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On halving-edges graphs
Tanya Khovanova and Dai Yang

(Communicated by Kenneth S. Berenhaut)

In this paper we study halving-edges graphs corresponding to a set of halving
lines. Particularly, we study the vertex degrees, path, cycles and cliques of such
graphs. In doing so, we study a vertex-partition of said graph called chains which
are equipped with interesting properties.

1. Introduction

Halving lines have been an interesting object of study for a long time. Let n points
be in general position in R2, where n is even. A halving line is a line through two
of the points that splits the remaining n− 2 points into two sets of equal size. The
minimum number of halving lines is 1

2 n. The maximum number of halving lines is
unknown. The first bounds were found by Lovász [1971] and by Erdős et al. [1973].
The current asymptotic upper bound of O(n4/3) was proven by Dey [1998].

We approach the subject of halving lines by studying the properties of the
underlying graph. From our set of n points, we define a halving-edges graph of n
vertices, where each point is a vertex and each pair of vertices is connected by an
edge if and only if there is a halving line through the corresponding two points; see
[Matoušek 2002].

In Section 2 we discuss some basic properties of halving-edges graphs including
degrees and the number of connected components. We also prove that any graph
can be an induced subgraph of a halving-edges graph. In Section 3 we show that a
halving-edges graph with n vertices can contain an (n−1)-path, and an (n−3)-cycle
at most and provide a construction to show that the bound is exact. We give an
example of a halving-edges graph containing a clique of size of at least

√
1
2 n. We

continue by studying chains, introduced by Dey [1998], in Section 4. The chain
methods allow us to prove more properties of halving-edges graphs. In particular,
we show that the largest clique cannot exceed a size of

√
2n+ 1.

MSC2010: 05C30.
Keywords: combinatorics, halving lines, combinatorial geometry, discrete math.
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2 TANYA KHOVANOVA AND DAI YANG

2. Basic properties of the halving-edges graph

The following properties of halving edges graphs are well known.

Lemma 2.1. A halving-edges graph does not have isolated vertices. It has at least
three leaves.

Theorem 2.2. Each vertex of a halving-edges graph has an odd degree.

We will use another related result in the future.

Lemma 2.3. Given two halving lines VP and VQ sharing a vertex V, there exists
another halving line VR such that R lies in the opposite angle of 6 PVQ. Equiva-
lently, the vectors EVP, EVQ, EVR do not all lie on a single half-plane.

As each vertex has at least one halving line passing through it, the minimum
number of halving lines is 1

2 n. This number is achieved when points form a convex
n-gon. Any number of halving lines between the lower bound and the upper bound
is achievable as the following theorem states [Khovanova and Yang 2012].

Theorem 2.4. For a fixed n, if there exist two configurations with k1 and k2 halving
lines respectively, then for all k such that k1 ≤ k ≤ k2, there exists a configuration
with k halving lines.

Segmenterizing. We will use this construction a lot through this paper. Suppose
we have a set of points. Any affine transformation does not change its halving-edges
graph. Sometimes it is useful to picture that our points are squeezed into a long
narrow rectangle. This way our points are almost on a segment. We call this
procedure segmenterizing. Figure 1 shows three pictures. The first picture has six
points, that we would squeeze towards the line y = 0. The second picture shows
the configuration squeezed by a factor of 10, and if we make the factor arbitrarily
large the points all lie very close to a segment, as shown in the last picture.

This procedure makes all the points very close to a single line segment and all
the halving lines very close to this line. If we add a point not too close to this line,
then it lies on the same side of all the halving lines. Moreover, it lies on the same
side of all the lines connecting any two original points. Note that by the nature of
affine transformations, we do not necessarily have to squeeze along the direction
that is perpendicular to the segment.

Figure 1. Segmenterizing.
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Figure 2. The cross construction.

Degrees and connected components. In the proof of the following lemma we
need a construction we call a cross. Given two sets of points with n1 and n2

points respectively whose halving-edges graphs are G1 and G2, the cross is the
construction of n1 + n2 points on the plane whose halving-edges graph has two
isolated components G1 and G2. We form the cross as follows. Segmenterize
graphs G1 and G2 and intersect the resulting segments at middle lines, so that half
of the points of each segment lie on one side of all halving lines that pass through
the points of the other segment (see Figure 2).

Lemma 2.5. Any odd degree between 1 and n− 1 can appear in a halving-edges
graph of n vertices. Any number of connected components between 1 and 1

2 n
inclusive can appear in a halving-edges graph of n vertices.

Proof. Consider a configuration with 2k vertices, where all but one of them are
on a convex hull. The resulting halving graph is a star. We build a cross of this
star graph and of a convex polygon with n− 2k vertices. The cross has 1

2 n− k+ 1
connected components. It has n− 1 leaves and one vertex of degree 2k− 1. �

Degree sequence. The degree sequence of a graph is the nonincreasing sequence
of its vertex degrees. The Erdős–Gallai [1960] theorem describes which sequences
could be degree sequences of graphs.

Theorem 2.6 (Erdős–Gallai theorem). A nondecreasing sequence of n numbers di

is the degree sequence of a simple graph if and only if the total sum of degrees is
even and

k∑
i=1

di ≤ k(k− 1)+

n∑
i=k+1

min(di , k) for k ∈ {1, . . . , n}.

The following lemma is about vertices of large degrees in a halving graph.

Lemma 2.7. At most one vertex can have degree n− 1, at most three vertices can
have degree n−3. If the halving-edges graph has a vertex of degree n−1, then it is
a star graph.
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The proof is straightforward [Khovanova and Yang 2012].

Lemma 2.8. Any degree sequence consisting of only ones and threes, with at least
3 ones, is achievable by the halving-edges graph of some configuration.

Proof. The degree sequence with 3 ones and everything else threes corresponds to the
configuration in the path construction in Lemma 3.1. This configuration crossed with
a matching graph can produce any odd number of ones with the rest being threes.

To achieve an even number of ones, we can use the following modified version
of the path construction: replace the two vertices lying on the y-axis by two vertices
that form a horizontal segment which makes the bottom side of the convex hull.
Under this configuration, the four vertices on the convex hull have degree 1, and
the remaining vertices have degree 3. �

3. Paths cycles, and cliques

Paths. Here we consider the size of non-self-intersecting paths in halving graphs.
A path cannot have more than two leaves, so an easy upper bound for the largest
path is n− 1 vertices. It turns out that this bound is exact.

Lemma 3.1. For every n, there exists a halving-edges graph of size n having a path
through n− 1 vertices.

Proof. Figure 3 shows the path construction for a configuration with eight points.
To avoid clutter, only relevant halving lines are shown by thin lines and thick lines
show the path in the halving-edges graph. We generalize this construction to any n.

Consider 1
2(n− 2) points that lie on a concave function. We segmenterize these

points onto a segment lying on the x-axis. Now we place one such segment onto
a line y = x , to the right of the origin, and another segment on the line y = −x
to the left of the origin. We keep the segments oriented in such a way that a line
that passes through any two neighboring points of a segment has the remaining
1
2(n−2)−2 points of the segment below it. Now add two more points: (0,−1) and
(0,−2). Thus, every line that passes through two neighboring points of a segment

Figure 3. Path.
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Figure 4. The Y-shape construction.

becomes a halving line. In addition, the point (0,−1) forms halving lines with the
rightmost point of the left segment and the leftmost point of the right segment.

The path goes through every point except (0,−2), forming a V-shape. �

Cycles. Here we consider the size of cycles in halving-edges graphs. Vertices on
the convex hull cannot be part of a cycle, so an easy upper bound for the length of
the largest cycle is n− 3. It turns out that this bound is asymptotically exact. But
first we need to introduce the Y-shape construction.

Suppose we have three configurations G1, G2, and G3 with n points each and
k1, k2, and k3 halving lines correspondingly. The Y-shape construction allows us
to build a new configuration with 3n points which has each of the three initial
configurations as a subgraph and has a total of k1+ k2+ k3+

3
2 n halving lines.

The construction works as follows. We segmenterize each set of points Gi . Then
we draw three rays emanating from the origin, forming an angle of 120 degrees
between each other, and place each segmenterized set of points along one of the
rays; see Figure 4. This makes a Y-shape of 3n points, with n points on each branch.

On an individual branch, all halving lines prior to segmenterization remain
halving lines. In addition, we can find halving lines that go through two points on
different branches of the Y-shape. There are a total of 3

2 n such lines, so we have
produced a configuration with 3n points and k1+ k2+ k3+

3
2 n halving lines.

Lemma 3.2. Suppose a configuration of points with two neighboring points on the
convex hull, denoted by A and B, is given. We can segmenterize in such a way and
choose a direction on the segment so that A becomes the first point of the segment
and B the k-th point, for 1 < k ≤ n, where n is the total number of points.

See the proof in [Khovanova and Yang 2012]. The halving difference of a line is
the difference of the number of points on each side of the line. Sometimes we will
produce a construction that does not disturb the halving difference of certain lines.
That is to say, we add the same number of points on both sides of the line and the
difference is preserved.
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Figure 5. Cycle.

Theorem 3.3. If n is a multiple of 6, the maximum length of a cycle is exactly n−3.

Proof. We can write n = 3b, where b is even. Using Lemma 3.1, we can create a
configuration of b points with a path of length b− 1. Note that the endpoints of the
path (of the V-shape) are neighboring points on a convex hull. This allows us to
use Lemma 3.2 to segmenterize this configuration so that the endpoints of the path
occupy the positions 1 and 1

2 b.
Now we use three copies of this segment in the Y-shape construction. We orient

segments in such a way that the point 1 is oriented closer to the center of the
construction. The edges of the (b−1)-path inside each branch all remain edges,
and we also have edges between the first points of the branches and 1

2 b points
connecting all these paths together. This creates a cycle of length n− 3 as desired.
In Figure 5 we demonstrate this cycle for 18 vertices. Note that each branch has six
vertices and the outermost vertex of each branch does not belong to the cycle. �

Induced subgraphs. We just showed that a halving-edges graph can contain a large
path/cycle as a subgraph. If we restrict the graph to the vertices of the path/cycle
that we constructed above, we can see that the graph has extra edges in addition to
the path/cycle. To differentiate any subgraph from a subgraph that retains all the
edges, the notion of induced subgraph is used.

A subgraph H of graph G is said to be an induced subgraph if any pair of vertices
in H is connected by an edge if and only if it is connected by an edge in G.

Theorem 3.4. Any graph with 2k vertices and e edges can be an induced subgraph
of a halving-edges graph with at most 2k+ 2ek− 4e+ 2

( 2k
2

)
vertices.

Proof. Notice that if the number of vertices is even, then every line has an even
halving difference. We process the configuration line by line. Take a line. Suppose
we want to make it a halving line. For this we need to add an even number of points
on one side of the line without disturbing the halving difference of other lines. If it
is a halving line and we want to make it a nonhalving line we can add 2 points on
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Figure 6. Zooming out and adding points.

one side. Let us draw all possible lines connecting the points and zoom out. From
a big distance the point configuration will look like a bunch of lines intersecting
at one point; see Figure 6. In Figure 6 the thick line is the line we are processing.
Suppose the line needs an addition of four points below it. We add half of the points
(two in our example) below the line far away on each side.

Each line that should be an edge in the new halving-edges graph requires an
addition of at most 2k−2 vertices. All of the future edges require at most 2ek−2e
extra points. Other lines require at most 2 points each for a total of 2

(( 2k
2

)
− e

)
. �

Cliques. Halving-edges graphs with 4 vertices have cliques of size 2. We can have
a clique of size 3 in a graph with six vertices. By Theorem 3.4 we can have a clique
of size n as an induced subgraph in a halving-edges graph of size O(n3). In this
subsection we would like to improve the bound by using a construction similar to the
construction of Theorem 3.4, where we process several lines at a time. Clustering
lines together allows us to reduce the total number of extra points that we need.

Theorem 3.5. The largest possible clique in a halving-edges graph of n vertices is
at least �(

√
n).

Proof. Let k be even. To produce a clique of size k, take a regular k-gon, and distort
it a little bit using a projective transformation that makes one end of the k-gon
slightly wider than the other end. This perturbs all the diagonals (and sides) of the
k-gon that were once parallel, making them intersect somewhere far away from the
polygon, but still remain nearly parallel. You can imagine the k-gon as drawn on
the floor in a painting that respects the perspective properly. This way the lines that
are parallel in the k-gon intersect on a point on the horizon line in the painting. We
assume that the k-gon is in a general position, that is, no two vertices are connected
by a line parallel to the horizon. Note that there are now k sets of nearly parallel
diagonals and sides, each set having either 1

2 k or 1
2 k− 1 lines.

We will now add O(k2) points to turn this k-gon into a k-clique. Consider a set
of 1

2 k or 1
2 k−1 nearly parallel lines. We will process each cluster of lines separately.

In Figure 7 we depict one cluster of near parallel sides and diagonals. We rotated
the picture so that it fits better in the page, and now the imaginary horizon line is a
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Figure 7. The cluster of nearly parallel lines.

vertical line through the intersection points on the right. On the half-plane beyond
the horizon line add two points between every pair of consecutive lines. This way
each line in the cluster becomes a halving line. In addition, we want every cluster
to be independent. That means we want to add more points so that the halving
difference of every line that is not in the cluster does not change.

We just added to the right of all other lines that are not in the cluster either k− 2
or k− 4 points. We need to add the same number of points to the left of all other
lines as not to disturb the halving difference we just created in this cluster. The
extra points you can see on the picture are put into two equal groups on the left
above and below the current cluster.

This process requires a total of 2k− 4 or 2k− 8 new points, but turns all of our
nearly parallel lines into halving lines without disturbing the other diagonals and
sides. We do this a total of k times for each set of nearly parallel lines, and we have
constructed a halving-edges graph with a k-clique by adding 2k2

− 6k points.
Given n, we have shown how to construct a halving-edges graph with a clique

of size at least
√

1
2 n with no more than n vertices. We can pad this graph to any

number of vertices by crossing it with 2-paths. �

We will discuss the upper bound on the size of the clique later.
Any graph can be a subgraph of a clique, so an arbitrary graph with k vertices

can always be found as a subgraph, not necessarily induced, of a halving-edges
graph with no more than O(k2) vertices.

4. Chains

We define the following algorithm to group the halving lines into sets that are called
chains, introduced by Dey [1998].

Choose an orientation to define as “up”. The 1
2 n leftmost vertices are called the

left half, and the rightmost vertices are called the right half. We assume that no two
points are vertically aligned, so that leftmost and rightmost are well defined. Start
with a vertex on the left half of the graph, and take a vertical line passing through
this vertex. Rotate this line clockwise until it either aligns itself with an edge, or
becomes vertical again. If it aligns itself with an edge in the halving-edges graph,
define this edge to be part of the chain, and continue rotating the line about the
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rightmost vertex in the current chain. If the line becomes vertical, we terminate the
process. The set of edges in our set is defined as the chain. Repeat on a different
point on the left half of the halving-edges graph until every edge is part of a chain.

Note that the chains we get are determined by which direction we choose as “up”.
The following properties of chains follow immediately. Later properties on the list
follow from the previous ones:

• A vertex on the left half of the halving-edges graph is a left endpoint of a
chain.

• The process is reversible. We could start each chain from the right half and
rotate the line counterclockwise instead, and obtain the same chains.

• A vertex on the right half of the halving-edges graph is a right endpoint of a
chain.

• Every vertex is the endpoint of exactly one chain.

• The number of chains is exactly 1
2 n.

• The degrees of the vertices are odd. Indeed, each vertex has one chain ending
at it and several passing through it.

• Every halving line is part of exactly one chain.

• The length of each chain is bounded by 1
2 n.

The following property bounds the number of vertices with a large degree.

Lemma 4.1. For every integer k, a halving graph has at most 2k vertices with
degree n− 2k+ 1.

Proof. The i-th vertex from the left in the left half plane can have at most i − 1
chains passing through it and is a start of exactly one chain. So its degree cannot be
more than 2i − 1. Hence, only k rightmost vertices in the left plane and k leftmost
vertices in the right plane can have degree n− 2k+ 1. �

The sums of degrees of two vertices. Now we use our knowledge about chains to
refine our knowledge about degrees of the vertices of the halving-edges graph.

Theorem 4.2. The degrees of two distinct vertices sum to at most n, if they are
connected by an edge, and at most n− 2 otherwise.

Proof. Denote the vertices in question as P and Q. Rotate the geometric graph until
segment PQ is nearly vertical, so that there are no vertices between the horizontal
projections of P and Q. If P and Q do not belong to the same chain, then each of
the 1

2 n chains contributes at most 2 to the sum of degrees of P and Q. We have to
subtract 2 from this sum since P and Q are both endpoints of some chains. Thus
the total sum does not exceed n− 2.
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If PQ is an edge, then it can add two more to the sum of degrees making it at
most n. �

It immediately follows that the largest clique in the halving-edges graph cannot
be bigger than 1

2 n. We can use chains to prove an upper bound on the size of the
largest clique that is much closer to the lower bound. But before doing so we would
like to introduce some definitions.

The straddling span and the largest clique. Given a line that does not pass through
any vertex of a given graph, we call edges that intersect it straddling edges. The
maximum number of straddling edges that can be produced by a line is called the
straddling span of the halving-edges geometric graph. Naturally, this notion applies
to subgraphs as well. Let us consider some examples (see [Khovanova and Yang
2012]).

• The straddling span of a k-clique is at least
⌊ 1

4 k2
⌋

.

• The straddling span of an (a, b)-complete bipartite graph is at least 1
2ab.

Theorem 4.3. If a halving-edges geometric graph has straddling span w, then it
has at least 1

2w vertices.

Proof. Choose the up direction along the line that produces the straddling span.
We claim that no two straddling edges belong to the same chain. Indeed, if two
edges are straddling, then their projections onto the x-axis must overlap at the
point that is the projection of the line that produces the straddling span. But it is
clear that the projections along the x-axis of the edges of any given chain must be
mutually nonoverlapping. Therefore, our graph contains at least one chain for every
straddling edge. Since there are at least w straddling edges, the number of chains
must be at least the same and the number of vertices must be at least 1

2w. �

Corollary 4.4. If a halving-edges graph contains a k-clique, then it has at least⌊ 1
2 k2
⌋

vertices. Consequently, the largest clique in the halving-edges graph with n
vertices cannot exceed

√
2n+ 1 vertices.

Corollary 4.5. If a halving-edges graph contains an (a, b)-complete bipartite
subgraph, then it has at least ab vertices.

Note that now both the lower bound and the upper bound for the largest clique
are on the order of

√
n.
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(1960), 264–274.
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Knot mosaic tabulation
Hwa Jeong Lee, Lewis D. Ludwig, Joseph Paat and Amanda Peiffer

(Communicated by Kenneth S. Berenhaut)

In 2008, Lomonaco and Kauffman introduced a knot mosaic system to define a
quantum knot system. A quantum knot is used to describe a physical quantum
system such as the topology or status of vortexing that occurs in liquid helium II
for example. Kuriya and Shehab proved that knot mosaic type is a complete
invariant of tame knots. In this article, we consider the mosaic number of a
knot, which is a natural and fundamental knot invariant defined in the knot
mosaic system. We determine the mosaic number for all eight-crossing or fewer
prime knots. This work is written at an introductory level to encourage other
undergraduates to understand and explore this topic. No prior knowledge of knot
theory is assumed or required.

1. Introduction

In this work we will determine the mosaic number of all 36 prime knots of eight
crossings or fewer. Before we do this, we will give a short introduction to knot
mosaics. Take a length of rope, tie a knot in it, glue the ends of the rope together
and you have a mathematical knot — a closed loop in 3-space. A rope with its
ends glued together without any knots is referred to as the trivial knot, or just an
unknotted circle in 3-space. There are other ways to create mathematical knots aside
from rope. For example, stick knots are created by gluing sticks end to end until a
knot is formed (see [Adams 2004]). Lomonaco and Kauffman [2008] developed an
additional structure for considering knots which they called knot mosaics. Kuriya
and Shehab [2014] showed that this representation of knots was equivalent to
tame knot theory, or knots with rope, implying that tame knots can be represented
equivalently with knot mosaics. This means any knot that can be made with rope
can be represented equivalently with a knot mosaic.

MSC2010: primary 57M25; secondary 57M27.
Keywords: knots, knot mosaic, mosaic number, crossing number.
Lee was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-
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Figure 1. Tiles T0–T10.

A knot mosaic is the representation of a knot on an n × n grid composed of
11 tiles as depicted in Figure 1. A tile is said to be suitably connected if each of its
connection points touches a connection point of a contiguous tile. Several examples
of knot mosaics are depicted in Figure 2. It should be noted that in Figure 2, the
first mosaic is a knot, the trefoil knot, the second mosaic is a link, the Hopf Link,
and the third is the composition of two trefoil knots (remove a small arc from two
trefoils then connect the four endpoints by two new arcs depicted in red, denoted
by 31 # 31). A knot is made of one component (i.e., one piece of rope), and a link is
made of one or more components (i.e., one or more pieces of rope). For this work,
we will focus on knot mosaics of prime knots. A prime knot is a knot that cannot be
depicted as the composition of two nontrivial knots. The trefoil knot is a prime knot.

When studying knots, a useful and interesting topic used to help distinguish two
knots is knot invariants. A knot invariant is a quantity defined for each knot that is
not changed by ambient isotopy, or continuous distortion, without cutting or gluing
the knot. One such knot invariant is the crossing number of a knot. The crossing
number is the fewest number of crossings in any diagram of the knot. For example,
the crossing number of the trefoil is three, which can be seen in Figure 2. A reduced
diagram of a knot is a projection of the knot in which none of the crossings can be
reduced or removed. The fourth knot mosaic depicted in Figure 2 is an example of
a nonreduced trefoil knot diagram. In this example, the crossing number of three is
not realized because there are two extra crossings that can be easily removed.

An interesting knot invariant for knot mosaics is the mosaic number. The mosaic
number of a knot K is the smallest integer n for which K can be represented on
an n× n mosaic board. We will denote the mosaic number of a knot K as m(K ).
For the trefoil, it is an easy exercise to show that the mosaic number for the trefoil

trefoil Hopf link composition nonreduced trefoil

Figure 2. Examples of link mosaics.
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Figure 3. Reidemeister Type I moves.

is four, or m(31)= 4. To see this, try making the trefoil on a 3× 3 board and you
will arrive at a contradiction.

Next, we introduce a technique that can be used to “clean up” a knot mosaic by
removing unneeded crossing tiles. Kurt Reidemeister [1927] demonstrated that two
knot diagrams belonging to the same knot, up to ambient isotopy, can be related by
a sequence of three moves, now know as the Reidemeister moves. For our purposes,
we will consider two of these moves on knot mosaics, the mosaic Reidemeister
type I and type II moves as described by Lomonaco and Kauffman [2008]. For
more about Reidemeister moves, the interested reader should see [Adams 2004].

