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In this paper we study the brachistochrone problem in an inverse-square gravita-
tional field on the unit disk. We show that the time-optimal solutions consist of
either smooth strong solutions to the Euler–Lagrange equation or weak solutions
formed by appropriately patched together strong solutions. This combination of
weak and strong solutions completely foliates the unit disk. We also consider
the problem on annular domains and show that the time-optimal paths foliate the
annulus. These foliations on the annular domains converge to the foliation on the
unit disk in the limit of vanishing inner radius.

1. Introduction

In 1696 Johann Bernoulli posed the following problem: given two points A, B,
find a curve connecting A and B such that a particle traveling from A to B under
the influence of a uniform gravitational field takes the minimum time. This is
called the brachistochrone problem, from the Greek terms brachistos for shortest
and chronos for time. It was solved the following year by Leibniz, L’Hospital,
Newton, and others [Dunham 1990]. While the solution to the brachistochrone
problem has limited applications, the techniques from calculus used to solve it were
novel at the time. Namely, rudimentary techniques from what would later be called
the calculus of variations were developed. Euler and Lagrange later formalized
these initial approaches into their celebrated necessary conditions for optimality,
what we now call the Euler–Lagrange equations. For certain types of functionals,
this approach reduces the optimization problem to solving a differential equation,
i.e., the Euler–Lagrange equation, corresponding to the functional. Indeed, the
reduction of an optimization problem to that of solving a differential equation can be
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directly applied to many classical optimization problems such as the isoperimetric
problem [Blåsjö 2005], determining the shape of a minimal surface [Sagan 1969;
Oprea 2000] and calculating the path of a geodesic on a surface [McCleary 2013].
Moreover, in classical mechanics the dynamics of a system can be derived using
the Euler–Lagrange equations to extremize the so-called “action” of the system
[Goldstein et al. 2014]. This approach to classical mechanics is equivalent to
Newtonian mechanics but leads to deeper insights which are critical to our current
mathematical understanding of quantum mechanics, general relativity, and other
branches of physics.

While the Euler–Lagrange equations have been very successfully applied to many
problems in engineering and physics, they do not provide the complete picture.
In particular, as necessary conditions for optimality, their derivation implicitly
assumes existence and smoothness of a minimum. In modern mathematics and
applications these assumptions are naive. For instance, many problems in continuum
mechanics have minimizers which lack enough regularity to be classical solutions
to the Euler–Lagrange equations [Müller 1999]. The existence of these nonstandard
solutions is not simply a mathematical curiosity but can be realized in practice as
the blister and herringbone patterns in compressed thin sheets [Ortiz and Gioia
1994; Song et al. 2008], branched domain structures in ferromagnets [DeSimone
et al. 2000], self-similar patterns in shape memory alloys [Bhattacharya 2003],
the network of ridges in crumpled paper [Witten 2007], and even the fractal-like
patterns in leaves and torn elastic sheets [Audoly and Boudaoud 2003; Sharon
et al. 2007; Gemmer et al. 2016]. To understand such systems, local solutions of
the Euler–Lagrange equations must be “patched together” along singularities in a
manner that is consistent with the overall variational structure of the problem; see
[Kohn 2007] for an introduction to this approach.

In this paper our focus is more modest. Namely, we study the problem of
determining brachistochrone solutions for particles falling in an inverse-square
gravitational field. This problem has been studied in [Parnovsky 1998; Tee 1999;
Gemmer et al. 2011] using standard techniques from the calculus of variations.
However, in these works they only considered “strong” solutions to the Euler–
Lagrange equations, which limits the scope of the optimal paths considered. In
particular, in [Parnovsky 1998; Tee 1999; Gemmer et al. 2011] it was shown that
there is a “forbidden” region through which strong solutions to the Euler–Lagrange
equations do not penetrate. In this paper, we show that by considering appropriate
“weak” solutions constructed from strong solutions patched together at the singular
origin of the gravitational field, the full space of optimal paths is more robust. In
particular, these solutions enter the forbidden region and are characteristics for the
Hamilton–Jacobi equation. This lends credence to the notion that our solutions are
the natural extensions of the strong solutions that penetrate the forbidden region
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and are optimal. Moreover, we also consider the inverse-square problem on an
annular domain. Using variational inequalities, we show that our weak solutions
are obtained in the limit as the inner radius of the annulus vanishes.

The paper is organized as follows. In Section 2 we outline the general framework
of brachistochrone problems, present the strong and weak versions of the Euler–
Lagrange equations, and draw a connection to geometric optics using results from
optimal control theory. In Section 3 we restrict our focus to the case of the inverse-
square gravitational field. We first briefly reproduce the results in [Parnovsky
1998; Tee 1999], namely that there exists a forbidden region through which strong
solutions cannot penetrate. Next we present our construction of weak solutions that
penetrate into this region. In Section 4 we take a pragmatic approach and consider
the problem on an annular domain that excises the singularity at the origin. In
doing so, we prove that under the assumption that the strong solutions are global
minimizers outside of the forbidden region, our weak solutions are time-optimal.
We conclude with a discussion section.

2. Mathematical framework and governing equations

2.1. Mathematical framework. In this section we summarize the essential defini-
tions and equations which we use to study brachistochrone problems in generic
settings. First, let V : Rn

→ R be the potential for a gravitational field; i.e., V is
a smooth function except possibly at isolated singularities. Suppose A, B ∈ Rn

satisfy V (A) > V (B) and there exists a smooth curve α : [0, 1] → Rn satisfying
α(0)= A, α(1)= B and V (α(s)) ≤ V (A) for all 0 ≤ s ≤ 1. Now, for a particle
released in the gravitational field and constrained to fall along α, it follows that if
friction is neglected, mechanical energy is conserved along the path

|α′(s)|2
(

ds
dt

)2

+ V (α(s))= V (A), (1)

where t denotes time traveled on α and we have absorbed the standard factor of 1/2
in the kinetic energy into the potential. The total time of flight to B can then be
directly computed:

T [α] =
∫ 1

0

|α′(s)|
√

V (A)− V (α(s))
ds. (2)

This time of flight is still well defined if instead of smooth functions we consider
absolutely continuous functions for which V (α)≤ V (A).1 That is, we define the

1The space of absolutely continuous functions from [0, 1] into Rn consists of all functions for
which there exists a Lebesgue measurable function β : [0, 1]→Rn satisfying α(s)=α(0)+

∫ s
0 β(s̄) ds̄

and is denoted by AC([0, 1];Rn) [Leoni 2009]. For α ∈ AC([0, 1];Rn) the (weak) notion of the first
derivative is defined by α′(s)= β(s).
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admissible set A by

A=
{
α ∈ AC([0, 1];Rn) : α(0)= A, α(1)= B and V (α(s))≤ V (A)

}
(3)

and define the functional T : A→ R by (2). The generalized brachistochrone
problem for the potential V is to find a curve α∗∈ A that minimizes the time of
flight to B. We call such curves brachistochrone solutions for the potential V.

