B)= a(H).
Then, H1 and H2 are not induced subpartitions in (A, B).

Proof. Suppose for the sake of contradiction that H1 is an induced subpartition of
(A, B). Let x, y, z ∈ A be the vertices of H1 with d(y)= 2. Also, let

ξ =

{
1 if 1B(A)= dB(x) or 1B(A)= dB(z),
0 otherwise.

H1 H2 H3 H4

Figure 3. The induced subpartitions H1, H2, H3, and H4 ref-
erenced in Lemmas 2.1, 4.1, and 4.2. The vertical dashed line
provides a visual reference to the partition of the vertices into the
sets A and B for (A, B) ∈ P(H). The vertices to the left of the
line in each graph are in A and the vertices on the right are in B.



THE H -LINKED DEGREE-SUM PARAMETER FOR SPECIAL GRAPH FAMILIES 711

Consider the partition (A′, B ′) identical to (A, B) except that the vertex y is
moved from A to B. Then,

a(A′, B ′)= e(A, B)+ 2+ |B| + 1−1B(A)− ξ

= a(A, B)+ 3− ξ

> a(A, B).

This contradicts our choice of the optimal partition (A, B).
For the sake of contradiction, suppose that H2 is an induced subpartition of

(A, B). Let x, y, z, w be the vertices of H2 so that x, y ∈ A and z, w ∈ B, and the
edge yz crosses the partition. As H2 is an induced path of length three, note that
dG(y)= dG(z)= 2. Also, let

ξ =

{
1 if 1B(A)= dB(x) or 1B(A)= 1,
0 otherwise.

Consider the partition (A′, B ′) identical to (A, B) except that the vertex y is
moved from A to B and the vertex z is moved from B to A. Then,

a(A′, B ′)= e(A, B)+ 2+ |B| −1B(A)− ξ

= a(A, B)+ 2− ξ

> a(A, B).

Once again, this contradicts our choice of the optimal partition (A, B). �

The next lemma is useful for dealing with vertices of degree one in H.

Lemma 2.2. For a graph H, there exists a partition (A, B)∈P(H) with a(A, B)=
a(H) and the edges incident with vertices of degree one cross the partition.

Proof. Consider all (A, B) ∈ P(H) with a(A, B) = a(H). Among these, choose
the partition which has the maximum number of edges incident with degree one
vertices which cross the partition. For the sake of contradiction, suppose there is
at least one edge incident to a degree one vertex that does not cross the partition.
Let x be this degree one vertex and let y be the neighbor of x . Now, let

ξ =

{
1 if dB(y)≥1B(A),
0 otherwise.

Suppose first that x ∈ A and the edge xy does not cross the partition. Consider
the partition (A′, B ′) ∈ P(H), which is identical to (A, B) except that x is moved
from A to B. Then, a(A′, B ′)= a(A, B)+2− ξ > a(A, B), which contradicts our
choice of the optimal partition (A, B).

Suppose now that x ∈ B and the edge xy does not cross the partition. Consider
the partition (A′, B ′) ∈ P(H), which is identical to (A, B) except that x is moved
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from B to A. Then, a(A′, B ′) = a(A, B), which contradicts our choice of the
optimal partition a(A, B) which maximizes the number of edges incident with
degree one vertices that cross the partition. �

Lemma 2.2 can be used to provide an alternate proof of the σ2 condition for
a graph to be k-linked. A graph G is k-linked if, for every list of 2k vertices
{s1, . . . , sk, t1, . . . , tk}, there exist internally disjoint paths P1, . . . , Pk such that
each Pi is a path joining si and ti . If H is the union of k independent edges (i.e.,
k copies of the complete graph K2), then a graph being H -linked is equivalent to
the graph being k-linked. As each vertex in H has degree one, Lemma 2.2 states
that there exists an optimal partition of H where all of the edges cross the partition.
Thus, a(H) = 2k − 1 and Theorem 1.2 gives the σ2 condition proved previously
(and independently) in [Kawarabayashi et al. 2006] and [Gould and Whalen 2006].
Note that the bound on the number of vertices in G given by Theorem 1.2 is higher
than the bounds in those references.

