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We have created and analyzed a model for kleptoparasitic interactions when
individuals decide on the level of aggression in which they want to engage in the
contest over a resource item. The more aggressive each individual is relative to
an opponent, the higher are the chances of winning the item, but also the higher is
the cost of the interaction for that individual. We consider a general class of cost
functions and show that for any parameter values, i.e., for any maximal potential
level of aggression of the individuals, any value of the resource and any type of
the cost function, there is always a unique Nash equilibrium. We identify four
possible kinds of Nash equilibria and give precise conditions for when they occur.
We find that nonaggressive behavior is not a Nash equilibrium even when the cost
function is such that aggressive behavior yields lower payoffs than avoiding the
conflict altogether.

1. Introduction

Kleptoparasitism is the resource gathering behavior where one animal steals from
another. Possible contested resources include territory, mates, and food [Iyengar
2008]. This stealing behavior is exhibited by a wide variety of species, such as
seabirds [Spear et al. 1999; Steele and Hockey 1995; Triplet et al. 1999], insects
[Jeanne 1972], fish [Grimm and Klinge 1996] and mammals [Kruuk 1972]. Klep-
toparasitic interactions manifest in several varieties and are distinguished by the
energy invested by the kleptoparasite and the resource owner. Some kleptoparasites
display only minor levels of aggression and may be easily dissuaded by a highly
invested adversary (e.g., catbirds steal food provisions from digger wasps, but they
forgo this foraging strategy when sparrows are present because the prospect of
competition with sparrows dissuades them [Benttinen and Preisser 2009]), whereas
others are as aggressive as possible (e.g., male southern giant petrels will attack adult
king penguins for food despite having low success rates [Hunter 1991]). Similarly,
some resource owners are easily convinced to forfeit their resources (e.g., when
attacked by turkey vultures, adolescent great blue herons are known to weakly resist
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the attack by pecking, but if the pecking does not dissuade the vulture then they will
disgorge food [Brockmann and Barnard 1979]), whereas others engage in costly
attempts to defend their resources (e.g., lapwings will undergo extensive aerial
chases to avoid forfeiting food to assailing black-headed gulls [Källander 1977]).

Mathematical models of kleptoparasitism are quite common; see, for example,
[Giraldeau and Livoreil 1998; Broom and Ruxton 2003; Broom et al. 2004; 2008;
2010; Broom and Rychtář 2007; 2013; Hadjichrysanthou and Broom 2012; Kokko
2013]. With mathematical modeling, we can determine the conditions under which
the benefits of the various kleptoparasitic behaviors observed in nature outweigh the
costs. Mathematical modeling also allows us to predict which ecological conditions
make the occurrence of kleptoparasitism more likely.

Here we modify a game-theoretical “producer-scrounger” model developed in
[Broom et al. 2015]. Producer-scrounger models [Barnard and Sibly 1981; Barnard
1984; Vickery et al. 1991; Caraco and Giraldea 1991; Dubois and Giraldeau 2005]
describe interactions where after a kleptoparasite (i.e., the scrounger) encounters an
individual with resources (i.e., the producer), the scrounger invests some amount
of energy into stealing the resources while the producer attempts to defend them.
Many game-theoretical models of two-individual interactions have been developed
wherein the individuals have a discrete set of strategies available to them [Smith
and Price 1973; Dubois and Giraldeau 2005; Broom et al. 2013], but realistically,
individuals competing in kleptoparasitic interactions can invest amounts of energy
from a continuous range of possibilities. This possibility is incorporated in our
model, as it was in [Broom et al. 2015], where the producer-scrounger conflict is
modeled as an extensive form game where the scrounger chooses its strategy first
and the producer knows the scrounger’s choice before making its own. Here, we
present and analyze the simultaneous version of the game where both individuals
have to decide without knowing the opponent’s action.

The organization of our paper is as follows. In Section 2 we give a detailed
mathematical description of our model. In Section 3 we analyze our model mathe-
matically; in particular, we find best responses to opponent’s actions in Section 3.1
and give conditions for Nash equilibria in Section 3.2. The results of our analysis
are presented in Section 4. In Section 4.1 we show that (for the case α > 0) Nash
equilibria do not overlap and in Section 4.2 we show that the Nash equilibria exist
for any parameter combination. We end our paper in Section 5 where we compare
our model and its results to previous work, most notably to [Broom et al. 2015].