The contours, i.e., the equipotential curves, of V naturally partition Rn into
domains

U (A)= {x ∈ Rn
: V (A)− V (x)≥ 0}

that contain points that (possibly) can be reached by brachistochrone solutions.
For example, for the uniform gravitational potential V : R2

→ R, defined by
V (x, y)=−y, a particle released at the point A= (0, 0) can only reach points in the
set U (A)= {(x, y) ∈R2

: y ≤ 0}. To completely solve the brachistochrone problem
for this potential, one is naturally led to the question of finding all brachistochrone
solutions that foliate U (A).

2.2. Euler–Lagrange equations for brachistochrone problems. We now follow
classical techniques presented in [Sagan 1969] to derive the Euler–Lagrange equa-
tions for (2). First, suppose infα∈A T [α] < ∞ and α∗ ∈ A satisfies T [α∗] =
infα∈A T [α], i.e., α∗ is a minimizer. Since α∗ ∈ AC([0, 1];Rn) and T [α∗] <∞,
the set of points in [0, 1] for which V (α∗(s)) = A has Lebesgue measure zero.
Consequently, if we further assume that V (α∗(s))=V (A) only at s=0 and possibly
at s=1 if the terminal point satisfies V (B)=V (A), then for all η∈C∞0 ([0, 1];Rn)2

there exists h̄ > 0 such that |h| < h̄ implies α∗ + hη ∈ A. Define the function
f : [−h̄, h̄] → R by f (x) = T [α∗+ hη]. From the regularity assumptions on V
and α∗, it follows that f is differentiable in h and consequently, since α∗ minimizes
T , it follows that f ′(0)= 0. Therefore, we have the following necessary condition
for optimality:

f ′(0)=
∫ 1

0

α∗′(s)
|α∗′(s)|

√
V (A)− V (α∗(s))

· η′(s) ds

+
1
2

∫ 1

0

|α∗′(s)|
(V (A)− V (α∗(s)))3/2

∇V (α∗(s)) · η ds, (4)

which must be satisfied for all η ∈ C∞0 ([0, 1];Rn) [Evans 1998]. Equation (4) is
known as the weak formulation of the Euler–Lagrange equations for the brachis-
tochrone problem. If we further assume that the minimizing curve α∗ is twice

2 C∞0 ([0, 1];Rn) denotes the space of smooth functions from [0, 1] into Rn with compact support
[Royden and Fitzpatrick 2010].
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differentiable then (4) can be integrated by parts to yield

0=
∫ 1

0

(
1
2

|α∗′(s)|
(V (A)− V (α∗(s)))3/2

∇V (α∗(s))

−
d
ds

(
α∗′(s)

|α∗′(s)|
√

V (A)− V (α∗(s))

))
· η ds. (5)

By the so-called “fundamental theorem of the calculus of variations”, since η was
arbitrary the necessary condition satisfied by a twice differentiable curve α∗ is the
following differential equation [Sagan 1969]:

0=
1
2

|α∗′(s)|
(V (A)−V (α∗(s)))3/2

∇V (α∗(s))−
d
ds

(
α∗′(s)

|α∗′(s)|
√

V (A)−V (α∗(s))

)
. (6)

Equation (6) is known as the strong formulation of the Euler–Lagrange equations
for the brachistochrone problem.

Note, however, that in deriving the strong formulation of the Euler–Lagrange
equations we made the additional assumption that α∗ is twice differentiable. In
many applications this assumption is too restrictive. For example, the functional
J : AC([−1, 1];R)→ R defined by J [y] =

∫ 1
−1(1− y′(s)2)2 ds with boundary

conditions y(−1) = y(1) = 1 is minimized by y(x) = |x |. In this example the
two strong solutions y = x and y = −x are joined together at x = 0. However
simply gluing together two strong solutions does not guarantee that the resulting
combination is a weak solution. If α∗ is twice differentiable everywhere except at
a point c ∈ (0, 1) and satisfies (6) away from c, we can integrate (4) by parts to
obtain the necessary condition

lim
s→c−

(
α∗′(s)

|α∗′(s)|
√

V (A)− V (α(s))

)
= lim

s→c+

(
α∗′(s)

|α∗′(s)|
√

V (A)− V (α(s))

)
. (7)

Equation (7) is commonly called the Weierstrass–Erdmann corner condition [Sagan
1969] and must be satisfied by piecewise smooth solutions of (6).

We now make some additional comments about the Weierstrass–Erdmann corner
conditions which will be relevant to the discussion in later sections. First, away
from a singularity in the potential V, i.e., if we assume that (V (A)−V (c))−1/2

6= 0,
(7) corresponds to continuity of the tangent vector α′(s) at c. Moreover, away
from singularities, this condition physically corresponds to conservation of classical
momentum at c. However, if (V (A)− V (c))−1/2

= 0, this necessary condition is
trivially satisfied. That is, at a singularity in the gravitational field, a minimizer
could violate conservation of momentum. This result should not be surprising since
at a singularity V (c)=∞, implying that the instantaneous speed, as well as the ac-
celeration of the particle, is infinite. This fact will be critical in our later construction
of weak brachistochrone solutions in an inverse-square gravitational field.
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2.3. Connection with geometrical optics through control theory. While directly
solving the Euler–Lagrange equations given by (6) will solve the brachistochrone
problem, there is another approach, originally taken by Johann Bernoulli. Namely,
Bernoulli realized that the brachistochrone problem is equivalent to finding the path
traced out by a ray of light in a medium with index of refraction n(x)= (V (A)−
V (x))−1/2. His solution method was prescient in that it applied Snell’s law of refrac-
tion to what would now be called a finite element approximation to the problem with
a piecewise linear basis [Erlichson 1999; Sussmann and Willems 1997]. The connec-
tion to geometrical optics was later exploited by Hamilton and finalized by Jacobi
to derive what we now call the Hamilton–Jacobi equations for a variational problem
[Broer 2014; Sussmann and Willems 1997; Nakane and Fraser 2002]. Specifically,
the Hamilton–Jacobi equation is a quasilinear partial differential equation whose
characteristic equations are precisely the Euler–Lagrange equations for the system
[Evans 1998]. In particular, the Hamilton–Jacobi equation governs the dynamics of
wave-fronts propagating in a medium with index of refraction n(x) and the Euler–
Lagrange equations are the evolution equations for the normals to the wave-fronts.