The mosaic Reidemeister type I moves are shown in Figure 3, and the mosaic
Reidemeister type II moves are shown in Figure 4.

Next we make several observations that will prove useful.

Observation 1.1 [Hong et al. 2014, two-fold rule]. Once the inner tiles of a mosaic
board are suitably placed, there are only two ways to complete the board so that it
is suitably connected, resulting in a knot or a link.

For any given n× n mosaic board, we will refer to the collection of inner tiles
as the inner board. For example, in Figure 8 the tiles I1–I9 would make the inner
board for this mosaic board.

Observation 1.2. Assume n is even. For a board of size n with the inner board
consisting of all crossing tiles, any resulting suitably connected mosaic will either
be an n− 2 component link mosaic or n− 3 component nonreduced link mosaic;
see Figure 6 for an example.

Observation 1.3. Assume n is odd. For a board of size n with the inner board con-
sisting of all crossing tiles, any resulting suitably connected mosaic is a nonreduced
knot mosaic.

Observation 1.3 can be generalized in the following way.

Observation 1.4. Let M be a knot mosaic with two corner crossing tiles in a top
row of the inner board. If the top boundary of the row has an odd number of

Figure 4. Reidemeister type II moves.
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Figure 5. Two examples of knot mosaics with an odd number of
connection points on the top boundary of the top row of the inner
board; a connection point on the boundary is marked by red circle.

connection points, then a Reidemeister type I move can be applied to either corner
of the row of M . This extends via rotation to the outer-most columns and the
lower-most row of the inner board. See Figure 5 for examples of such knot mosaics.

Armed with this quick introduction to knot mosaics, we are ready to determine
the mosaic number for all prime knots with a crossing number of eight or fewer in
the next section. Before we proceed, it should be noted that there are many other
questions to consider regarding knot mosaics besides finding the mosaic number.
For example, what is the fewest number of nonblank tiles needed to create a specific
knot? This could be known as the tile number of a knot. With this in mind, if we
allow knot mosaics to be rectangular, can some knots have a smaller tile number
if they are presented in a rectangular m× n configuration as opposed to a square
configuration? We will conclude this article with a number of other open questions
about knot mosaics that you can consider and try to solve.

2. Determining the mosaic number of small prime knots

In this section, we will determine the mosaic number for all prime knots of eight
or fewer crossings. We refer to these as “small” prime knots. We will see that for
some knots, the mosaic number is “obvious”, while others take some considerable
work. We begin with knots1 of an obvious mosaic number as shown in Table 1.

Why do these knots have obvious mosaic numbers? As previously noted, the
trefoil knot (31) cannot fit on a 3× 3 mosaic board, as such a board would only
allow one crossing tile when 31 requires at least three crossings. Hence, the mosaic
number for the trefoil is obvious. Similarly, the knots 51, 52, and 62 have more than
four crossings, so they cannot fit on a 4× 4 mosaic board, which only allows at
most four crossing tiles. In the Appendix, we have provided representations of these
knots on 5× 5 mosaic boards, thus determining the mosaic number for these knots.
It should be noted that as the knots become larger, it is often difficult to determine
whether a specific knot mosaic represents a given knot. To check that a knot mosaic

1At this point, we adopt the Alexander–Briggs notation for knots. The number represents the
number of crossings, while the subscript represents the order in the table as developed by Alexander–
Briggs and extended by Rolfsen. The knot 62 is the second knot of six crossings in the Rolfsen knot
table [Adams 2004].
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unknot King Solomon knot (link)

Figure 6. Possible four crossing mosaics on 4× 4 board.

represents a specific knot, we used a software packaged called KnotScape [Hoste
and Thistlethwaite 1999] developed by Professor Morwen Thistlethawite, which
looks at the Dowker notation of a knot to determine the knot presented. While
KnotScape cannot determine all knots, it can determine small prime knots. For
more information, see [Adams 2004].

Next we consider knots whose mosaic number is “almost obvious”. At first
glance, one may think that the figure-eight knot (41) should have a mosaic number
of four. Start with a 4× 4 mosaic with the four inner tiles being crossing tiles.
By Observation 1.1, this 4× 4 mosaic can be completed in two ways, as seen in
Figure 6. However, the knot 41 is known as an alternating knot. An alternating
knot is a knot with a projection that has crossings that alternate between over and
under as one traverses around the knot in a fixed direction. So, if we were to try to
place 41 on a 4× 4 mosaic, there would be four crossing tiles and they would have
to alternate. Thus 41 cannot be placed on a 4× 4 board. In the Appendix we see a
presentation of 41 on a 5× 5 mosaic board, hence m(41)= 5.

Another knot with an almost obvious mosaic number is 61. Figure 7 first depicts
a configuration of 61 on a 6× 6 mosaic board. However, by performing a move
called a flype (see [Adams 2004]) we can fit 61 on a 5× 5 mosaic board. It should
be noted that this mosaic representation of 61 has seven crossings instead of six.
Thus the mosaic number for 61 is realized when the crossing is not. It turns out
that 61 is not the only knot with such a property. Ludwig, Evans, and Paat [Ludwig
et al. 2013] created an infinite family of knots whose mosaic numbers were realized
only when their crossing numbers were not.

Figure 7. The knot 61 as a 6-mosaic and a 5-mosaic.
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Figure 8. The 5× 5 mosaic board with inner-tiles I 1–I 9.

At this point, we have determined the mosaic number for all six or fewer crossing
knots except 63. Surprisingly, we will see that 63 cannot fit on a 5× 5 board, even
though such a board has nine possible positions to place crossing tiles.

Theorem 2.1. The mosaic number of the knot 63 is six; that is, m(63)= 6.

Proof. Since 63 has six crossings, we know that m(63) ≥ 5. In the Appendix we
see a representation of 63 on a 6× 6 mosaic board, so m(63) ≤ 6. This means
m(63)= 5 or m(63)= 6. We now argue m(63)= 6.

Assume to the contrary that m(63)= 5. By the definition of the mosaic number,
this implies that there is some 5× 5 mosaic M that represents 63. We will show
via a case analysis that regardless of how the crossing tiles are arranged on M , the
resulting knot is in fact not 63. This will give us a contradiction, implying that
m(63)= 6.

In order to help with the case analysis, we label the nine inner tiles of the 5× 5
mosaic I 1–I 9, as depicted in Figure 8. The 63 knot uses at least six crossing tiles.
Since 63 has a crossing number of six, by the pigeon hole principle at least one of
the four corner inner tiles (I 1, I 3, I 7, or I 9) must be a crossing tile. By rotations,
it is enough to consider the four cases that are depicted in Figure 9. Note that in
Figure 9, gray tiles describe noncrossing tiles and white tiles could be crossing tiles
(but they do not have to be).

Case 1: Suppose that I 3 is a crossing tile, while I 1, I 7, and I 9 are not. Thus I 2,
I 4, I 5, I 6, and I 8 are all crossing tiles since M has exactly six crossing tiles. Every

Figure 9. Four different cases for placing crossing tiles on the
inner corner tiles for a 5× 5 mosaic.
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Figure 10. Case 1 results for 62.

reduced projection of an alternating knot is alternating, and since M represents the
alternating knot 63, the crossings on M must alternate. A quick inspection shows
that to suitably connect the inner tiles of M we would need to ensure that

(i) I 1, I 7, and I 9 are not crossing tiles,

(ii) the crossings are alternating, and

(iii) there are no easily removed crossings.

However, this results in a mosaic that represents 62, as seen in Figure 10. Therefore,
63 cannot be constructed in this case.

Case 2: For the case when M has two corner inner tiles that are crossings, we
require two subcases.

Case 2(a): Suppose that I 1 and I 3 are crossing tiles, while I 7 and I 9 are not. If I 2

is a crossing tile then Observation 1.4 may be applied to the top inner row of M .
Applying this observation will either change I 1 or I 3 to a noncrossing tile. Without
loss of generalization, suppose that I 1 is changed. Notice that M now satisfies
Case 1, and from the previous analysis, M does not represent 63. Therefore, we
may assume that I 2 is not a crossing tile.

Since M has at least six crossing tiles, and I 2, I 7, and I 9 are not crossing tiles,
the remaining 6 inner tiles must be crossing tiles. Then I 2 has four connection
points. By Observation 1.4, either I 1 or I 3 can be changed to a noncrossing tile.
Again M falls into Case 1 and does not represent 63.

Case 2(b): Suppose that I 3 and I 7 are crossing tiles while I 1 and I 9 are not.

Claim 2.2. In Case 2(b), if M has six crossing tiles, then M cannot be 63.

Proof of Claim. Assume to the contrary that M only has six crossing tiles. Then
exactly one of {I 2, I 4, I 5, I 6, I 8

} is a noncrossing tile. Up to rotation and reflection,
we only need to consider the following two situations:

(i) I 3, I 4, I 5, I 6, I 7 and I 8 are the only crossing tiles.

(ii) I 2, I 3, I 4, I 6, I 7 and I 8 are the only crossing tiles.
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Figure 11. Possible configurations of six crossing tiles under Case 2(b).

There are two crossing arrangements up to mirror describing case (ii), as shown in
the last two images in Figure 11.

Since M has six crossings, the corner inner-tiles I 3 and I 7 cannot be changed
from crossing tiles. With this in mind, suitably connecting the crossing tiles in
Figure 11 so that a knot (and not a 2-component link) is created leads to 62 or
31 # 31 (see Figure 12). This is a contradiction, proving our claim. �

Claim 2.3. In Case 2(b), if M has seven crossing tiles, then M cannot be 63.

Proof of Claim. If the crossing tiles are alternating, then M represents 74, contra-
dicting that M is 63. So assume that M has seven crossings and is nonalternating.

Observe that if any of the pairs {I 2, I 3
}, {I 3, I 6

}, {I 4, I 7
}, or {I 7, I 8

} are non-
alternating, then a type II Reidemeister move is present, and M can be reduced
to five crossings. However, this contradicts that M is 63. So each pair {I 2, I 3

},
{I 3, I 5

}, {I 4, I 7
}, and {I 7, I 8

} is alternating. Since M is nonalternating, at least
one of the pairs {I 2, I 5

}, {I 6, I 5
}, {I 4, I 5

}, or {I 5, I 8
} is nonalternating. Without

loss of generality, assume {I 2, I 5
} creates a pair of nonalternating crossings. Then,

up to ambient isotopy, M is 61 or 31, as seen in Figure 13. Therefore Case 2(b)
does not result in 63. �

Case 3: Suppose that I 1, I 3 and I 9 are crossing tiles, and I 7 is not. Since M has
at least six crossings, there must be at least three more crossing tiles on the board.

Observe that if either I 2 or I 6 are crossing tiles, then Observation 1.4 may be
applied to the top inner row or the right inner column, respectively. As a result
of this, one of the crossings on I 1, I 3, and I 9 can be changed to a noncrossing
tile, leaving only two corner inner-tiles that are crossings. This reverts to Case 2

Figure 12. Knot mosaic configurations of 62 and 31 # 31.
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Figure 13. 61 and 31, respectively.

showing that M would not represent 63. Therefore, we may assume that neither I 2

nor I 6 are crossing tiles.
With I 2 and I 6 eliminated as crossing tiles, I 1, I 3, I 4, I 5, I 8, and I 9 must all

be crossing tiles. Then by Observation 1.4, either I 3 or I 9 can be changed from
a crossing tile to a noncrossing tile. This again reverts to Case 2 showing that M
would not represent 63.

Case 4: Suppose that I 1, I 3, I 7, and I 9 are crossing tiles. Note that at least
one of the tiles in the set {I 2, I 4, I 6, I 8

} must be a crossing tile. This means
Observation 1.4 applies to some row or column of M , and M can be reduced to
Case 3. Hence M does not represent 63.

By the above four cases, we see that the 63 cannot be placed on a 5× 5 mosaic.
Hence, by the figure for 63 in the Appendix, we see that the mosaic number of 63

is six; that is m(63)= 6. �

We next consider the seven-crossing knots. As seen above, the knot 74 can be
placed on a 5×5 mosaic board. We formalize this result in the following proposition
as well as establish the mosaic number for the other seven-crossing knots.

Theorem 2.4. The mosaic number of 74 is five; that is, m(74) = 5. Moreover,
74 is the only seven-crossing prime knot with mosaic number five; the remaining
seven-crossing prime knots have mosaic number six.

Proof. We have already seen via Observation 1.4 that at most seven crossing tiles
can be placed on a 5× 5 board without reduction via a Reidemeister type I move.
Moreover, since all seven-crossing knots are alternating, there is only one way
to place seven alternating crossing tiles up to mirror, reflection, and rotation as
depicted in Figure 14. When this arrangement is suitably connected, the only knot
resulting is 74. Therefore m(74)= 5 and all other seven-crossing knots have mosaic
number six as depicted in the Appendix. �

Next we consider the eight-crossing knots. Let K be a knot of eight crossings.
By the proof of Theorem 2.1, we know that K cannot fit on a 5× 5 mosaic board.
This means m(K ) ≥ 6. Furthermore, there exists a knot mosaic of K on a 6× 6
board (see the Appendix). This implies m(K )= 6.
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Figure 14. Seven alternating tiles on a 5× 5 board.

Given the above arguments, we see that the mosaic number of the eight-crossing
knots is greater than five. By the Appendix and use of KnotScape, we see that the
mosaic number of all eight-crossing knots is six. We summarize our findings in
Table 1. For each knot K with at most eight crossings, the Appendix includes a
mosaic of size m(K ) representing K .

In Table 1, the superscript symbols denote the following properties of the mosaic
number:

† Obvious;

‡ from Observation 1.2, we have m(K )≥ 5;

\ by Theorem 2.1; and

] by Theorem 2.4.

K m(K )

01 2†

31 4†

41 5‡

51 5†

52 5†

61 5†

K m(K )

62 5†

63 6\

71 6]

72 6]

73 6]

74 5]

K m(K )

75 6]

76 6]

77 6]

81 6
82 6
83 6

K m(K )

84 6
85 6
86 6
87 6
88 6
89 6

K m(K )

810 6
811 6
812 6
813 6
814 6
815 6

K m(K )

816 6
817 6
818 6
819 6
820 6
821 6

Table 1. Mosaic number of knots with up to eight-crossing.
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3. Further work

We conclude with a number of open questions that would make good projects for
undergraduate research. To begin, often in mathematics when something is proved
for the first time, the proof may not be very elegant. For example, Newton’s “proofs”
of various facts in calculus look much different than the proofs you would find in a
typical calculus book today. Although Theorem 2.1 proved m(63)= 6, could the
proof be shortened?

Question 3.1. Is there a more direct proof of m(63)= 6?

It is often interesting to see how various knot invariants compare. For example,
in 2009, Ludwig, Paat, and Shapiro showed that the mosaic number and crossing
number of a knot can be related in the following way:

d

√
c(k)e+ 3≤ m(k).

Moreover, Lee et al. [2014] showed

m(K )≤ c(k)+ 1.

Question 3.2. Do tighter upper or lower bounds exist on the mosaic number of a
knot using the crossing number of the knot?

Ludwig, Evans, and Paat [Ludwig et al. 2013] created an infinite family of knots
whose mosaic number is realized when the crossing number is not. We have seen
that 61 is such a knot. The mosaic number for 61 is five, but in that projection, the
number of crossing tiles is seven. To realize the crossing number for 61 it has to
be projected on a 6× 6 mosaic board. In general, Ludwig et al. created a family
of knots whose mosaic number was realized on an n× n mosaic board with n odd,
n≥ 5 and whose crossing number was realized on an (n+1)×(n+1) mosaic board.

Question 3.3. Does there exist an infinite family of knots with mosaic number
n× n whose crossing number is realized on an (n+ k)× (n+ k) for each k ≥ 2?

While working with undergraduates, Adams et al. [1997] proved the surprising
fact that the composition of n trefoils has stick number exactly 2n+ 4. Is there a
similar result for knot mosaics?

Question 3.4. What is the mosaic number of the composition of n trefoil knots?

We have briefly touched on mosaic Reidemeister moves. It is often the case that
to make these moves, one has to add a certain number of rows and columns to
the mosaic board to provide enough room for the moves to occur (see Kuriya and
Shehab [2014] for example). Is such an expansion always necessary?

Question 3.5. Let M1 and M2 be n-mosaics that represent the same knot. Is there a
set of mosaic Reidemeister moves from M1 to M2 on a mosaic board of size n×n?
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Figure 15. A braid representation of the knot 52.

Another well-studied area of knot theory is braid diagrams. J. W. Alexander
[1923] proved that every knot or link has a closed braid representation. From
Figure 15, we see that braids appear “rectangular” in nature, which leads to the
next question.

Question 3.6. If we allow mosaics to be rectangular, what is the smallest rectangular
board on which we can place a knot?

Definition 3.7. Let t (K ) denote the tile number of a knot K , the fewest non-T0

tiles needed to construct a given knot.

Question 3.8. What is the tile number of the knots of 10 or fewer crossings?

Question 3.9. Is there an infinite family of knots whose tile number can be deter-
mined?

Lastly, it should be noted that in the Appendix, the knots 83, 86, 89, and 811 are
depicted with nine or more crossing tiles. Therefore, the crossing numbers of these
knots are not realized in this representation.

Question 3.10. Does there exist a representation of 83 (respectively 86, 89, or 811)
on a 6× 6 board with only eight crossing tiles?

These are just a few of the questions about knot mosaics that one can consider.
For those interested in studying knot mosaics using a tangible manipulative, visit
Thingiverse.com to 3D print your very own knot mosaics!

Appendix: Knots on 5 × 5 mosaic boards

01 31 41 51 52 61
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62 63 71 72 73 74

75 76 77 81 82 83

84 85 86 87 88 89

810 811 812 813 814 815

816 817 818 819 820 821
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Extending hypothesis testing with persistent
homology to three or more groups
Christopher Cericola, Inga Johnson, Joshua Kiers,

Mitchell Krock, Jordan Purdy and Johanna Torrence

(Communicated by Kenneth S. Berenhaut)

We extend the work of Robinson and Turner to use hypothesis testing with
persistent homology to test for measurable differences in shape between the
spaces of three or more groups. We conduct a large-scale simulation study to
validate our proposed extension, considering various combinations of groups,
sample sizes and measurement errors. For each such combination, the percentage
of p-values below an α-level of 0.05 is provided. Additionally, we apply our
method to a cardiotocography data set and find statistically significant evidence
of measurable differences in shape between the spaces corresponding to normal,
suspect and pathologic health status groups.

1. Introduction

Consider a data set, obtained via random sampling, where each data point is a
vector of m quantitative variables and one categorical variable with s levels. Ideally,
several of the quantitative variables are real-valued. According to the levels of the
categorical variable, we will group the data points into s not necessarily distinct
collections of points in Rm, referred to as point clouds. For each group, we can view
the corresponding point cloud as a representative subset of a space which consists
of all such points in Rm with the respective level of the categorical variable. Of
interest is whether or not these s spaces have measurably different shapes? But
what does shape even mean if m is large?

Topology, in particular algebraic topology, is an area of mathematics that can be
used to qualitatively measure the shape of a point cloud. For a given point cloud,
we construct an infinite family of simplicial complexes that vary according to a real-
valued distance parameter. Each complex in the family is an object that inherits a
shape from the point cloud and the topological tool known as homology can be used

MSC2010: 55N35, 62H15.
Keywords: persistent homology, permutation test.
This work was supported by an NSF DMS grant, #1157105.

27

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2018.11-1
http://dx.doi.org/10.2140/involve.2018.11.27


28 C. CERICOLA, I. JOHNSON, J. KIERS, M. KROCK, J. PURDY AND J. TORRENCE

to detect this shape. Since any single complex within the infinite family corresponds
to a choice of parameter value, we might ask which parameter value “best” captures
the shape of the point cloud? Persistent homology is a study of the homological
features that persist over long intervals of the distance parameter, thus sidestepping
the search for a best choice parameter value. Hence, persistent homology can be used
to determine if point clouds have different shape. While persistent homology allows
comparisons of shapes across point clouds obtained from a sample of data points,
can any resulting differences then be generalized to the corresponding spaces at
large? The answer is yes, but as random sampling unavoidably introduces variability,
a method is needed which can distinguish true differences in shape between the
spaces from artificial differences in shape between the point clouds obtained via
random sampling of data points. Statistical hypothesis testing is an inferential
method often implemented to assess whether or not randomly sampled data provide
sufficient evidence of a difference, with respect to some characteristic, between
two or more populations (or, as we have been calling them, spaces). K. Turner
and A. Robinson [2013] conducted such an assessment on s = 2 spaces using a
specific type of hypothesis testing procedure known as a permutation test, where
the characteristic of interest is shape, as measured via persistent homology. As this
procedure requires multiple point clouds from both spaces, in practice the two point
clouds obtained from the random sample of data points are further partitioned, via
subsampling, into multiple “smaller”, or less dense, point clouds. The assessment
is then conducted using the persistent homology of these subsampled point clouds
within the procedure. We extend this procedure to three or more spaces, s ≥ 3.

The remainder of the paper is organized as follows. In Section 2 we provide defi-
nitions of the Vietoris–Rips complex of a point cloud, homology groups, persistent
homology and persistence diagrams. In Section 3 we describe the permutation test
of Robinson and Turner. In Section 4 we propose an extension of the permutation
test for three or more spaces. In Section 5 we present the results of a large-scale
simulation study, incorporating various measurement errors and sample sizes, that
validate our proposed extension. Finally, in Section 6 we apply our extension to
a cardiotocography data set and find significant evidence of differences in shape,
as measured by persistent homology, between the spaces corresponding to normal,
suspect and pathologic health groups.1

2. Persistent homology

Before defining the persistent homology of a point cloud, we associate to the point
cloud a nested family of abstract simplicial complexes. A thorough explanation of

1 Throughout we use “difference in shape” to mean shape as measured by persistent homology in
a specified dimension.
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simplicial complexes and abstract simplicial complexes is given in [Edelsbrunner
and Harer 2010; Munkres 1984]. Here we motivate the definition of an abstract
simplicial complex with a brief geometric introduction to simplicial complexes,
followed by the definition of the Vietoris–Rips complex, which is the abstract
simplicial complex used herein.

Geometrically, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex
is a triangular subset of a plane, a 3-simplex is a solid tetrahedron, and an n-simplex
is the n-dimensional analogue of these convex sets. Observe that the boundary
of an n-simplex, σ , is a collection of (n−1)-simplices; these boundary simplices
are called faces of σ . A simplicial complex is a collection of simplices in Rd that
satisfy certain subset and intersection properties specifying how simplices can be
put together to create a larger structure. More precisely, a simplicial complex is a
finite collection of simplices, K, such that (1) if σ ∈ K and ρ is a face of σ then
ρ ∈ K, and (2) given any two simplices σ1, σ2 ∈ K, either σ1 ∩ σ2 is the empty set
or a face of both σ1 and σ2. More generally, and without relying on geometry, an
abstract simplicial complex is a finite collection of sets, A, such that if α ∈ A and
β ⊆ α, then β ∈ A. It is well known that a finite abstract simplicial complex can be
geometrically realized as a simplicial complex in RN for N sufficiently large.

