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We investigate the symmetric spaces associated to the family of semidihedral
groups of order 2n. We begin this study by analyzing the structure of the automor-
phism group and by determining which automorphims are involutions. We then
determine the symmetric spaces corresponding to each involution and the orbits
of the fixed-point groups on these spaces.

1. Introduction

Real symmetric spaces were first introduced by Élie Cartan [1926; 1927] as a special
class of homogeneous Riemannian manifolds. They were later generalized by Berger
[1957] who gave classifications of the irreducible semisimple symmetric spaces.
Since then the theory of symmetric spaces, a theory that plays a key role in many ar-
eas of active research, including Lie theory, differential geometry, harmonic analysis,
and physics, has developed into an extensive field. The theory of symmetric spaces
also has numerous generalizations. Symmetric varieties, symmetric k-varieties,
Vinberg’s theta-groups, spherical varieties, Gelfand pairs, Bruhat–Tits buildings,
Kac–Moody symmetric spaces, and generalized symmetric spaces are among these
generalizations which have found importance in many areas of mathematics and
physics such as number theory, algebraic geometry, and representation theory.

The majority of these generalizations can be studied in the context of generalized
symmetry spaces. Generalized symmetric spaces are defined as the homogeneous
spaces G/H with G an arbitrary group and H =Gθ

= {g ∈G | θ(g)= g} the fixed-
point group of an order-n automorphism θ . Of special interest are automorphisms
of order 2, also called involutions. If G is an algebraic group defined over a field
k and θ an involution defined over k, then these spaces are also called symmetric
k-varieties, first introduced in [Helminck 1994].

For involutions there is a natural embedding of the homogeneous spaces G/H
into the group G as follows. Let τ : G → G be a morphism of G given by
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τ(g)= gθ(g)−1 for g ∈ G, where θ is an involution of G. The map τ induces an
isomorphism of the coset space G/H onto τ(G)= {gθ(g)−1

| g ∈G}. We will take
the image Q = {gθ(g)−1

| g ∈ G} as our definition of the generalized symmetric
space determined by (G, θ). In addition, we define the extended symmetric space
determined by (G, θ) as R={g ∈G | θ(g)= g−1

}. Extended symmetric spaces play
an important role in generalizing the Cartan decomposition for real reductive groups
to reductive algebraic groups defined over an arbitrary field. While for real groups
it suffices to use Q for the Cartan decomposition, in the general case one needs the
extended symmetric space R. Symmetric spaces and symmetric k-varieties are well
known for their role in many areas of mathematics. They are probably best known
for their fundamental role in representation theory. The generalized symmetric
spaces as defined above are of importance in a number of areas as well, including
group theory, number theory, and representation theory.

In this paper, we investigate the symmetric spaces associated to one particular
family of finite groups, namely the semidihedral groups of order 2n. Semidihedral
groups, also known as quasidihedral groups, appear as Sylow-2 subgroups of certain
finite simple groups (see [Alperin et al. 1970]). In Section 2, we analyze the family
of semidihedral groups of order 2n, SD2n , for n > 4. In Section 3, we classify the
automorphisms of SD2n and determine which automorphisms are involutions. In
Section 4, we describe the fixed-point group H , the generalized symmetric space Q,
and the extended symmetric space R associated with each involution of SD2n . In
Section 5, we study the orbit decomposition of Q by H and SD2n . Finally in the
Appendix, we provide the H , Q, and R associated to each involution of SD16.

The symmetric spaces associated to the more general family of semidihedral
groups of order 8k, SD8k , where k > 1 are considered in [Raza and Imran 2014].
Their result, Lemma 6, regarding the automorphism group of SD8k is incorrect and
as a consequence their results about H, Q, and R associated with each involution of
SD8k are not completely accurate. The techniques used in our paper and based on
the undergraduate honors thesis of the second author under the supervision of the
first author could be utilized to consider this more general family of semidihedral
groups and the associated symmetric spaces.