We will now show how the geometric optics interpretation of the brachistochrone
problem can be directly derived using modern optimal control theory. To reinterpret
the brachistochrone problem as a control problem we follow [Sussmann and Willems
1997] and first define the set of admissible controls by

U =
{
u : [0,R)→ Rn

: u is piecewise smooth and |u| = 1
}
, (8)

and to satisfy (1) we constrain the dynamics of the system by

α̇ =
√

V (A)− V (x) u. (9)

We define the trajectory of a control to be the curve α defined by (9) and also
define TB : U → R ∪ {+∞} to be the first time a trajectory corresponding to a
control u reaches the point B. The optimal control problem corresponding to the
brachistochrone problem is to find u∗ ∈ U that steers a trajectory α(t) to a point
B ∈U (A) in the minimal amount of time. That is, find u∗ ∈ U such that TB[u∗] =
infu∈U TB[u]. Clearly, this optimal control problem is equivalent to our previous
formulation of the brachistochrone problem and infu∈U TB[u] = infα∈A T [α].

One technique for solving such an optimal control problem is to apply Bellman’s
technique of dynamic programming [Bertsekas 1995]. Namely, if we define the
value function V :U (A)→ R by

V(x)= inf
u∈U

Tx[u] (10)

then the dynamic programming principle states that for 1t > 0 sufficiently small

V(x)= min
u∈U

0<s<1t

{V(ᾱ(1t))+1t}, (11)
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where ᾱ corresponds to the time-reversed solution of (9) with initial condition
ᾱ(0) = x and control u. If we assume that V is smooth, we can formally Taylor
expand:

V(x)= min
|u(0)|=1

{
V(x)+∇V(x)

√
V (A)− V (x) u(0)1t +1t +O(1t2)

}
.

Consequently, taking the limit as 1t→ 0, we obtain

−1= min
|u(0)|=1

∇V(x)
√

V (A)− V (x) u(0).

Finally, this minimum is obtained by u(0) = −∇V(x)/|V(x)| and hence we can
conclude that the value function V satisfies the partial differential equation

|∇V|2 =
1

V (A)− V (x)
= n2(x). (12)

In geometrical optics, (12) is an eikonal equation for a medium with index of
refraction n(x). That is, the level sets of solutions to (12) correspond to wave fronts
for light traveling through the medium and the light rays correspond to curves that
are everywhere tangent to the normals of the level sets of V . Consequently, if we
let β(s) be an arc-length parametrization of such a light ray, it follows that

∇V(β(s))= n(β(s))
dβ
ds
. (13)

Differentiating with respect to ds and switching the order of differentiation,

∇

(
∇V(β(s)) ·

dβ
ds

)
=

d
ds

(
n(β(s))

dβ
ds

)
.

Therefore, by (12) and (13), the governing equation for the rays is

∇n(β)=
d
ds

(
n(β(s))

dβ
ds

)
. (14)

Finally, it follows immediately that (14) is simply a version of (6) that is parametrized
by arc-length. That is, to solve the brachistochrone problem we could, in principle,
solve the eikonal equation (12) and use (13) to reconstruct the brachistochrone
solution. More importantly, we could solve the brachistochrone problem directly
by solving the Euler–Lagrange equations (6) and compute the time of flight along
these solution curves to compute the solution to the eikonal equation (12).

3. Brachistochrone problem in an inverse-square gravitational field

3.1. Framework. Consider two points A, B ∈ R2 with |B| ≤ |A|. For an inverse-
square field, the potential V : R2

→ R is defined by V (x)=−|x |−2. The inverse-
square brachistochrone problem is to construct a curve connecting A and B such
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that a particle traversing the curve from A to B under the influence a gravitational
field centered at the origin with potential V has the least time of flight. In this case
the admissible set A0 is defined by

A0=
{
α∈ AC([0,1];R2) :α(0)= A, α(1)= B and ∀t ∈[0,1], |α(t)|≤ |A|

}
(15)

and the time of flight T :A0→ R+ is given by

T [α] =
∫ 1

0

|α′(s)|√
|α(s)|−2− |A|−2

ds. (16)

Again, this functional arises from classical conservation of mechanical energy and
the constraint |α(s)| ≤ |A|— a necessary condition for this functional to be well
defined — is equivalent to the condition that the particle cannot gain mechanical
energy.

To study minimizers of (16) it is natural to work in a polar-coordinate represen-
tation of the form

α(s)=
(
r(s) cos(θ(s)), r(s) sin(θ(s))

)
, (17)

where r : [0, 1] → [0, |A|] and θ : [0, 1] → [−π, π] are (weakly) differentiable
functions satisfying r(0) = |A|, r(1) = |B|, θ(0) = θ0, θ(1) = θ f , with θ0, θ f

the angular coordinates of A, B respectively; see Figure 1 (left). By rotational
symmetry and radial invariance we can assume without loss of generality that
A = (1, 0); see Figure 1 (right). In this representation, (16) becomes

T [r, θ] =
∫ 1

0

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds =

∫ 1

0
L2
(
r(s), r ′(s), θ ′(s)

)
ds, (18)

where L2 : R
3
→ R denotes the Lagrangian for this functional. To reduce encum-

bering notation we write (r(s), θ(s)) ∈A0 as a proxy for the statement that there
exists α ∈ A0 with corresponding radial and angular components r(s) and θ(s)
respectively.

We now deduce geometric properties of minimizers using the structure of the
Lagrangian. We first show that if (r∗, θ∗) ∈ A0 minimizes T then θ∗ must be a
monotone function. This property prevents a minimizer from “turning back” to its
starting point. The idea of the proof is to construct for all (r, θ) ∈ A0 a modified
curve (r, θ̄ ) ∈A with θ̄ monotone in s and show T [r, θ̄ ] ≤ T [r, θ].

Proposition 1. If (r∗(s), θ∗(s)) ∈A0 minimizes T then θ∗ is monotone in s.