2.1. The Vietoris–Rips complex. The Vietoris–Rips complex, denoted VR(D, r),
is an abstract simplicial complex associated to a point cloud D for a fixed radius
value r > 0. The elements of D form the 0-simplices or vertex set of VR(D, r). A
simplex of VR(D, r) is a finite subset α of D such that the diameter of α is less
than r . A simplex α ⊆ D with k-elements is called a (k−1)-simplex of D. Thus, a
1-simplex corresponds to a two element set (viewed geometrically as the endpoints
of a line segment), a 2-simplex corresponds to a three element set (viewed as the
vertices of a triangle), and so on. Observe that if α is a k-simplex, then every
subset of α is a simplex of D as the diameter of a subset of α can be no larger than
the diameter of α. Hence the Vietoris–Rips complex satisfies the definition of an
abstract simplicial complex. For readers that are new to topological data analysis,
an example Vietoris–Rips complex is given in the Appendix.

We note that Vietoris–Rips complexes for increasing radius values are always
a nested family of simplicial complexes associated to D; that is, the complexes
satisfy

VR(D, r1)⊆ VR(D, r2) whenever r1 ≤ r2.

This nested feature of the complexes along with the functorial nature of homology
are what give rise the concept of persistence to be defined below.

Although the Vietoris–Rips complex is relatively straightforward to define and
calculate, it can be computationally expensive when used with large point clouds.
There are economical alternatives to the Vietoris–Rips complex, such as the lazy
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witness complex introduced in [de Silva and Carlsson 2004]. Persistent homology
can be applied using any nested family of complexes indexed by some parameter.

2.2. Homology. The homology of a simplicial complex K is an algebraic measure-
ment of how the n-simplices are attached to the (n−1)-simplices within K. Below
we define some technical machinery (chains, boundary maps, and cycles) used to
define homology groups.

The p-chains of a simplicial complex K, denoted Cp(K ), is the group of formal
linear combinations of the p-simplices of K with coefficients from Z2. (More
general definitions of homology with ring coefficients can be found in the standard
algebraic topology texts [Edelsbrunner and Harer 2010; Hatcher 2002].) Since Z2

is a field, the p-chains of K are Z2-vector spaces with basis the p-simplices of K.
The boundary map, denoted δp, identifies each p-chain with its boundary, a

(p−1)-chain. Each boundary map, δp :C p→C p−1, is a homomorphism and in the
case of Z2 coefficients, as considered here, these maps are linear transformations.

Notice that δp ◦ δp+1 is the zero map as the boundary of a boundary is empty.
This fundamental property of chain complexes ensures that the image of δp+1 is a
normal subgroup of the kernel of δp. The collective sequence of boundary maps
and chains, as shown below, is called a chain complex:

· · ·
δn
−→Cn(K )

δn−1
−−→· · ·

δ2
−→C1(K )

δ1
−→C0(K )

δ0
−→ 0.

Homology groups are defined using both the kernel and image of each boundary
map. The kernel of δp is the set of all p-chains whose boundary is empty. The
elements of the kernel of δp are called p-cycles of K. The image of δp+1 is the set
of p-chains that are boundaries of a (p+1)-chain. The p-th homology group of K ,
denoted Hp(K ;Z2), is defined as the quotient group ker(δp)/ im(δp+1).

As the parameter r > 0 increases, the Vietoris–Rips complex includes more
simplices, thus the homology of the complex changes. The functorial property of
homology and the inclusion map i : VR(D, r1)→ VR(D, r2) whenever r1 ≤ r2,
give rise to induced maps between the homology of the complexes

i∗ : H∗(VR(X, r1);Z2)→ H∗(VR(X, r2);Z2).

A nontrivial homology class α ∈ H∗(VR(X, r1);Z2) is said to be born at radius
rb if rb is the least radius value for which H∗(VR(X, rb);Z2) contains an element
mapping onto α under the map

H∗(VR(X, rb);Z2)→ H∗(VR(X, r1);Z2).

The homology class α is said to die at radius value rd provided that rd is the least
radius value for which the class α maps to zero in the mapping

H∗(VR(X, r1);Z2)→ H∗(VR(X, rd);Z2).
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Figure 1. An example data set (top) and the corresponding persis-
tence diagrams for the homological dimensions 0 and 1.

The topological feature that α represents is then said to have a birth and death “time”
corresponding to the radius values rb and rd . We say that the class α persists over
the interval [rb, rd ]. Persistent homology of a data set D is a cataloguing of the
homological classes of the abstract simplicial complexes VR(D, r) that persist for
large intervals of radius values, r .

For a fixed k, the persistence diagram for Hk(VR(X, ∗);Z2) is a plot of points
(rb, rd) for each nonzero class α ∈ Hk(VR(X, ∗);Z2).

Figure 1 contains an example data set that includes several 1-dimensional ho-
mological features of varying size and the corresponding persistence diagrams in
dimensions 0 and 1.

Within the persistence diagram in Figure 1, we see two lone triangles at the
points p1= (0.35, 0.8) and p2= (0.3, 1.55). The point p2, with the early birth time,
is the 1-dimensional homology class representing the larger circular feature on the
right. The earlier birth time is due to the closer scattering of the data points about
the larger circle. The point p1, with the earlier death time, is the 1-dimensional
homology class representing circle of smaller radius on the left. The early death
time is due to the smaller radius of this circular feature. The persistence diagram in
Figure 1 also contains several triangles near the diagonal which represent classes
that only persist for a short while, and it includes a triangle at the point (0.1, 0.15)
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Figure 2. On the left, two superimposed persistence diagrams
of the same homological dimension. On the right, the points
{x1, . . . , x5}, {y1, . . . , y5} and line segments indicating the optimal
bijection. The diagram distance is the sum of the lengths of the
line segments x1 y3+ x2 y1+ x3 y5+ x5 y2. The segment x4 y4 is not
included as it is a segment between diagonal points.

representing the 1-dimensional homology class resulting from the tiny circle of
points at the top of the larger circle. Notice that the 0-dimensional homology
classes, which are plotted as small circles in the persistence diagram, all have birth
time r = 0 as a result of each data point representing a unique 0-dimensional class
at r = 0. As r increases, the complex consists of fewer connected components
until it is one connected component. The 0-dimensional persistence class plotted at
the point (0, 0.35) represents the joining of the last two components into a single
component. In other words, for r ≥ 0.35 the simplicial complex VR(X, r) is one
connected component. The 0-dimensional class plotted at (0, 2) is merely the result
of using a maximum radius value of r = 2 in the persistent homology calculation.
This class indicates that the complex VR(X, 2) is one connected component.

The discussion above defines a persistence diagram for a data set using the
Vietoris–Rips complex. There are, however, several other routes that lead to the
creation of a persistence diagram. The omnibus test described below can be applied
to a collection of persistence diagrams obtained by any means.

2.3. A metric on persistence diagrams. We follow Robinson and Turner in select-
ing the metric on persistence diagrams that is analogous to the L2 norm in the
space of functions on a discrete space. Given two persistence diagrams X and Y, let
x1, x2, . . . , xn ∈ X be a listing of the off-diagonal points of X and y1, y2, . . . , ym ∈Y
be the off-diagonal points of Y. Select points xn+1, . . . , xn+m and ym+1, . . . , ym+n

along the diagonal so that xn+k is the point closest (in Euclidean distance) to yk

and vice versa. Let X ′ = {x1, . . . , xn+m} and Y ′ = {y1, . . . , yn+m}. We consider
the set of all bijections φ : X ′→ Y ′ such that (1) the off-diagonal point xk is paired
either with an off-diagonal point of Y or with ym+k and (2) the diagonal point xl
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is paired either with yl−n or with one of the diagonal points in Y ′. For a specific
bijection φ, if both xk and yj are diagonal points, the cost of assigning xk to yj ,
denoted C(xk, yj ), is 0, else the cost is the Euclidean distance between xk and yj .

Define d(X, Y ), the distance between the persistence diagrams X and Y, by

d(X, Y )=
(

inf
φ:X ′→Y ′

∑
x∈X ′

C(x, φ(x))
)1

2

.

A bijection between X and Y is called optimal if it achieves the infimum. The
Hungarian algorithm [Kuhn 1955; Munkres 1957], also known as Munkres’ assign-
ment algorithm, presents a method for obtaining an optimal bijection in polynomial
time. Figure 2 gives an example of two simple persistence diagrams and the bijection
exhibiting their diagram distance.

3. Hypothesis testing and topological data analysis

When persistent homology is applied to point clouds obtained from a random
sample of points from various spaces, an element of variability is unavoidably
introduced. Point clouds obtained from different samples of the same space, if
somewhat representative, are expected to have “small” differences in their respective
persistence diagrams, while point clouds obtained from samples of different spaces
are expected to have comparatively “large” differences in their persistence diagrams.
However, when the true shape-related features of two spaces are unknown, and all
that is available are the point clouds obtained from samples of each of these spaces,
what qualifies as a small or large difference is unclear. A tool is needed which
can determine whether or not the shapes of the underlying spaces are measurably
different. Statistical hypothesis testing is a method that can be implemented in
these situations to decide if there is sufficient evidence to classify the shapes of the
spaces as measurably different. A thorough development of statistical hypothesis
testing is available in many standard sources, including [Casella and Berger 2002;
DeGroot and Schervish 2012].

3.1. Hypothesis testing via the joint loss function. Consider two spaces in Rm,
arbitrarily labeled X1 and X2, suspected of having measurably different shapes.
Suppose n1 point clouds are available from X1 and n2 point clouds are available
from X2, with their corresponding persistence diagrams in a fixed dimension denoted
respectively by X1,1, X1,2, . . . , X1,n1 and X2,1, X2,2, . . . , X2,n2 . Further suppose
that each of these n1+n2 point clouds was obtained via random sampling from either
X1 or X2. Note that in practice, for each space, a single point cloud will usually
be obtained via a random sample of X i and then partitioned, via subsampling, into
ni smaller, or less dense, point clouds. Within the statistical hypothesis testing
paradigm, the null hypothesis asserts that the shapes of X1 and X2 are not measurably
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different, while the alternative hypothesis asserts the opposite. The corresponding
test statistic, proposed by Robinson and Turner [2013], is the joint loss function

σ 2
χ2
=

2∑
m=1

1
2nm(nm − 1)

nm∑
i=1

nm∑
j=1

d(Xm,i , Xm, j )
2,

where d( · , · ) is the persistence diagram distance metric described in Section 2.3.
The joint loss function is ultimately an aggregate measure of within-group

variation. More specifically, σ 2
χ2

adds the variation in the
(n1

2

)
persistence diagram

distances from X1 and the variation in the
(n2

2

)
persistence diagram distances

from X2. Unfortunately, the sampling distribution of σ 2
χ2

is nontrivial to determine
and is currently unknown, which renders the “standard” (i.e., distribution-based)
hypothesis testing paradigm impossible. To circumvent this, Robinson and Turner
propose implementing a permutation test, which in this context is free of any
distributional assumptions. A thorough development of permutation tests, and the
often corresponding approximate permutation test p-values, is available in [Higgins
2004; Ramsey and Schafer 2013].

To perform the permutation test, we assume that the null hypothesis is true, i.e.,
X1 and X2 are not measurably different in shape. Such an assumption effectively
means that the observed labeling of the point clouds to either space X1 or X2 is just
one of

(n1+n2
n1

)
possible assignments, all of which are arbitrary and equally likely. For

each of these possible assignments, the value of σ 2
χ2

is then computed. Collectively,
these values yield the permutation distribution for σ 2

χ2
, which is analogous to a

sampling distribution in the standard hypothesis testing paradigm. Finally, analogous
to a standard hypothesis testing p-value, the permutation test p-value is obtained
by calculating the proportion of values in the permutation distribution which are
less than or equal to the observed value of the joint loss function. In practice, the
number of possible assignments may be unreasonably large, in which case the above
procedure is subtly altered to produce an approximate permutation test p-value. In
particular, rather than using the

(n1+n2
n1

)
possible assignments of the n1+ n2 point

clouds to the two spaces, numerous (e.g., 1000) randomly selected permutations
(i.e., “shuffles”) of the n1+n2 point clouds are instead used where after each shuffle
the first n1 point clouds are labeled as “belonging” to space X1 and the remaining
n2 point clouds are labeled as “belonging” to space X2.

If the null hypothesis of the permutation test is actually false, then we would
expect the permutation test p-value to be small since the observed labeling of point
clouds would be the only assignment that did not mix point clouds from both spaces.
When a permutation test p-value is less than the α-level, an a priori established
threshold (e.g., 0.05), the observed value of σ 2

χ2
is considered smaller than what

can reasonably be explained by chance assignment of the point clouds to spaces X1
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and X2. The null hypothesis would then be rejected and X1 and X2 classified as
having measurably different shape.

It is important to note that if the point clouds were not obtained via random
sampling of X1 and X2, then a permutation test only allows us to draw conclusions
with respect to the point clouds. For instance, if the permutation test p-value is less
than our threshold, then we can conclude that the shapes of the point clouds from X1

and X2 are measurably different; however, this conclusion cannot be generalized to
X1 and X2 at large. As limited as such a conclusion may be, it is still informative to
know that such differences exist among the point clouds, particularly when m > 3
and the corresponding point clouds cannot be visualized.

4. Extending hypothesis testing to three or more groups

While the methods of Section 3 are useful for determining whether or not two spaces
are measurably different in a particular homological dimension, many practical
applications involve more than two spaces. The cardiotocography data set considered
in Section 6 is one such example. Given s ≥ 3 spaces, suppose we have n1 point
clouds, obtained via random sampling, from space X1, n2 point clouds from
space X2, . . . , and ns point clouds from space Xs . Analogous to before, note that
in practice, for each space, a single point cloud will usually be obtained via a
random sample of X i and then partitioned, via subsampling, into ni smaller, or
less dense, point clouds. In this section we extend the methods of Section 3 to
obtain a hypothesis testing procedure which can determine whether or not sufficient
evidence of measurable differences in shape exists between the s spaces.

4.1. Hypotheses and justification. To conduct such an inquiry, we follow through
with the suggestion of Robinson and Turner and use an approach analogous to a
standard one-way ANOVA procedure in which there are potentially two stages of
hypothesis testing. An omnibus (i.e., “global”) test is conducted at the first stage
and if this test produces significant results, a number of post hoc (i.e., “local”) tests
are performed at the second stage to identify the source(s) of the global significance.
A thorough development of the one-way ANOVA procedure is available in [Casella
and Berger 2002; DeGroot and Schervish 2012; Ramsey and Schafer 2013]. As with
the joint loss function in Section 3, the sampling distribution of the test statistic cor-
responding to the omnibus test, which is presented below in Section 4.2, is nontrivial
to determine and currently unknown. Hence, we again use a permutation test to carry
out the omnibus test, which we will henceforth refer to as the omnibus permutation
test. The logic behind and mechanics of this test are developed below in Section 4.2.

The null hypothesis for the omnibus permutation test asserts that the shapes
of X1, X2, . . ., Xs are not measurably different, while the alternative hypothesis
asserts that the shapes of at least two of the s spaces are measurably different. If
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we fail to reject the null hypothesis of this omnibus permutation test, then we are
done. However, if we reject the null hypothesis, then we know that at least two of
the s spaces have shapes that are measurably different, though we do not yet know
which spaces. Hence, up to

(s
2

)
post hoc tests are performed, one for each possible

pairing of two of the s spaces. For each post hoc test, the null hypothesis asserts
that the shapes of the two spaces are not measurably different, while the alternative
hypothesis asserts that the shapes are measurably different. Thus, each post hoc
test can be conducted via the methods described in Section 3.

Before describing the test statistic and corresponding details for the omnibus
permutation test, note that the primary purpose of the test pertains to management
of the familywise type I error rate. A type I error is the general term used to identify
a hypothesis test decision in which the null hypothesis is incorrectly rejected. For
any single hypothesis test, the pre-established α-level is the probability of making
a type I error. When multiple post hoc tests are performed, the familywise type
I error rate refers to the probability of incorrectly rejecting at least one of the
corresponding null hypotheses. Many methods exist for bounding the familywise
type I error rate associated with multiple pairwise post hoc tests (e.g., Bonferroni),
but such methods invariably require different and smaller α-levels for each individual
post hoc test. Hence, an insignificant omnibus permutation test result prevents the
analyst from unnecessarily performing post hoc tests and needlessly managing
the familywise type I error rate. Stated another way, if the null hypothesis of the
omnibus permutation test is true, then all of the null hypotheses of the various
post hoc tests are also true, and thus do not need to be performed, which eliminates
any need to manage the familywise type I error rate. However, if an omnibus
permutation test in which the null hypothesis is ultimately true is not performed,
then

(s
2

)
post hoc tests are unnecessarily performed and the familywise type I error

rate must needlessly be managed.

4.2. Omnibus permutation test specifics. Suppose, possibly after subsampling,
that n1 point clouds are available from X1, n2 point clouds from X2, . . ., and ns

point clouds from Xs , with their corresponding persistence diagrams in a fixed di-
mension denoted respectively by X1,1, X1,2, . . . , X1,n1 , X2,1, X2,2, . . . , X2,n2 , and
Xs,1, Xs,2, . . . , Xs,ns . Analogous to the test statistic for the two-space permutation
test presented in Section 3, the test statistic for the omnibus permutation test, for
three or more spaces, is a function of the diagram distances for all

(n1
2

)
pairings of

persistence diagrams from X1, all
(n2

2

)
pairings of persistence diagrams from X2, . . . ,

and all
(ns

2

)
pairings of persistence diagrams from Xs . In particular, the omnibus

joint loss function is defined as

σ 2
χs
=

s∑
m=1

1
2nm(nm − 1)

nm∑
i=1

nm∑
j=1

d(Xm,i , Xm, j )
2,
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where d( · , · ) is the persistence diagram distance metric described in Section 2.3.
Analogous to σ 2

χ2
, the function σ 2

χs
is ultimately an aggregate measure of variability

since the omnibus joint loss function adds the within-group variation of persistence
diagram distances from each of the s spaces. As previously mentioned, the sampling
distribution of σ 2

χs
is nontrivial to determine and currently unknown; hence, we turn

to the omnibus permutation test.
The logic behind and the mechanics of this omnibus permutation test are anal-

ogous to the two-space permutation test described in Section 3. We assume that the
null hypothesis is true, which effectively means that the observed assignment of the
point clouds to the s spaces is just one of

∏s−1
i=1

(∑s
j=i n j
ni

)
possible assignments, all of

which are arbitrary and equally likely. For each of these possible assignments, the
value of σ 2

χs
is then computed. Collectively, these values yield the permutation distri-

bution for σ 2
χs

. Finally, the permutation test p-value is then obtained by calculating
the proportion of values in the permutation distribution which are less than or equal
to the observed value of σ 2

χs
. As in the two-space scenario of Section 3, in practice

the number of possible assignments may be unreasonably large, in which case the
above procedure is analogously altered to produce an approximate permutation test
p-value. In particular, rather than using the

∏s−1
i=1

(∑s
j=i n j
ni

)
possible assignments of

the n1+n2+· · ·+ns point clouds to the s spaces, numerous (e.g., 1000) randomly
selected permutations (i.e., “shuffles”) of the n1+ n2+· · ·+ ns point clouds are in-
stead used where after each shuffle the first n1 point clouds are labeled as “belonging”
to space X1, the next n2 point clouds are labeled as “belonging” to space X2, . . . ,
and the remaining ns point clouds are labeled as “belonging” to space Xs .

Analogous to the two-space scenario of Section 3, if the null hypothesis of this
omnibus permutation test is actually false, then we would expect the permutation
test p-value to be small since the observed labeling of point clouds would be the only
assignment that did not mix point clouds across the s spaces. The permutation test
p-value is then compared to the α-level (e.g., 0.05). If the permutation test p-value is
smaller than this threshold, then the observed value of σ 2

χs
is considered smaller than

what can reasonably be explained by chance assignment of the point clouds to the s
spaces. The null hypothesis would then be rejected and at least two of the s spaces are
declared as having measurably different shape. To then identify the source(s) of this
difference, i.e., to determine which spaces have measurably different shape, a requi-
site number of post hoc tests are conducted via the two-space methods of Section 3.

5. Simulation study

To confirm the two-space permutation test introduced by Robinson and Turner
[2013] and to validate our proposed generalization for three or more spaces, we
conducted a large-scale simulation study. Throughout the study, shape was measured
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via 1-dimensional persistent homology. Three different scenarios were considered
and all three consisted of three spaces (s = 3). For each scenario, a trial con-
sisted of obtaining 20 point clouds, via random sampling of points, from each of
the three spaces and then calculating the approximate omnibus permutation test
p-value. While the 20 point clouds from a particular space were ultimately drawn
independently, they can be viewed as 20 disjoint subsamples of one larger, i.e.,
more dense, point cloud obtained via random sampling of points of the space. All
approximate omnibus permutation test p-values were based on 100,000 randomly
selected permutations of the 60 collective point clouds. In particular, for each
permutation, the 60 point clouds were shuffled and then labeled such that the first
20 were in the first space, the next 20 were in the second space, and the final 20
were in the third space. In the third and final scenario, each of the three possible
post hoc tests were additionally performed using the two-space permutation test
described in Section 3. The corresponding approximate two-space permutation test
p-values were based on 100,000 randomly selected permutations of the 40 collective
point clouds. In particular, for each permutation, the 40 point clouds were shuffled
and then labeled such that the first 20 were in the first space and the final 20 were
in the second space. A total of 100 trials were performed for each scenario and
the percentage of these 100 trials that produced approximate (omnibus/two-space)
permutation test p-values less than or equal to 0.05 was calculated.

5.1. Unbalanced unit circles. For the first scenario, each of the three spaces was
the unit circle; hence, the omnibus permutation test null hypothesis that there is
no measurable difference in shape between the three spaces is ultimately true. The
number of sampled points making up a point cloud from each space, however, was
not the same (i.e., the sample sizes are unbalanced). Each point cloud in the first
space consisted of a random sample of size 18, whereas each point cloud in the
second space consisted of a random sample of size 36 and each point cloud in the
third space consisted of a random sample of size 54. For all three spaces, samples
were obtained without allowing for measurement error; i.e., all sampled points were
on their respective unit circle. Counterintuitively, 100% of the 100 trials performed
produced approximate omnibus permutation test p-values less than or equal to 0.05.
In fact, 100% of the trials produced approximate omnibus permutation test p-values
less than 0.01. Thus, in every trial the null hypothesis would be rejected at the 5%
level and we would conclude that the shapes of at least two of the three spaces are
measurably different.