2. Preliminaries

Throughout this paper, we consider the semidihedral group SD2n , which can be
described using the following presentation from [Gorenstein 1968]:

SD2n = 〈r, s | r2n−1
= s2
= 1, sr = r2n−2

−1s〉,

where n ≥ 4 is an integer. This particular presentation is convenient for describing
the automorphism group of SD2n .
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We begin by providing some basic facts relating to the structure and properties
of the elements of SD2n that will be useful. It is clear from the group presentation
given above that SD2n is a non-Abelian group. The first result we state provides
a commutation relation which we will use to simplify the structure of the group’s
elements.

Lemma 1. For any integer k ≥ 1, we have sr k
= r (2

n−2
−1)ks.

Using the relation r2n−1
= s2
= 1 and the outcome of Lemma 1 repeatedly, we

have the following results.

Theorem 2. Every element of SD2n has a unique presentation as r i s j, where i
and j are integers with 0≤ i < 2n−1 and j ∈ {0, 1}.

We call the presentation given in Theorem 2 the normal form of an element of
SD2n and by writing all elements of the group in their normal form, we have the
subsequent corollary.

Corollary 3. The non-Abelian group SD2n has order 2n and consists of the elements
1, r , r2, . . . , r (2

n−1
−1), s, rs, . . . , r (2

n−1
−1)s.

When determining the automorphism group and the future symmetric spaces,
it will be necessary to know the order of each group element and its inverse. The
next two results provide this information.

Theorem 4. For any integer i with 0≤ i < 2n−1, we have

|r i
| =

2n−1

gcd(i, 2n−1)
,

|r i s| = 2 when i is even, and |r i s| = 4 when i is odd.

Proof. Because |SD2n | = 2n, we know that the order of every element of SD2n

is a power of 2. By basic properties of cyclic groups, |r i
| = 2n−1/gcd(i, 2n−1).

Consider r i s where i = 2l for some l ∈ Z. Then by Lemma 1 and the relation
r2n−1
= s2
= 1,

r i sr i s = r i+i(2n−2
−1)s2

= r2n−2(2l)
= r2n−1(l)

= 1.

Consider r i s where i = 2k+ 1 for some k ∈ Z. Then

(r i s)2 = (r i s)(r i s)= r2n−2i
= r2n−2(2k+1)

= r2n−2
6= 1.

However, it follows that (r i s)4 = (r2n−2
)2 = r2n−1

= 1. �

Theorem 5. For any integer i with 0≤ i < 2n−1, we have (r i )−1
= r2n−1

−i. When i
is even, (r i s)−1

= r i s and when i is odd, (r i s)−1
= r i+2n−2

s.
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Proof. Using the relation r2n−1
=1, it follows that (r i )−1

= r2n−1
−i and by Theorem 4,

we know that (r i s)−1
= r i s when i is even. Consider r i s where i = 2k+1 for some

k ∈ Z. Then again by Lemma 1 and the relation r2n−1
= s2
= 1, we have

r i sr i+2n−2
s = r ir (i+2n−2)(2n−2

−1)s2
= r (2

n−2)i+(2n−2)(2n−2
−1)

= r (2
n−2)[(2k+1)+(2n−2

−1)]
= r2n−1(k+2n−3)

= 1.

Thus the result follows. �

3. Automorphisms and involutions of SD2n

In this section, we investigate the automorphism group of SD2n , which we denote
by Aut(SD2n). We begin by analyzing the structure of each automorphism and
then move to proving some properties of the automorphism group as a whole. We
conclude this section by determining which elements of Aut(SD2n) are involutions.

Theorem 6. A homomorphism φ : SD2n → SD2n is an automorphism if and only if
φ(r)= ra and φ(s)= rbs, where a is odd and b is even.

