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For a fixed graph H, a graph G is H -linked if any injection f : V (H)→ V (G)
can be extended to an H -subdivision in G. The concept of H -linked generalizes
several well-known graph theory concepts such as k-connected, k-linked, and
k-ordered. In 2012, Ferrara et al. proved a sharp σ2 (or degree-sum) bound
for a graph to be H -linked. In particular, they proved that any graph G with
n > 20|E(H)| vertices and σ2(G) ≥ n + a(H)− 2 is H -linked, where a(H)
is a parameter maximized over certain partitions of V (H). However, they do
not discuss the calculation of a(H) in their work. In this paper, we prove the
exact value of a(H) in the cases when H is a path, a cycle, a union of stars, a
complete graph, and a complete bipartite graph. Several of these results lead
to new degree-sum conditions for particular graph classes while others provide
alternate proofs of previously known degree-sum conditions.

1. Introduction

We only consider finite, undirected graphs. Let G and H be graphs with vertex sets
V (G) and V (H) and edge sets E(G) and E(H), respectively. Let P(G) denote the
set of paths in G. An H-subdivision in G is a pair of mappings f1 : V (H)→ V (G)
and f2 : E(H)→ P(G) such that:

(i) f1 is injective.

(ii) For every edge xy ∈ E(H), the image f2(xy) in a path in G from f1(x) to
f1(y) and distinct edges of H map to internally disjoint paths in G.

Note that the existence of an H -subdivision in G means that H is a topological
minor of G and, as a result, H is also a minor of G. See Figure 1 for an illustration
of an H -subdivision.

A graph G is H-linked if any injection f : V (G)→ V (H) can be extended to
an H -subdivision. The concept of H -linked was introduced in [Jung 1970], and
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Figure 1. An H -subdivision: the vertices v1, v2, v3, . . . , v4 of H
are mapped via an injection f to vertices in G. The subgraph in
G induced by the thick edges and the vertices incident with these
edges is an H -subdivision in G.

for appropriate choices of H with |V (H)| = k, H -linked generalizes several graph
properties including k-connected, k-linked, and k-ordered.

Several recent publications have proven degree conditions for a graph to be
H -linked. In [Ferrara et al. 2006; Gould et al. 2006; Kostochka and Yu 2005], sharp
minimum degree conditions were proved. Degree-sum conditions were proved in
[Kostochka and Yu 2008; Ferrara et al. 2012], and as this paper examines a parameter
related to these conditions, we will examine them in further detail. Let σ2(G) denote
the minimum degree sum of nonadjacent vertices in G. The minimum degree sum
required to guarantee the existence of a property is known as a degree-sum condition
or a σ2 condition. Kostochka and Yu [2008] proved a sharp σ2 condition for G to
be H -linked for every graph H with minimum degree at least two.

Theorem 1.1 [Kostochka and Yu 2008]. Let G be a graph of order n and let H be
a simple graph with k edges and minimum degree at least two. If

σ2(G)≥


⌈

n+ 1
2(3k− 9)

⌉
, n > 2.5k− 5.5,⌈

n+ 1
2(3k− 8)

⌉
, 2k ≤ n ≤ 2.5k− 5.5,

2n− 3, k ≤ 2.5k− 1,

then G is H-linked.

Note that Theorem 1.1 provides an upper bound on the minimum degree-sum
required for any possible H with minimum degree at least two, but it does not
supply the optimal bound for every choice of H. A sharp σ2 bound for this latter
case was proved by Ferrara et al. [2012]. Their bound is a function of a parameter
of H, called a(H), that is maximized over certain partitions of V (H) into two
nonempty sets A and B. We use (A, B) to denote a specific partition of V (H) into
these two sets. Let e(A, B) denote the number of edges with one vertex in A and
one vertex in B. We will say that these edges “cross the partition”. For a vertex v,
we let dB(v) denote the number of neighbors of v in B. For the partition of H
given by (A, B), let 1B(A) equal the maximum value of dB(v) for all v ∈ A.
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We are now ready to define a(H). Let

a(H)= max
A∪B=V (H)
e(A,B)≥1

(
e(A, B)+ |B| −1B(A)

)
.