While such results may appear to suggest that the omnibus permutation test
is ineffective, ultimately these results are an expected consequence of allowing
different (i.e., unbalanced) sample sizes across point clouds. Relative to a point
cloud obtained from a random sample of size 18 from the unit circle, a point cloud
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obtained from a random sample of size 54 is likely to produce a persistence diagram
(corresponding to homology dimension 1) containing a point that is measurably
further from the diagonal. This point in the persistence diagram is expected as the
circular feature within the point cloud will be born sooner and thus persist for a
longer time interval. Hence, in order for the hypothesis testing methods described in
Sections 3 and 4 to detect truly measurable differences in shape between the various
spaces, every point cloud, both within a space and across spaces, must consist of
the same number of randomly sampled data points. We will henceforth refer to
this procedural necessity as balanced sampling. In practice, balanced sampling will
usually be implemented at the subsampling level when the sampled data points
of a space are partitioned, via subsampling, into multiple point clouds; this is
demonstrated using the cardiotocography data set considered in Section 6.

5.2. Balanced samples from circles with varying radius. For the second scenario,
the three spaces were circles with radii of 1, 1

2 and 1
3 units. Notice that these three

spaces are topologically equivalent, though geometrically different, and there is
in fact a measurable difference in shape among the three spaces as measured by
persistent homology in dimension 1. Hence, the null hypothesis for the correspond-
ing omnibus permutation test is ultimately false. Point clouds for each of the three
circles consisted of random samples of size 24. As in the unbalanced unit circles
scenario, all samples were obtained without allowing for measurement error; i.e.,
all sampled points were on their respective circle. Of the 100 trials performed,
100% of them produced approximate omnibus permutation test p-values less than or
equal to 0.05. In fact, as in the unbalanced unit circles scenario, 100% of the trials
produced approximate omnibus permutation test p-values less than 0.01. Hence,
in every trial the null hypothesis would be rejected at the 5% level and we would
conclude that the shapes of at least two of the three spaces are measurably different.

As the three spaces of this second scenario are all topologically equivalent, these
results suggest that the omnibus permutation test is capable of recognizing when
purely geometrical differences exist between the spaces. Stated another way, this
second scenario suggests that the hypothesis testing methods described in Sections 3
and 4 are not scale invariant. This is not a surprising result. More specifically, as seen
in the example data of Figure 1, a point cloud obtained from a sample of points from
the circle with radius 1

3 will result in birth and death times for comparatively smaller
radii values than a point cloud obtained from a sample of points from the unit circle.
This is an artifact of the distances between neighboring points in the point cloud from
the circle with radius 1

3 typically being smaller than those from the unit circle. While
in practice it will usually be difficult to determine whether a significant hypothesis
test is a result of topological or geometrical differences between the various spaces,
it is informative nonetheless to find evidence of any measurable difference in shape.
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Figure 3. The three spaces of the first case of the balanced wedges
simulation scenario. On the left is the unit circle, in the middle
is the wedge of two unit circles, and on the right is the wedge of
three unit circles.

Figure 4. The three spaces of the second case of the balanced
wedges simulation scenario. On the left is the unit circle, in the
middle is the wedge of two circles of radius 1

2 , and on the right is
the wedge of three circles of radius 1

3 .

5.3. Balanced wedges. The third and final scenario consisted of three distinct, but
related cases in which only balanced sample sizes were considered. In the first case,
the three spaces were the unit circle, the 2-wedge consisting of two unit circles, and
the 3-wedge consisting of three unit circles. Hence, in this first case, the radius of
every component circle is 1. An image of these three spaces is given in Figure 3.
In the second case, the three spaces were the unit circle consisting of one circle
of radius 1, the 2-wedge consisting of two circles of radius 1

2 , and the 3-wedge
consisting of three circles of radius 1

3 . Hence, in this second case, the radii of the
component circles within a space sum to 1. An image of these three spaces is given
in Figure 4. In the third and final case, the three spaces were the unit circle, the unit
circle with a single chord traversing the interior of the circle, and the unit circle with
two nonintersecting chords traversing the interior of the circle. Hence, in this third
case, the area of each of the three spaces is π units. An image of these three spaces
is given in Figure 5. Observe that across these three scenarios the representations
of the three spaces are topologically equivalent, but geometrically different. We
consider all three scenarios since persistence diagrams are unavoidably influenced
by such differences.

Within each of the three cases, the null hypothesis of the omnibus permutation
test is ultimately false. In other words, there are measurable differences in shape
between the three spaces. The point clouds for each of the three spaces, in all
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Figure 5. The three spaces of the third case of the balanced wedges
simulation scenario. On the left is the unit circle, in the middle
is the unit circle with a single chord, and on the right is the unit
circle with two nonintersecting chords.

three cases, were obtained from random samples of the same size (i.e., balanced
samples). Ten different sample sizes were considered: 6, 12, 18, 24, 30, 36, 42,
48, 54, and 60. Figure 6 provides examples of point clouds obtained from random
samples of sizes 12 and 60, respectively, from each of the three spaces for the
second case.

For each of these ten sample sizes, three distinct measurement errors were
considered: 0 (i.e., no error), 1

3 , and 2
3 units. For example, in the 2-wedge of

the first case, measurement error was incorporated in the following manner. A
random sample of points was obtained separately from each of the two unit circles
of the 2-wedge. Each point on the circles was obtained by randomly selecting
the angle of the point from a uniform distribution U (0, 2π). Each point was then
assigned a radius value of 1 and converted to Cartesian coordinates. Finally, for

Figure 6. Point clouds obtained from random samples of each
of the three spaces of the second case of the balanced wedges
simulation scenario. The first row contains point clouds obtained
from random samples of size 12. The second row contains point
clouds obtained from random samples of size 60.
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no error error of 1
3 error of 2

3

Figure 7. Point clouds obtained from random samples of size 60,
under various measurement errors, from the 2-wedge of the first
case of the balanced wedges simulation scenario.

each point, two errors were randomly sampled from a normal distribution N (0, σ ),
where σ is the specified measurement error

(
e.g., 1

3

)
, and respectively added to

the Cartesian coordinates of the point. For each of the three measurement errors,
Figure 7 exemplifies a point cloud obtained from a sample of size 60 from the
2-wedge. From these images it is clear that as the measurement error increases,
the extent to which the point cloud resembles the 2-wedge dramatically decreases.
Measurement errors for the other spaces of the second case, as well as for the other
cases of the third scenario, was analogously incorporated.

For each of the 30 combinations of sample size and measurement error, the
percentage of the 100 trials producing an approximate omnibus permutation test
p-value less than or equal to 0.05 for case one is given in Table 1. Two trends
are readily apparent from these results. First, as sample size increases for a fixed
measurement error, the percentage of significant omnibus permutation test results
almost uniformly increases. This is intuitive and desirable since we would expect
measurable differences in shape between the three spaces to become more easily
identifiable as sample size increases. Second, as measurement error increases for a
fixed sample size, the percentage of significant omnibus permutation test results
almost uniformly decreases. This too is intuitive and desirable since we would
expect measurable differences in shape between the three spaces to become less
easily identifiable as measurement error increases. Given these trends and the fact
that there are so many entries in the table at or near 100%, these results suggest
that the proposed omnibus permutation test successfully identified measurable
differences in shape between at least two of these three spaces. The results for the
second and third cases, depicted in Figures 4 and 5, are analogous to those above
for the first case and, therefore, are omitted.

As the omnibus permutation test successfully identified measurable differences
in shape between at least two of the three spaces, in all three cases, each of the
three possible post hoc tests were then conducted. For each such post hoc test,
the null hypothesis asserts that there is no measurable difference in shape between
the two spaces, while the alternative hypothesis asserts the opposite. Hence, in all
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sample noise
size 0 1

3
2
3

6 6% 9% 1%
12 95% 57% 18%
18 100% 65% 41%
24 100% 96% 41%
30 100% 100% 85%
36 100% 100% 98%
42 100% 100% 100%
48 100% 100% 100%
54 100% 100% 100%
60 100% 100% 100%

Table 1. Balanced unit wedges — results of omnibus permutation
tests. For each combination of sample size and measurement error,
the percentage of approximate omnibus permutation test p-values
(out of 100) yielding a value less than or equal to 0.05 is given.
The three spaces are the unit circle, the 2-wedge and the 3-wedge.

three tests, for all three cases, the null hypothesis is ultimately false. As the results
across the three cases were ultimately analogous, only the results for the first case
are discussed below. In particular, for each of the 30 combinations of sample size
and measurement error, the percentage of the 100 trials producing an approximate
post hoc test p-value less than or equal to 0.05 is given in Table 2 for the circle
versus the 2-wedge, in Table 3 for the circle versus the 3-wedge, and in Table 4 for
the 2-wedge versus the 3-wedge.

The two trends that were apparent in the corresponding omnibus permutation
tests for this simulation scenario are also readily apparent in all three of these
post hoc tests. Specifically, as sample size increases for a fixed measurement
error, the percentage of significant post hoc tests tends to increase. Similarly, as
measurement error increases for a fixed sample size, the percentage of significant
post hoc tests tends to decrease. A cell-by-cell comparison of the percentages
among the three post hoc tests, however, reveals an additional interesting trend. The
percentages for the post hoc test between the circle and the 3-wedge are almost
uniformly larger than or equal to the corresponding percentages between the circle
and the 2-wedge, which are in turn almost uniformly larger than or equal to the
corresponding percentages between the 2-wedge and the 3-wedge. This too is
mostly intuitive and desirable since, among the three spaces, the unit circle and
the three wedge are the most different with respect to shape. We are uncertain
why the post hoc test appears more adept at recognizing measurable differences
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sample noise
size 0 1

3
2
3

6 2% 5% 2%
12 90% 29% 13%
18 99% 40% 15%
24 100% 83% 28%
30 100% 97% 49%
36 100% 100% 64%
42 100% 100% 80%
48 100% 100% 82%
54 100% 100% 92%
60 100% 100% 97%

Table 2. Balanced wedges, first case — results of unit circle vs.
2-wedge post hoc tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

sample noise
size 0 1

3
2
3

6 2% 5% 1%
12 97% 65% 30%
18 100% 85% 40%
24 100% 100% 53%
30 100% 100% 95%
36 100% 100% 100%
42 100% 100% 100%
48 100% 100% 100%
54 100% 100% 100%
60 100% 100% 100%

Table 3. Balanced wedges, first case — results of unit circle vs.
3-wedge post hoc tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

in shape between the circle and the 2-wedge rather than between the 2-wedge and
the 3-wedge. Regardless, all three of these trends, when coupled with the volume
of entries in all three tables which are at or near 100%, indicate that the proposed
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sample noise
size 0 1

3
2
3

6 0% 1% 1%
12 4% 17% 13%
18 62% 16% 18%
24 86% 33% 14%
30 93% 42% 20%
36 87% 66% 26%
42 95% 67% 43%
48 99% 87% 65%
54 100% 93% 66%
60 100% 98% 84%

Table 4. Balanced wedges, first case — results of 2-wedge vs.
3-wedge post hoc tests. For each combination of sample size
and measurement error, the percentage of approximate two-space
permutation test p-values (out of 100) yielding a value less than or
equal to 0.05 is given.

post hoc tests successfully identified measurable differences in shape between each
of the three possible pairings of these three spaces. Such findings additionally
corroborate the legitimacy of the two-space permutation test.

5.4. Summary of findings. In summary, the major findings of the simulation study
are three-fold. First and foremost, these simulations demonstrate that the proposed
omnibus permutation testing procedure successfully identified measurable differ-
ences in shape between at least two of the three spaces. Second, these simulations
confirm that the post hoc testing component successfully identified measurable dif-
ferences in shape between any two spaces; such findings corroborate the legitimacy
of the two-space permutation testing procedure. Third and finally, these simulations
reveal that, for any number of spaces, balanced sampling is required in obtaining
the point clouds utilized in the testing procedure.

6. Applications to real data sets

We apply our methods to the cardiotocography (CTG) data set that is freely avail-
able from the University of California at Irvine Machine Learning Repository at
https://archive.ics.uci.edu/ml/datasets/cardiotocography. The CTG data set includes
23 variables for each of 2126 subjects. We apply our methods on a focused subset
of four quantitative variables, including fetal heart rate baseline in beats per minute,
number of accelerations per second, number of uterine contractions per second,

https://archive.ics.uci.edu/ml/datasets/cardiotocography


46 C. CERICOLA, I. JOHNSON, J. KIERS, M. KROCK, J. PURDY AND J. TORRENCE

and number of light decelerations per second. These four quantitative variables
are chosen because they are seemingly independent, and we want to consider no
more than four such variables. The categorical variable of interest is health status,
which has three levels: normal, suspect, and pathologic. The question of interest
is whether or not the 4-dimensional space created by the quantitative variables
has a measurably different shape across the three health status groups. To answer
this question, we use the omnibus permutation testing procedure developed in
Section 4.1, measuring shape via 1-dimensional persistent homology. Before this
procedure can be performed, however, multiple point clouds from the three health
status groups must be obtained via balanced subsampling of the subjects.

Of the 2126 sampled subjects, 1655 are of normal health status, 295 are of
suspect health status, and 176 are of pathologic health status. Hence, from the
sampled data points we obtain three 4-dimensional point clouds, one consisting
of 1655 subjects from the normal health status group, another consisting of 295
subjects from the suspect health status group, and one other consisting of 176
subjects from the pathologic health status group. As our methods require balanced
sampling across multiple point clouds from each of the groups, we partitioned,
via subsampling, each given point cloud into smaller 4-dimensional point clouds
consisting of 44 subjects each. Consequently, we obtained 37 points clouds from
the normal health status group, 6 point clouds from the suspect health status group,
and 4 point clouds from the pathologic health status group. As neither 1655 nor
295 are divisible by 44, we simply discarded the leftover 27 normal health status
subjects and the 31 suspect health status subjects.

The omnibus permutation test was then performed using the persistence diagrams
corresponding to the 47 subsampled point clouds. The null hypothesis asserted that
there were no measurable differences in shape between the three spaces correspond-
ing to the three health status groups. The resulting approximate permutation test
p-value of 0.00005 was based on 100,000 randomly sampled permutations of the 47
point clouds. In particular, for each permutation, the 47 point clouds were shuffled
and then labeled such that the first 37 were in the normal health status group, the
next 6 were in the suspect health status group, and the last 4 were in the pathologic
health status group. Given that the p-value is so small, we reject the null hypothesis
and conclude that there are measurable differences in shape between at least two of
the three spaces.

To determine the source(s) of the difference, we ultimately performed three
post hoc tests, one for each possible pairing of the three health status groups. For
each such test, the null hypothesis asserted that there were no measurable differences
in shape between the two spaces of the respective health status groups. For the
normal and suspect health status groups, the approximate permutation test p-value
of 0.00009 was based on 100,000 randomly sampled permutations of the 43 point



EXTENDING HYPOTHESIS TESTING WITH PERSISTENT HOMOLOGY 47

clouds. In particular, for each permutation, the 43 point clouds were shuffled and
then labeled such that the first 37 were in the normal health status group and the
final 6 were in the suspect health status group. For the normal and pathologic health
status groups, the approximate permutation test p-value of 0.0060 was based on
100,000 randomly sampled permutations of the 41 point clouds. In particular, for
each permutation, the 41 point clouds were shuffled and then labeled such that the
first 37 were in the normal health status group and the final 4 were in the pathologic
health status group. Finally, for the suspect and pathologic health status groups, the
approximate permutation test p-value of 0.3012 was based on 100,000 randomly
sampled permutations of the 10 point clouds. In particular, for each permutation,
the 10 point clouds were shuffled and then labeled such that the first 6 were in the
suspect health status group and the final 4 were in the pathologic health status group.
Note that while (exact) permutation test p-values could have straightforwardly
been obtained for the post hoc tests involving normal versus pathologic (101,270
possible assignments) and suspect versus pathologic (210 possible assignments),
such p-values could not have reasonably been obtained for the post hoc test involving
normal versus suspect (6,096,454 possible assignments) or for the omnibus test
(1.087394× 1012 possible assignments); therefore, for the sake of consistency,
approximate permutation test p-values were obtained in all instances. Based on these
results, there is significant evidence of measurable differences in shape between the
spaces corresponding to the normal and suspect health status groups, and between
the normal and pathologic health status groups, but insignificant evidence of such
differences between the suspect and pathologic health status groups.

7. Conclusion

For multiple point clouds obtained from (sub)sampled points of three or more spaces,
we propose using an omnibus permutation test on the corresponding persistence
diagrams to determine whether statistically significant evidence exists of measurable
differences in shape between any of the respective spaces. If such differences do
exist, we then propose using a number of post hoc (i.e., two-space) permutation tests
to identify the specific pairwise differences. To validate this proposed procedure,
we conducted a large-scale simulation study using point clouds obtained from
samples of points from three spaces. Various combinations of spaces, sample sizes
and measurement errors were considered in the simulation study and for each
combination the percentage of p-values below an α-level of 0.05 was provided.
The results of the simulation study clearly suggest that the procedure works, but
additionally reveal that the method is neither scale invariant nor insensitive to
imbalanced sample sizes across point clouds. Finally, we applied our omnibus
testing procedure to a cardiotocography data set and found statistically significant
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evidence of measurable differences in shape between the spaces corresponding to
normal, suspect and pathologic health status groups.

While the proposed omnibus testing procedure is applicable in any homological
dimension, the simulation study and CTG application presented in this paper focus
exclusively on homological dimension 1. Hence, to validate the effectiveness of
the method in other homological dimensions, and to assess the consistency of the
method across various dimensions, additional simulation studies can be performed.

Appendix

For readers that are less familiar with simplicial complexes, homology, and persis-
tence diagrams, we include here examples of each for a small accessible example.
Consider the set, D, of five points in the plane as pictured in Figures 8 and 9. Each
point in D is a 0-simplex, each line segment drawn between points is a 1-simplex,
and each shaded triangle a 2-simplex. As the parameter r increases beyond r = 4 the
Vietoris–Rips complex will contain additional 2-simplices, a 3-simplex at r = 4.9,
and eventually a 4-simplex when 2r is equal to the diameter of D. Note that
the abstract simplicial complex VR(D, 4.9) in Figure 9 cannot be geometrically
realized in R2 since it contains pairs of 2-simplices whose intersection is not a face
of either simplex.

The complex VR(D, 4), on the left in Figure 9, is labeled with an ordering
assigned to its 0, 1, and 2-simplices: the five 0-simplices, v1, v2, v3, v4, v5; six
1-simplices e1, e2, e3, e4, e5, e6; and one 2-simplex f1.

With respect to this notation, the boundary of a chain is relatively easy to calculate.
For example, δ1(e6+ e1+ e2)= v5+ v3 and δ2( f1)= e2+ e3+ e4. More precisely,
the chain complex of VR(D, 4) is

0−→ Z2
δ2
−→ (Z2)

6 δ1
−→ (Z2)

5 δ0
−→ 0,

−1

0

1

2

3

4

0 1 2 3 4

y

x

Figure 8. Five data points in the plane.
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v1

v2

v3

v4

v5

e1

e2e3

e4

e5

f1

Figure 9. Representations of the abstract simplicial complexes
VR(D, 4) and VR(D, 4.9) for the five point data set D.

with boundary maps given in matrix form by

δ2 =



0
1
1
1
0
0


, δ1 =


1 0 0 0 0 1
1 1 0 1 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 0 0 1 1

, and δ0 =
[
0 0 0 0 0

]
.

Intuitively, the p-th homology group measures equivalence classes of p-cycles
of K that are not “filled” by (p+1)-chains. In homological dimension p= 1 for the
complex VR(D, 4), an example of a 1-cycle that is not the boundary of a 2-cycle
is e1 + e2 + e3 + e5 + e6. Hence this 1-cycle is in a nonzero equivalence class
of H1(VR(D, 4);Z2). The 1-cycle e2+ e3+ e4, however, is the boundary of the
2-cycle f1 (this 1-cycle is “filled” by f1), so this 1-cycle is equivalent to zero in
the homology group. Hence, in dimension p = 1, the homology of VR(D, 4) is
measuring the circular hole that is seen in the complex.

To complete the homology calculation for the simplicial complex VR(D, 4), we
see that the kernel of δ0 is (Z2)

5 and the rank of δ1 is 4. Thus H0(VR(D, 4);Z2)∼=Z2.
Similarly, the nullity of δ1 is 2 and the image of δ2 is 1-dimensional. This implies
that H1(VR(D, 4);Z2) ∼= Z2. We have H2(VR(D, 4);Z2) ∼= 0, since the kernel
of δ2 is 0. Because the complex contains no simplices in higher dimensions,
Hp(VR(D, 4);Z2)= 0 for all p > 2.

The calculation H0(VR(D, 4);Z2)= Z2 measures that VR(D, 4) is a connected
complex. The nontrivial group H1(VR(D, 4);Z2)= Z2 measures the existence of
a 1-dimensional cycle that is not the boundary of a 2-simplex, namely e1+ e2+

e3+ e5+ e6.
For the complex VR(D, 4.9), on the right in Figure 9, the homology groups are

H0(VR(D, 4.9))= Z2 and Hp(VR(D, 4.9))= 0 for all p ≥ 1. In this example, the



50 C. CERICOLA, I. JOHNSON, J. KIERS, M. KROCK, J. PURDY AND J. TORRENCE

0 1 2 3 4 5 6

0
1

2
3

4
5

6

in
te

rv
al

en
d

interval start

H0

0 1 2 3 4 5 6

0
1

2
3

4
5

6

in
te

rv
al

en
d

interval start

H1

Figure 10. The persistence diagrams corresponding to the five-
point data set in Figure 8 in the homological dimensions 0 and 1.

first homology group disappeared, or died, as r increases from 4 to 4.9 as a result
of the additional 2-simplicies that span the 1-cycle e1+ e2+ e3+ e5+ e6.

The persistence diagrams in Figure 10 display the H0 and H1 persistence diagrams
for the five-point data set D first seen in Figure 8. Note that all points in a persistence
diagram are plotted above the line y = x , as a persistent homology class must be
born before it can die.