The next result follows directly from the first case in the proof of Lemma 2.2.
The result differs from Lemma 2.2 in that it applies to every optimal partition of H ,
whereas Lemma 2.2 applies to only a subset of optimal partitions of H.

Corollary 2.3. If (A, B) ∈P(H) with a(A, B)= a(H), then the vertices of degree
one in A must be incident to edges that cross the partition.

3. Stars

In this section, we determine the value of a(H) when H is a star or a union of stars.
Let K1,k denote a star with one vertex of degree k and k vertices of degree one. By
Lemma 2.2, an optimal partition of H exists where all degree one vertices cross
the partition. Thus, we have the following:

Corollary 3.1. If H = K1,k for k ≥ 1, then a(H)= k.

When H = K1,k , G being H -linked is equivalent to G being k-connected.
This follows from a theorem by Dirac [1960]. With this fact, Theorem 1.2, and
Corollary 3.1, we get the well-known σ2 condition for a graph G to be k-connected
(i.e., σ2(G)≥ n+ k− 2).

We now determine the value of a(H) when H is a union of stars. For H =
K1,k1 ∪ K1,k2 ∪ . . .∪ K1,km , we call the vertex of maximum degree in each star the
hub vertex or hub of that star. Note that, for K1,1, either vertex can be considered a
hub vertex.

Theorem 3.2. If H = K1,k1 ∪ K1,k2 ∪ . . .∪ K1,km with ki ≥ 1 for 1≤ i ≤ m, then

a(H)= 2
m∑

j=1

k j −max{k1, k2, . . . , km}.
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Proof. Assume without loss of generality that km ≥ ki for all 1 ≤ i ≤ m − 1. By
Lemma 2.2, there exists a partition (A, B) ∈P(H) with a(A, B)= a(H) where all
edges incident with vertices of degree one cross the partition. Among all optimal
partitions that satisfy that property, choose the partition with the maximum number
of hub vertices in A. We will now show that, under the assumptions above, all of
the hub vertices are in A.

Claim 3.3. The hub of the star K1,km must be in A.

Proof. Let x be the hub of K1,km and suppose that x ∈ B. Note that dG(x) = km .
Consider the partition (A′, B ′) obtained by moving x from B to A and moving its
leaves from A to B. Then, noting that 1B(A)≥ 1,

a(A′, B ′)= a(A, B)+ km − 1− (km −1B(A))

= a(A, B)+1B(A)− 1

≥ a(A, B).

However, this contradicts our assumption that (A, B) is an optimal partition of H,
which has the maximum number of hubs in A. So, the hub of maximum degree
must be in A. �

Assume without loss of generality that the hubs of K1,k1, K1,k2, . . . , K1,ki are in
B (where i ≥ 0) and the remaining hubs are in A. By the above claim, i <m. Now,
we have

a(A, B)=
m∑

j=1

k j +

( m∑
t=i+1

kt

)
+ i − km =

m∑
j=1

k j +

( m−1∑
t=i+1

kt

)
+ i

≤

m∑
j=1

k j +

m−1∑
t=1

kt = 2
( m∑

j=1

ki

)
− km .

So, this gives us an upper bound on a(A, B) for all possible locations of the
hubs. For the lower bound, note that the partition (A′, B ′) ∈ P(H) where all of the
hubs of H are in A′ has

a(A′, B ′)= 2
( m∑

j=1

k j

)
− km .

Therefore, a(H)= 2
(∑m

j=1 k j
)
− km , where km =max{k1, k2, . . . , km}. �

Note that Theorem 3.2 can also be used to show that a(H)= 2k− 1 when H is
the union of k independent edges (which was discussed in the previous section).
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4. Cycles and paths

We now move our attention to paths and cycles. Let Ck (for k ≥ 3) denote a cycle
on k vertices and Pk (for k ≥ 2) denote a path on k vertices.

The following lemmas prove that H3 (shown in Figure 3) cannot appear as an
induced subpartition in any optimal partition of H.

Lemma 4.1. Let k ≥ 4. For H ∈ {Ck, Pk}, the graph H3 cannot be an induced
subpartition of any partition (A, B) ∈ P(H) with a(A, B)= a(H).