Proof. Let (r(s), θ(s)) ∈A0 terminate at the point (r f cos θ f , r f sin θ f ) and assume
θ f ≥ 0. Define θ̄ : [0, 1]→ [0, 2π ] by θ̄ (s)=min

{
θ f , sup{θ(t) : 0≤ t ≤ s}

}
. From

the absolute continuity of θ , it follows that θ̄ is absolutely continuous, monotone
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A=(r0 cos θ0, r0 sin θ0)

α(s)

O

B=(r f cos θ f , r f sin θ f )

B

O

α(s) A=(1, 0)

Figure 1. Left: Plot of a curve α : [0, 1] → R2 connecting
A= (r0 cos θ0, r0 sin θ0) to B = (r f cos θ f , r f sin θ f ) in an inverse-
square gravitational field centered at the origin O. The circle of
radius r0 is an equipotential for the inverse-square gravitational field.
For a particle falling along this curve, conservation of mechanical
energy requires that |α(s)| ≤ r0. Right: By rotational and radial
scale invariance of this problem, we can assume without loss of
generality that A = (1, 0).

increasing and satisfies θ̄ (1)= θ f . Moreover, there exists a closed set I on which
θ̄ = θ and an open set I = [0, 1] \ I on which d θ̄/ds = 0. Therefore,

T [r, θ̄ ] =
∫

I

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds+

∫
I

√
r ′(s)2

r(s)−1− 1
ds

≤

∫
I

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds+

∫
I

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds = T [r, θ],

with equality if and only if θ is monotone increasing. Thus, if (r∗(s), θ∗(s)) ∈A0

minimizes T then θ∗ is monotone increasing in s. A similar argument proves that
θ∗ must be monotone decreasing if θ f < 0. �

We now prove that without loss of generality we can assume minimizers are sym-
metric about the angle θ f /2. Specifically, if in polar coordinates (r∗(s),θ∗(s))∈A0

minimizes T and terminates at the final point (rf =1,θ f ) then the image of (r(s),θ(s))
is symmetric about the line θ = θ f /2. Similar to the previous proof, the idea is
to modify a curve α ∈A0 by constructing symmetric versions and comparing the
times of flight.

Proposition 2. If (r∗(s),θ∗(s))∈A0 minimizes T with terminal point (r(1),θ(1))=
(1,θ f ) then there exists a version of (r∗(s), θ∗(s)) in R2 that is symmetric about the
line θ = θ f /2 that also minimizes T.
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Proof. Let (r(s), θ(s))∈A0 and t (s) be a reparameterization in which θ(1/2)=θ f /2
and if t > 1/2 then θ(t) > θ f /2. Define the two possible reflections of (r(t), θ(t))
about the line θ = θ f /2 by

r1(t)=
{

r(t), 0≤ t ≤ 1
2 ,

r(1− t), 1
2 < t ≤ 1,

and θ1(t)=
{
θ(t), 0≤ t ≤ 1

2 ,

θ f − θ(1− t), 1
2 < t ≤ 1,

r2(t)=
{

r(1− t), 0≤ t ≤ 1
2 ,

r(t), 1
2 < t ≤ 1,

and θ2(t)=
{
θ(1− t)− θ f , 0≤ t ≤ 1

2 ,

θ(t), 1
2 < t ≤ 1.

By construction, the images of the curves (r1(t), θ1(t)) and (r2(t), θ2(t)) in R2 are
symmetric about the line θ = θ f /2. It follows from symmetry that

T [r1, θ1] = 2
∫ 1/2

0

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds,

T [r2, θ2] = 2
∫ 1

1/2

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds.

Therefore, T [r1, θ1] + T [r2, θ2] = 2T [r, θ] from which it follows that

min
{
T [r1, θ1], T [r2, θ2]

}
≤ T [r, θ].

Thus if (r∗(s), θ∗(s)) ∈A0 minimizes T then either (r1(s), θ1(s)) or (r2(s), θ2(s))
must also minimize T. �

3.2. Strong solutions to Euler–Lagrange equations. In this subsection we review
the construction of smooth minimizers to T that was originally presented in
[Parnovsky 1998; Tee 1999]. The classic method for finding time-minimizing curves
is to derive the Euler–Lagrange equations for T and solve the resulting boundary
value problem. Specifically, if we assume there exists a twice differentiable curve
α∗(s)∈A0 with angular component θ∗(s) and radial component r∗(s) that (locally)
minimizes T then the resulting boundary value problem is

(
∂L
∂r
−

d
ds
∂L
∂r ′

)∣∣∣∣
(r∗(s),θ∗(s))

= 0,

d
ds
∂L
∂θ ′

∣∣∣∣
(r∗(s),θ∗(s))

= 0,

r∗(0)= 1, r∗(1)= |B|, θ∗(0)= 0, θ(1)= θ f .

(19)

If we make the assumption that θ∗ is a function of r∗, i.e., we assume the ansatz
r∗(s)= (|B| − 1)s+ 1, then (19) reduces to the differential equation

d
dt
∂L
∂θ ′
= 0. (20)
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Formally, (20) can be integrated to yield a separable differential equation with
solution

θ∗(r∗)=±
∫ r∗

1

√
2(1/u− 1)D

u4− u2(2(1/u− 1))D
du, (21)

where D > 0 is a constant of integration which can be determined from the
boundary conditions. The assumption that θ∗ is globally a function of r∗ is
valid if (dθ∗/dr∗)−1

6= 0 for all r∗ ∈ (0, 1). It follows from (21) that for fixed
D > 0 this condition is equivalent to the nonexistence of solutions to the equation
r3
+ 2Dr − 2D = 0 for r ∈ (0, 1]. The following proposition makes this statement

precise and identifies the critical radius rc in terms of the integration constant D.

Proposition 3. For fixed D > 0, there exists a unique rc(D) ∈ [0, 1] such that
θ∗(r∗) defined by (21) satisfies

lim
r→rc(D)+

dθ∗

dr∗

∣∣∣∣
r
=∞.

Moreover, the mapping D→ rc(D) is a bijection from (0,∞) into (0, 1).

Proof. Fix D > 0 and define g : (0, 1)→ R by g(r) = r3
+ 2Dr − 2D. Since

g(0)=−2D, g(1)= 1, and g′(r) > 0, by the intermediate value theorem there
exists unique rc(D) ∈ (0, 1) such that g(rc(D))= 0. Consequently, it follows from
(21) that

lim
r→rc(D)+

∂θ∗

∂r∗

∣∣∣∣
r
=∞.

The bijection is proved by noting that the inverse mapping from rc(D) to D given
by D(rc)= (r3

c /2)(1− rc) satisfies limrc→0+ D(rc)= 0, limrc→1− D(rc)=∞ and
is monotone increasing in rc. �

To extend smooth solutions beyond the point where θ∗ is no longer a function
of r∗ it follows from Proposition 2 that it is necessary to reflect the solutions
across the line θ = θ f /2. Specifically, for D ∈ (0,∞) if we define rc(D) as
in Proposition 3 then we obtain the following family of solutions expressed in
parametric form α(s)=

(
r S

D(s) cos(θ S
D(s)), r

S
D(s) sin(θ S

D(s))
)

with

r S
D(s)=

{
2(rc(D)− 1)s+ 1, 0≤ s ≤ 1

2 ,

2(1− rc(D))(s− 1)+ 1, 1
2 < s ≤ 1,

(22)

θ S
D(s)=


±

∫ r S
D(s)

1

√
2(1− u)D

u5− 2u2 D(1− u)
du, 0≤ s ≤ 1

2 ,

∓

∫ r S
D(s)

rc(D)