2. Model

One individual, a scrounger, is searching for resources and encounters another
individual, a producer, who has a resource item of value v. Simultaneously, and
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with no knowledge of the choice of the other, they both have to decide how aggressive
to be in the contest for the item. The more aggressive each individual is relative to
the opponent, the higher are the chances of winning the item, but also the higher is
the cost of the interaction for that individual. Let Pmax (or Smax) be the maximum
level of aggression that a producer (or scrounger, respectively) can display in a
fight, and by p ∈ [0, Pmax] (or s ∈ [0, Smax]) we will denote the actually displayed
level of aggression in a particular contest. The producer wins the fight (and the
resource) with a probability of p/(s+ p), while the scrounger wins with probability
s/(s+ p). If no individual fights (i.e., p = s = 0), then the producer is assumed to
win and will keep the resource.

We will adopt the model for the fight costs from [Broom et al. 2015]. When no
individual fights, the cost is 0. Otherwise, the cost to each individual is (s+ p)α.
Here, α is a tuning parameter that allows us to consider a broad range of scenarios.
If α < 1, then low aggression is costly relative to no aggression at all, but once
the aggression reaches a certain level, increasing the aggression is typically not
that costly in relative terms. On the contrary, when α > 1, low aggression levels
are relatively cheap, but escalating the fight (i.e., being a bit more aggressive) is
relatively expensive as the function xα is concave up. For the rest of the paper, we
will assume α > 0 except when we discuss the extreme case α = 0 (when the cost
of the fight is constant) separately in Section 4.3.

Assuming the scrounger plays s ∈ [0, Smax], the producer plays p ∈ [0, Pmax],
and the value of the resource is v, the payoffs to the producer and scrounger are
given by

Upr (s, p)=
{
v if s = p = 0,
p/(s+ p)v− (s+ p)α if s+ p > 0,

(1)

Usc(s, p)=
{

0 if s = p = 0,
s/(s+ p)v− (s+ p)α if s+ p > 0.

(2)

3. Analysis

3.1. Best responses. Here we will determine best responses for the scrounger and
producer. A best response is a strategy that maximizes an individual’s payoff given
that their adversary’s strategy is fixed, i.e., for a given s ∈ [0, Smax], we are looking
for pbr (s) ∈ [0, Pmax] such that

Upr (s, pbr (s))= max
p∈[0,Pmax]

{Upr (s, p)}, (3)

and, similarly, for a given p ∈ [0, Pmax] we are looking for sbr (p) ∈ [0, Smax] such
that

Usc(sbr (p), p)= max
s∈[0,Smax]

]{Usc(s, p)}. (4)
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When s = 0, it immediately follows from (1) that pbr (0)= 0. When s > 0, we
have

∂

∂p
Upr (s, p)=

sv−α(s+ p)α+1

(s+ p)2
for p >−s. (5)

Let us define
f (x)=

( xv
α

)1/(α+1)
− x . (6)

It follows from (5) that, for fixed s and variable p, the function Upr (s, p) is
increasing on (−s, f (s)] and decreasing on [ f (s),+∞). Therefore,

pbr (s)=


0 if s = 0, or s > 0 and f (s)≤ 0,
f (s) if s > 0 and 0≤ f (s)≤ Pmax,
Pmax if s > 0 and f (s)≥ Pmax.

(7)

We note that the conditions in (7) are formally not mutually exclusive, but whenever
two of the conditions coincide, so does the best response defined by them.

When p= 0, we have Usc(s, 0)= v− sα which increases to v > 0 as s decreases
to 0 while Usc(0, 0)= 0. Thus, there is no best response for the scrounger in this
case. When p > 0,

∂

∂s
Usc(s, p)=

pv−α(s+ p)α+1

(s+ p)2
for s >−p. (8)

Consequently, for a fixed p and variable s, the function Usc(s, p) is increasing on
(−p, f (p)] and decreasing on [ f (p),+∞). Hence,

sbr (p)=


does not exist if p = 0,
0 if p > 0 and f (p)≤ 0,
f (p) if 0< f (p)≤ Smax,
Smax if f (p)≥ Smax.

(9)

As with pbr , we note that the conditions in (9) are formally not mutually exclusive,
but whenever two of the conditions coincide, so does the best response defined by
them.

3.2. Nash equilibria. Here we will identify all Nash equilibria of our game. A
pair of strategies (s∗, p∗) is a Nash equilibrium if p∗ is the producer’s best response
to s∗ and s∗ is the scrounger’s best response to p∗.

By (7), we only need to consider cases when p∗= 0, p∗= f (s∗) and p∗= Pmax;
and by (9), for any of those cases we only need to consider s∗ = 0, s∗ = f (p∗)
and s∗ = Smax.