Using a(H), one can find a sharp σ2(G) condition for G to be H -linked:

Theorem 1.2 [Ferrara et al. 2012]. Let H be a simple graph and G be a graph on
n vertices with n > 20|E(H)|. If

σ2(G)≥ n+ a(H)− 2,

then G is H-linked. This result is sharp.

The same paper also gave a sharp σ2(G) bound for when H is a multigraph.
However, in this paper, we restrict our attention to the case when H is a graph.
Ferrara et al. [2012] assert that, for particular choices of H, Theorem 1.2 has
(as corollaries) the previously proven σ2 conditions for k-linked and k-ordered.
However, no formal proof for these assertions is included and no further examination
of the parameter a(H) is presented for any particular H.

In this paper, we prove the value of a(H) when H is a path, cycle, union of stars,
complete graph, or complete bipartite graph. Some of these proofs specify new σ2

conditions while others provide alternate proofs of well-known conditions. One of
our aims is to supply some initial results for a(H), as Theorem 1.2 could potentially
be a useful tool when routing specific paths between arbitrarily chosen vertices.
Additionally, we hope that these initial results for a(H) encourage further study of
this unusual parameter. To that end, two examples are given in the conclusion to
illustrate some surprising properties of a(H).

To continue, we need some further notation. For a given graph H, let P(H)
be the set of all possible partitions of V (H) into two nonempty sets with at least
one edge of H that crosses the partition. For a partition (A, B) ∈ P(H), let
a(A, B)= e(A, B)+ |B| −1B(A). Thus,

a(H)= max
(A,B)∈P(H)

a(A, B).

For a partition (A, B), we say that F is an induced subpartition of H if F is
an induced subgraph of H and the vertices of F are partitioned in the exact same
manner in which they were partitioned in H. Note that it is possible for an induced
subpartition not to have any edges that cross the partition. See Figure 2 for an
illustration of these terms.

Additionally, note that for a partition (A, B), we will often speak of “moving”
a vertex from A to B or from B to A. In that language, the labels A and B refer
to the two sides of the partition in addition to the sets themselves. For terms and
notation not defined here, see [West 1996].
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Figure 2. Suppose the graph shown on the left is H. The partition
(A, B) ∈ P(H) with A = {y, z} and B = {u, v, x} is illustrated in
the center. The vertical line is a visual aid to distinguish between
the sets A and B. Note that in this case, a(A, B)= 4. The graph
on the right is an induced subpartition of the partition (A, B).

2. Lemmas

To start, we prove two lemmas regarding the structure of optimal partitions of H, i.e.,
partitions (A, B) ∈ P(H) for which a(A, B)= a(H). The first lemma notes that
certain subpartitions cannot be induced subpartitions of an optimal partition of H.

Let H1 be the induced subpartition consisting of an induced path of length two
with all three vertices in A. Let H2 be the induced subpartition consisting of an
induced path of length three with one edge in A, one edge that crosses the partition,
and one edge in B. See Figure 3 for H1 and H2.

This first lemma proves that H1 and H2 cannot be induced subpartitions in any
optimal partition of the graph H.

Lemma 2.1. Let H be any graph. Suppose (A, B) ∈ P(H) with a(A, B)= a(H).
Then, H1 and H2 are not induced subpartitions in (A, B).

Proof. Suppose for the sake of contradiction that H1 is an induced subpartition of
(A, B). Let x, y, z ∈ A be the vertices of H1 with d(y)= 2. Also, let

ξ =

{
1 if 1B(A)= dB(x) or 1B(A)= dB(z),
0 otherwise.

H1 H2 H3 H4

Figure 3. The induced subpartitions H1, H2, H3, and H4 ref-
erenced in Lemmas 2.1, 4.1, and 4.2. The vertical dashed line
provides a visual reference to the partition of the vertices into the
sets A and B for (A, B) ∈ P(H). The vertices to the left of the
line in each graph are in A and the vertices on the right are in B.
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Consider the partition (A′, B ′) identical to (A, B) except that the vertex y is
moved from A to B. Then,

a(A′, B ′)= e(A, B)+ 2+ |B| + 1−1B(A)− ξ

= a(A, B)+ 3− ξ

> a(A, B).