√
2(1− u)D

u5− 2u2 D(1− u)
du± θ S

D
(1

2

)
, 1

2 ≤ s ≤ 1,

(23)
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Y

X

Figure 2. Plot of 16 smooth strong solution curves α(s) defined
by (22) and (23) with the final angular coordinate θ S

D(1) uniformly
spaced from −2π/3 to 2π/3. The value of D was found by the
bisection method, i.e., the shooting method, applied to (23). The
points indicate the critical radius rc(D) where dθ S

D/dr S
D = ±∞

and the curve begins receding away from the origin.

where we are using the superscript “S” to denote that these are strong solutions to
the Euler–Lagrange equations. Note, that while the individual functions r S

D(s) and
θ S

D(s) are not smooth, the curve α itself is a smooth function from [0, 1] into R2.
Interestingly, as D ranges over values in (0,∞) the curves defined by (22) and

(23) do not foliate the unit disk x2
+ y2
≤ 1; see Figure 2. Indeed, if we define the

sector S by

S = {θ : −π ≤ θ <−2π/3} ∪ {θ : 2π/3< θ < π}, (24)

it was shown in [Tee 1999; Gemmer et al. 2011] that these curves do not enter S.
This is made precise by the following proposition whose proof we adapt from
[Gemmer et al. 2011].

Proposition 4. For all s ∈ [0, 1] and D ∈ (0,∞) the curves α(s) with radial and
angular components r S

D(s) and θ S
D(s) defined by (22) and (23) satisfy θ S

D(s) /∈ S.

Proof. For D > 0 let α(s) =
(
r S

D(s) cos(θ S
D(s)), r

S
D(s) sin(θ S

D(s))
)

be defined by
(22) and (23) with the “−” branch. Differentiating,

dθ S
D

ds
=

dθ S
D

dr S
D

dr S
D

ds
= 2rc(D)

√
2(1− r S

D)D

(r S
D)

5− 2(r S
D)

2 D(1− r S
D)
> 0

with equality only at r S
D = 1. Hence, dθ S

D/ds is monotone increasing in s with the
maximum angular coordinate θ̄ (D) satisfying

θ̄ (D)= max
0≤s≤1

θ S
D(s)= 2

∫ 1

rc(D)

√
2(1− u)D

u5− 2u2 D(1− u)
du.
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Since limD→∞ rc(D)= 1, it follows that limD→∞ θ̄ (D)= 0. Now, from uniqueness
of solutions to (20) we can deduce that θ̄ (D) must be monotone decreasing in D
and hence has a limit as D→ 0. By making the change of variables x = rc(D)/u3/2,
we obtain

1
2

lim
D→0

θ̄ (D)= lim
D→0

2
3

∫ 1

rc(D)

√
1−rc(D)x−2/3

(1−rc(D))−(1−rc(D)x−2/3)x2 dx

= lim
D→0

2
3

∫ 1

0

√
1

(1−rc(D))/(1−rc(D)x−2/3)−x2 I{x > rc(D)3/2}dx,

where I denotes the standard indicator function. Now, observing that the integrand
of the above equation forms a sequence of functions bounded by (1− x2)−1/2, it
follows from Lebesgue’s dominated convergence theorem that

lim
D→0

θ̄ (D)=
∫ 1

0

4
3

√
1

1− x2 dx = 4
3
(arcsin(1)− arcsin(0))= 2π

3
.

The exact same arguments hold if we consider the “+” branch in (22) and (23)
except the limiting angle is −2π/3. Consequently we can conclude for all s ∈ [0, 1]
and D ∈ (0,∞) that θ S

D(s) given by (23) satisfies

−
2π
3
≤ θ S

D(s)≤
2π
3
. �

The following proposition immediately follows from Propositions 3 and 4.

Proposition 5. For all θ f ∈ (0, 2π/3) there exists D ∈ (0,∞) such that the solution
curve with angular and radial coordinates (θ S

D(s), r
S
D(s)) as defined by (22) and

(23) satisfies θ S
D(0) = 0, and θ S

D(1) = θ f . Moreover, the mapping θ f → D is a
bijection.

Remark. It follows from Propositions 3 and 4 that θ f , rc and D characterize a
unique solution curve of the form defined by (22) and (23).

3.3. Weak solutions to the Euler–Lagrange equations. One family of weak solu-
tions to (16) is given by the parametrization

r W (s)=
{

1− 2s, 0≤ s ≤ 1
2 ,

2s− 1, 1
2 < s ≤ 1,

(25)

θW
θ f
(s)=

{
0, 0≤ s ≤ 1

2 ,

θ f ,
1
2 ≤ s ≤ 1,

(26)

where the superscript “W ” is used to denote that these are weak solutions to
the Euler–Lagrange equations. This parametrization indeed satisfies the corner
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Figure 3. Left: Plot of weak solution curves defined by (25) and
(26) with final angular coordinate θ f spaced evenly from −π to π .
Right: Foliation of the unit disk by weak solution curves in S and
classic solutions outside of S. Beneath the solution curves is a
contour plot of the time of flight calculated along the solution curves.
The contours correspond to level sets of the value V satisfying the
eikonal equation defined by (12).

condition given by (7):

lim
s→c−

(
α∗′(s)

|α∗′(s)|
√

V (A)−V (α(s))

)
− lim

s→c+

(
α∗′(s)

|α∗′(s)|
√

V (A)−V (α(s))

)
= (1,0) lim

s→1/2+

(√
r W (s)

r W (s)−1

)
+(cosθ f ,sinθ f ) lim

s→1/2−

(√
r W (s)

r W (s)−1

)
= (0,0).

It is important to note that as it is defined, θW
θ f
(s) is not weakly differentiable.

Specifically, θW
θ f
(s) is only differentiable in the distributional sense with a derivative

given by a delta mass centered at s = 1/2. However, this is only an artifact of the
r = 0 coordinate singularity for polar coordinates and the curve αW (s) itself is
weakly differentiable. Moreover, for s < 1/2 this curve is simply the solution curve
given by (22) and (23) with D = 0 and the weak solution is constructed by joining
appropriately rotated copies of this strong solution at the origin.

The family of solutions to the Euler–Lagrange equations defined by (25) and (26)
completely foliate the unit disk; see Figure 3 (left). Hence these solution curves are
natural candidates for time minimizers that enter the sector S. In Figure 3 (right)
we plot the unit disk foliated by a combination of strong and weak solutions to
the Euler–Lagrange equations. More specifically, for a given θ f we use (22) and
(23) or (25) and (26) depending on whether |θ f |> 2π/3. The contour beneath the
curves in corresponds to the time of flight computed along the solution curves and
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confirms our intuition that the classic solutions have shorter time of flight outside
of S. Notice that the contours in Figure 3 (right) are smooth and intersect the strong
and weak solution curves orthogonally as expected from (13). Moreover, the value
function V defined in Section 2 is a solution to the eikonal equation defined by (12).