Proof. Let φ ∈ Aut(SD2n). Then by properties of automorphisms, r must map
to an element of order 2n−1 and s must map to an element of order 2 under φ.
Thus by Theorem 4, φ(r) = ra , where a is odd, and φ(s) = rbs or r2n−2

, where
b is even. However, φ would not be onto if s mapped to r2n−2

. Therefore, if φ is
an automorphism, φ(r) = ra and φ(s) = rbs, where a is odd and b is even. The
converse of this statement can easily be shown. �

Based on the results of Theorem 6, we can represent each automorphism uniquely
as φab where φab(r)= ra and φab(s)= rbs, where a is odd and b is even. Using
this notation, we see that φab maps an arbitrary element r i s j to rai+bj s j and φ10

denotes the identity automorphism.

Corollary 7. The automorphism group, Aut(SD2n ), has order 22n−4.

Proof. Since there are 2n−2 elements ra where a is odd and 2n−2 elements rbs
where b is even, |Aut(SD2n )| = 2n−2

· 2n−2
= 22n−4. �

As one of the most important examples of an automorphism of a group G is
provided by conjugation by a fixed element in G, it is interesting to determine which
elements of Aut(SD2n ) are inner automorphisms. Given an arbitrary group G and
an element g ∈ G, we will let ψg ∈ Aut(G) denote conjugation by g and Inn(G)
denote the collection of inner automorphisms of G.

Theorem 8. The inner automorphisms of SD2n are φ1b and φ(2n−2−1)b where b ∈
Z2n−1 is even.
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Proof. Consider ψg for some g ∈ SD2n . Suppose g = r i. Then

ψr i (r)= r irr2n−1
−i
= r2n−1

+1
= r,

ψr i (s)= r i sr2n−1
−i
= r ir (2

n−2
−1)(2n−1

−i)s = r2i−2n−2i s = r2(i−2n−3i)s.

Next, consider g = r i s where i ∈ Z2n−1 is even. Then

ψr i s(r)= r i srr i s = r ir (1+i)(2n−2
−1)s2

= r2n−2
−1

and ψr i s(s) = r i ssr i s = r2i s. Finally, consider the case when g = r i s where
i ∈ Z2n−1 is odd. Then

ψr i s(r)= (r
i s)r(r i+2n−2

s)= r ir (2
n−2
−1)(1+i+2n−2)s2

= r2n−2
−1,

ψr i s(s)= r i ssr i+2n−2
s = r2i+2n−2

s = r2(i+2n−3)s.

Conversely, consider φ1b ∈ Aut(SD2n ). Note that conjugation by r (b/2)(1−2n−3)−1

gives
r (b/2)(1−2n−3)−1

rr−(b/2)(1−2n−3)−1
= r

and
r (b/2)(1−2n−3)−1

sr−(b/2)(1−2n−3)−1
= rbs.

Thus, φ1b ∈ Inn(SD2n ). Similarly, consider φ(2n−2−1)b ∈ Aut(SD2n ). If b/2 is even,
then conjugation by rb/2s gives

rb/2srrb/2s = r2n−2
−1

and
rb/2ssrb/2s = rbs.

If b/2 is odd, then conjugation by rb/2−2n−3
s gives

rb/2−2n−3
srrb/2−2n−3

+2n−2
s = r2n−2

−1

and
rb/2−2n−3

ssrb/2−2n−3
+2n−2

s = rbs.

Thus, φ(2n−2−1)b ∈ Inn(SD2n ). Therefore, φab is an inner automorphism of SD2n if
and only if a is 1 or 2n−2

− 1 and b ∈ Z2n−1 is even. �

It follows from this result that 2n−1 of the 22n−4 automorphisms in Aut(SD2n )

are inner automorphisms, which one knew would be the case as Inn(SD2n ) ∼=

SD2n /Z(SD2n ) and |Z(SD2n )| = 2 (see [Gorenstein 1968]). In Section 4, we will
find it useful to understand the structure of the involutions arising from inner
automorphisms because it will allow us to simplify the presentation of the fixed-
point groups, the generalized symmetric spaces, and the extended symmetric spaces
in these cases.
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Before we characterize the automorphisms of finite order, and in particular the
involutions, we provide the following lemma.