Proof. Suppose for the sake of contradiction that H3 is an induced subpartition of
some partition (A, B) with a(A, B)= a(H). Assume the vertices of H3 are x, y, z,
and w with x, z, w ∈ A and y ∈ B, and the edges are xy, yz, and zw.

By Corollary 2.3, dG(w) 6= 1 since the edge incident to w does not cross the
partition. Let t be a neighbor of w in H. By Lemma 2.1, t ∈ B.

Now, either dG(x)= 1, x has a neighbor in A, or x has a second neighbor in B. If
dG(x)=1 or if x has a neighbor in A, then the partition (A′, B ′) formed from (A, B)
by moving x and z to from A to B and y from B to A has a(A′, B ′) > a(A, B). As
this contradicts our choice of the optimal partition (A, B), x must have a second
neighbor in B.

Let v be the other neighbor of x in B. As a result,1B(A)= 2. Consider the parti-
tion (A′, B ′), which modifies the partition (A, B) by moving w from A to B. Then,

a(A′, B ′)= e(A, B)+ |B| + 1−1B(A)− 0

= a(A, B)+ 1.

Thus, the partition (A′, B ′) has a(A′, B ′) > a(A, B). However, this contradicts the
assumption that the partition (A, B) has a(A, B)= a(H).

As all possibilities are exhausted and lead to contradictions, we conclude that
H3 is not an induced subpartition of any partition (A, B) with a(A, B)= a(H). �

This final lemma proves that there exists an optimal partition of H which does
not contain H4 (shown in Figure 3) as an induced subpartition.

Lemma 4.2. If H ∈ {Ck, Pk} with k ≥ 3, then there is a partition (A, B) ∈ P(H)
with a(A, B)= a(H) which does not have H4 as a subpartition.

Proof. For the sake of contradiction, assume all partitions (A, B) with a(A, B)=
a(H) have H4 as a subpartition. Consider one such partition (A, B) which con-
tains H4. Let the vertices of H4 (all of which are in B) be x , y, and z with the two
edges being xy and yz. Consider the partition (A′, B ′) which is identical to (A, B)
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except the vertex y is moved from B to A. Then,

a(A′, B ′)≥ e(A, B)+ 2+ |B| − 1−1B(A)− 1

= a(A, B)+ 1− 1

= a(A, B).

Note that equality occurs in the first line above only when 1B(A) = 1 as the
partition (A′, B ′) has 1B ′(A′)= 2. Otherwise, a(A′, B ′) > a(A, B). In either case,
as a(A′, B ′)≥ a(A, B) and (A′, B ′) does not contain H4 as a subpartition, we have
a contradiction. �

With these lemmas, we are now able to prove the value for a(H) when H is a
cycle or path with three or more vertices. Note that by Lemma 2.2, for the single
edge P2, we have a(P2)= 1.

Theorem 4.3. For k ≥ 3, we have a(Ck)=
⌈ 1

2(3k− 5)
⌉

and a(Pk)=
⌈ 1

2(3k− 6)
⌉

.

Proof. Let H ∈ {Pk,Ck} and assume that V (H)= {1, 2, 3, . . . , k} with the vertices
numbered based on an arbitrary orientation of H. If k = 3, then it is straightforward
to show that a(C3)= a(P3)= 2=

⌈ 1
2(3(3)− 5)

⌉
=
⌈ 1

2(3(3)− 6)
⌉
. If k = 4, then

it is also straightforward to show that a(C4) = 4 =
⌈ 1

2(3(4)− 5)
⌉

and a(P4) =

3 =
⌈ 1

2(3(4)− 6)
⌉
. So, assume k ≥ 5. Consider a partition (A, B) ∈ P(H) with

a(A, B)= a(H). By Lemma 4.2, we may assume H4 is not an induced subpartition
of (A, B). It follows from Lemma 2.1, Lemma 4.1, Corollary 2.3, and the fact
that k ≥ 5 that the partition (A, B) cannot have any edge with both endpoints in A.
Consequently, 1B(A)= 2.