4. Constrained inverse-square brachistochrone problem

4.1. Variational inequality. In the previous section we solved the inverse-square
brachistochrone problem using a combination of weak and strong extremizers.
However, the solutions are impractical in that, as a consequence of the singular
gravitational field, a particle following along an extremizer will experience infinite
acceleration at the origin. To alleviate this problem we now consider a modified
version of the inverse-square brachistochrone problem that restricts the radial
coordinate to remain bounded away from the origin. Specifically, for ε > 0 we
define the annulus Oε = {(x, y) ∈ R2

:
√

x2+ y2 ≥ ε} and consider the problem of
minimizing T over the admissible set Aε ⊂A0 defined by

Aε=
{
(r(s),θ(s))∈A0 :

(
r(s)cos(θ(s)),r(s)sin(θ(s))

)
∈Oε for s ∈[0,1]

}
. (27)

This formulation of the problem is equivalent to an “obstacle problem” with the
obstacle being the circle of radius ε centered at the origin.

To derive necessary conditions satisfied by minimizers of T over Aε we follow
[Evans 1998, Chapter 8, Section 4] and derive a variational inequality that plays
the role of the Euler–Lagrange equations. First, suppose α∗(s) ∈Aε is the global
minimizer of T over Aε with radial and angular components r∗(s) and θ∗(s)
respectively. Letting β(s) ∈Aε with radial and angular components q(s) and θ∗(s)
respectively, it follows from the convexity of Aε that for all λ∈ [0, 1] the curve γ (s)
with radial component r∗(s)+ λ(q(s)− r∗(s)) and angular component θ∗(s) also
satisfies γ (s) ∈Aε . Consequently

T
[
r∗(s)+ λ(q(s)− r∗(s)), θ∗(s)

]
− T [r∗(s), θ∗(s)] ≥ 0 (28)

and thus taking the limit λ→ 0 we obtain the following necessary condition satisfied
by a minimizer:∫ 1

0

(
(q(s)− r∗(s))

∂L
∂r

∣∣∣∣
r∗(s),θ∗(s)

+ (q ′(s)− r∗′(s))
∂L
∂r ′

∣∣∣∣
r∗(s),θ∗(s)

)
ds ≥ 0. (29)

Since we can perturb θ∗(s) by any smooth function ξ compactly supported on [0, 1],
we again obtain the weak Euler–Lagrange equation∫ 1

0
ξ ′(s)

∂L
∂θ ′

∣∣∣∣
r∗(s),θ∗(s)

ds = 0. (30)



848 CHRISTOPHER GRIMM AND JOHN A. GEMMER

We now illustrate how (29) and (30) can be used to derive further necessary
conditions satisfied by a minimizer (r∗(s), θ∗(s))∈Aε . Suppose (r∗(s), θ∗(s))∈Aε
minimizes T over Aε and define the sets

U = (r∗)−1
{ε}, (31)

U c
= [0, 1] \U. (32)

Since r∗(s) is continuous, U is a closed subset of [0, 1]. On U it follows that (29)
is automatically satisfied since∫

U

(
(q(s)− r∗(s))

∂L
∂r

∣∣∣∣
r∗(s),θ∗(s)

+ (q ′(s)− r∗′(s))
∂L
∂r ′

∣∣∣∣
r∗(s),θ∗(s)

)
ds

=

∫
U
(q(s)− ε)

|θ∗′(s)|
1− ε

3− 2ε
2

ds ≥ 0.

On U c consider the perturbation q(s) = τv(s)+ r∗(s), where v is any smooth
function compactly supported on V and τ ∈ R is small enough in magnitude that
q(s) ∈Aε . Substituting into (29) yields

τ

∫
U c

(
v(s)

∂L
∂r

∣∣∣∣
r∗(s),θ∗(s)

+ v′(s)
∂L
∂r ′

∣∣∣∣
r∗(s),θ∗(s)

ds
)
≥ 0. (33)

Since τ is of arbitrary sign, the above inequality is actually an equality. That is, for
s ∈U c we recover the weak Euler–Lagrange equations for r∗(s).

Remark. Taken together, the above necessary conditions imply that potential min-
imizers of T over Aε consist of the family of curves satisfying the Euler–Lagrange
equations away from the constraint. That is, potential minimizers consist of piece-
wise smooth curves satisfying (22) and (23), joined with circular arcs of radius ε.

4.2. Piecewise smooth minimum. As in the case with no constraint, i.e., ε = 0,
we now foliate Oε by curves that minimize the time of flight. By symmetry we only
foliate the upper half-annulus O+ε = {(x, y)∈Oε : y ≥ 0}. To construct the foliation
we examine the behavior of potential minimizers with terminal coordinates (rt , θ f )

satisfying (r f , θ f ) ∈ ∂O+ε (the boundary of O+ε ) which can be naturally divided into
four regions:

R1 = {(r, θ) ∈ ∂O+ε : θ = 0}, R2 = {(r, θ) ∈ ∂O+ε : r = 1},

R3 = {(r, θ) ∈ ∂O+ε : θ = π}, R4 = {(r, θ) ∈ ∂O+ε : r = ε}.

Each of these regions is considered as separate cases below.

4.2.1. Minimizers terminating on R1. It follows from (22) and (23) that if D = 0,
the strong solution to the Euler–Lagrange equation is a straight line connecting
(1, 0) to the origin. In particular this implies that if (r f , θ f ) ∈ R1 then straight lines
are the natural candidate minimizers.
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4.3. Minimizers terminating on R2. Suppose (r f , θ f ) ∈ R2. For θ f sufficiently
small we expect the minimizers to consist of the smooth strong solution curves
defined by (22) and (23). However, if θ f > π/3, the strong solutions to the Euler–
Lagrange equations will necessarily intersect the obstacle. Note that from the
convexity of the strong solutions there exists a unique critical angle θ εc ∈ (0, π/3)
in which the strong solutions intersect the obstacle tangentially. Specifically, θ εc is
defined by

(
r S

D(ε)(1/2), θ
S
D(ε)

(1
2

))
= (ε, θ εc ) and

dr S
D(ε)

ds

∣∣∣∣
1/2
= 0. (34)

The critical angle θ εc serves as a boundary in the sense that if the final angular
coordinate θ f satisfies θ f /2> θ εc then it is necessary to consider piecewise-defined
curves as candidate minimizers. This is made precise by the following proposition.

Proposition 6. Suppose that the smooth solution curves given by (22) and (23)
are global minimizers of T over A0. For ε > 0, if θ f /2 < θ εc then there exists
a D ≥ D(ε) > 0 such that (r S

D(s), θ
S
D(s)) ∈ Aε minimizes T over curves in Aε

terminating at the angular coordinate θ f .