Lemma 9. For any φab, φcd ∈ Aut(SD2n), we have

φab ◦φcd = φ[ac mod 2n−1][ad+b mod 2n−1].

Proof. Let r i s j
∈ SD2n , where i, j ∈ Z such that 0 ≤ i ≤ 2n−1

− 1 and 0 ≤ j ≤ 1.
Then

φab ◦φcd(r i s j )= φab(r ci+d j s j )= ra(ci+d j)+bj s j
= r (ac)i+(ad+b) j s j

= φ[ac mod 2n−1][ad+b mod 2n−1](r
i s j ). �

This result concerning composition of automorphisms of SD2n is quite useful. It
allows to us to answer our question regarding automorphisms of finite order via a
straightforward modulo 2n−1 calculation.

Theorem 10. Let φab∈Aut(SD2n). Then (φab)
d
=φ10 if and only if ad

≡1 mod 2n−1

and b(1+ a+ a2
+ · · ·+ ad−1)≡ 0 mod 2n−1.

Proof. Consider φab ∈ Aut(SD2n). By repeated use of Lemma 9, we find that
(φab)

d(r) = rad
and (φab)

d(s) = rb(1+a+a2
+···+ad−1)s. Since rad

= r when ad
≡

1 mod (2n−1) and rb(1+a+a2
+···+ad−1)s = s when b(1 + a + a2

+ · · · + ad−1) ≡

0 mod 2n−1, the result follows. �

We are now able to determine which automorphisms of SD2n are involutions and
the number of involutions in Aut(SD2n) for any n.

Corollary 11. Let φab∈Aut(SD2n). Then (φab)
2
=φ10 if and only if a2

≡1 mod 2n−1

and b(1+ a)≡ 0 mod 2n−1.

Corollary 12. For integers n > 4, Aut(SD2n) contains 2n−1
+ 3 involutions.

Proof. By Corollary 11, for any odd integer a in Z2n−1 such that a2
≡ 1 mod 2n−1,

we have gcd(a+1, 2n−1) even elements b in Z2n−1 such that b(1+a)≡ 0 mod 2n−1.
There are four elements a in Z2n−1 with a2

≡ 1 mod 2n−1 by [Burton 2011], namely
1, −1, 1+ 2n−2, and −1+ 2n−2. Thus we have 2+ 2n−2

+ 2+ 2n−2
= 2n−1

+ 4
elements φab ∈ Aut(SD2n) with (φab)

2
= φ10. Because φ10 has order 1, it follows

that there are 2n−1
+ 3 involutions in Aut(SD2n). �

Example. Consider SD16. Then by Corollary 12 there are 11 involutions in
Aut(SD16), namely φ14, φ30, φ32, φ34, φ36, φ50, φ54, φ70, φ72, φ74, φ76.

As stated earlier, it is useful to know which of these involutions arise from inner
automorphisms. Using Theorem 8 and Corollary 11, it is clear that when a=1,
b must have order 2n−2 to satisfy the equation b(1+ a)≡ 0 mod 2n−1. However,
in the case that a = 2n−2

− 1, it is not as restrictive, for the equation b(1+ a) =
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b(2n−2)≡ 0 mod 2n−1 is satisfied by any even in Z2n−1 . Thus, we have the following
result that characterizes which inner automorphisms are also involutions.

Theorem 13. The involutions of SD2n which arise from inner automorphisms are
φ12n−2 and φ(2n−2−1)b, where b ∈ Z2n−1 is even.

Example. Consider SD16. It follows from Theorem 13 that the involutions in
Aut(SD16) that arise from inner automorphisms are φ14, φ30, φ32, φ34, and φ36.