This contradicts our choice of the optimal partition (A, B).
For the sake of contradiction, suppose that H2 is an induced subpartition of

(A, B). Let x, y, z, w be the vertices of H2 so that x, y ∈ A and z, w ∈ B, and the
edge yz crosses the partition. As H2 is an induced path of length three, note that
dG(y)= dG(z)= 2. Also, let

ξ =

{
1 if 1B(A)= dB(x) or 1B(A)= 1,
0 otherwise.

Consider the partition (A′, B ′) identical to (A, B) except that the vertex y is
moved from A to B and the vertex z is moved from B to A. Then,

a(A′, B ′)= e(A, B)+ 2+ |B| −1B(A)− ξ

= a(A, B)+ 2− ξ

> a(A, B).

Once again, this contradicts our choice of the optimal partition (A, B). �

The next lemma is useful for dealing with vertices of degree one in H.

Lemma 2.2. For a graph H, there exists a partition (A, B)∈P(H) with a(A, B)=
a(H) and the edges incident with vertices of degree one cross the partition.

Proof. Consider all (A, B) ∈ P(H) with a(A, B) = a(H). Among these, choose
the partition which has the maximum number of edges incident with degree one
vertices which cross the partition. For the sake of contradiction, suppose there is
at least one edge incident to a degree one vertex that does not cross the partition.
Let x be this degree one vertex and let y be the neighbor of x . Now, let

ξ =

{
1 if dB(y)≥1B(A),
0 otherwise.

Suppose first that x ∈ A and the edge xy does not cross the partition. Consider
the partition (A′, B ′) ∈ P(H), which is identical to (A, B) except that x is moved
from A to B. Then, a(A′, B ′)= a(A, B)+2− ξ > a(A, B), which contradicts our
choice of the optimal partition (A, B).

Suppose now that x ∈ B and the edge xy does not cross the partition. Consider
the partition (A′, B ′) ∈ P(H), which is identical to (A, B) except that x is moved
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from B to A. Then, a(A′, B ′) = a(A, B), which contradicts our choice of the
optimal partition a(A, B) which maximizes the number of edges incident with
degree one vertices that cross the partition. �

Lemma 2.2 can be used to provide an alternate proof of the σ2 condition for
a graph to be k-linked. A graph G is k-linked if, for every list of 2k vertices
{s1, . . . , sk, t1, . . . , tk}, there exist internally disjoint paths P1, . . . , Pk such that
each Pi is a path joining si and ti . If H is the union of k independent edges (i.e.,
k copies of the complete graph K2), then a graph being H -linked is equivalent to
the graph being k-linked. As each vertex in H has degree one, Lemma 2.2 states
that there exists an optimal partition of H where all of the edges cross the partition.
Thus, a(H) = 2k − 1 and Theorem 1.2 gives the σ2 condition proved previously
(and independently) in [Kawarabayashi et al. 2006] and [Gould and Whalen 2006].
Note that the bound on the number of vertices in G given by Theorem 1.2 is higher
than the bounds in those references.

The next result follows directly from the first case in the proof of Lemma 2.2.
The result differs from Lemma 2.2 in that it applies to every optimal partition of H ,
whereas Lemma 2.2 applies to only a subset of optimal partitions of H.

Corollary 2.3. If (A, B) ∈P(H) with a(A, B)= a(H), then the vertices of degree
one in A must be incident to edges that cross the partition.

3. Stars

In this section, we determine the value of a(H) when H is a star or a union of stars.
Let K1,k denote a star with one vertex of degree k and k vertices of degree one. By
Lemma 2.2, an optimal partition of H exists where all degree one vertices cross
the partition. Thus, we have the following:

Corollary 3.1. If H = K1,k for k ≥ 1, then a(H)= k.