Proof. Let θ f ∈ (0, 2π/3) satisfy θ f /2 < θ εc and (r S
D(s), θ

S
D(s)) parametrize

the smooth solutions given by (22) and (23) terminating at (cos θ f , sin θ f ). By
Propositions 4 and 5, θ f and rc are monotonically decreasing and increasing in D
respectively, and thus rc(D(θ f )) ≥ ε. Furthermore, since r S

D(s) is convex in s, it
follows that r S

D(s) ≥ ε and thus (r S
D(s), θ

S
D(s)) ∈ Aε . Finally, since Aε ⊂ A0 and

(r S
D(s), θ

S
D(s)) is assumed to minimize T over curves in A0 which terminate at

(cos θ f , sin θ f ), it follows that (r S
D(s), θ

S
D(s)) also minimizes T over curves in Aε

which terminate at (cos θ f , sin θ f ). �

For a strong solution given by (22) and (23) satisfying θ f /2> θ εc , let

sεD =min{(r S
D)
−1
{ε}},

i.e., the first point of intersection with the obstacle. The natural generalizations
of Propositions 1 and 2 can be shown to hold for Aε and consequently we know,
without loss of generality, that minimizers consist of curves symmetric about the
angle θ f /2 that are smooth solutions given by (22) and (23) away from the constraint,
ride along it for a finite amount of time, and then rejoin a rotated and reflected
version of the latter half of the same smooth solution; see Figure 4. This family of
minimizers is

F ε
D,θ f

(s)=


(
r S

D(h(s)) cos(h(s)), r S
D(h(s)) sin(θ S

D(h(s)))
)
, s ∈

[
0, 1

3

)
,(

ε cos(t (s)), ε sin(t (s))
)

s ∈
[ 1

3 ,
2
3

]
,(

r S
D(s) cos(l(s)), r S

D(s) sin(l(s))
)

s ∈
( 2

3 , 1
]
,

(35)
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Figure 4. Plots of curves F ε
D,θ f

(s) defined by (35) with ε = 0.5.
Left: a curve F ε

D,θ f
(s) with θ f = 2π/3, D = 0.0204 and θc = π/4

which reaches the obstacle and rides along it; (middle) a curve
F ε

D,θ f
(s) with θ f = π/3, D = 0.2300 and θc = π/6 which does

not reach the obstacle (sε = 0.5); (right) a curve F ε
D,θ f

(s) with
θ f = 2π/3, D = 0.1250 and θc = 0.5981 which approaches the
obstacle at a tangent and rides along it.

where r S
D(s), θ

S
D(s) are given by (22) and (23) with θ f (D) satisfying θ f (D)/2≥ θ εc ,

h(s)= s/(3sεD), l(s)= θ S
D( jD,ε(s))+ θ f − θ

S
D(1),

j (s)= 3sεDs+ 1− 3sεD, t (s)= 3(θ f − 2θ S(sεD))s+ θ f − θ
S(sεD).

The following proposition characterizes the minimum of T over the family of
curves given by (35); namely they consist of the curves defined by (35) that meet
the constraint at a tangent.

Proposition 7. Suppose that the smooth solution curves given by (22) and (23) are
global minimizers in A0. For ε > 0, if θ f /2 ≥ θ εc then the unique minimizer of T
over the family of curves defined by (35) intersects the constraint tangentially.

Proof. Let θ f ∈ (0, π) satisfy θ f /2≥ θ εc . Let F ε
D(ε),θ f

(s) be the unique curve which
intersects the constraint at a tangent and terminates at angular coordinate θ f . Let
F ε

D,θ f
(s) be another curve with D < D(ε) that terminates at angular coordinate θ f .

By Propositions 4 and 5, θ f and rc are monotonically decreasing and increasing
in D respectively; hence rc(D) ≤ ε and θc(D) ≥ θ εc . Moreover, it follows from
the monotonicity of θ S

D(s) in s that F ε
D,θ f

(s) intersects the constraint at some
angular coordinate θ0 < θ εc and intersects F ε

D(ε),θ f
(s) at angular coordinate θ εc .

Since F ε
D(ε),θ f

(s) is of the form (r S
D(ε)(s), θ

S
D(ε)(s)) for s < sεD(ε), it follows from

our assumption that smooth solutions given by (22) and (23) minimize T that
F ε

D(ε),θ f
(s) minimizes the time of flight to angular coordinate θ εc . Moreover, both

curves have the same time of flight along the constraint from angular coordinates θ εc
to θ f − θ

ε
c , and consequently T [F ε

D(ε),θ f
(s)]< T [F ε

D,θ f
(s)]. �

4.3.1. Minimizers terminating on R3. Let (r, π) ∈ R3. We know from our prior
analysis in R2 that all minimizers must ride along the obstacle until at least angular
coordinate π − θ εc . Hence, to minimize over curves terminating at (r, π), we
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need only minimize T over curves from (ε, π − θ εc ) to (r, π). Note that from the
convexity of strong solutions given by (22) and (23), there exists a unique angle
φεc ≥ π − θ

ε
c such that the smooth solution comes off the obstacle tangentially at φεc

and intersects (r, π). It can be further shown that this curve minimizes the time of
flight T between coordinates (ε, π − θ εc ) and (r, π). This is made precise by the
following proposition.

Proposition 8. Suppose that the smooth solution curves given by (22) and (23) are
global minimizers in A0. For ε > 0 and (r, π) ∈ R3, a minimizer of T over Aε that
terminates at (r, π) leaves the obstacle at a tangent.

Proof. Let α∗ ∈ Aε denote the candidate minimizer that leaves the obstacle at a
tangent from the angular coordinate φεc and terminates at the polar coordinate (r, π).
From the convexity of smooth solutions, we know that any other candidate minimizer
α ∈ Aε terminating at the polar coordinate (r, π) must come off the obstacle at
some angular coordinate φ0 > φ

ε
c . Since the piece of the curve α∗ that connects

the polar coordinates (ε, φεc ) to (r, π) is a smooth solution curve given by (22)
and (23), it follows from our assumption that it minimizes the time of flight from
polar coordinates (ε, φεc ) to (r, π). Consequently, the time of flight from polar
coordinates (ε, φεc ) to (r, π) along α is larger.

Using the same method as in the proof of Proposition 7, it can be shown that it
follows from our assumption that smooth solutions are given by (22) and (23), that
a candidate minimizer coming off the obstacle at angular coordinate φ0 has greater
time of flight than one coming off at angular coordinate φεc . �

4.3.2. Minimizers terminating on R4. Let (ε, θ) ∈ R4. If θ < θ εc , there is a smooth
solution given by (22) and (23) that, by assumption, minimizes the time of flight to
(ε, θ). If θ ∈ (θ εc , π − θ

ε
c ), there exists a curve in the family (35) that minimizes

the time of flight to (ε, θ). If θ > θ εc , it follows from Proposition 8 that there is a
curve minimizing the time of flight that approaches the obstacle at a tangent and
rides along until angular coordinate θ .