We complete this section by determining which elements of Aut(SD2n) are
equivalent, for equivalent involutions produce the same generalized symmetric
spaces.

Definition 14. Let G be a group and φ, σ ∈ Aut(G). Then φ and σ are said
to be isomorphic, written φ ∼ σ , if and only if there exists ρ ∈ Aut(G) such
that ρφρ−1

= σ , i.e., φ and σ are conjugate to each other. Two isomorphic
automorphisms are said to be in the same equivalence class.

Theorem 15. For any φab, φcd ∈ SD2n , we have φ−1
ab = φcd if and only if c = a−1

and d ≡ a−1(−b) mod 2n−1.

Proof. Consider φab, φcd ∈ SD2n . It follows by Lemma 9 that

φab ◦φcd = φ[ac mod 2n−1][(ad+b) mod 2n−1] = φ10

if and only if ac≡ 1 mod 2n−1 and ad+b≡ 0 mod 2n−1. Now c must equal a−1 to
satisfy ac≡ 1 mod 2n−1. Next, ad+b≡ 0 mod 2n−1 becomes ad ≡−b mod 2n−1.
Then, by multiplying both sides by a−1, we get d ≡ a−1(−b) mod 2n−1. �

Theorem 16. For any φab, φcd ∈ SD2n , we have

φab ◦φcd ◦φ
−1
ab = φ[c mod 2n−1][(−bc+ad+b) mod 2n−1].

Proof. Consider φab, φcd ∈ SD2n . Then

φab ◦φcd ◦φ
−1
ab = φab ◦φcd ◦φ[a−1][a−1(−b) mod 2n−1]

= φab ◦φ[a−1c mod 2n−1][(c(a−1(−b))+d) mod 2n−1]

= φ[aa−1c mod 2n−1][(a(−ca−1b+d)+b) mod 2n−1]

= φ[c mod 2n−1][(−bc+ad+b) mod 2n−1]. �

Theorem 17. Two elements φab, φcd ∈ Aut(SD2n) are equivalent if there exists an
φe f ∈ Aut(SD2n) such that a = c and d ≡ ( f (1− a)+ be) mod 2n−1.

Proof. Let φab, φcd ∈ Aut(SD2n). These elements are conjugate if there exists an
φe f ∈ Aut(SD2n) such that φe f ◦ φab ◦ φ

−1
e f = φcd . Thus, using the results of the

previous theorem, φcd = φ[a mod 2n−1][−a f+be+ f mod 2n−1]. This is true if and only if
a = c and d ≡ ( f (1− a)+ be) mod 2n−1. �
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Example. Consider SD16 and the 11 involutions in Aut(SD16), namely φ14, φ30,
φ32, φ34, φ36, φ50, φ54, φ70, φ72, φ74, φ76. Then by the previous theorem, the equiva-
lence classes of involutions in Aut(SD16) are {φ14}, {φ30, φ32, φ34, φ36}, {φ50, φ54},
and {φ70, φ72, φ74, φ76}.

4. Fixed-point groups and symmetric spaces of SD2n

Recall again from the Introduction that we are interested in determining the fixed-
point group H, the generalized symmetric space Q, and the extended symmetric
space R for each involution of SD2n found in Corollary 11. It is important to note
that for the remainder of this paper we will let a ≡ b represent a ≡ b mod 2n−1.

Theorem 18. For an involution φab ∈ Aut(SD2n), the fixed-point group is

Hφab = {r
i s j
∈ SD2n | i(a− 1)+ jb ≡ 0},

where i ∈ Z2n−1 and j ∈ Z2.

Proof. Let φab ∈ Aut(SD2n). Then Hφab = {r
i s j
∈ SD2n | φab(r i s j )= r i s j

}, where
i ∈ Z2n−1 and j ∈ Z2.