In homological dimension 1 (the H1 diagram), the small triangle plotted at
the point (4, 4.9) indicates that the five-point data set contains a 1-dimensional
homology class that is born at radius 4 and dies at radius 4.9. In homological
dimension 0 (the H0 diagram), the circles plotted at the points (0, 2.236) and
(0, 3.54) represent the connection of data points by 1-simplices at r = 2.236 and at
r = 3.54 resulting in the death of a connected component when it is joined with
another connected component by a 1-simplex. For r > 3.54 the five points are
path connected via 1-simplices; thus this connected complex gives rise to a single
0-dimensional persistent homology class. This single class is plotted at (0, 6) as a
result of considering only r -values in the range 0≤ r ≤ 6.
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Merging peg solitaire on graphs
John Engbers and Ryan Weber

(Communicated by Anant Godbole)

Peg solitaire has recently been generalized to graphs. Here, pegs start on all but
one of the vertices in a graph. A move takes pegs on adjacent vertices x and y,
with y also adjacent to a hole on vertex z, and jumps the peg on x over the peg on
y to z, removing the peg on y. The goal of the game is to reduce the number of
pegs to one.

We introduce the game merging peg solitaire on graphs, where a move takes
pegs on vertices x and z (with a hole on y) and merges them to a single peg on y.
When can a configuration on a graph, consisting of pegs on all vertices but one, be
reduced to a configuration with only a single peg? We give results for a number
of graph classes, including stars, paths, cycles, complete bipartite graphs, and
some caterpillars.

1. Introduction

Peg solitaire on graphs has recently been introduced as a generalization of peg
solitaire on geometric boards [Avis and Deza 2001; Beeler and Hoilman 2011].
Peg solitaire on graphs is played on a simple connected graph G and begins with
a starting configuration consisting of pegs in all vertices but one; the remaining
vertex is said to have a hole. A move involves finding vertices x , y, and z with x
and y adjacent and y and z adjacent with pegs on x and y only, and jumping the
peg from x over y and into z (while removing the peg at y); see Figure 1.

If there is some starting configuration of pegs and some combination of moves
that reduces the number of pegs to one, we say the graph is solvable; if the graph is
solvable for every starting configuration then we say the graph is freely solvable.

Recently, several variations on peg solitaire were introduced. One variant, called
fool’s solitaire [Beeler and Rodriguez 2012] tries to maximize the number of pegs
left in the game when no more moves can be made. A second variant, called
reversible peg solitaire [Engbers and Stocker 2015], asks which graphs are solvable
if both moves and reverse moves are allowed.

MSC2010: 05C57.
Keywords: peg solitaire, games on graphs, graph theory.
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x y z x y z

Figure 1. A move in peg solitaire on graphs.

x y z x y z

Figure 2. A move in merging peg solitaire on graphs.

In this paper, we introduce a new variation on peg solitaire, called merging peg
solitaire on graphs, by using a different move. We again consider vertices x , y, and
z with x and y adjacent and y and z adjacent. However, now we start with pegs
on vertices x and z only, and the new move merges those two pegs to a single peg
on y; see Figure 2.

For a fixed simple connected graph G and some initial configuration of pegs —
occupying all but a single vertex — the goal of the game is to use this move to reduce
the number of pegs to one. If this is possible for some initial configuration, we
again say that the graph is solvable, and if it is possible for any initial configuration
we say that the graph is freely solvable. The main question that we ask is the
following. Given a fixed simple connected graph G, is G solvable, and if so, is G
freely solvable?

Notice that the merging move is the only other symmetric way of reducing exactly
two pegs in a path on 3 vertices, P3, to exactly one peg where each vertex must
change from peg to hole or vice versa. In this way, this new game may be viewed
as a restricted version of Lights Out on graphs, a game where the entire closed
neighborhood of a vertex flips all states (here pegs/holes). In this formulation, we
are allowed to flip the states of all vertices in a P3 subgraph if the endpoints of
the P3 have pegs and the center has a hole. For a survey of Lights Out, see, e.g.,
[Fleischer and Yu 2013].

The game is also similar to graph rubbling (see, e.g., [Belford and Sieben 2009]
for an introduction to graph rubbling) in that the moves allowed are nearly identical,
but the end goal of the game is quite different. Indeed, in graph rubbling, a number
of pebbles (pegs) are placed on some vertices, and the allowable move removes two
pebbles at vertices v and w adjacent to a vertex u while an extra pebble is added
at u. The goal of graph rubbling is to use the least number of pebbles m so that any
vertex is reachable from any pebble distribution of the m pebbles. In addition to
the goal of merging peg solitaire on graphs being different, our game also does not
allow for multiple pebbles on the vertices (and so, in particular, forces v 6= w).
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2. Preliminary results

In this section we describe some preliminary results for various classes of graphs.
As usual, we let Pn and Cn denote the path and cycle on n vertices, respectively.
The complete bipartite graph with V = X ∪ Y , where |X | = m and |Y | = n, is
denoted Km,n; when m = 1 we refer to the complete bipartite graph as a star. A
vertex of degree one is a pendant vertex. We begin with several useful lemmas.

Lemma 2.1. Let G be a graph and suppose that the only holes on the vertices of G
are on pendant vertices. Then there are no available moves.

Proof. Any move requires two pegs on distinct vertices, both adjacent to the vertex
with a hole. �

The next results follow from Lemma 2.1.

Lemma 2.2. Let G be a graph. If G has any pendant vertices, then G is not freely
solvable.

Corollary 2.3. Let T be a tree. Then T is not freely solvable.

Next, we show that a star on at least 4 vertices is not solvable.

Theorem 2.4. Fix n > 2. The star K1,n is not solvable.

Proof. Let G = K1,n . If the hole starts on a pendant vertex, then there are no
available moves by Lemma 2.1. If the hole starts on the center, then a single move
will leave exactly two holes on two pendant vertices. Again, by Lemma 2.1, there
are no more available moves. Since n > 2, there are at least two pegs remaining. �

We already know that trees are not freely solvable. For the games of peg solitaire
on graphs and reversible peg solitaire on graphs, not all paths are solvable [Beeler
and Hoilman 2011; Engbers and Stocker 2015]; in particular, P5 is not solvable in
either of those two games. In contrast, for merging peg solitaire on graphs all paths
are solvable.

Theorem 2.5. If n ≥ 2, the path Pn is solvable, and furthermore if an initial
configuration can be reduced to a single vertex, then the initial hole must start on a
vertex adjacent to a pendant vertex.

Proof. We induct on n, with the base case n = 2 clear. Let the vertices of the path
be labeled 1, . . . , n. By Lemma 2.1, the hole cannot start on vertex 1 or on vertex n.
If the hole starts on vertex 2, then one move creates holes on vertices 1 and 3 only.
By considering the vertices 2, . . . , n we have a path on n− 1 vertices with a hole
second from one end. Therefore we are done by induction.

Suppose the hole is on vertex i with 2 < i < n−1. After the first move, there are
holes on vertices i − 1 and i + 1. Suppose next that the pegs on vertices i and i − 2
merge to a peg on i−1, leaving a configuration with holes on vertices i−2, i , and
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i − 2 i − 1 i i + 1 i + 2
. . .. . .

Figure 3. The configuration after the first two moves.

i + 1; see Figure 3. The only move available is to merge pegs into i − 2 and iterate
this process, producing a graph with pegs on vertex 2 and on vertices i + 1, . . . , n.
By the assumption on i , at least two pegs remain.

The other possible second move produces a similar result, and so no set of moves
can reduce the path to a configuration with a single peg unless the hole starts on a
vertex adjacent to a pendant vertex. �

Part of the proof of Theorem 2.5 will be useful later, but in the following (slightly)
generalized form. We start with a definition.

Definition 2.6. In a configuration of pegs on a graph G, an empty bridge is a pair
of adjacent degree 2 vertices, joined by a cut-edge, both of which have holes.

Lemma 2.7. Suppose that G is a graph and some configuration of pegs and holes
on the graph has an empty bridge and a nonzero number of pegs on either side of
the empty bridge. Then G is not solvable from that configuration.

Proof. Suppose that the empty bridge consists of vertices u and v. To solve the
graph from this configuration, a peg must be moved to either vertex u or vertex v,
since there are a nonzero number of pegs on either side of the empty bridge. But
any move that puts a peg on u requires a prior peg on v, and any move that puts a
peg on v requires a prior peg on u. �

Since any graph containing a spanning solvable subgraph must also be solvable,
we have the following result.

Theorem 2.8. Let n > 2. The n-cycle Cn is freely solvable.

The cycle is freely solvable since given a hole on any vertex of the cycle we can
choose a spanning path so that the hole is adjacent to a pendant vertex of the path.

Corollary 2.9. If G is Hamiltonian, then G is freely solvable.

Let us consider other graph classes. By Corollary 2.9, complete graphs are freely
solvable. The behavior of nonstar complete bipartite graphs is more interesting.

Theorem 2.10. Let m, n ≥ 2 be integers. If m − n is divisible by 3, then Km,n is
freely solvable. If m− n is not divisible by 3, then Km,n is solvable but not freely
solvable.

Proof. Notice that any move results in two pegs becoming holes on one partition
class of the graph and a single hole becomes a peg on the other partition class.
Therefore if there are p pegs in the partition class of size m and q pegs in the
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partition class of size n, then the quantity f (p, q) := (p− q) mod 3 is preserved
by a move. Notice that a configuration with only a single peg has f (p, q)= 1 or
f (p, q)= 2.

This immediately implies several facts. If f (m, n) = 1, then a configuration
with the hole on a vertex in the partition class of size m cannot be reduced to a
configuration with a single peg, and if f (m, n)= 2 then a configuration with the
hole starting on a vertex in the partition class of size n cannot be reduced to a
configuration with a single peg.

Next, notice that given any m, n≥ 2 either f (m−1, n) or f (m, n−1) is nonzero.
So suppose that m, n ≥ 2 and either f (m, n)= 0, f (m, n)= 1 and the hole starts
on a vertex in the partition class of size n, or f (m, n)= 2 and the hole starts on a
vertex in the partition class of size m. We describe a collection of moves that, when
iterated, produces a configuration with a single peg. A partition move is a sequence
of moves that merges pegs from one partition class into the opposite partition class
until either all of the holes on the latter partition class have been filled with pegs
or the vertices on the former partition class are all holes (with possibly a single
peg left, depending on parity). Each partition move decreases the total number
of pegs on the vertices. Note that the iteration requires m, n ≥ 2 so that partition
moves can be made back and forth. This process will terminate when there is a
single peg remaining (the terminating state can’t have a single peg in each partition
class by the assumptions on m and n). If the initial configuration of pegs satisfies
f (p, q)= 1 ( f (p, q)= 2, resp.), then the final peg will be in the partition class of
size m (n, resp.). �

We also investigate what happens when an edge is added to a star and, more
generally, when a matching is added to a star. These graphs were analyzed for peg
solitaire on graphs in [Beeler and Hoilman 2012].

Definition 2.11. Given fixed nonnegative integers B and P, the windmill variant
graph, denoted W (P, B), is the graph on P + 2B+ 1 vertices obtained by taking a
star K1,P+2B and adding a matching of size B on the pendant vertices of the star.
We will label the pendant vertices of W (P, B) by p1, . . . , pP and the pendant
vertices of K1,P+2B involved in the matching by b1, b2, . . . , b2B so that b2i−1b2i is
an edge of W (P, B) for i = 1, . . . , B.

See Figure 4 for an example of a windmill variant graph. Note that if B = 0,
then W (P, 0)= K1,P and if P = 0 then W (0, B) is the windmill graph. The vertex
corresponding to the center of K1,P+2B is called the universal vertex u which is
adjacent to B blades consisting of two vertices each. We now show that W (P, B)

is solvable unless B = 0, and W (0, B) is freely solvable. We note that this differs
from the results for peg solitaire, where W (P, B) is solvable if and only if P ≤ 2B
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b1b2

b3

b4

p1 p2

p3

p4

Figure 4. The windmill variant W (4, 2).

and freely solvable if and only if P ≤ 2B − 1 and (P, B) 6= (0, 2) [Beeler and
Hoilman 2012, Theorem 2.2].

Theorem 2.12. Let P and B be nonnegative integers and let W (P, B) be a windmill
variant graph on at least 2 vertices. If P = 0, then W (0, B) is freely solvable. If
P 6= 0 and B ≥ 1, then W (P, B) is solvable but not freely solvable.

Proof. Suppose first that P = 0 and the hole starts on the center u. If B = 1, then
the result follows. For B > 1, we iteratively eliminate the pegs on distinct blades.
We first merge the pegs on b2B and b1 to a peg on u, and then merge the pegs on u
and b2B−1 to a peg on b2B . If B = 2, we merge the pegs on b2B and b2 to u and
we’re finished. If B > 2, we have B − 2 full blades and pegs on b2 and b2B . We
merge b2 and b4 into u, and then u and b3 to b4. Doing this last step B− 2 times
leaves two pegs on distinct blades; we then merge them to u.

If P = 0 and the hole starts on a blade, say b2, then we merge the pegs on u and
b1 to a peg on b2. If B = 1 we’re done, so suppose B > 1. Now ignoring the blade
b1b2, we have a graph with B− 1 blades with the hole on u, which we can solve
by the previous paragraph and end with the peg on u. We then merge the pegs on u
and b2 to a peg on b1.

Now suppose that P ≥ 1. By Lemma 2.1, in this case W (P, B) is not freely
solvable. We show that if B = 1 and P ≥ 1, then W (P, 1) is solvable. Since for
B ≥ 1 and P ′ = P + 2(B− 1), W (P ′, 1) is a spanning subgraph of W (P, B), this
proves the result.

Start with the hole on b2, and merge the pegs on u and b2 to a peg on b1. Then
merge the pegs on two pendant vertices to a peg on u, and subsequently merge
the pegs on u and b1 to a peg on b2. Iteratively merge the pegs on two pendant
vertices to a peg on u then merge the peg on u with the peg on the blade to the hole
on the blade. This process stops when there are 0 pegs or 1 peg remaining on the
pendant vertices. If there are 0 pegs remaining, then we are done. If there is 1 peg
remaining, then merge with the peg on the blade to a peg on u. �
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3. Double stars and caterpillars

Knowing whether or not a given tree is solvable would be extremely helpful in
determining whether or not a connected graph is solvable or not; in particular, any
connected graph with a solvable spanning tree would necessarily be solvable. Since
stars are not solvable but paths are solvable, a natural first step in classifying the
solvable trees is to describe when a caterpillar is solvable.

Definition 3.1. Let n ≥ 1 be given, and let p1, . . . , pn be nonnegative integers. A
caterpillar on n+ p1+· · ·+ pn vertices consists of a path on n vertices so that the
i-th vertex on the path has pi pendant vertices attached to it. We will denote this
caterpillar by Pn(p1, . . . , pn).

See Figure 5 for an example of a caterpillar. Note also that P1(n) is isomorphic
to the star K1,n and Pn(0, . . . , 0) is isomorphic to the path Pn .

We will prove that a large family of caterpillars are solvable and also fully
classify the solvability of some special types of caterpillars. To do so, we start with
a special type of caterpillar. A double star is a caterpillar of the form P2(m, n) —
see Figure 6 — and the two vertices from the path are its centers.

Theorem 3.2. Let m, n ≥ 1. If |m − n| ≤ 1, then the double star P2(m, n) is
solvable. If |m− n|> 1 then the double star P2(m, n) is not solvable.

Also, if m = n and the hole starts on center vertex u, then the final peg is on v.

We note that in peg solitaire P2(m, n) (with m ≥ n) is solvable if and only if
m ≤ n+ 1 and n 6= 1 and freely solvable if and only if m = n and n 6= 1 [Beeler
and Hoilman 2012, Theorem 3.1].

Proof. We must start with the hole on one of the two center vertices u or v; without
loss of generality assume the hole starts on u, where u has m pendant vertices. If

Figure 5. The caterpillar P4(2, 0, 1, 3).

Figure 6. The graph P2(3, 3).
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the pegs on two pendant vertices are merged to a peg on u, then by Lemma 2.1
no more moves are possible, and since there is a peg on v this move will never
produce a graph with a single peg remaining. Therefore the only move that allows
for future moves is to merge the peg on v and the peg on a pendant vertex of u to a
peg on u. We then repeat by merging the peg on u and the peg on a pendant vertex
of v to a peg on v. Continuing in this way, we remove the same number of pegs
from the pendant vertices of u and v, so if m = n this process terminates with a
peg only on v.

If m+ 1= n, then after the first move we have the same number of pegs on the
pendant vertices of u and v with the hole on v, and so the double star is solvable
by the previous argument. If m = n+ 1, then we start with the hole on v and the
previous argument shows that the graph is solvable.

Now suppose that |m − n| ≥ 2. Notice that each move that allows for future
move alternates reducing the number of pegs on pendant vertices of u by 1 and the
number of pegs on pendant vertices of v by 1; without loss of generality assume
the hole starts on u. If m < n, then removing the last peg on a pendant vertex of
u leaves pegs on u and n−m+ 1 pendant vertices of v. Then the final remaining
move merges two of these pegs to a peg on v, and no further moves are possible.
If m > n and the hole starts on u, then removing the last peg on a pendant vertex
of v leaves pegs on v and n−m pendant vertices of u. Merging two of these pegs
leaves n−m pegs remaining with no further moves available. �

Next, we see what happens to solvability when we subdivide the edge between
the center vertices of a double star.

Definition 3.3. Fix an integer k ≥ 3 and positive integers m and n. A path-k double
star is the graph Pk(m, 0, . . . , 0, n).

See Figure 7 for an example of a path-3 double star. Recall that by Corollary 2.3
no tree is freely solvable. In what follows, we fully classify the solvability of path-k
double stars. We are unaware of any results in peg solitaire for path-k double stars
when k > 2.

Theorem 3.4. Fix nonnegative integers m and n and let P3(m, 0, n) be a path-3
double star. Then P3(m, 0, n) is solvable if b1

2(m − 1)c ≤ n ≤ 2m + 2 and is not
solvable otherwise.

Proof. As before we cannot start with a hole on a pendant vertex; assume that the
graph has nonpendant vertices u, w, and v with u having m pendants attached to it
and v having n pendants attached to it.

Suppose first that the hole starts on u. Merging two pendant pegs results in no
further moves, so the only move is to merge pegs on a pendant vertex and w to a
peg on u, leaving one fewer peg on the pendants of u and a hole on w. The initial
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u w v

Figure 7. The graph P3(3, 0, 3).

move when the hole starts on v is similar. It remains to analyze the situation where
a hole starts on w only, and we note that if P3(a, 0, b) is solvable with initial hole
on w, then P3(a+ 1, 0, b) is solvable with initial hole on v and P3(a, 0, b+ 1) is
solvable with initial hole on w.

Now, with a hole on w, the only available move is to merge the pegs on u and v

to a peg on w, creating holes on u and v. Focusing on the hole at u, either two pegs
on pendant vertices of u can merge to a peg on u or a peg on a pendant vertex of u
and the peg on w can merge to a peg on u. Two similar moves are possible at v,
but these moves cannot be made independently. If two pendant pegs merge to u
and two pendant pegs merge to v, then no further moves can be made. So suppose
that w and a pendant peg merge to u. Then the only available move merges two
pegs on pendants of v to a peg on v. A similar result follows from merging w and
a pendant peg to v.

This shows that if the holes are on w and pendant vertices only, then the only sets
of moves that allow for future moves result in the removal of two pegs on pendant
vertices from u (v, resp.), the removal of one peg on a pendant vertex from v (u,
resp.), and a configuration where the only holes are on w and pendant vertices again.

Next, it is useful to see which graphs P3(m, 0, n) are solvable with initial hole on
w for small values of m and n. Since we can effectively reduce one of m and n by
2 and the other by 1 (by viewing holes on pendant vertices as deleted vertices), we
only need to check the solvability of P3(m, 0, 0), P3(0, 0, n), and P3(1, 0, 1) with
initial hole on w. The only graphs that are solvable are P3(0, 0, 0), P3(1, 0, 0), and
P3(0, 0, 1), as P3(1, 0, 1) is not solvable by Theorem 2.5 and P3(m, 0, 0) for m > 1
is, after one move, essentially a star with m+ 1 pendants and so is not solvable by
Theorem 2.4.

Suppose that we:

(1) complete x sets of moves that remove 2 pegs on pendant vertices of u and 1
peg on a pendant vertex of v;

(2) complete y sets of moves that remove 1 peg on a pendant vertex of u and 2
pegs on pendant vertices of v; and

(3) end with P3(0, 0, 0), P3(1, 0, 0), or P3(0, 0, 1) and a hole on w.
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If the initial hole started on w, then 2x + y pegs were removed from the pendant
vertices of u and x + 2y pegs were removed from the pendant vertices of v. If the
initial hole started on u (v, resp.) then 2x+ y+1 (2x+ y, resp.) pegs were removed
from the pendant vertices of u and x + 2y (x + 2y+ 1, resp.) pegs were removed
from the pendant vertices of v. We analyze the possible values of m and n that are
solvable by considering both where the hole starts and also which of P3(0, 0, 0),
P3(1, 0, 0), or P3(0, 0, 1) remains.

For these fixed values of x and y, if P3(0, 0, 0) remains, then we have (m, n)=

(2x+y, x+2y), (2x+y+1, x+2y), or (2x+y, x+2y+1). If P3(0, 0, 1) remains,
then (m, n)= (2x+ y, x+2y+1), (2x+ y+1, x+2y+1), or (2x+ y, x+2y+2).
If P3(1, 0, 0) remains, then (m, n)= (2x + y+ 1, x + 2y), (2x + y+ 2, x + 2y),
or (2x + y+ 1, x + 2y+ 1). By the above arguments, these are the only solvable
values for m and n.

Now, suppose m > 0 is fixed. What values of n (as a function of m) are solvable?
For n to be maximized, we take m = 2x + y and n = x + 2y + 2 where x = 0
and y = m. Then we have n = 2m+ 2; therefore n ≤ 2m+ 2. Symmetrically we
have m ≤ 2n+ 2, so b1

2(m − 1)c ≤ n. To show that all values of n in that range
are possible, note that for a given m there are values of x and y with 2x + y = m.
But for each x and y pair, we have, as possible values for n, x + 2y, x + 2y+ 1,
and x + 2y+ 2. This shows that all values b1

2(m+ 1)c ≤ n ≤ 2m+ 2 are possible.
But we can have n = b 1

2(m − 1)c by taking m = 2x + y + 2 or m = 2x + y + 1
(depending on parity) and n = x + 2y where x = b 1

2(m− 1)c and y = 0. �

Theorem 3.5. Fix nonnegative integers m and n. Then the graph P4(m, 0, 0, n) is
solvable if :

(1) m = n, or

(2) m is even and n = m+ 1, m+ 2, m+ 3, or m+ 4, or

(3) n is even and m = n+ 1, n+ 2, n+ 3, or n+ 4,

and is not solvable otherwise.

Proof. As before we cannot start with a hole on a pendant vertex; assume that the
graph has nonpendant vertices u, w1, w2 and v with m pendant vertices on u, n
pendant vertices on v, and u adjacent to w1; see Figure 8.