By (9), no pair (s∗, 0) is a Nash equilibrium. When s∗ = 0, by (7), we would
need p∗ = 0 and so no pair (0, p∗) is a Nash equilibrium either. We will now
investigate the remaining types separately. Table 1 summarizes the results.



OPTIMAL AGGRESSION IN KLEPTOPARASITIC INTERACTIONS 739

Nash equilibrium conditions

(Smax, Pmax) Pmax ≤ f (Smax), Smax ≤ f (Pmax)

(Smax, f (Smax)) 0< f (Smax) < Pmax, Smax ≤ f ( f (Smax))

( f (Pmax), Pmax) 0< f (Pmax) < Smax, Pmax ≤ f ( f (Pmax))( 1
2 (v/(2α))

1/α, 1
2 (v/(2α))

1/α
) 1

2 (v/(2α))
1/α <min(Pmax, Smax)

Table 1. Nash equilibria and the conditions for their existence. As
f (x) = (xv/α)1/(α+1)

− x , the conditions are given in terms of
Pmax, Smax, v and α.

3.2.1. Type (Smax, Pmax). By (7) and (9), (Smax, Pmax) is a Nash equilibrium if and
only if

Pmax ≤ f (Smax), (10a)

Smax ≤ f (Pmax). (10b)

3.2.2. Type (Smax, f (Smax)). By (7) and (9), (Smax, f (Smax)) is a Nash equilibrium
if and only if

0< f (Smax) < Pmax, (11a)

Smax ≤ f ( f (Smax)). (11b)

3.2.3. Type ( f (Pmax), Pmax). By (7) and (9), ( f (Pmax), Pmax) is a Nash equilib-
rium if and only if

0< f (Pmax) < Smax, (12a)

Pmax ≤ f ( f (Pmax)). (12b)

3.2.4. Type (p∗, s∗) where p∗ = f (s∗) and s∗ = f (p∗). Solving p∗ = f ( f (p∗))
yields a unique solution p∗ = 1

2(v/(2α))
1/α. Indeed, we have

x = f ( f (x)) (13)

=

( f (x)v
α

)1/(α+1)
− f (x) (14)

=

( f (x)v
α

)1/(α+1)
−

( xv
α

)1/(α+1)
+ x, (15)

which after simple algebra yields

x = f (x)=
( xv
α

)1/(α+1)
− x, (16)

and thus

x = 1
2

(
v

2α

)1/α
. (17)
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Consequently, the only candidate for such a type of a Nash equilibrium is(
1
2

(
v

2α

)1/α
,

1
2

(
v

2α

)1/α
)
.

By (7) and (9) it is indeed a Nash equilibrium if 0< f (p∗) < Smax and 0< f (s∗) <
Pmax, and since p∗= f (s∗), s∗= f (p∗), we get that

( 1
2(v/(2α))

1/α, 1
2(v/(2α))

1/α
)

is a Nash equilibrium if and only if

1
2

(
v

2α

)1/α
<min(Pmax, Smax). (18)

4. Results

We have seen that there are only four potential Nash equilibria in this game:

(1) (Smax, Pmax),

(2) (Smax, f (Smax)),

(3) ( f (Pmax), Pmax) and

(4)
( 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α
)
.

Here, we will show that under any parameter values v > 0, α > 0, Smax > 0,
Pmax > 0, there exists one and only one Nash equilibrium.

The conditions (10), (11), (12) and (18) for the equilibria are given in terms of
f (x)= (xv/α)1/(α+1)

− x . It is therefore crucial to understand the behavior of f.
The following two equivalencies for x ≥ 0 follow easily from simple algebra:

x S 1
2

(
v

2α

)1/α
if and only if x S f (x), (19)

and similarly,

x S 1
2

(
v

2α

)1/α
if and only if x S f ( f (x)), (20)

and they will be useful when determining the existence and uniqueness of Nash
equilibria.

4.1. Nash equilibria do not overlap. First, it follows from (20) that when (18)
holds, one has Pmax > f ( f (Pmax)) and Smax > f ( f (Smax)), i.e., neither (12b) nor
(11b) holds. Thus,

(1
2(v/(2α))

1/α, 1
2(v/(2α))

1/α
)

cannot occur at the same time as
( f (Pmax), Pmax) or (Smax, f (Smax)). By (19), f (Smax)< Smax and f (Pmax)< Pmax.
Consequently, either f (Smax) < Smax ≤ Pmax or f (Pmax) < Pmax ≤ Smax, i.e.,( 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α
)

cannot occur at the same time as (Smax, Pmax).
Second, when (12) holds, then, by (20), Pmax ≤

1
2(v/(2α))

1/α and thus, by (19),
Pmax ≤ f (Pmax) and so Pmax < Smax. By a similar argument, when (11) holds,
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Smax < Pmax. Consequently, (Smax, f (Smax)) and ( f (Pmax), Pmax) are never Nash
equilibria at the same time.