Assume for the sake of contradiction that the partition (A, B) has at least two
edges with both endpoints in B. Among the edges with both endpoints in B, choose
the two edges with the fewest edges of H between them based on the orientation
of H. Let (i, i+1) and ( j, j+1) with j > i be two edges with both endpoints in B.
Note that i + 1 6= j since H4 is not an induced subpartition. In particular, vertex
i + 2 must be in A and by Lemma 2.1, i + 3 must be in B as otherwise H2 would
be an induced subpartition. Lemma 2.1, Lemma 4.2, and our choice of j imply that
j = i + t for some positive odd integer t and the vertices i + 1, i + 3, . . . , i + t are
in B while the vertices i + 2, i + 4, . . . , i + t − 1 are in A.

Consider the partition (A′, B ′) formed by starting with (A, B) and moving
vertices i + 1, i + 3, . . . i + t from B to A and moving i + 2, i + 4, . . . , i + t − 1
from A to B. Then,

a(A′, B ′)= e(A, B)+ 2+ |B| − 1−1A(B)

= a(A, B)+ 1

> a(A, B).
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However, this contradicts our choice of the partition (A, B). Thus, as no edge of
the partition can have both endpoints in A, all of the edges of (A, B) must cross
the partition with the possible exception of exactly one edge which must have both
endpoints in B.

If H = Ck with k even, then (A, B) can have no edge with both endpoints
in B as one edge in B would force the existence of another edge with either both
endpoints in B or both endpoints in A. Thus, (A, B)must either be the partition with
B = {1, 3, . . . k− 1} and A = {2, 4, . . . , k} or the same partition with the vertices
in A and B swapped. Consequently, a(A, B)= a(Ck)= k+ 1

2 k− 2= 1
2(3k− 4).

If H=Ck with k odd, then (A, B)must have exactly one edge with both endpoints
in B as all edges cannot cross the partition. Thus, (A, B) must be the partition with
A = {1, 3, . . . , k − 2} and B = {2, 4, . . . , k − 1, k} or a vertex relabeling of this
partition. Consequently, a(A, B)= a(Ck)= k+

⌈ 1
2 k
⌉
− 2=

⌈ 1
2(3k− 5)

⌉
.

If H = Pk with k odd, then (A, B) must have all edges crossing the partition.
Thus, (A, B) must be the partition with A={2, 4, . . . , k−1} and B = {1, 3, . . . , k}.
If H = Pk with k even, then (A, B) either has all edges crossing the partition
or exactly one edge with both endpoints in B (and all other edges crossing the
partition). Thus, in either case, a(Pk)= k− 1+

⌈ 1
2 k
⌉
− 2=

⌈ 1
2(3k− 6)

⌉
. �

When H = Ck , a graph G being H -linked is equivalent to G being k-ordered.
A graph G is k-ordered if for every ordered set of vertices S such that |S| = k,
the graph G contains a cycle C encountering the vertices S in the given order.
When H = Pk , a graph G being H -linked is equivalent to G being k-ordered
connected. A graph G is k-ordered connected if for every ordered set of vertices
S = {v1, v2, . . . , vk}, the graph G contains a path P from v1 to vk encountering
S in the given order. Note that by forcing the cycle (or path) that encounters the
vertices of S in order to be a hamiltonian cycle (or a hamiltonian path), we get the
property k-ordered hamiltonian (k-ordered hamiltonian connected). The concept of
k-ordered was introduced by Ng and Schutz [1997].

Using Theorem 1.2 and Theorem 4.3, we have the following corollary.

Corollary 4.4. Let G be a graph on n vertices and let k ≥ 3.

(i) If n > 20k and σ2(G)≥ n+
⌈ 1

2(3k− 9)
⌉

, then G is k-ordered.

(ii) If n> 20(k−1) and σ2(G)≥ n+
⌈ 1

2(3k−10)
⌉

, then G is k-ordered connected.

The bounds on σ2 in both cases are best possible.