When H = K1,k , G being H -linked is equivalent to G being k-connected.
This follows from a theorem by Dirac [1960]. With this fact, Theorem 1.2, and
Corollary 3.1, we get the well-known σ2 condition for a graph G to be k-connected
(i.e., σ2(G)≥ n+ k− 2).

We now determine the value of a(H) when H is a union of stars. For H =
K1,k1 ∪ K1,k2 ∪ . . .∪ K1,km , we call the vertex of maximum degree in each star the
hub vertex or hub of that star. Note that, for K1,1, either vertex can be considered a
hub vertex.

Theorem 3.2. If H = K1,k1 ∪ K1,k2 ∪ . . .∪ K1,km with ki ≥ 1 for 1≤ i ≤ m, then

a(H)= 2
m∑

j=1

k j −max{k1, k2, . . . , km}.
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Proof. Assume without loss of generality that km ≥ ki for all 1 ≤ i ≤ m − 1. By
Lemma 2.2, there exists a partition (A, B) ∈P(H) with a(A, B)= a(H) where all
edges incident with vertices of degree one cross the partition. Among all optimal
partitions that satisfy that property, choose the partition with the maximum number
of hub vertices in A. We will now show that, under the assumptions above, all of
the hub vertices are in A.

Claim 3.3. The hub of the star K1,km must be in A.

Proof. Let x be the hub of K1,km and suppose that x ∈ B. Note that dG(x) = km .
Consider the partition (A′, B ′) obtained by moving x from B to A and moving its
leaves from A to B. Then, noting that 1B(A)≥ 1,

a(A′, B ′)= a(A, B)+ km − 1− (km −1B(A))

= a(A, B)+1B(A)− 1

≥ a(A, B).

However, this contradicts our assumption that (A, B) is an optimal partition of H,
which has the maximum number of hubs in A. So, the hub of maximum degree
must be in A. �

Assume without loss of generality that the hubs of K1,k1, K1,k2, . . . , K1,ki are in
B (where i ≥ 0) and the remaining hubs are in A. By the above claim, i <m. Now,
we have

a(A, B)=
m∑

j=1

k j +

( m∑
t=i+1

kt

)
+ i − km =

m∑
j=1

k j +

( m−1∑
t=i+1

kt

)
+ i

≤

m∑
j=1

k j +

m−1∑
t=1

kt = 2
( m∑

j=1

ki

)
− km .

So, this gives us an upper bound on a(A, B) for all possible locations of the
hubs. For the lower bound, note that the partition (A′, B ′) ∈ P(H) where all of the
hubs of H are in A′ has

a(A′, B ′)= 2
( m∑

j=1

k j

)
− km .

Therefore, a(H)= 2
(∑m

j=1 k j
)
− km , where km =max{k1, k2, . . . , km}. �

Note that Theorem 3.2 can also be used to show that a(H)= 2k− 1 when H is
the union of k independent edges (which was discussed in the previous section).
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4. Cycles and paths

We now move our attention to paths and cycles. Let Ck (for k ≥ 3) denote a cycle
on k vertices and Pk (for k ≥ 2) denote a path on k vertices.

The following lemmas prove that H3 (shown in Figure 3) cannot appear as an
induced subpartition in any optimal partition of H.

Lemma 4.1. Let k ≥ 4. For H ∈ {Ck, Pk}, the graph H3 cannot be an induced
subpartition of any partition (A, B) ∈ P(H) with a(A, B)= a(H).

Proof. Suppose for the sake of contradiction that H3 is an induced subpartition of
some partition (A, B) with a(A, B)= a(H). Assume the vertices of H3 are x, y, z,
and w with x, z, w ∈ A and y ∈ B, and the edges are xy, yz, and zw.

By Corollary 2.3, dG(w) 6= 1 since the edge incident to w does not cross the
partition. Let t be a neighbor of w in H. By Lemma 2.1, t ∈ B.