Suppose first that the hole starts on u. Merging two pegs on pendant vertices
results in no further possible moves, so the only move is to merge a peg on a pendant
vertex and the peg on w1 to a peg on u, leaving one fewer peg on the pendants of u
and a hole on w1. When the hole starts on v the analysis is similar. So we again
consider the initial hole starting on w1 (with a similar analysis of the hole at w2

following immediately), and have that if P4(a, 0, 0, b) is solvable with initial hole
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u w1 w2 v

Figure 8. The graph P4(5, 0, 0, 4).

on w1 (w2, resp.), then P4(a+1, 0, 0, b) (P4(a, 0, 0, b+1), resp.) is solvable with
initial hole on u (v, resp.).

Suppose then that the only hole on a nonpendant vertex is on w1. The available
move is to merge pegs on w2 and u to a peg on w1. If we then merge pegs on a
pendant of u and w1 to a peg on u, we create an empty bridge which is not solvable
by Lemma 2.7.

If we first merge the pegs on w1 and v to a peg on w2, then we have holes on u,
w1, and v. To avoid creating an empty bridge, we must merge two pegs on pendant
vertices of u to a peg on u and merge two pegs on pendant vertices of v to a peg
on v. This produces a hole on w1 and removes two pegs on the pendant vertices of
u and two pegs from the pendant vertices of v.

Note that if we instead first merge two pegs on pendant vertices of u to a peg on u,
a similar analysis produces the same loss of two pegs from both sets of pendant
vertices with a hole on w1.

Again, we now analyze the small cases of m and n; we see that P4(0, 0, 0, 0) is
solvable with the hole on w1 or w2; P4(1, 0, 0, 0), P4(0, 0, 0, 2), and P(0, 0, 0, 3)

are solvable with the hole on w2, and P4(0, 0, 0, 1), P4(2, 0, 0, 0), and P4(3, 0, 0, 0)

are solvable with the hole on w1, and by inspection no other graph P4(m, 0, 0, n)

is solvable when one of m or n is 0 or 1 and the hole is on w1 or w2.
We now put all of this together. The graphs that are solvable with initial

hole on w1 are P4(2x, 0, 0, 2x), P4(2x, 0, 0, 2x + 1), P4(2x + 2, 0, 0, 2x) and
P4(2x+3, 0, 0, 2x); the solvable graphs with initial hole on w2 are P4(2x, 0, 0, 2x),
P4(2x+1, 0, 0, 2x), P4(2x, 0, 0, 2x+2) and P4(2x, 0, 0, 2x+3). This then shows
that the graphs that are solvable with initial hole on u are P4(2x + 1, 0, 0, 2x),
P4(2x+1, 0, 0, 2x+1), P4(2x+3, 0, 0, 2x), and P4(2x+4, 0, 0, 2x); the graphs that
are solvable with initial hole on v are P4(2x, 0, 0, 2x+1), P4(2x+1, 0, 0, 2x+1),
P4(2x, 0, 0, 2x + 3) and P4(2x, 0, 0, 2x + 4). This gives the result. �

We next show that the remaining nontrivial path-k double stars are not solvable
for positive integers m and n.
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Theorem 3.6. Fix positive integers m, n (where both m and n are not 1) and fix an
integer k ≥ 5. Then the graph Pk(m, 0, . . . , 0, n) is not solvable.

Proof. Label the vertices of the path (in order) u = w0, w1, w2, . . . , wk−2, and
v = wk−1. Assume that u has m pendants and v has n pendants.

If the hole starts on wi for some i ∈ {2, . . . , k − 3}, then any two possible
consecutive moves produces an empty bridge and thus a configuration that is not
solvable by Lemma 2.7.

If the hole starts on w1, then the first move produces holes on u and w2. If the
next move merges two pegs on pendant vertices of u to a peg on u, then we have a
configuration with holes only on pendant vertices of u and on w2, which as above
is not solvable. If the next move instead merges a peg on a pendant of u with the
peg on w1, then we have a configuration with an empty bridge on vertices w1 and
w2 and so the graph again is not solvable.

Lastly, suppose that the hole starts on u. Then the only move that allows for
future moves merges the pegs on a pendant vertex of u and w1 to a peg on u. But
the next move must merge the pegs on u and w2 to a peg on w1.

From this configuration, if we merge two pegs on pendants of u to u, then we
are left with a configuration with holes only on pendant vertices of u and w2, which
as above is not solvable. So we must merge the pegs on w1 and w3 to a peg on w2.

If we then merge two pegs from the pendants of u to u, then any subsequent move
produces a configuration with an empty bridge and so the graph is not solvable. So
the only other possible move is to merge the pegs on w2 and w4 to a peg on w3.
Now, if m > 1 we have a configuration with an empty bridge on vertices w1 and
w2 and so is not solvable. If m = 1, then we can iterate this move through the path
until finally we merge pegs on wk−3 and wk−1 to a peg on wk−2, which leaves pegs
on wk−2 and the n (where n > 1 as m = 1) pendant vertices of v = wk−1. But the
only possible move now merges two pegs from the neighbors of v to v; since there
are at least n+2 pegs on the neighbors of v, this leaves at least two pegs remaining
and no further moves. �

We now provide a large class of caterpillars that are solvable by combining the
double star and the path. We are unaware of any results in peg solitaire for this
class of caterpillars.

Theorem 3.7. Let t1, t2, . . . , tn−1 be nonnegative integers where p1= t1, pn= tn−1,
and pi = ti + ti−1 for 2 ≤ i ≤ n − 1. Then the caterpillar Pn(p1, p2, . . . , pn) is
solvable.

We’ll first provide the proof, and then give two specific examples of caterpillars
that satisfy the conditions for pi in Theorem 3.7. We note that this theorem can also
incorporate solvable path-k double stars, but for reading ease we state this theorem
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Figure 9. The solvable caterpillar P4(1, 3, 3, 1). Here t1 = 1,
t2 = 2, and t3 = 1.

and proof without adding path-3 double stars or path-4 double stars as intermediate
steps. We leave the details of these changes to the reader.

Proof. Let t1, . . . , tn−1 be any nonnegative integers, p1 = t1, pn = tn−1, and for
2≤ i ≤ n− 1 let pi = ti + ti−1. We need to show that Pn(p1, . . . , pn) is solvable.

Start with the hole on vertex 2 of the path, i.e., the vertex with p2 pendant vertices.
Then focus on the double star that has as its two centers the first two vertices of the
path. By Theorem 3.2 we can eliminate pegs on t1 pendant vertices from vertex 1 and
vertex 2 in the path, leaving the hole on vertex 2. Then we merge pegs from vertex 1
and 3 (in the path) to vertex 2. We then focus on the double star that has as its two
centers vertex 2 and vertex 3 in the path, noting that vertex 2 has a peg and vertex 3
has a hole. Again, by Theorem 3.2 we eliminate t2 pendant vertices from each, leav-
ing a peg on vertex 2 and a hole on vertex 3. Then we merge the pegs from vertex 2
and vertex 4 to vertex 3. We iteratively continue until we reach vertex n− 1 and
vertex n; eliminating tn−1 vertices from each leaves a peg on vertex n−1 and a hole
on vertex n. By construction, all pendant vertices have holes, and there is only one
peg left on the path. This means that the caterpillar Pn(p1, . . . , pn) is solvable. �

Notice that by solving for each ti we can find equivalent conditions on the
values pi : for each i ∈ [1, n − 1],

∑i
j=1(−1)i− j p j is nonnegative, and also

pn =
∑n−1

j=1(−1)i− j p j .
Several interesting sequences that satisfy this condition include setting pi =

(n
i

)
(see, e.g., Figure 9) and, for n even, letting pi = c for some nonnegative integer c.

4. Related questions and future work

We end our discussion by giving several open problems that can serve as a basis for
future investigations. The main open question is to classify all simple connected
graphs according to whether they are freely solvable, solvable, or not solvable. A
helpful step would be to classify all trees according to whether they are solvable
or not. While this might prove difficult, even determining a nice characterization
of solvable caterpillars would be interesting. Another possible direction toward
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the main open question would be to determine which trees of a fixed diameter are
solvable (see, e.g., [Walvoort 2013] for results related to peg solitaire on graphs
with fixed diameter).

Another interesting question is the following. Let Gn,k denote the set of all
simple connected graphs on n vertices with k edges. Note that the only graph
in Gn,n(n−1)/2 is solvable, while the star shows that not every graph in Gn,n−1 is
solvable. For fixed n, what is the minimum value of k so that every graph in Gn,k

is solvable?
Suppose that we wanted to leave the maximum number of pegs left so that no

further moves can be made; i.e., we wanted to play merging fool’s solitaire on
graphs (for results for fool’s solitaire on graphs, see, e.g., [Beeler and Rodriguez
2012; Loeb and Wise 2015]). For a given graph G, determine the maximum number
of pegs that can be left when playing merging fool’s solitaire on graphs.

References

[Avis and Deza 2001] D. Avis and A. Deza, “On the solitaire cone and its relationship to multi-
commodity flows”, Math. Program. 90:1 (2001), 27–57. MR Zbl

[Beeler and Hoilman 2011] R. A. Beeler and D. P. Hoilman, “Peg solitaire on graphs”, Discrete Math.
311:20 (2011), 2198–2202. MR Zbl

[Beeler and Hoilman 2012] R. A. Beeler and D. P. Hoilman, “Peg solitaire on the windmill and the
double star graphs”, Australas. J. Combin. 53 (2012), 127–134. MR Zbl

[Beeler and Rodriguez 2012] R. A. Beeler and T. K. Rodriguez, “Fool’s solitaire on graphs”, Involve
5:4 (2012), 473–480. MR Zbl

[Belford and Sieben 2009] C. Belford and N. Sieben, “Rubbling and optimal rubbling of graphs”,
Discrete Math. 309:10 (2009), 3436–3446. MR Zbl

[Engbers and Stocker 2015] J. Engbers and C. Stocker, “Reversible peg solitaire on graphs”, Discrete
Math. 338:11 (2015), 2014–2019. MR Zbl

[Fleischer and Yu 2013] R. Fleischer and J. Yu, “A survey of the game ‘Lights out!’ ”, pp. 176–198 in
Space-efficient data structures, streams, and algorithms, edited by A. Brodnik et al., Lecture Notes
in Comput. Sci. 8066, Springer, 2013. MR Zbl

[Loeb and Wise 2015] S. Loeb and J. Wise, “Fool’s solitaire on joins and Cartesian products of
graphs”, Discrete Math. 338:3 (2015), 66–71. MR Zbl

[Walvoort 2013] C. Walvoort, Peg solitaire on trees with diameter four, master’s thesis, East Tennessee
State University, 2013, available at http://dc.etsu.edu/etd/1113.

Received: 2016-02-14 Revised: 2016-08-05 Accepted: 2016-08-07

john.engbers@marquette.edu Department of Mathematics, Statistics and Computer Science,
Marquette University, Milwaukee, WI 53201, United States

rweber2006@aol.com Department of Mathematics, Statistics and Computer Science,
Marquette University, Milwaukee, WI 53201, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1007/PL00011419
http://dx.doi.org/10.1007/PL00011419
http://msp.org/idx/mr/1819785
http://msp.org/idx/zbl/1059.91016
http://dx.doi.org/10.1016/j.disc.2011.07.006
http://msp.org/idx/mr/2825664
http://msp.org/idx/zbl/1230.05211
http://ajc.maths.uq.edu.au/pdf/53/ajc_v53_p127.pdf
http://ajc.maths.uq.edu.au/pdf/53/ajc_v53_p127.pdf
http://msp.org/idx/mr/2961977
http://msp.org/idx/zbl/1256.05149
http://dx.doi.org/10.2140/involve.2012.5.473
http://msp.org/idx/mr/3069049
http://msp.org/idx/zbl/1271.05062
http://dx.doi.org/10.1016/j.disc.2008.09.035
http://msp.org/idx/mr/2528207
http://msp.org/idx/zbl/1188.05098
http://dx.doi.org/10.1016/j.disc.2015.05.012
http://msp.org/idx/mr/3357787
http://msp.org/idx/zbl/1314.05129
http://dx.doi.org/10.1007/978-3-642-40273-9_13
http://msp.org/idx/mr/3149865
http://msp.org/idx/zbl/06208175
http://dx.doi.org/10.1016/j.disc.2014.10.022
http://dx.doi.org/10.1016/j.disc.2014.10.022
http://msp.org/idx/mr/3291868
http://msp.org/idx/zbl/1305.05145
http://dc.etsu.edu/etd/1113
mailto:john.engbers@marquette.edu
mailto:rweber2006@aol.com
http://msp.org


msp
INVOLVE 11:1 (2018)

dx.doi.org/10.2140/involve.2018.11.67

Labeling crossed prisms with
a condition at distance two

Matthew Beaudouin-Lafon, Serena Chen, Nathaniel Karst,
Jessica Oehrlein and Denise Sakai Troxell

(Communicated by Jerrold Griggs)

An L(2,1)-labeling of a graph is an assignment of nonnegative integers to its
vertices such that adjacent vertices are assigned labels at least two apart, and
vertices at distance two are assigned labels at least one apart. The λ-number of a
graph is the minimum span of labels over all its L(2,1)-labelings. A generalized
Petersen graph (GPG) of order n consists of two disjoint cycles on n vertices,
called the inner and outer cycles, respectively, together with a perfect matching in
which each matching edge connects a vertex in the inner cycle to a vertex in the
outer cycle. A prism of order n ≥ 3 is a GPG that is isomorphic to the Cartesian
product of a path on two vertices and a cycle on n vertices. A crossed prism
is a GPG obtained from a prism by crossing two of its matching edges; that is,
swapping the two inner cycle vertices on these edges. We show that the λ-number
of a crossed prism is 5, 6, or 7 and provide complete characterizations of crossed
prisms attaining each one of these λ-numbers.

1. Introduction

The labelings of graphs with a condition at distance two, also known as L(2,1)-
labelings, have provided a fertile area of research for about a quarter of a century
since their introduction in [Griggs and Yeh 1992]. These labelings were first used
to model simplified instances of the channel assignment problem [Hale 1980]
where geographically close transmitters in a communications network must receive
frequency channels that are sufficiently far apart to avoid signal interference. The
scholarly works on L(2,1)-labelings and their variations are numerous and touch
upon a wide range of applied as well as purely theoretical aspects of such labelings.
Notably, optimization questions concerning the minimum span of labels required
by different types of graphs have consistently attracted a great deal of interest.
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An L(2,1)-labeling of a graph G, or k-labeling for short, is a function f :V(G)→
{0, 1, . . . , k} such that | f (u) − f (v)| ≥ 2 if u and v are adjacent vertices, and
| f (u)− f (v)| ≥ 1 if u and v are at distance 2. The minimum k so that G has a
k-labeling is called the λ-number of G and is denoted by λ(G). Arguably, the appeal
of this number has its roots in the long-standing conjecture stating that λ(G) ≤
12(G) for 1(G)≥ 2, where 1(G) denotes the maximum degree of G [Griggs and
Yeh 1992]. This conjecture, which is sometimes referred to as the 12-conjecture,
holds for very large graphs (with 1(G) larger than approximately 1069 [Havet
et al. 2012]), for sufficiently small graphs (with at most (b1(G)/2c+ 1)(12(G)−
1(G)+ 1)− 1 vertices [Franks 2015]), and for several particular classes of graphs.
In addition, it has been possible to determine tighter bounds and even exact λ-
numbers within some of these classes through interesting, nontrivial techniques,
contributing to the incremental progress toward settling the 12-conjecture. An
extensive annotated bibliography of related articles can be found in [Calamoneri
2011] and in its 2014 updated online version.

Determining exact λ-numbers can be a complex task even when considering
seemingly basic graphs, such as the following generalizations of the classic Petersen
graph (shown on the right of Figure 1 together with a 9-labeling).

Definition 1.1. A generalized Petersen graph (GPG) of order n ≥ 3 consists of two
disjoint cycles, called outer and inner cycles, so that each vertex on the outer (resp.,
inner) cycle is adjacent to exactly one vertex on the inner (resp., outer) cycle. More
formally, a GPG has vertices {v0, v1, . . . , vn−1} ∪ {w0, w1, . . . , wn−1} with edges
{vi , vi+1} and {wi , wi+1} for all i = 0, 1, . . . , n − 1, where subscript addition is
taken modulo n, and each vi (resp., wi ), i = 0, 1, . . . , n− 1 is adjacent to exactly
one w j (resp., v j ) for some 0≤ j ≤ n−1. The cycle on vertices {v0, v1, . . . , vn−1}

(resp., {w0, w1, . . . , wn−1}) is the outer (resp., inner) cycle.

Observe that if G is a GPG of order n ≥ 3, then G is 3-regular, so the 12-
conjecture states that λ(G) ≤ 9. This upper bound is tight if G is the Petersen
graph since it has diameter 2 and a 9-labeling [Griggs and Yeh 1992]. In contrast,
if G is anything other than the Petersen graph, then λ(G)≥ 5, λ(G)≤ 7 if n ≤ 6,
and λ(G) ≤ 8 if n ≥ 7 [Georges and Mauro 2002]. Therefore, the GPGs satisfy
the 12-conjecture. As no GPG with λ-number exactly 8 is known, it has been
conjectured that if G is a GPG of order n ≥ 7, then λ(G)≤ 7. This GPG conjecture
has remained open since 2002 but has been verified for all GPGs of orders between 7
and 12 for which exact λ-numbers were completely determined [Adams et al. 2006;
2007; 2012; Huang et al. 2012]. In an attempt to expand the list of graphs satisfying
the GPG conjecture, some articles have focused on the exact λ-numbers of infinite
subclasses of GPGs that exhibit certain symmetric features. For instance, a prism
(resp., an n-star for odd n) is a GPG of order n ≥ 3 wherein the edges between
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Figure 1. The prism of order 5 and the 5-star (Petersen graph)
with respective L(2, 1)-labelings.

vertices on the outer and inner cycles are precisely {vi , wi }, i = 0, 1, . . . , n − 1
(resp., {v(n−1)i/2, wi } for i = 0, 1, . . . , n− 1 where subscripts are taken modulo n),
and the notation is as introduced in Definition 1.1. The prism of order 5 and the
5-star with respective L(2,1)-labelings are shown in Figure 1.

The λ-numbers of prisms have been completely determined in [Georges and
Mauro 2002; Jha et al. 2000; Klavžar and Vesel 2003; Kuo and Yan 2004], and of
n-stars in [Adams et al. 2007] using nontrivial techniques. Key to some of these
were ingenious connections between the regularity and symmetry of these graphs
used in [Georges and Mauro 2003; Adams et al. 2007] that would force impossible
configurations of labels within 5-labelings for certain values of n. We were curious
to see if the same strategies could be extended to other subclasses of GPGs where
this symmetry would be slightly disturbed. This motivated our focus on GPGs
obtained from prisms by “crossing” two edges connecting the outer cycle to the
inner cycle:

Definition 1.2. Let n and d be integers so that n ≥ 3 and 1≤ d ≤ n/2. The crossed
prism XPr(n, d) is a prism of order n where the edges {v0, w0} and {vd , wd} are
replaced by the crossed edges {v0, wd} and {vd , w0}, with the notation as introduced
in the definition of prisms. The cross X(d) is the graph isomorphic to the subgraph
of XPr(n, d) induced by the vertices {v0, v1, . . . , vd} ∪ {w0, w1, . . . , wd}.

Figure 2 shows the crossed prism XPr(5, i) with the cross X(i) within the dashed
oval for i = 1, 2, respectively.

It will be helpful to visualize the crossed prism XPr(n, d) as copies of the two
crosses X(d) and X(n− d) sharing the same crossed edges but otherwise disjoint.
To illustrate, Figure 3 shows a 3-dimensional cylindrical representation of XPr(9, 4)
on the left and the crosses X(4) and X(5) on the top and bottom right, respectively
(crossed edges in bold to facilitate their visualization within the graphs).

Let f be an L(2,1)-labeling of XPr(n, d). It will be often convenient to provide
f as a 2-by-n matrix A(n, d) where the entry on the i-th row, j-th column will be
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Figure 2. The crossed prism XPr(5, i) with the cross X (i) within
the dashed oval for i = 1, 2, respectively.

the label f (v j ) if i = 0, and f (w j ) if i = 1, for j = 0, 1, . . . , n− 1. Notice that
the matrix A(d) given by the first d + 1 columns of A(n, d) is an L(2,1)-labeling
of the cross X(d). Similarly, the matrix A(n− d) given by the last n− d columns
followed by the first column of A(n, d) is an L(2,1)-labeling of the cross X(n− d).
These conventions are illustrated in Figure 4 with 6-labelings of XPr(9, 4), X(4),
and X(5) of Figure 3 given by the matrices A(9, 4), A(4), and A(5), respectively.

The strategies used to find the λ-numbers of prisms leveraged the symmetries
of these graphs, and even the minor breaks in symmetry introduced in crossed
prisms prohibit the simple extension of these proof techniques into this new context.
Nevertheless, we were able to use certain properties of crosses to determine the
λ-numbers of all crossed prisms. In Section 2, we find the exact λ-number of

Figure 3. The crossed prism XPr(9, 4), left, and the crosses X (4),
top right, and X (5), bottom right.

3 6 0 3 6 2 0 4 1
0 4 2 5 0 4 6 2 5

A (4) = 3 6 0 3 6 6 2 0 4 1 3
0 4 2 5 0 0 4 6 2 5 0

A (5) = 

A (9, 4) = 

Figure 4. The 6-labelings A(9, 4), A(4), and A(5) of XPr(9, 4),
X(4), and X(5), respectively.
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X(d) for all d ≥ 1, as well as exhibit all possible 5-labelings when d ≥ 2 using
an auxiliary directed graph where the vertices are particular 2-by-2 matrices with
entries in {0, 1, . . . , 5}. These results allow us to raise the general lower bound for
the λ-number of a GPG from 5 to 6 if it contains a subgraph isomorphic to certain
crosses, ultimately enabling us to verify the following result in Section 3.

Theorem 1.3. Let n and d be integers so that n ≥ 3 and 1 ≤ d ≤ n/2. If G is the
crossed prism XPr(n, d), then λ(G)= 5 when

(a) d = 1 and n = 3; or

(b) d ≡ 0 (mod 3) and (n− d)≡ 0 (mod 3); or

(c) d ≡ 1 (mod 3) and (n− d)≡ 1 (mod 3) with d ≥ 7.

Furthermore, λ(G)= 7 when d = 1 and n = 4; otherwise λ(G)= 6.

2. The λ-number of crosses

Now, we will completely determine the λ-number of crosses X(d) with d ≥ 1
in Theorem 2.4, the main result in this section. The following definitions will
simplify the description of an auxiliary directed graph that will be helpful in the
preliminary discussion. A sequence of nonnegative integers x1, x2, . . . , xm induces
a k-labeling of the path Pm with vertices u1, u2, . . . , um and edges {ui , ui+1} for
i = 1, 2, . . . ,m − 1, if the assignment of xi to ui for i = 1, 2, . . . ,m produces a
k-labeling of Pm .