To the best of our knowledge, the above σ2 conditions for k-ordered and k-ordered
connected are not explicitly stated in the literature, although it is implied in several
sources that the σ2 conditions for k-ordered and k-ordered connected should be
the same as the σ2 conditions for k-ordered hamiltonian and k-ordered hamiltonian
connected.
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There are a number of degree-sum results for k-ordered hamiltonian and k-
ordered hamiltonian connected graphs. Ng and Schultz [1997] proved a sharp σ2

condition for any graph on n ≥ 3 vertices to be k-ordered hamiltonian. J. Faudree
et al. [2000] proved the bound for σ2 could be reduced for graphs on n vertices
with n ≥ 53k2. The same σ2 condition in [Faudree et al. 2000] was shown to work
for n ≥ 2k by R. Faudree et al. [2003b]. Note that the sharpness example they
construct in [Faudree et al. 2003b] is neither k-ordered hamiltonian nor k-ordered.

Theorem 4.5 [Faudree et al. 2003b]. Let k be an integer with 3≤ k ≤ 1
2 n, and let

G be a graph of order n. If σ2(G)≥ n+ 1
2(3k−9), then G is k-ordered hamiltonian.

The bound on σ2(G) is sharp.

For k-ordered hamiltonian connected, a σ2 condition for large n is mentioned
(without proof) in [Faudree et al. 2003a]. A stronger and sharp σ2 condition for
k-ordered hamiltonian connected was proven by Nicholson and Wei [2015].

Theorem 4.6 [Nicholson and Wei 2015]. If G is a graph on n vertices with σ2(G)≥
n+ 1

2(3k−10), where 4≤ k ≤ 1
2(n+1), then G is k-ordered hamiltonian connected.

Overall, while the concepts of k-ordered and k-ordered hamiltonian are distinct,
the σ2 condition is the same for both when n is large as shown in Corollary 4.4.
Similarly, the σ2 conditions for k-ordered connected and k-ordered hamiltonian
connected are the same for large n. Corollary 4.4 has higher bounds on n than
the optimal known results, but by utilizing Theorem 1.2, the proofs are much less
technical.

5. Complete graphs and complete bipartite graphs

Our last results provide a(H) when H is the complete graph Kk or the complete
bipartite graph Kr,s . First, we consider the complete graph Kk .

Theorem 5.1. For any integer k ≥ 3, we have a(Kk)=
⌊1

4 k2
⌋

.

Proof. Suppose |A|= t and |B|=k−t . Then, a(A, B)= (k−t)(t)+(k−t)−(k−t)=
kt − t2. Let f (t) = kt − t2. Then, f ′(t) = −2t + k. So, f ′(t) = 0 implies that
t = 1

2 k. Since f ′′(t) < 0, f (t) has a global maximum at t = 1
2 k. If k is even, then

a(Kk)=
1
4 k2. If k is odd, then either

a(Kk)=
[
k−

( 1
2(k− 1)

)](1
2(k− 1)

)
or a(Kk)=

[
k− 1

2(k+ 1)
](1

2(k+ 1)
)
.

In both cases, a(Kk)=
1
4(k

2
−1). Therefore, a(Kk)=

⌊ 1
4 k2

⌋
for any integer k ≥ 3.

�

Now, we prove the value of a(H) when is the complete bipartite graph Kr,s .
Note that K1,1 and K1,2 are covered by previous results in this article.

Theorem 5.2. For r ≥ s ≥ 2, we have a(Kr,s)= rs.
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Proof. Let (A, B) ∈ P(Kr,s) such that a(A, B) = a(Kr,s). Using the canonical
bipartition of Kr,s , let X and Y be the partite sets. Let X A = X ∩ A, YB = Y ∩ B,
YA = Y ∩ A, and X B = X ∩ B. Additionally, let |X A| = xA, |X B | = xB , |YA| = yA,
and |YB | = yB .

Suppose that exactly one of the sets X A, X B , YA, and YB is empty. Assume
without loss of generality that the partite sets of Kr,s are labeled X and Y so that
either X A or X B is empty. Assume first that only X A =∅. Let v ∈ YB . Consider
the partition (A′, B ′) starting with (A, B) and moving v from B to A. That is, we
have X B ′ = X B = X , YA′ = YA ∪ {v}, and YB ′ = YB −{v}. Then,

a(A′, B ′)= a(A, B)+ |X B | − 1= a(A, B)+ |X | − 1.