Now, either dG(x)= 1, x has a neighbor in A, or x has a second neighbor in B. If
dG(x)=1 or if x has a neighbor in A, then the partition (A′, B ′) formed from (A, B)
by moving x and z to from A to B and y from B to A has a(A′, B ′) > a(A, B). As
this contradicts our choice of the optimal partition (A, B), x must have a second
neighbor in B.

Let v be the other neighbor of x in B. As a result,1B(A)= 2. Consider the parti-
tion (A′, B ′), which modifies the partition (A, B) by moving w from A to B. Then,

a(A′, B ′)= e(A, B)+ |B| + 1−1B(A)− 0

= a(A, B)+ 1.

Thus, the partition (A′, B ′) has a(A′, B ′) > a(A, B). However, this contradicts the
assumption that the partition (A, B) has a(A, B)= a(H).

As all possibilities are exhausted and lead to contradictions, we conclude that
H3 is not an induced subpartition of any partition (A, B) with a(A, B)= a(H). �

This final lemma proves that there exists an optimal partition of H which does
not contain H4 (shown in Figure 3) as an induced subpartition.

Lemma 4.2. If H ∈ {Ck, Pk} with k ≥ 3, then there is a partition (A, B) ∈ P(H)
with a(A, B)= a(H) which does not have H4 as a subpartition.

Proof. For the sake of contradiction, assume all partitions (A, B) with a(A, B)=
a(H) have H4 as a subpartition. Consider one such partition (A, B) which con-
tains H4. Let the vertices of H4 (all of which are in B) be x , y, and z with the two
edges being xy and yz. Consider the partition (A′, B ′) which is identical to (A, B)
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except the vertex y is moved from B to A. Then,

a(A′, B ′)≥ e(A, B)+ 2+ |B| − 1−1B(A)− 1

= a(A, B)+ 1− 1

= a(A, B).

Note that equality occurs in the first line above only when 1B(A) = 1 as the
partition (A′, B ′) has 1B ′(A′)= 2. Otherwise, a(A′, B ′) > a(A, B). In either case,
as a(A′, B ′)≥ a(A, B) and (A′, B ′) does not contain H4 as a subpartition, we have
a contradiction. �

With these lemmas, we are now able to prove the value for a(H) when H is a
cycle or path with three or more vertices. Note that by Lemma 2.2, for the single
edge P2, we have a(P2)= 1.

Theorem 4.3. For k ≥ 3, we have a(Ck)=
⌈1

2(3k− 5)
⌉

and a(Pk)=
⌈1

2(3k− 6)
⌉

.

Proof. Let H ∈ {Pk,Ck} and assume that V (H)= {1, 2, 3, . . . , k} with the vertices
numbered based on an arbitrary orientation of H. If k = 3, then it is straightforward
to show that a(C3)= a(P3)= 2=

⌈ 1
2(3(3)− 5)

⌉
=
⌈1

2(3(3)− 6)
⌉
. If k = 4, then

it is also straightforward to show that a(C4) = 4 =
⌈ 1

2(3(4)− 5)
⌉

and a(P4) =

3 =
⌈ 1

2(3(4)− 6)
⌉
. So, assume k ≥ 5. Consider a partition (A, B) ∈ P(H) with

a(A, B)= a(H). By Lemma 4.2, we may assume H4 is not an induced subpartition
of (A, B). It follows from Lemma 2.1, Lemma 4.1, Corollary 2.3, and the fact
that k ≥ 5 that the partition (A, B) cannot have any edge with both endpoints in A.
Consequently, 1B(A)= 2.

Assume for the sake of contradiction that the partition (A, B) has at least two
edges with both endpoints in B. Among the edges with both endpoints in B, choose
the two edges with the fewest edges of H between them based on the orientation
of H. Let (i, i+1) and ( j, j+1) with j > i be two edges with both endpoints in B.
Note that i + 1 6= j since H4 is not an induced subpartition. In particular, vertex
i + 2 must be in A and by Lemma 2.1, i + 3 must be in B as otherwise H2 would
be an induced subpartition. Lemma 2.1, Lemma 4.2, and our choice of j imply that
j = i + t for some positive odd integer t and the vertices i + 1, i + 3, . . . , i + t are
in B while the vertices i + 2, i + 4, . . . , i + t − 1 are in A.