Finally, it is evident that neither (12) nor (11) can hold when (10) does. Conse-
quently, there is always at most one Nash equilibria.

4.2. Nash equilibrium always exist. We show that for any v > 0, α> 0, Smax> 0,
Pmax > 0, there is a Nash equilibrium. Here we will assume Pmax < Smax, but when
Smax ≤ Pmax, the proofs are analogous.

If 1
2(v/(2α))

1/α < Pmax < Smax, then by (18),
( 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α
)

is
a Nash equilibrium.

If Pmax < Smax <
1
2(v/(2α))

1/α, then by (19), Pmax < Smax < f (Smax), i.e.,
(10a) holds. Also, by (20), Pmax < f ( f (Pmax)), i.e., (12b) holds. Consequently, if
f (Pmax) < Smax, then ( f (Pmax), Pmax) is a Nash equilibrium (because we assumed
Pmax <

1
2(v/(2α))

1/α and thus, by (19), 0< Pmax < f (Pmax), i.e., (12) holds); and,
similarly, if f (Pmax)≥ Smax, then (Smax, Pmax) is a Nash equilibrium.

If Pmax <
1
2(v/(2α))

1/α < Smax, then, by (20), Pmax < f ( f (Pmax)), i.e., (12b)
holds. Consequently,

(a) if f (Pmax) < Smax, then ( f (Pmax), Pmax) is a Nash equilibrium; and

(b) if f (Pmax) ≥ Smax and f (Smax) ≥ Pmax, then (Smax, Pmax) is a Nash equilib-
rium.

Since Pmax < Smax, one cannot have f (Pmax) ≥ Smax and also f (Smax) < Pmax.
Consequently, the above cases are the only two possible cases and thus there is
always a Nash equilibrium.
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Figure 1. Regions of existence of Nash equilibria as v = 1, Smax

and Pmax varies and (left) α = 2 and (right) α = 0.5. Note that the
regions do not overlap and the individuals are always aggressive
(the level of aggression increases with increasing v (when Smax

and Pmax are fixed).



742 DAVID G. SYKES AND JAN RYCHTÁŘ

Figure 1 shows the Nash equilibria for fixed v and α and variable Smax and Pmax.
Figure 2 shows Nash equilibria and payoffs for fixed Smax, Pmax, α and variable v.
We see that for small v, individuals play 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α. For large

v, individuals play (Smax, Pmax). For medium v, individuals play ( f (Pmax), Pmax)

when Smax > Pmax and (Smax, f (Smax)) when Smax < Pmax. Note that as v in-
creases, so does the optimal aggression level; yet with increasing aggression, the
relative payoff may decrease, as seen in Figure 2a and c for equilibria of the form
(Smax, f (Smax)) and ( f (Pmax), Pmax). Also note that for α < 1 and small v, the
payoffs are negative for both players; see Figure 2b and d. As v grows, the payoffs
eventually become positive (it happens first for a more aggressive individuals).

4.3. Case α = 0. So far, we have considered only α > 0. When α = 0, the cost of
a fight is the constant 1 no matter what the exact aggression levels are (as long as at
least one individual is aggressive). Thus, for fixed s > 0, Upr (s, p) is increasing in
p and, for fixed p > 0, Usc(s, p) is increasing in s and the individuals effectively
choose between being not aggressive at all or being aggressive at their maximal
level. Hence, they play the following bimatrix game where the scrounger’s payoff is


S\P 0 Pmax

0 0 −1

Smax v− 1 Smax
Smax+Pmax

v− 1

, (21)

and the producer’s payoff is


S\P 0 Pmax

0 v v− 1

Smax −1 Pmax
Smax+Pmax

v− 1

. (22)

It turns out that this game is a variant of the stag hunt game [Skyrms 2004] for
v < 1 and the prisoner’s dilemma game for v > 1.

When the producer plays p = Pmax, the scrounger always prefers s = Smax over
s = 0. When the scrounger plays s = Smax, the producer always prefers p = Pmax

over p = 0. Consequently, (Smax, Pmax) is always a Nash equilibrium. When the
scrounger plays s = 0, the producer prefers p = 0. When the producer plays
p = 0, the scrounger prefers s = 0 when v < 1 and prefers s = Smax when v > 1.
Consequently, when v > 1, (Smax, Pmax) is the only Nash equilibrium, and when
v < 1, both (Smax, Pmax) and (0, 0) are Nash equilibria.