As |X | ≥ 2, we have a(A′, B ′) > a(A, B), which contradicts our choice of (A, B).
Assume now that X B is the only empty set among X A, X B , YA, and YB . Let

w ∈ YA. Consider the partition (A′, B ′) starting with (A, B) and moving w from B
to A as in the first case. Then,

a(A′, B ′)= a(A, B)+ |X A| + 1− 1= a(A, B)+ |X |.

Since |X |≥2, we have a(A′, B ′)>a(A, B), which contradicts our choice of (A, B).
Assume now that each of X A, X B , YA, and YB is nonempty. Then,

a(A, B)= (xA)(yB)+ (yA)(xB)+ xB + yB −max{xB, yB}.

Note that xB + yB −max{xB, yB} =min{xB, yB}.
Consider the partition (A′, B ′) formed by starting with (A, B) and moving the

vertices of X B from B to A and moving the vertices of YA from A to B. Then,

a(A′, B ′)= (xA)(yB)+ (xB)(yA)+ (xA)(yA)+ (xB)(yB).

Note that a(A′, B ′) ≥ a(A, B) whenever (xA)(yA)+ (xB)(yB) > min{xB, yB}.
However, since xB , xA, yA, and yB are all at least one, (xA)(yA)+ (xB)(yB) is
strictly larger than min{xB, yB}. Thus, a(A′, B ′)≥ a(A, B), which contradicts our
choice of (A, B).

Consequently, the only remaining possibility for (A, B) is either A = X and
B=Y , or A=Y and B= X . In either case, a(A, B)= rs and thus, a(Kr,s)= rs. �

These results together with Theorem 1.2, we get the following corollary.

Corollary 5.3. Let G be a graph on n vertices.

(i) Let k ≥ 3. If n > 20k and σ2(G)≥ n+
⌊1

4 k2
⌋
− 2, then G is Kk-linked.

(ii) Let r ≥ s ≥ 2. If n ≥ 20rs and σ2(G)≥ n+ rs− 2, then G is Kr,s-linked.
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6. Final observations

For all of the classes of graphs examined above, an optimal partition (A, B) always
exists where the vertex of maximum degree is in A. However, this is not always
the case. Consider the graph J with V (J )= {v1, v2, v3, v4, v5, v6, v7} and

E(J )= {v1v2, v1v3, v1v5, v2v3, v2v4, v2v6, v2v7, v3v4, v4v6, v4v7, v5v7, v6v7}.

Note that 1(J )= 5 and v2 is the vertex of maximum degree. By checking all
possible partitions of the vertex set (possibly with the aid of a computer), it can
be shown that J has a unique optimal partition (A, B) given by A = {v1, v4, v7}.
From this partition, we have a(J ) = 10. However, in this optimal partition, the
vertex of maximum degree (i.e., v2) is in B and 1B(A)= 3. So, it is not always
the case that a graph has an optimal partition (A, B) where the vertex of maximum
degree is in A.

We conclude by making an observation about optimal partitions of the union
of graphs. Consider two graphs M1 and M2 and assume an optimal partition of
both graphs is known. We note that the union of these two optimal partitions is not
necessarily an optimal partition for the union of M1 and M2. As an example, let
M1 be the five cycle v1v2v3v4v5 with the additional edges v2v4 and v3v5. Let M2

be the graph on the set {w1, w2, w3, w4, w5} where w1, w2, w3, and w4 form a K4

and the only other edge is w4w5.
Now, the graph M1 has exactly two optimal partitions which both give a(M1)= 6.

One of the optimal partitions of M1, which we denote by (AM1, BM1), has AM1 =

{v2, v3}. The graph M2 has nine different optimal partitions which give a(M2)= 5.
One of these optimal partitions of M2, which we denote by (AM2, BM2), has AM2 =

{w1, w3}. Let M be the graph formed by the union of M1 and M2 and consider the
partition

(AM , BM)= (AM1 ∪ AM2, BM1 ∪ BM2).

This partition gives a(AM , BM)= 13. However, a(M)= 14, which can be achieved
using the optimal partition of M1 given above and a different optimal partition
of M2 such as the partition (A′M2

, B ′M2
), where A′M2

= {w1, w4}. So, finding an
optimal partition for a union of graphs is not simply a matter of taking any optimal
partition of the graphs individually and forming the union of these partitions.
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