Consider the partition (A′, B ′) formed by starting with (A, B) and moving
vertices i + 1, i + 3, . . . i + t from B to A and moving i + 2, i + 4, . . . , i + t − 1
from A to B. Then,

a(A′, B ′)= e(A, B)+ 2+ |B| − 1−1A(B)

= a(A, B)+ 1

> a(A, B).
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However, this contradicts our choice of the partition (A, B). Thus, as no edge of
the partition can have both endpoints in A, all of the edges of (A, B) must cross
the partition with the possible exception of exactly one edge which must have both
endpoints in B.

If H = Ck with k even, then (A, B) can have no edge with both endpoints
in B as one edge in B would force the existence of another edge with either both
endpoints in B or both endpoints in A. Thus, (A, B)must either be the partition with
B = {1, 3, . . . k− 1} and A = {2, 4, . . . , k} or the same partition with the vertices
in A and B swapped. Consequently, a(A, B)= a(Ck)= k+ 1

2 k− 2= 1
2(3k− 4).

If H=Ck with k odd, then (A, B)must have exactly one edge with both endpoints
in B as all edges cannot cross the partition. Thus, (A, B) must be the partition with
A = {1, 3, . . . , k − 2} and B = {2, 4, . . . , k − 1, k} or a vertex relabeling of this
partition. Consequently, a(A, B)= a(Ck)= k+

⌈1
2 k
⌉
− 2=

⌈1
2(3k− 5)

⌉
.

If H = Pk with k odd, then (A, B) must have all edges crossing the partition.
Thus, (A, B) must be the partition with A= {2, 4, . . . , k−1} and B = {1, 3, . . . , k}.
If H = Pk with k even, then (A, B) either has all edges crossing the partition
or exactly one edge with both endpoints in B (and all other edges crossing the
partition). Thus, in either case, a(Pk)= k− 1+

⌈ 1
2 k
⌉
− 2=

⌈ 1
2(3k− 6)

⌉
. �

When H = Ck , a graph G being H -linked is equivalent to G being k-ordered.
A graph G is k-ordered if for every ordered set of vertices S such that |S| = k,
the graph G contains a cycle C encountering the vertices S in the given order.
When H = Pk , a graph G being H -linked is equivalent to G being k-ordered
connected. A graph G is k-ordered connected if for every ordered set of vertices
S = {v1, v2, . . . , vk}, the graph G contains a path P from v1 to vk encountering
S in the given order. Note that by forcing the cycle (or path) that encounters the
vertices of S in order to be a hamiltonian cycle (or a hamiltonian path), we get the
property k-ordered hamiltonian (k-ordered hamiltonian connected). The concept of
k-ordered was introduced by Ng and Schutz [1997].

Using Theorem 1.2 and Theorem 4.3, we have the following corollary.

Corollary 4.4. Let G be a graph on n vertices and let k ≥ 3.

(i) If n > 20k and σ2(G)≥ n+
⌈ 1

2(3k− 9)
⌉

, then G is k-ordered.

(ii) If n> 20(k−1) and σ2(G)≥ n+
⌈1

2(3k−10)
⌉

, then G is k-ordered connected.

The bounds on σ2 in both cases are best possible.

To the best of our knowledge, the above σ2 conditions for k-ordered and k-ordered
connected are not explicitly stated in the literature, although it is implied in several
sources that the σ2 conditions for k-ordered and k-ordered connected should be
the same as the σ2 conditions for k-ordered hamiltonian and k-ordered hamiltonian
connected.
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There are a number of degree-sum results for k-ordered hamiltonian and k-
ordered hamiltonian connected graphs. Ng and Schultz [1997] proved a sharp σ2

condition for any graph on n ≥ 3 vertices to be k-ordered hamiltonian. J. Faudree
et al. [2000] proved the bound for σ2 could be reduced for graphs on n vertices
with n ≥ 53k2. The same σ2 condition in [Faudree et al. 2000] was shown to work
for n ≥ 2k by R. Faudree et al. [2003b]. Note that the sharpness example they
construct in [Faudree et al. 2003b] is neither k-ordered hamiltonian nor k-ordered.