Remark. The solution curves connected to the boundary foliate the domain. Specif-
ically, there are three distinct areas A1, A2 and A3 satisfying Oε = A1 ∪ A2 ∪ A3

that are foliated by curves connected to the boundary in R2, R3 and R4 respectively.
This is illustrated in Figure 5.

4.4. Convergence to weak solutions. In the previous section, Propositions 6 and 7
describe the behavior of a family of curves that minimizes T to terminal polar
coordinates (1, θ f ) ∈ R2. For a given value of ε ∈ (0, 1) and θ f ∈ (0, π), we denote
this family as

αεθ f
(s)=

{(
r S

D(θ f )
(s)cos(θ S

D(θ f )
(s)),r S

D(θ f )
(s)sin(θ S

D(θ f )
(s))

)
if θ f /2≤ θ εc ,

F ε
D(ε),θ f

(s) if θ f /2>θ εc ,
(36)
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Figure 5. Left: The annulus Oε with A1 shaded in. A1 consists
of the set of points which lie on solution curves terminating on R2.
Overlaid on A1 are evenly spaced solution curves terminating on
R2 given by (35). Right: The annulus Oε with A2, A3 shaded in.
A2 and A3 consist of the sets of points which lie on solution curves
terminating on R3 and R4 respectively. Overlaid on A2 and A3 are
evenly spaced solution curves terminating in R3 and R4.

where (r S
D(θ f )

(s), θ S
D(θ f )

(s)) are the radial and angular coordinates of the unique
smooth solution given by (22) and (23), and F ε

D(ε),θ f
(s) is a member of the family

described by (35). Moreover, as ε approaches 0, this family converges to the natural
foliation of the unit disk described in Figure 3 (right) and given by

αθ f (s)=
{(

r S
D(θ f )

(s)cos(θ S
D(θ f )

(s)),r S
D(θ f )

(s)sin(θ S
D(θ f )

(s))
)

if θ f < 2π/3,(
r W(s)cos(θW(s)),r W(s)sin(θW(s))

)
if θ f ≥ 2π/3,

(37)

where r W(s), θW(s) are the radial and angular coordinates of the unique smooth
solution given by (25) and (26) with |B| = 1 and θ f . This is made precise in the
following proposition.

Proposition 9. For θ f ∈ (0, π),

lim
ε→0

d(αεθ f
, αθ f )= 0,

where
d(αθ f , αθ f )= sup

0≤s≤1
inf

0≤t≤1
|αεθ f

(s)−αθ f (t)|

is the natural distance between the images of curves in the uniform norm.

Proof. Let θ f ∈ (0, π) and define the sequence of functions αεθ f
(s) by (36).

(1) If θ f < 2π/3, there exists some D(θ f ) > 0 such that the smooth solution
(r S

D(θ f )
(s), θ S

D(θ f )
(s)) given by (22) and (23) terminates at (1, θ f ). By Proposition 5,

lim
ε→0

θ εc = π/3≥ θ f /2.

Therefore, there exists ε∗ such that ε<ε∗ =⇒ αεθ f
=αθ f . Thus, for θ f < 2π/3,

lim
ε→0

d(αεθ f
, αθ f )= 0.
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Figure 6. A foliation of the annuli O0.75, O0.5, O0.25, O0.1 by
evenly spaced solution curves terminating on the boundary of the
annulus. Beneath the solution curves of each subfigure is a contour
plot of the time of flight from (1, 0) to each point on the annulus
by solution curves of the form given by (36).

(2) If θ f ≥ 2π/3, then αεθ f
approaches the obstacle tangentially at (r, εεc ) along the

path of a smooth solution for s ∈ [0, 1/3]. It follows from the convexity of smooth
solutions that αεθ f

([0, 1/3]) is contained in the rectangular region

Rε =
{
(x, y) ∈ R2

: x ∈ [ε cos(θ εc ), 1], y ∈ [0, ε sin(θ εc )]
}
.

As ε→ 0, the region Rε limits to the line {(x, y)∈R2
: x ∈ [0, 1], y= 0}. Moreover,

αεθ f
([1/3, 2/3]) is on the obstacle and consequently limits to the origin as ε→ 0. It

follows immediately from radial symmetry that a rotated rectangular region can be
constructed around αεθ f

([2/3, 1]) that limits to the line θ = θ f . Hence each point on
αεθ f

limits to a point along the weak solution
(
r W(s) cos(θW(s)), r W(s) sin(θW(s))

)
and thus for θ f > 2π/3,

lim
ε→0

d(αεθ f
, αθ f )= 0. �
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The solution curves depicted in Figure 6 again intersect the level sets of the
value function orthogonally. This is consistent with (13); i.e., V satisfies the eikonal
equation defined by (12) on an annular domain.

5. Discussion and conclusion

In this paper we solved the brachistochrone problem in the inverse-square gravi-
tational field. Namely, we constructed solutions that enter the so-called forbidden
region first mentioned in [Parnovsky 1998; Tee 1999; Gemmer et al. 2011]. Further-
more we considered the constrained problem where solutions are restricted to lie out-
side of a ball around the origin. This restricted problem is more physically relevant
since it avoids the particle experiencing infinite acceleration at the origin. Moreover,
the solutions in the annular domain recover our prior solutions on the disk in the
limit of vanishing inner radius. Consequently these solutions on the annular domain
correspond to “regularized” brachistochrone solutions that avoid the singularity.

In the future, this work could be extended to problems with multiple singularities.
That is, a natural extension of this work is to consider brachistochrone problems
with multiple point sources of gravity. Natural questions to consider would be what
role if any does the existence of a forbidden region play in the selection of strong
or weak solutions. If weak solutions do exist, we conjecture that they would form
a network of strong solutions patched together at singularities of the gravitational
field. We expect that many of our results would hold locally near a singularity.
However, by adding multiple singularities we break the radial invariance which we
exploited to explicitly construct global solutions.

We also should mention that we have only considered necessary conditions for
optimality. Specifically, this problem is not completely solved in the modern sense
without a proof of the existence of a minimizer. This is not a trivial task since the
functional is not coercive and is not convex at the singular origin and hence the
direct method of the calculus of variations cannot be applied. We conjecture that
the general results for noncoercive integrals presented in [Botteron and Marcellini
1991] or the technique of convex rearrangement presented in [Greco 2012] can be
adapted to prove existence on the annular domain. Consequently, we expect that
we could prove an existence result on the entire disk by considering the limit of
vanishing inner radius.
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