Let D be the directed graph with vertex set containing the 2-by-2 matrices M
with entries in {0, 1, . . . , 5} such that:

• the sequence M0,0,M0,1,M1,1,M1,0 induces a 5-labeling of P4, in which case
M is called a left-vertex; or

• the sequence M0,1,M0,0,M1,0,M1,1 induces a 5-labeling of P4, in which case
M is called a right-vertex.

Notice that a vertex can be both a left- and right-vertex. Given a left-vertex M and
a right-vertex N different from M , the directed edge set of D contains:

• the solid edge (M, N ), if Mi,1 = Ni,0 for i = 0, 1 (i.e., the last column of M
is equal to the first column of N ), M0,0 6= N0,1, and M1,0 6= N1,1; and

• the dashed edge (N ,M), if there exists a directed path of solid edges from
M to N of length at least 1 so that the two sequences (N0,0, N0,1,M1,0,M1,1)

and (N1,0, N1,1,M0,0,M0,1) each induces a 5-labeling of P4.

Observe that there is a natural one-to-one relationship between the set of 5-
labelings of crosses X(d) with d ≥ 2 and the set of the X-cycles defined as directed
cycles in D containing exactly one dashed edge. More specifically, for a 5-labeling
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0 2 5 0 2 4 1 5
0 4 1 3 5 0 3 5

0 2 2 5 5 0 0 2 2 4 4 1 1 5
0 4 4 1 1 3 3 5 5 0 0 3 3 5

A (7) =  

Figure 5. A 5-labeling A(7) of X(7) and corresponding X -cycle.

of the cross X(d) represented by a 2-by-(d + 1) matrix A(d), consider for each
i = 0, 1, . . . , d−1, the 2-by-2 submatrix M(i) with the i-th and (i+1)-th columns
of A(d). From the definition of D, it is straightforward to verify that the vertices
M(i) for i = 0, 1, . . . , d−1 induce an X -cycle and, moreover, this correspondence
is one-to-one. We illustrate this correspondence in Figure 5 with a 5-labeling
A(7) of X(7) and its associated X -cycle. In particular, solid and dashed edges are
represented by solid and dashed arrows, respectively. The start and end vertices
of the maximal directed path with solid edges within the X -cycle are left- and
right-vertices, respectively. For the sake of simplicity, we will sometimes abuse the
notation and use a 5-labeling in matrix form to refer to the corresponding X -cycle
and vice-versa.

We define three operations on subgraphs D∗ of D that will simplify the descrip-
tion of some of its properties:

• dual of D∗: replace entry j of every vertex of D∗ with its dual 5− j .

• flip of D∗: swap the two rows of every vertex of D∗.

• reverse of D∗: swap the two columns of every vertex of D∗, and reverse the
direction of every edge of D∗.

Notice that each of these operations coincides with its inverse and preserves the
structure of X -cycles.

To generate the directed graph D, a computer program classified each of the 64

matrices with entries in {0, 1, . . . , 5} as a left- and/or right-vertex of D if possible,
and discarded it otherwise. The algorithm then considered each pair of a left-
vertex M and right-vertex N different from M , and added a solid edge (M, N )
and/or dashed edge (N ,M) if the pair satisfied the associated definition stated above.
This algorithm relies on brute force — every vertex pair is considered individually —
and could certainly be improved by cleverly integrating results about duals, flips,
and reverses. Still, this algorithm is sound in the sense that every edge added
satisfies either the solid or dashed edge definition, and complete, in the sense that
every 2-by-2 matrix was considered from the outset and every pair of left- and right-
vertices was tested for both solid and dashed connections.
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A (7 + 3q ) = 0 2 5 0 2 4 0 2 4 1 5
0 4 1 3 5 1 3 5 0 3 5

 
A (3 + 3q ) = 2 4 0 2 4 0 2 4 0 2 4 0 2 4

5 1 3 5 1 3 5 1 3 5 1 3 5 1

            or 0 2 4 0 2 4 0
3 5 1 3 5 1 3

A (3) = 2 4 1 5 0 2 5 3
2 0 3 5 0 4 1 3

A (2) = 0 2 4 2 0 4 0 2 4
1 5 3 1 3 5 0 5 3

            or 2 0 5 2 4 1 0 5 2
1 3 5 3 0 5 4 1 3

or

or

or or

or or

Figure 6. X -cycles in component D1 as 5-labelings A(d) of
crosses X(d) with d ≥ 2 (respective flips are not shown).

Excluding isolated vertices, the directed graph D consists of four connected
components Di for i = 1, 2, 3, 4, and their respective duals, where D1, D2, and D3

are provided in the online supplement, and D4 is the flip of D3. The symmetry of
crosses implies the following relationships among these components that can be
verified by inspection:

(a) the flip of D1 is D1;

(b) the reverse of D1 is the dual of D1;

(c) the flip of D2 is the dual of D2;

(d) the reverse of D2 is D2;

(e) the reverse of D3 (resp., D4) is the dual of D4 (resp., D3).

In Lemmas 2.1 through 2.3, we exhibit all the X -cycles in components Di for i =
1, 2, 3, 4. These cycles together with their duals (which are the X -cycles in the dual
of Di for i = 1, 2, 3, 4) are all possible 5-labelings A(d) of crosses X(d) with d ≥ 2.

Lemma 2.1. The X-cycles in component D1 are given by the 5-labelings A(d) of
crosses X(d) with d ≥ 2 in Figure 6 and their respective flips (i.e., the flip of a
matrix with two rows is obtained by swapping its rows). Each shaded block of three
consecutive columns within a matrix can be replaced with q ≥ 0 copies of itself ,
arranged consecutively as needed to reach the desired value of d (this convention
will be used from this point forward).

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
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2 4 0 2 0 5 2 0
5 3 0 5 3 5 1 3

2 4 4 0
5 1 1 3

0 2 0 4
1 5 0 2 3 5

3 5

2 4 5 0
5 0 1 3

4 1 3 5
0 2 4 1

4 1 2 5
0 3 4 1

2 4 2 4 1 5 0 2 5 3 5 2
3 0 2 0 3 5 0 4 1 3 1 3

4 1 0 5
0 5 4 1

Figure 7. The directed subgraph H of D1 and its X -cycles (circled).

Proof. Let H be the directed subgraph of D1 in the online supplement induced by
the two shaded vertices and all the vertices above them; H is shown in Figure 7. By
inspection, one can verify that the flip of H is exactly the directed subgraph of D1

induced by the two shaded vertices and all the vertices below them. Moreover, an
X -cycle in component D1 must be either completely within H or completely within
the flip of H . Therefore, the lemma follows by exhibiting all the X -cycles within H .
They are circled in Figure 7 and their corresponding 5-labelings of crosses are given
in Figure 6. �

Lemma 2.2. The X-cycles in component D2 are given by the 5-labelings A(2) of
crosses X(2) in Figure 8.

Proof. Since all solid edges in D2 in the online supplement are directed from
left to right and the only four dashed edges are directed from right to left, it
is straightforward to verify that there are only four X -cycles of length 2 with
corresponding 5-labelings given in Figure 8. �

Lemma 2.3. The only X-cycle in component D3 (resp., D4) is given by the 5-
labeling A(3) (resp., flip of A(3)) of cross X(3) in Figure 9.

A (2) = 3 1 5 1 5 2 2 5 1 5 1 3
2 4 0 4 0 3 3 0 4 0 4 2

or or or

Figure 8. X -cycles in component D2 as 5-labelings A(2) of
crosses X(2).

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
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A (3) = 1 5 2 4
1 3 0 4

Figure 9. The only X -cycle in D3 as a 5-labeling A(3) of cross X(3).

A (4) = 3 6 0 3 6 A (5 + 3q ) = 3 1 6 4 0 6 4 2 6
0 4 2 5 0 0 5 3 1 5 3 1 5 0

Figure 10. 6-labelings of crosses X(d) for d = 4 and for [d ≡
2 (mod 3) and d ≥ 5], respectively.

Proof. It is straightforward to verify that there is only one X -cycle in D3 in the
online supplement with corresponding 5-labeling given in Figure 9. Since D4 is
the flip of D3, the flip of A(3) corresponds to the only X -cycle in D4. �

We can finally state the main result of this section.

Theorem 2.4. If G is the cross X(d) with d ≥ 1, then λ(G) = 4 when d = 1,
λ(G) = 6 when d = 4 or when [d ≡ 2 (mod 3) with d ≥ 5], otherwise λ(G) = 5.
In addition, the only possible 5-labelings of G when d ≥ 2 are the ones in Figure 6
and 9 with their respective flips, the ones in Figure 8, and all the respective duals
(i.e., the dual of a matrix is obtained by replacing each entry j with 5− j).

Proof. The cross X(1) is a cycle on four vertices which has λ-number 4 [Griggs
and Yeh 1992]. The second sentence in the theorem’s statement follows from the
construction of D and Lemmas 2.1 through 2.3. Hence, if G has a 5-labeling, then
d = 2, d ≡ 0 (mod 3), or [d ≡ 1 (mod 3) and d ≥ 7] (refer to Figures 6, 8, and 9),
thus λ(G)= 5 (recall from Section 1 that GPGs have λ-number at least 5). On the
other hand, if G does not have a 5-labeling, then λ(G)≥ 6 and either d= 4 or [d≡ 2
(mod 3) and d≥5], thus λ(G)=6 follows from the 6-labelings of G in Figure 10. �

We close this section by mentioning that the directed subgraph of D induced by
its vertices that are simultaneously left- and right-vertices (vertices within double-
lined squares in the online supplement and their respective duals) was used in
[Klavžar and Vesel 2003] to exhibit 5-labelings of prisms.

3. The λ-number of crossed prisms

Let n and d be integers so that n≥ 3 and 1≤ d ≤ n/2. The main goal of this section
is to find the λ-number of the crossed prism XPr(n, d); that is, prove Theorem 1.3
of Section 1. In Lemma 3.1 we will discuss the case d ≥ 2, and the case d = 1 will
be examined in Lemma 3.2.

The following construction of k-labelings of XPr(n, d) for d≥2 using k-labelings
of the crosses X(d) and X(n−d) will be useful in the proof of Lemma 3.1. Consider
a k-labeling of the cross X(d) given as a 2-by-(d+1)matrix M . In addition, consider

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
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a k-labeling of the cross X(n− d) given as a 2-by-(n− d + 1) matrix N . We will
say that M and N mesh if the following two conditions are satisfied:

(i) Mi,d = Ni,0 for i = 0, 1 (i.e., the last column of M is equal to the first column
of N ), M0,d−1 6= N0,1, and M1,d−1 6= N1,1;

(ii) Ni,n−d =Mi,0 for i = 0, 1 (i.e., the last column of N is equal to the first column
of M), N0,n−d−1 6= M0,1, and N1,n−d−1 6= M1,1.

Observe that if M and N mesh, then the matrix mesh(M, N ) obtained by combining
the first d columns of M immediately followed by the first n− d columns of N
provides a k-labeling of the crossed prism XPr(n, d). For example, A(9, 4) =
mesh(A(4), A(5)) as seen in Figure 4 is a 6-labeling of XPr(9, 4).

Lemma 3.1. Let n and d be integers so that n ≥ 3 and 2 ≤ d ≤ n/2. If G is the
crossed prism XPr(n, d), then λ(G)= 5 when

(a) d ≡ 0 (mod 3) and (n− d)≡ 0 (mod 3); or

(b) d ≡ 1 (mod 3) and (n− d)≡ 1 (mod 3) with d ≥ 7.

Otherwise λ(G)= 6.

Proof. Suppose (a) holds. Select the first of the corresponding three choices for
A(3+ 3q) in Figure 6 (we could also select the second or the third choice instead).
Let q1 and q2 be integers so that d = 3+3q1 and n−d = 3+3q2. Hence A(3+3q1)

and A(3+ 3q2) are 5-labelings of the crosses X(d) and X(n− d), respectively, and
these matrices mesh. From the observation right before the lemma, the matrix
mesh(A(3+ 3q1), A(3+ 3q2)) is a 5-labeling of G, hence λ(G)≤ 5. Recall from
Section 1 that GPGs have λ-number at least 5, therefore λ(G)= 5.

Suppose (b) holds. Select the A(7+3q) in Figure 6. Let q1 and q2 be integers so
that d = 7+3q1 and n−d = 7+3q2 (note that n−d ≥ d ≥ 7). Hence A(7+3q1)and
the dual of A(7+3q2) are 5-labelings of the crosses X(d) and X(n−d), respectively,
and these matrices mesh. Similarly to the previous paragraph, we conclude that
λ(G)= 5.

Suppose for the remainder of the proof that neither (a) nor (b) is satisfied. We will
first show that λ(G)≥ 6. If d = 4 or [d ≡ 2 (mod 3) with d ≥ 5], then the λ-number
of X(d) is 6 by Theorem 2.4 and therefore λ(G)≥ 6 since X(d) is a subgraph of G.
Likewise, we can replace d with n− d in the previous sentence and reach the same
conclusion. To verify the remaining cases, we suppose for contradiction that G has
a 5-labeling given by a 2-by-n matrix A(n, d). The matrix M given by the first
d+ 1 columns of A(n, d) is a 5-labeling of the cross X(d), and the matrix N given
by the last n−d columns followed by the first column of A(n, d) is a 5-labeling of
the cross X(n− d). Thus M and N mesh and are instances of the set of matrices
described in Theorem 2.4. We will examine the following remaining cases and
reach a contradiction in all of them, which implies λ(G)≥ 6.
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Case 1: [d ≡ 0 (mod 3) and (n − d) ≡ 1 (mod 3) with n − d ≥ 7] or [(n − d) ≡
0 (mod 3) and d ≡ 1 (mod 3) with d ≥ 7]. Suppose [d ≡ 0 (mod 3) and (n−d)≡
1 (mod 3) with n−d ≥ 7]. Note that N or its dual must be an instance of A(7+3q)
in Figure 6 with their respective flips, so the first and last columns of N are different
and have entries in {0, 5}. Since M and N mesh, the first and last columns of M
must also be different and have entries in {0, 5}. Unfortunately, the same does not
hold for any instance of A(3+3q) and A(3) in Figure 6 and 9 with their respective
flips and all their respective duals, a contradiction. Similarly, we also reach a
contradiction in the case [(n− d)≡ 0 (mod 3) and d ≡ 1 (mod 3) with d ≥ 7] by
switching the roles of M and N in the discussion above.

Case 2: [d = 2 and (n− d)≡ 0 (mod 3)] or [d = 2 and (n− d)≡ 1 (mod 3) with
(n− d)≥ 7]. Note that each instance A(2) in Figure 6 with their respective flips,
or in Figure 8, and all their respective duals, uses at least three different labels
in the first and last columns combined. In contrast, each instance of A(7+ 3q),
A(3+ 3q), and A(3) in Figures 6 and 9 with their respective flips and all their
respective duals, uses only two different labels in the first and last columns. So M
and N cannot mesh, a contradiction.

Case 3: d = 2 and (n − d) = 2. We can verify by inspection that all pairs of
instances of A(2) in Figure 6 with their respective flips, or in Figure 8, and all their
respective duals do not mesh (note that no component has directed cycles of length 4
containing only solid edges). So M and N cannot mesh, a final contradiction.

Finally, to prove that λ(G)= 6, it suffices to show that λ(G)≤ 6. Observe that
{d, n − d} = {d1, d2} for a combination of values d1 and d2 described by one of
the rows of the table in the online supplement. This row exhibits two 6-labelings
of the crosses X(d1) and X(d2), respectively, as two matrices that mesh. From the
observation right before Lemma 3.1, we can conclude that λ(G)≤ 6. �

Lemma 3.2. If G is the crossed prism XPr(n, 1) with n ≥ 3, then λ(G) = 5 if
n = 3; λ(G)= 7 if n = 4; otherwise λ(G)= 6.

Proof. Recall from Section 1 that an L(2,1)-labeling f of XPr(n, d) is given by
a 2-by-n matrix A(n, d) where the entry on the i-th row, j-th column will be the
label f (v j ) if i = 0, and f (w j ) if i = 1, for j = 0, 1, . . . , n−1, and the notation is
as introduced in Definition 1.2 (the ends of crossed edges are in the 0-th and d-th
columns). If n = 3, then the 5-labeling A(3, 1) of G in Figure 11 implies λ(G)= 5
(recall from Section 1 that GPGs have λ-number at least 5). If n = 4, then G has
diameter 2 and therefore λ(G)≥ |V(G)| − 1= 2n− 1= 7 [Griggs and Yeh 1992];
the 7-labeling A(4, 1) of G in Figure 11 implies λ(G)= 7.

Assume n ≥ 5. We will show first that λ(G)≥ 6. Suppose for contradiction that
G has a 5-labeling given by a 2-by-n matrix A(n, 1). The matrix M given by the
first two columns of A(n, 1) is a 5-labeling of the cross X(1), and the matrix N given

http://msp.org/involve/2018/11-1/involve-v11-n1-x05-Ddiagramsandlabelings.zip
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A (3, 1) = 0 2 4 A (4, 1) = 0 2 5 3
5 3 1 4 6 1 7

Figure 11. A 5-labeling of XPr(3, 1) and a 7-labeling of XPr(4, 1), respectively.

A (5 + 3q, 1) = 0 4 6 1 3 6 1 3
1 5 2 4 0 2 4 6

A (6 + 3q, 1) = 0 4 6 3 1 6 1 5 2
1 5 2 4 0 2 4 0 6

A (7 + 3q, 1) = 0 4 6 3 1 6 0 2 4 6
1 5 2 0 5 2 4 6 0 3

Figure 12. The 6-labelings of XPr(n, 1) for n ≥ 5.

by the last n− 1 columns followed by the first column of A(n, 1) is a 5-labeling of
the cross X(n− 1). Since N has n ≥ 5 columns, the X -cycle corresponding to N
must be in component D1 or the dual of D1 of the directed graph D constructed in
Section 2. We may assume without loss of generality that this X -cycle is in D1. The
cross X(1) has diameter 2 so its four vertices must be assigned different labels, thus
the first and last columns of N must contain four different labels. Unfortunately,
this is not the case for A(7+3q) or A(3+3q) in Figure 6 and their respective flips,
implying that n < 5, a contradiction, and so λ(G)≥ 6 holds. The desired equality
follows from the 6-labelings of G provided in Figure 12. �

Finally, Theorem 1.3 in Section 1 is a straightforward consequence of Lemmas
3.1 and 3.2.

4. Closing remarks

In this work, we made progress towards closing the GPG conjecture by showing
that any crossed prism G satisfies λ(G)≤ 7 and that, in fact, all but one G satisfy
λ(G) ≤ 6. These crossed prisms were of particular interest, as they allowed
us to examine how the controlled introduction of asymmetries to prisms would
impact both the λ-number and overall proof strategies. The complications these
breaks in symmetry introduced were nontrivial, and we ultimately determined
λ(G) by constructing and inspecting an auxiliary directed graph motivated by
previous studies. We hope that these ideas help the community examine other
families of graphs — for instance, prisms with more than one pair of crossed
edges, perturbations of the n-stars — as we move closer to putting the general GPG
conjecture to rest.
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Normal forms of
endomorphism-valued power series

Christopher Keane and Szilárd Szabó

(Communicated by Kenneth S. Berenhaut)

We show for n, k ≥ 1, and an n-dimensional complex vector space V that if an
element A ∈ End(V )[[z]] has constant term similar to a Jordan block, then there
exists a polynomial gauge transformation g such that the first k coefficients of
g Ag−1 have a controlled normal form. Furthermore, we show that this normal
form is unique by demonstrating explicit relationships between the first nk coeffi-
cients of the Puiseux series expansion of the eigenvalues of A and the entries of
the first k coefficients of g Ag−1.

Introduction

From Galois theory, we know that polynomials of degree greater than 4 are not
solvable by radicals. So finding the eigenvalues of a companion matrix of the form

0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . .

...

0 0 0 · · · 1
βn−1 βn−2 βn−3 · · · β0


algebraically in terms of the βi is not possible. If, however, the βi have expansions
βi (z) in terms of some other variable z with βi (0)= 0, we may then ask to find the
coefficients in the series expansions of these eigenvalues in terms of these βi (z).

In this paper, we work with a formal power series A∈End(V )[[z]]whose constant
term is a regular nilpotent endomorphism. We want to compute the coefficients
of the Puiseux expansion of the eigenvalues of A, but since this is not possible
algebraically we search for some normal form obtained via conjugating by an
invertible transformation. Clearly, conjugating does not modify the eigenvalues

MSC2010: primary 15A18, 15A21, 15A54; secondary 05E40.
Keywords: normal form, endomorphism, formal power series, Puiseux series.
This paper is the product of the Research Opportunities course at the Budapest Semesters in Mathe-
matics program.
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of A, and our aim is to conjugate A(z) to a simple shape that allows us to compute
explicit relationships between coefficients of the series expansion of the eigenvalues
and the coefficients of the conjugate.

In [Ivanics et al. 2016], this problem arose in taking an endomorphism of a
vector bundle with some fixed local behavior and searching for the base locus
of its corresponding spectral curves. They work with the special case of rank-2
vector bundles E and irregular Higgs fields θ(z), i.e., meromorphic sections of
the endomorphism bundle of E tensored by the canonical bundle. Specifically,
the endomorphism θ is assumed to have a single pole of order 4 at z = 0 with
leading-order term having nontrivial nilpotent part, and the authors show that its
polar part may be brought to a simple form up to applying some holomorphic gauge
transformations. The authors also note that the case of endomorphisms having two
distinct eigenvalues is much simpler. Let us point out that the rank-2 cases can be
tackled algebraically due to the existence of the quadratic formula, but that method
breaks down in higher-rank cases for the Galois-theoretic reason alluded to above.
Another observation is that up to a shift of the index of summation, it is equivalent
to consider power series or Laurent series with a fixed finite pole order. Therefore,
in this paper we content ourselves with working with power series, however the
role of the pole order (the number of terms in the normal form to be controlled) is
played by our parameter k.

We cover the general rank-n case for endomorphism-valued power series where
the leading-order term is a regular nilpotent endomorphism. That is, we maintain the
assumptions of [Ivanics et al. 2016], aside from the pole of order 4 and the rank being
equal to 2, extending their results to vector bundles of arbitrary rank and an arbitrary
number of terms in the expansion of the endomorphism by presenting existence and
uniqueness statements for the normal form of endomorphism-valued power series.
This has the same consequence as in [Ivanics et al. 2016] concerning the base locus
of generic irregular Higgs bundles with a regular nilpotent leading-order term.