Case 1. Let j = 0. Then φab(r i )= rai
= r i if and only if ia ≡ i or i(a− 1)≡ 0.

Case 2. Let j = 1. Then φab(r i s) = rai+bs = r i s if and only if ai + b ≡ i or
i(a− 1)+ b ≡ 0. �

Example. Consider SD16 and four of its involutions: φ14, φ36, φ54, and φ70. Using
the results of Theorem 18, we have Hφ14 = {1, r, . . . , r

7
}, Hφ36 = {1, r

4, rs, r5s},
Hφ54 = {1, r

2, r4, r6, rs, r3s, r5s, r7s}, and Hφ70 = {1, r
4, s, r4s}.

Theorem 19. For an involution φab∈Aut(SD2n), the generalized symmetric space is

Qφab = {r
i(1−a)− jb

| i ∈ Z2n−1 and j ∈ Z2}.

Proof. Let φab be an involution of SD2n . Then Qφab={(r
i s)φab(r i s)−1

|r i s j
∈SD2n },

where i ∈ Z2n−1 and j ∈ Z2.

Case 1. Let j = 0. Then (r i )φab(r i )−1
= r i (rai )−1

= r ir2n−1
−ai
= r i(1−a).

Case 2. Let j = 1. Then (r i s)φab(r i s)−1
= (r i s)(rai+bs)−1. Notice that ai + b

can be even or odd depending on the value of i since a is odd and b is even.

(i) Suppose i is even. It follows that ai + b is even. Then

(r i s)(rai+bs)−1
= r i srai+bs = r ir (2

n−2
−1)(ai+b)s2

= r i−(ai+b)
= r i(1−a)−b.

(ii) Suppose i is odd. It follows that ai + b is odd. Then

(r i s)(rai+bs)−1
= (r i s)(r (ai+b)+2n−2

s)

= r ir (2
n−2
−1)((ai+b)+2n−2)s2

= r i−ai−b+(ai−1)2n−2
= r i(1−a)−b

since ai − 1 is even. �
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Theorem 20. For an involution φab ∈ Aut(SD2n), the extended symmetric space is

Rφab = {r
i
∈ SD2n | i(a+ 1)≡ 0}

∪ {r i s ∈ SD2n | i(a− 1)+ b ≡ 0 mod 2n−1 and i is even}

∪ {r i s ∈ SD2n | i(a− 1)+ b ≡ 2n−2 mod 2n−1 and i is odd}.

Proof. Let φab be an involution of SD2n . Then

Rφab = {r
i s j
∈ SD2n |φab(r i s j )= (r i s j )−1

}.

Case 1. Let j = 0. Then φab(r i )= rai
= r−i

= r2n−1
−i if and only if ai ≡ 2n−1

− i .
In other words, i(a+ 1)≡ 0.

Case 2. Let j = 1 and i be even. Then φab(r i s)= rai+bs = (r i s)−1
= r i s if and

only if ai + b ≡ i . In other words, i(a− 1)+ b ≡ 0.

Case 3. Let j = 1 and i be odd. Then φab(r i s) = rai+bs = (r i s)−1
= r i+2n−2

s if
and only if ai + b ≡ i + 2n−2. In other words, i(a− 1)+ b ≡ 2n−2. �

Example. Consider SD16 and four of its involutions: φ14, φ36, φ54, and φ70. Using
the results of Theorem 19, we have that Qφ14 = {1, r

4
}, Qφ36 = {1, r

2, r4, r6
},

Qφ54 = {1, r
4
}, and Qφ70 = {1, r

2, r4, r6
}. However, by Theorem 20, we have

that Rφ14 = {1, r
4, rs, r3s, r5s, r7s}, Rφ36 = {1, r

2, r4, r6, r3s, r7s}, Rφ54 = {1, r
4
},

and Rφ70 = {1, r, . . . , r
7, s, r4s}. We see that Qab ⊆ Rab in all instances, which

should be, as Q ⊆ R for all arbitrary groups and all of their respective involutions.
However, it is usually the case that Q 6= R. Thus the fact that Qφ54 = Rφ54 for SD16

is noteworthy. We provide the fixed-point group, the generalized symmetric space,
and the extended symmetric space for each involution of SD16 in the Appendix.