Note the paradoxical situation in the case when

1< v <
Smax+ Pmax

Smax
.
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Figure 2. Nash equilibria and payoffs relative to v (i.e., Usc(s∗, p∗)/v
for the scrounger and Upr (s∗, p∗)/v for the producer) when: (a)
Smax= 0.4, Pmax= 0.8, α= 2, (b) Smax= 0.4, Pmax= 0.8, α= 0.5;
(c) Smax = 0.8, Pmax = 0.4, α = 2; and (d) Smax = 0.8, Pmax = 0.4,
α = 0.5. The vertical lines show the switch between Nash equilibria.

In this case, as in the prisoner’s dilemma game, (Smax, Pmax) is a Nash equilibrium
but the scrounger is getting a negative payoff (and the producer is also getting
strictly less than v). Hence both individuals would prefer not to engage in an
aggressive conflict. Yet (0, 0) is not a Nash equilibrium because once either of the
individuals decides not to be aggressive, the other one will be better off by being as
aggressive as possible.
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5. Discussion

We have created and analyzed a model for kleptoparasitic interactions when individ-
uals decide on the level of aggression in which they want to engage in the contest
over a resource item. We show that for any parameter values, there is a unique
Nash equilibrium. We have provided explicit formulas for all of four possible types
of Nash equilibria and have also derived explicit conditions for their existence.

Our model extends the model of [Broom et al. 2015] where the authors considered
sequential decisions whereas we consider simultaneous decisions (or equivalently,
a situation when both individuals have to chose the action without knowing the
opponent’s action). The analysis in our model is more complicated because individ-
uals only know that the opponent will chose the optimal level of aggression, but
unlike in the setting of [Broom et al. 2015], what is optimal depends on individual’s
own action as well. Our results also differ from the sequential setting, as our game
does not admit multiple Nash equilibria (when α > 0) and it is also optimal to
express at least some level of aggression. When v is small (relative to the maximal
potential level of aggression of at least one of the individuals), the sequential model
allows individuals to avoid the actual conflict, while they still fight aggressively
in our simultaneous model. The difference between the two models is largest for
concave down cost functions (α < 1) when the individuals would be better off
without engaging in any fight (and this is indeed the Nash equilibrium for sequential
decisions) but they still end up being aggressive when the decisions need to be
made simultaneously. On the other hand, when v is large, then both the sequential
and simultaneous decision models yield the same Nash equilibria.

The fight cost function plays a critical role in the determination of the equilibrium
solutions. The fight cost functions that are considered in our model have the form
(s+ p)α, where 0≤ α. It would be possible to model the fight cost function with
greater complexity to increase the model’s realism (see, e.g., [Baye et al. 2005;
2012]), but we have worked with the present fight cost formulation because it
encompasses several possible fight cost functions without sacrificing the model’s
tractability. The appropriate setting for fight cost structure (i.e., for α) will of course
depend on the interactions being modeled. Circumstances that lead to different
settings of α are considered in [Broom et al. 2015]; in particular, α > 1 corresponds
to interactions for which the primary cost is risk of injury or lost energy whereas
α < 1 corresponds to interactions for which the primary cost is a time cost. Such
a time cost can be opportunity cost (i.e., lost time that can otherwise be spent
foraging) or it can be the predation risk incurred by prolonged exposure while
fighting for resources.

Similarly to [Broom et al. 2015], we assume that all individuals know the values
of all parameters; in particular the scrounger knows Pmax and the producer knows
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Smax and both individuals know the cost function and v. In [Broom and Rychtář
2009; 2016; Broom et al. 2013; 2014], the authors study the situation when v is
not known to one of the individuals. However, as shown in Figure 1, different
Pmax may not only yield different behavior of producer but may also yield different
behavior of the scrounger. Thus, not knowing the opponent’s maximum potential
level of aggression will potentially influence the choice of individual strategies.
Consequently, it would be interesting to model such a scenario.
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[Broom et al. 2014] M. Broom, J. Rychtář, and D. Sykes, “Kleptoparasitic interactions under asym-
metric resource valuation”, Math. Model. Nat. Phenom. 9:3 (2014), 138–147. MR Zbl

[Broom et al. 2015] M. Broom, M. Johanis, and J. Rychtář, “The effect of fight cost structure on
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