Theorem 4.5 [Faudree et al. 2003b]. Let k be an integer with 3≤ k ≤ 1
2 n, and let

G be a graph of order n. If σ2(G)≥ n+ 1
2(3k−9), then G is k-ordered hamiltonian.

The bound on σ2(G) is sharp.

For k-ordered hamiltonian connected, a σ2 condition for large n is mentioned
(without proof) in [Faudree et al. 2003a]. A stronger and sharp σ2 condition for
k-ordered hamiltonian connected was proven by Nicholson and Wei [2015].

Theorem 4.6 [Nicholson and Wei 2015]. If G is a graph on n vertices with σ2(G)≥
n+ 1

2(3k−10), where 4≤ k ≤ 1
2(n+1), then G is k-ordered hamiltonian connected.

Overall, while the concepts of k-ordered and k-ordered hamiltonian are distinct,
the σ2 condition is the same for both when n is large as shown in Corollary 4.4.
Similarly, the σ2 conditions for k-ordered connected and k-ordered hamiltonian
connected are the same for large n. Corollary 4.4 has higher bounds on n than
the optimal known results, but by utilizing Theorem 1.2, the proofs are much less
technical.

5. Complete graphs and complete bipartite graphs

Our last results provide a(H) when H is the complete graph Kk or the complete
bipartite graph Kr,s . First, we consider the complete graph Kk .

Theorem 5.1. For any integer k ≥ 3, we have a(Kk)=
⌊ 1

4 k2
⌋

.

Proof. Suppose |A|= t and |B|=k−t . Then, a(A, B)= (k−t)(t)+(k−t)−(k−t)=
kt − t2. Let f (t) = kt − t2. Then, f ′(t) = −2t + k. So, f ′(t) = 0 implies that
t = 1

2 k. Since f ′′(t) < 0, f (t) has a global maximum at t = 1
2 k. If k is even, then

a(Kk)=
1
4 k2. If k is odd, then either

a(Kk)=
[
k−

( 1
2(k− 1)

)]( 1
2(k− 1)

)
or a(Kk)=

[
k− 1

2(k+ 1)
](1

2(k+ 1)
)
.

In both cases, a(Kk)=
1
4(k

2
−1). Therefore, a(Kk)=

⌊ 1
4 k2

⌋
for any integer k ≥ 3.

�

Now, we prove the value of a(H) when is the complete bipartite graph Kr,s .
Note that K1,1 and K1,2 are covered by previous results in this article.

Theorem 5.2. For r ≥ s ≥ 2, we have a(Kr,s)= rs.
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Proof. Let (A, B) ∈ P(Kr,s) such that a(A, B) = a(Kr,s). Using the canonical
bipartition of Kr,s , let X and Y be the partite sets. Let X A = X ∩ A, YB = Y ∩ B,
YA = Y ∩ A, and X B = X ∩ B. Additionally, let |X A| = xA, |X B | = xB , |YA| = yA,
and |YB | = yB .

Suppose that exactly one of the sets X A, X B , YA, and YB is empty. Assume
without loss of generality that the partite sets of Kr,s are labeled X and Y so that
either X A or X B is empty. Assume first that only X A =∅. Let v ∈ YB . Consider
the partition (A′, B ′) starting with (A, B) and moving v from B to A. That is, we
have X B ′ = X B = X , YA′ = YA ∪ {v}, and YB ′ = YB −{v}. Then,

a(A′, B ′)= a(A, B)+ |X B | − 1= a(A, B)+ |X | − 1.

As |X | ≥ 2, we have a(A′, B ′) > a(A, B), which contradicts our choice of (A, B).
Assume now that X B is the only empty set among X A, X B , YA, and YB . Let

w ∈ YA. Consider the partition (A′, B ′) starting with (A, B) and moving w from B
to A as in the first case. Then,

a(A′, B ′)= a(A, B)+ |X A| + 1− 1= a(A, B)+ |X |.