The descriptions of H, Q, and R are more specific when φab is an inner au-
tomorphism. Recall that from Theorem 13, an involution arising from an inner
automorphism is of the form φ12n−2 or φ(2n−2−1)b, where b ∈ Z2n−1 is even.

Theorem 21. Let φab be an involution of SD2n−1 which arises from an inner auto-
morphism.

(1) If a = 1 and b= 2n−2, then Hφab = {1, r, r
2, . . . , r2n−2

}, Qφab = {1, r
2n−2
}, and

Rφab = {1, r
2n−2

, rs, r3s, . . . , r2n−1
−1s}.

(2) If a= 2n−2
−1 and b is even, then Hφab ={1, r

2n−2
}∪{r i s | i(2n−2

−2)+b≡ 0},
Qφab = {1, r

2, r4, . . . , r2n−1
−2
}, and

Rφab = {r
i
∈ SD2n | i is even}

∪ {r i s ∈ SD2n | i(2n−2
− 2)+ b ≡ 0 mod 2n−1 and i is even}

∪ {r i s ∈ SD2n | i(2n−2
− 2)+ b ≡ 2n−2 mod 2n−1 and i is odd}.
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5. Orbits

By Theorem 18, we can view Hφab as the disjoint union of {r i
∈ SD2n | i(a−1)≡ 0}

and {r i s ∈ SD2n | i(a− 1)+ b ≡ 0}. The first set will contain at least the identity
and r2n−2

. However, the second set may be empty if there is no solution, i , to the
equation i(a−1)+b≡ 0 for fixed a and b. The question of the existence of such a
solution produces two possible outcomes for the Hφab -orbits on Qφab .

Theorem 22. Let φab be an involution of SD2n .

(1) If there is no solution, i , to the equation i(a − 1)+ b ≡ 0 for fixed a and b,
then the Hφab -orbits on Qφab are

Hφab\Qφab =
{
{r k
}
∣∣ k = i(1− a)− jb where i ∈ Z2n−1 and j ∈ Z2

}
.

(2) If there is a solution, i , to the equation i(a− 1)+ b ≡ 0 for fixed a and b, then
the Hφab -orbits on Qφab are

Hφab\Qφab =
{
{r k, r−k

}
∣∣ k = i(1− a)− jb where i ∈ Z2n−1 and j ∈ Z2

}
.

Proof. In general, a group G acts on its extended symmetric space R, and thus its
generalized symmetric space Q, via θ -twisted conjugation defined as g.r=grθ(g)−1

for g∈G and r ∈ R, where θ is an involution of G. Given that Hφab is the fixed-point
group of φab, the action of Hφab on Qφab reduces to conjugation. In addition, we
found in Theorem 19 that Qφab ⊂ 〈r

2
〉 ⊂ SD2n . Thus to determine the orbits of Hφab

on Qφab , it is sufficient to evaluate the action of Hφab on a general element r k , keeping
in mind that k is even. Let r i

∈ Hφab such that i(a− 1)≡ 0. Then r ir k(r i )−1
= r k

and it follows that elements of the form r i
∈ Hφab fix Qφab pointwise. Now suppose

r i s ∈ Hφab such that i(a− 1)+ b ≡ 0. Consider the case when i is even. Then

(r i s)(r k)(r i s)−1
= (r i s)(r k)(r i s)

= (r i s)(r k+i s)= r ir (2
n−2
−1)(k+i)s2

= r (2
n−2
−1)k
= r−k

since k is even. Finally, suppose i is odd. Then

(r i s)(r k)(r i s)−1
= (r i s)(r k)(r i+2n−2

s)

= (r i s)(r k+i+2n−2
s)= r ir (2

n−2
−1)(k+i+2n−2)s2

= r2n−2(i−1)−k
= r−k

since k and i − 1 are both even. �

Theorem 23. Let φab be an involution of SD2n . There is one SD2n -orbit on Qφab ,
i.e., SD2n \Qφab = {Qφab}.

Proof. We proceed by proving that every element of SD2n is in the SD2n -orbit of
the identity, 1, in Qφab . By Theorem 19, every element of Qφab can be written in
the form r i(1−a) or r i(1−a)−b for some i ∈ Z2n−1 . We know r i

∈ SD2n for i ∈ Z2n−1
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and r i.1= r iφab(r i )−1
= r i (rai )−1

= r ir−ai
= r i(1−a). We also know r i s ∈ SD2n

for i ∈ Z2n−1 . In the case that i is even,

r i s . 1= r i sφab(r i s)−1

= r i s(rai+bs)−1
= r i s(rai+bs)= r ir (2

n−2
−1)(ai+b)s2

= r i(1−a)−b

by ai + b even. Likewise when i is odd,

r i s . 1= r i sφab(r i s)−1

= r i s(rai+bs)−1
= r i s(rai+b+2n−2

s)= r ir (2
n−2
−1)(ai+b+2n−2)s2

= r i(1−a)−b

since ai − 1 is even. �

Example. Again, consider the involutions φ14, φ36, φ54, and φ70 of SD16 and their
respective fixed-point groups and generalized symmetric spaces from Section 4. By
applying Theorem 22, we find that because i(0)+ 4≡ 0 has no solution for i and
Q = {1, r4

},
Hφ14\Qφ14 =

{
{1}, {r4

}
}

for φ14;

because i(2)+ 6≡ 0 has i = 1 as a solution and Q = {1, r2, r4, r6
},

Hφ36\Qφ36 =
{
{1}, {r4

}, {r2,r6
}
}

for φ36;

because i(4)+ 4≡ 0 has i = 1 as a solution and Q = {1, r4
},

Hφ54\Qφ54 =
{
{1}, {r4

}
}

for φ54;

because i(6)+ 0≡ 0 has i = 4 as a solution and Q = {1, r2, r4, r6
},

Hφ70\Qφ70 =
{
{1}, {r4

}, {r2,r6
}
}

for φ70.

Appendix: Symmetric spaces and fixed-point groups for SD16

involution H Q R

φ14 {1,r, . . . ,r7
} {1,r4

} {1,r4,rs,r3s,r5s,r7s}
φ30 {1,r4,s,r4s} {1,r2,r4,r6

} {1,r2,r4,r6,s,r4s}
φ32 {1,r4,r3s,r7s} {1,r2,r4,r6

} {1,r2,r4,r6,rs,r5s}
φ34 {1,r4,r2s,r6s} {1,r2,r4,r6

} {1,r2,r4,r6,r2s,r6s}
φ36 {1,r4,rs,r5s} {1,r2,r4,r6

} {1,r2,r4,r6,r3s,r7s}
φ50 {1,r2,r4,r6,s,r2s,r4s,r6s} {1,r4

} {1,r4,s,rs, . . . ,r7s}
φ54 {1,r2,r4,r6,rs,r3s,r5s,r7s} {1,r4

} {1,r4
}

φ70 {1,r4,s,r4s} {1,r2,r4,r6
} {1,r, . . . ,r7,s,r4s}

φ72 {1,r4,rs,r5s} {1,r2,r4,r6
} {1,r, . . . ,r7,r3s,r7s}

φ74 {1,r4,r2s,r6s} {1,r2,r4,r6
} {1,r, . . . ,r7,r2s,r6s}

φ76 {1,r4,r3s,r7s} {1,r2,r4,r6
} {1,r, . . . ,r7,rs,r5s}
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