Since |X |≥2, we have a(A′, B ′)>a(A, B), which contradicts our choice of (A, B).
Assume now that each of X A, X B , YA, and YB is nonempty. Then,

a(A, B)= (xA)(yB)+ (yA)(xB)+ xB + yB −max{xB, yB}.

Note that xB + yB −max{xB, yB} =min{xB, yB}.
Consider the partition (A′, B ′) formed by starting with (A, B) and moving the

vertices of X B from B to A and moving the vertices of YA from A to B. Then,

a(A′, B ′)= (xA)(yB)+ (xB)(yA)+ (xA)(yA)+ (xB)(yB).

Note that a(A′, B ′) ≥ a(A, B) whenever (xA)(yA)+ (xB)(yB) > min{xB, yB}.
However, since xB , xA, yA, and yB are all at least one, (xA)(yA)+ (xB)(yB) is
strictly larger than min{xB, yB}. Thus, a(A′, B ′)≥ a(A, B), which contradicts our
choice of (A, B).

Consequently, the only remaining possibility for (A, B) is either A = X and
B=Y , or A=Y and B= X . In either case, a(A, B)= rs and thus, a(Kr,s)= rs. �

These results together with Theorem 1.2, we get the following corollary.

Corollary 5.3. Let G be a graph on n vertices.

(i) Let k ≥ 3. If n > 20k and σ2(G)≥ n+
⌊ 1

4 k2
⌋
− 2, then G is Kk-linked.

(ii) Let r ≥ s ≥ 2. If n ≥ 20rs and σ2(G)≥ n+ rs− 2, then G is Kr,s-linked.
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6. Final observations

For all of the classes of graphs examined above, an optimal partition (A, B) always
exists where the vertex of maximum degree is in A. However, this is not always
the case. Consider the graph J with V (J )= {v1, v2, v3, v4, v5, v6, v7} and

E(J )= {v1v2, v1v3, v1v5, v2v3, v2v4, v2v6, v2v7, v3v4, v4v6, v4v7, v5v7, v6v7}.

Note that 1(J )= 5 and v2 is the vertex of maximum degree. By checking all
possible partitions of the vertex set (possibly with the aid of a computer), it can
be shown that J has a unique optimal partition (A, B) given by A = {v1, v4, v7}.
From this partition, we have a(J ) = 10. However, in this optimal partition, the
vertex of maximum degree (i.e., v2) is in B and 1B(A)= 3. So, it is not always
the case that a graph has an optimal partition (A, B) where the vertex of maximum
degree is in A.

We conclude by making an observation about optimal partitions of the union
of graphs. Consider two graphs M1 and M2 and assume an optimal partition of
both graphs is known. We note that the union of these two optimal partitions is not
necessarily an optimal partition for the union of M1 and M2. As an example, let
M1 be the five cycle v1v2v3v4v5 with the additional edges v2v4 and v3v5. Let M2

be the graph on the set {w1, w2, w3, w4, w5} where w1, w2, w3, and w4 form a K4

and the only other edge is w4w5.
Now, the graph M1 has exactly two optimal partitions which both give a(M1)= 6.

One of the optimal partitions of M1, which we denote by (AM1, BM1), has AM1 =

{v2, v3}. The graph M2 has nine different optimal partitions which give a(M2)= 5.
One of these optimal partitions of M2, which we denote by (AM2, BM2), has AM2 =

{w1, w3}. Let M be the graph formed by the union of M1 and M2 and consider the
partition

(AM , BM)= (AM1 ∪ AM2, BM1 ∪ BM2).

This partition gives a(AM , BM)= 13. However, a(M)= 14, which can be achieved
using the optimal partition of M1 given above and a different optimal partition
of M2 such as the partition (A′M2

, B ′M2
), where A′M2

= {w1, w4}. So, finding an
optimal partition for a union of graphs is not simply a matter of taking any optimal
partition of the graphs individually and forming the union of these partitions.
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