This question is significantly more involved if the constant coefficient of A is
a regular matrix with more than one eigenvalue, and even more so if the constant
coefficient of A is not regular. The next step we would take to obtain future results
would be to examine the case of the constant term of A being regular with more
than one eigenvalue.

1. Preliminaries: endomorphisms, gauge transformations, Puiseux series

In this section we describe what kinds of endomorphisms and gauge transformations
we plan to examine.

1A. Constraints on endomorphisms. We begin by putting constraints on the endo-
morphisms we want to examine. We remark that the results in this paper hold over
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any algebraically closed field of characteristic zero, but we will only be considering
vector spaces over C. Let V be a vector space over C of dimension n. Suppose that
z is a complex variable, and let A ∈ End(V )[[z]], that is, A has the form

A(z)=
∞∑

m=0

Amzm, with Am ∈ Mn,n(C).

We observe A0 = A(0). We also place the following condition of regularity on A0.

Definition 1.1. For a vector space V over an algebraically closed field, an n× n
matrix A0 is regular if and only if its Jordan normal form is of the form

Jd1(λ1)⊕ · · ·⊕ Jds (λs),

with i 6= j =⇒ λi 6= λ j , and where each Jdi (λi ) is a Jordan block of size di with
corresponding eigenvalue λi .

More abstractly, this is equivalent to considering the space of complex n × n
matrices as a Lie algebra and requiring that the centralizer of A0 has minimal
dimension. The importance of this will become clearer later with the discussion of
the transformation applied to A.

1B. Constraints on gauge transformations. Consider g ∈ Aut(V )[[z]], supposing
that g has a power series expansion

g(z)=
∞∑

m=0

gmzm, with gm ∈ Mn,n(C), g0 ∈ GLn(C).

We call g an “analytic/formal gauge transformation” (according to whether the
radius of convergence of the power-series is 0 or positive), and require that g0 be
invertible because we intend to conjugate A by g. It is a well-known fact about
rings of formal power series that an element is invertible if and only if its constant
term is invertible. Since g is a power series of matrices, this means we must have
g0 ∈ GLn(C) for g to be invertible.

We turn our attention to the conjugation of A by g, and rename it B:

g(z)A(z)g−1(z)= B(z)=
∞∑

m=0

Bmzm . (1-1)

Our first goal is to design g such that we may control any finite number of the matrix
coefficients in the conjugation. Because eigenvalues are invariant under conjugation,
transforming A into B will make computation of the eigenvalues of A simpler. We
obtain the following theorem, which will be restated later as Theorem 2.1.
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Theorem 1.2. Suppose k, n ≥ 1, V is an n-dimensional vector space over C, and
A ∈ End(V )[[z]]. If A is such that A0 is similar to a Jordan block with eigenvalue 0,
then we may construct a polynomial gauge transformation g such that B0 is an
upper triangular Jordan block of dimension n and the first k coefficients B1, . . . , Bk

of g Ag−1
= B are matrices with nonzero coefficients only in their n-th row.

The series B will be referred to as “the normal form” from now on. With the
existence of this established, we move towards our second goal of determining
explicit relationships between the eigenvalues of A and the entries of the coefficients
of B. Let us enumerate the possibly nonzero entries of Bm from left to right as
bmn−n+1, . . . , bmn . We obtain the following result, which will be restated later as
Theorem 3.2.

Theorem 1.3. Let B be the normal form of A as described in Theorem 1.2, and
suppose that the bottom left coefficient b1 of B1 determined by the normal form is
nonzero. The eigenvalues of A have a Puiseux expansion

ζ(z)=
∞∑

m=1

amzm/n,

and for fixed s ≥ 1, the first s coefficients a1, . . . , as of the Puiseux expansion
explicitly determine and are determined by the first s entries b1, . . . , bs of the
matrices making up the normal form B.

In particular, this theorem tells us that for fixed k the normal form B of A is
uniquely determined. In all cases we assume A(z)=

∑
∞

m=0 Amzm is such that A0

is similar to a Jordan block. Thus we may define g0 ∈ GLn(C) such that

B0 = g0 A0g−1
0

has the desired Jordan block form. This is a constant transformation, which is
notable since the final g will be a finite product of polynomials. Specifically, we will
build g as a product of g0 introduced above and nonconstant factors h` of the form

h`(z)= In + g`z`,

where In is the n×n identity matrix and 1≤ `≤ k ∈Z+. This is an important point,
because it means that g will be a polynomial, hence everywhere convergent, so
applying them to A will not affect the convergence radius of A. This means that the
portion of our results concerning gauge transformations will apply to rings of power
series where convergence is a relevant concern. Furthermore, since we only consider
the terms of A up to the k-th degree we will be applying k of these h` transformations,
so instead of computing an explicit form for g−1, we will only need that h−1

` (z)=
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In − g`z`+ O(z`+1). Then conjugation of A by one of the factors h` looks like

h`(z)A(z)h−1
` (z)= (In + g`z`)

( ∞∑
m=0

Amzm
)
(In − g`z`)+ O(z`+1)

=

( `−1∑
m=0

Amzm
)
+ (A`− [A0, g`])z`+ O(z`+1),

where [A0, g`] = A0g`− g`A0 represents the commutator. In this manipulation we
see that g affects the `-th term of A without changing the first `− 1 terms. This is
important because we apply the transformations In − g`z` iteratively for 1≤ `≤ k
for ` increasing, ultimately obtaining a polynomial transformation of the form

g(z)= hk(z)hk−1(z) . . . h1(z)g0

= (In + gkzk)(In + gk−1zk−1) . . . (In + g1z)g0.
(1-2)

Specifically, considering the map

adA0 : Mn,n(C)→ Mn,n(C), g` 7→ [A0, g`] = A0g`− g`A0, (1-3)

will tell us how to construct g to generate a normal form for the conjugated series.

1C. Factorization of the characteristic polynomial of A. We consider the eigen-
values of endomorphisms in the variable ζ . Let A(z)=

∑
∞

m=0 Amzm be an element
of End(V )[[z]]. We have that the characteristic polynomial of A(z) has the form

χA(z)(ζ )= χA(z, ζ )= det(ζ I − A(z))= ζ n
+ a1(z)ζ n−1

+ · · ·+ an(z), (1-4)

with a1, . . . , an ∈ C[[z]]. We then recall the following particular case of a result
attributed to Puiseux and Newton.

Theorem 1.4 (Newton–Puiseux). The characteristic polynomial (1-4) factors as

χA(w
n, ζ )=

n∏
i=1

(ζ − ζi (w)), with ζi ∈ C[[w]].

This version of the theorem is taken from [Abhyankar 1990, Lecture 12], except
for identifying the ramification index as n instead of some unspecified divisor of n!;
this latter identification in turn follows from [Serre 1979, Chapter I, Proposition 17].
Indeed, according to the assumption b1 6= 0 the z-adic valuation of an is 1, on the
other hand the coefficients a1(0), . . . , an−1(0) clearly vanish as A0 is a nilpotent
endomorphism. These conditions mean that χA(z) is an Eisenstein polynomial in ζ ,
thus it is totally ramified, i.e., of ramification index n.

For us, the above theorem means that we may decompose the characteristic
polynomial of A into linear factors, with the roots being represented by Puiseux
series. Furthermore, we will be able to obtain each root of the polynomial by
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considering all of the conjugates (in the Galois-theory sense) of a single root by
multiplyingw= z1/n by some power of a primitive n-th root of unity ω. Specifically,
after a branch cut we may fix a choice z1/n of n-th root of z, and then all the roots
of the characteristic polynomial are expressible in the form

ζi (z)=
∞∑

m=1

am(ω
i z1/n)m (1-5)

for i = 0, . . . , n− 1. Different choices of z1/n only amount to a permutation of the
n roots ζi .

2. Existence of the normal form

In this section we present the construction of a normal form for A where the
dimension of the ambient vector space V is an arbitrary integer n ≥ 2. Furthermore,
we fix an arbitrary k ∈ Z+.

Theorem 2.1. Take V to be a vector space over C of dimension n, and suppose
that A(z) =

∑
∞

m=0 Amzm is an endomorphism of V such that A0 is similar to a
Jordan matrix with a single eigenvalue. Then for fixed k ≥ 1 we may construct a
gauge transformation g of the form (1-2) such that the coefficient B0 of g Ag−1(z)=
B(z)=

∑
∞

m=0 Bmzm has the form

B0 =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...
...
...
...
. . .

...

0 0 0 0 · · · 1
0 0 0 0 · · · 0


,

and the subsequent coefficients have the form

B` =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
bn(`−1)+1 bn(`−1)+2 · · · bn`−1 bn`


for 1≤ `≤ k.

Proof. We want to find a way to conjugate A into B such that A0 = B0 and the
subsequent B` for 1 ≤ ` ≤ k have the indicated form. So we consider the map
adA0 : V → V for an arbitrary matrix G given by G 7→ [A0,G], with the bracket
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representing the commutator of A0 and G. To examine the image of this map, label
the entries of G in the usual way and expand:



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...
...
...
...
. . .

...

0 0 0 0 · · · 1
0 0 0 0 · · · 0


,

g11 · · · g1n
...

. . .
...

gn1 · · · gnn




=


g21 g22− g11 g23− g12 · · · g2,n − g1,n−1

g31 g32− g21 g33− g22 · · · g3,n − g2,n−1
...

...
...

. . .
...

gn,1 gn,2− gn−1,1 gn,3− gn−1,2 · · · gn,n − gn−1,n−1

0 −gn,1 −gn,2 · · · −gn,n−1

 .

Name the above matrix C , and name the entries in the usual way. Then see that we
may write each entry in the last row as

cn,t =−

t−1∑
j=1

cn− j,t− j ,

as t ranges from 1 to n. That is, each entry in the last row is the negative of the
sum of entries along the diagonal up and to the left of cn,t . We set cn,1 = 0 by
convention. Now although we considered the matrix G to be arbitrary, we may pick
the entries of G so that we can make A`−[A0,G] have a desired form. Specifically,
the dependence of the last row of C on the first n − 1 rows ensures that we can
eliminate the first n−1 rows of A`. This almost certainly affects the last row of A`,
but this does not matter to us. Thus from the iterative process described at the end
of Section 1B, we may find a polynomial of the form (1-2) that we may conjugate
A by to turn the `th coefficient of B(z) into the form

B` =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
bn(`−1)+1 bn(`−1)+2 · · · bn`−1 bn`

 ,

for 1≤ `≤ k. Turning A0 into B0 is much easier, since it is achieved by a constant
transformation, and we are assuming that A0 is similar to a matrix of the form B0.
This is the desired normal form for the first k coefficients of B. �
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3. Uniqueness of the normal form

In this section we again fix an arbitrary k ∈ Z+ and show that the coefficients bi

for 1 ≤ i ≤ kn are uniquely determined by the shape of the normal form B and
the coefficients a1, . . . , akn of the Puiseux expansion of the eigenvalues of A. We
begin the search for relationships between the series of eigenvalues and the entries
of the B` with a lemma. For the remainder of this section we now suppose that
A0 = B0 is as in Theorem 2.1 and that the first k coefficients of B(z) may have
nonzero entries only in the n-th row.

Lemma 3.1. Let t be an integer with n > t ≥ 1, and w1, . . . , wt+1 ∈ Z be such that

−n <w1 < 0, 0<w2, . . . , wt+1 < n,
t+1∑
`=1

w` = 0.

Define ω to be a primitive n-th root of unity. Then we have that

1
t !

∑
1≤s1,...,st+1≤n

s j 6=s`,∀ 6̀= j

ωw1s1+···+wt+1st+1 = (−1)t n.

Proof. First, note the following basic identity regarding sums of powers of primitive
n-th roots of unity: for any w ∈ Z such that n - w we have

n−1∑
j=0

ω jw
=
ωwn
− 1

ωw − 1
= 0. (3-1)

For our application below, let us point out that in the sum of the left-hand side the
summation index j may equally be chosen to range from 1 to n without changing
the value of the sum, because ω0w

= ωnw. Then we proceed by induction on t .
Starting with t = 1, we see that we must have w2 = −w1, since w1 < 0, and
w1+w2 = 0. Then see that

1
1!

∑
1≤s1, s2≤n

s1 6=s2

ωw1(s1−s2),

and relabeling u = (s1− s2) mod n gives

n ·
1
1!

n−1∑
u=1

ωw1u
= n ·

1
1!
· (−1)= (−1)1 · n,

using (3-1) and observing each u is obtained in n possible ways. So the base case
is proven.



NORMAL FORMS OF ENDOMORPHISM-VALUED POWER SERIES 89

Now suppose that the claim holds for t − 1≥ 1. For t , we then have

1
t !

∑
1≤s1,...,st+1≤n

s j 6=s`,∀`6= j

ωw1s1+···+wt+1st+1=
1
t !

∑
1≤s2,...,st+1≤n

s j 6=s`,∀`6= j

ωw2s2+···+wt+1st+1

( n∑
s1=1

s1 /∈{s2,...,st+1}

ωw1s1

)

and since w1 6≡ 0 mod n, we may rewrite the inner sum using (3-1):

1
t !

∑
1≤s2,...,st+1≤n

s j 6=s`,∀ 6̀= j

ωw2s2+···+wt+1st+1

( n∑
s1=1

s1 /∈{s2,...,st+1}

ωw1s1

)

=
1
t !

∑
1≤s2,...,st+1≤n

s j 6=s`,∀ 6̀= j

ωw2s2+···+wt+1st+1(−ωw1s2 − · · ·−ωw1st+1)

=−
1
t !

∑
1≤s1,...,st+1≤n

s j 6=s`,∀ 6̀= j

ω(w2+w1)s2+w3s3+···+wt+1st+1 − · · ·

−
1
t !

∑
1≤s1,...,st+1≤n

s j 6=s`,∀ 6̀= j

ωw2s2+(w1+w3)s3+w4s4+···+wt+1st+1 − · · ·

−
1
t !

∑
1≤s1,...,st+1≤n

s j 6=s`,∀`6= j

ωw2s2+w3s3+···+wt st+(w1+wt+1)st+1 .

In each of the t terms in the final sum, we may relabel the indices w′1, w
′

2, . . . , w
′

t+1
such that w′1 =w1+w` for `= 1, . . . , t+1. The remaining w′j are assigned lexico-
graphically according to what is left; that is, if w′1 takes the `-th spot in the list, then

w′2=w2, w′3=w3, . . . ,w
′

`−1=w`−1, w′`=w`+1, . . . ,w
′

t−1=wt , w′t =wt+1.

These relabeled terms still satisfy
∑t

u=1ws = 0 since the original w terms satisfy
this relation. They also satisfy −n <w′1 < 0 and 0<w′2, . . . , w

′
t < n. This is clear

for w′j with j > 1, and also holds for w′1 since we have

w′1 = w1+w` <

t+1∑
j=1

w j = 0.

So we may apply the induction assumption to each of these sums to turn the last
expression in the above manipulation to

−
1
t

(
1

(t − 1)!
(−1)t−1(t − 1)! · n+

1
(t − 1)!

(−1)t−1(t − 1)! · n

· · · +
1

(t − 1)!
(−1)t−1(t − 1)! · n

)
= (−1)t · n. �
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This lemma is crucial in determining the coefficients we’re ultimately looking for.
We now present the argument for the coefficient relationships of the rank-n case.

Let k ≥ 1, A ∈ End(V )[[z]] have A0 similar to a Jordan block and have normal
form B as in Theorem 2.1 with b1 6= 0. Letting

ζ(z)=
∞∑

m=1

amzm/n

denote the Puiseux expansion of the eigenvalues of A, our aim is to show that the
coefficients {a1, . . . , as} determine and are determined by {b1, . . . , bs} for arbitrary
1≤ s ≤ kn. More precisely, writing

s = n`− t (3-2)

for a unique 1≤ `≤ k and 0≤ t ≤ n− 1, we have the following.

Theorem 3.2. With the above assumptions, there exist polynomials Ps,n ∈C[x1, . . . ,

xs−1] only depending on s, n such that we have

bs = (−1)t nat
1as + Ps,n(a1, . . . , as−1).

Conversely, there exist rational functions of the form Qs,n ∈C[x±1
1 , . . . , xs−1] such

that

as =
(−1)s

n
b−s/n

1 bs + Qs,n(b
1/n
1 , . . . , bs−1).

In particular, for any given A ∈ End(V )[[z]] and fixed k, the parameters {b1, . . . ,

bkn} appearing in Theorem 2.1 are uniquely determined.

Proof. Let ω be a primitive n-th root of unity and recall our notation (1-5) for the
eigenvalues of A. The key idea is to compare two different representations for the
characteristic polynomial

χB(z)(ζ )= χA(z)(ζ ).

Namely, up to order k with respect to the variable z, the polynomial χB(z) can be
read off directly from the form of the matrices B0, B1, . . . , Bk given in Theorem 2.1.
On the other hand, as we have seen in Theorem 1.4 we may expand χA(z) into linear
factors (ζ − ζi (z)). This provides us the identity

ζ n
+ ζ n−1

( k∑
`=1

bn`z`+ O(zk+1)

)
+ · · ·+

( k∑
`=1

bn`−(n−1)z`+ O(zk+1)

)
(3-3)

=

n−1∏
i=0

(
ζ − ζi (z)

)
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=

(
ζ −

∞∑
m=1

amzm/n
)(
ζ −

∞∑
m=1

am(ωz1/n)m
)
· · ·

(
ζ −

∞∑
m=1

am(ω
n−1z1/n)m

)
. (3-4)

The generic term of (3-3) is

ζ n−1−t
( k∑
`=1

bn`−t z`+ O(zk+1)

)
.

We proceed now by comparing coefficients of (3-3) and (3-4), and to do this we
apply induction on s.

Before starting the induction, we do some preliminary work in computing the
coefficient in (3-4) of ζ n−1−t z`, that is, the coefficient that corresponds to bn`−t

in (3-3). We exclude the case where `= 1 and t = n− 1 (i.e., b1), since this first
nonzero term has simpler combinatorial structure than subsequent ones. We would
like to have a general form for the subsequent terms.

To this end, we know that the coefficient of ζ n−1−t z` in (3-4) will be a complex
linear combination of the products am1 . . . amt+1 such that

∑t+1
i=1 mi = n`, with

constants given in terms of a sum of powers of ω. This is equivalent to noticing that
the indices mi partition n` into t+1 nonempty parts. To explain why there are t+1
parts, we first see that n−1− t = n− (t+1), and in the expansion (3-4), each term
will have n components. These components are formed by picking one term from
each of the n factors in (3-4), and are thus split into those that are just ζ and those
that come from the ai . In the particular case of ζ n−1−t we can imagine that we use
n−1− t choices on ζ , and the remaining t+1 choices on various ami . The correct
coefficient in (3-4) to compare to bn`−t will be then those combinations of ami such
that the indices mi sum to n times the exponent of z multiplying bn`−t , that is, the
mi sum to n`. We see that the parts must be nonempty since any mi = 0 would
give us a factor of a0 = 0 in the product of all ami , thus annihilating the product.

So we need to consider the set of all partitions of the integer n` as a sum of t+1
positive integers, say in decreasing order:

P`,t = {m1 ≥ . . .≥ mt+1 ≥ 1 | m1+ · · ·+mt+1 = n`}.

With this notation, we can produce an initial expression for the general coefficient:

bn`−t =
∑
P`,t

am1 . . . amt+1µm1,...,mt+1, (3-5)

where µm1,...,mt+1 denotes a yet undetermined linear combination of powers of ω
with rational coefficients that depends on the partition (m1, . . . ,mt+1).
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The expression in (3-5) can be refined by noticing that we care only about the
partitions with m1 = n`− t = s, since this will be the highest possible index for a
given s and given t , and the products coming from all partitions with m1 < n`− t
will be absorbed in the polynomial Ps,n(a

1/n
1 , . . . , as−1). This assignment of m1

then necessarily forces m2= · · · =mt+1= 1, since we still require that the partition
contains t + 1 nonempty parts and that the mi sum to n`. Let us now introduce

P0
`,t = {(m1, . . . ,mt+1) ∈ P`,t | n`− t > m1}.

This P0
`,t captures all of the partitions whose m1 index we do not need to keep track

of, allowing us to rewrite (3-5). In rewriting, we suppress the mi in the first term,
instead presenting their actual values which we know to be m1= n`− t,m2= · · · =

mt+1 = 1:

at
1an`−tµn`−t,1,...,1+

∑
P0
`,t

am1 . . . amt+1µm1,...,mt+1 . (3-6)

Again, as the indices mi of each term in the sum are all strictly less than n`− t , the
second term in this formula only contributes to Ps,n , hence we only need to specify
the constants µn`−t,1,...,1.

To gain a better understanding of the structure of the constant µn`−t,1,...,1 appear-
ing in the above expression, we describe a way of visualizing each partition that
will give more structure to the enumeration of the constant’s summands. Consider
the partition of n` into parts n`− t, 1, . . . , 1 with 1 appearing t times. We align this
partition with the combinatorial choice of picking a term out of each of the n factors
of (3-4) by considering the mi to be distributed among n boxes, not necessarily in
increasing order. We label the positions of these mi amongst the n boxes by the
labels si for i = 1, . . . , t+1, such that si 6= s j for i 6= j . Observe however that since
m2 = · · · = mt+1, any fixed set {s2, . . . , st+1} of t distinct positions in {1, . . . , n}
and any further position s1 /∈ {s2, . . . , st+1} give rise to a single term in (3-6) of
the form ωsat

1an`−t for some integer s (to be specified below), independently of
the order of {s2, . . . , st+1}. So we may (and from now on, will) assume that the
positions {s2, . . . , st+1} are in increasing order:

s2 < · · ·< st+1;

however, we have no restriction about the position of s1 relative to the above
increasing sequence. This gives us a way of picturing all possible configurations of
the mi . An example of one of these configurations is

ζ ζ x2 . . . ζ x j ζ . . . ζ x1 ζ . . . xt xt+1 ζ . . . ζ ζ

1 2 s2 . . . s j . . . s1 . . . st st+1 . . . n−1 n
,
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with x j =−am j (ω
s j−1z)m j for all 1≤ j ≤ t+1. We note that the−1 attached to each

si in the exponents occurs since the expansion in (3-4) is indexed from 0 to n−1, but
we were considering the si as elements of {1, . . . , n}. This is a minor adjustment.

Computing µm1,...,mt+1 involves writing an expression for µ that reflects the
fixing of s1, the position of m1, outside of the strict ordering of the other labels.
We express this now, adopting the standard notation [n] = {1, . . . , n}:

µn`−t,1,...,1 =
∑

s2,...,st+1∈Z+

1≤s2<···<st+1≤n

ω(s2−1)
· · ·ω(st+1−1)

∑
s1∈[n]\
{s2,...,st+1}

ω(s1−1)(n`−t). (3-7)

Now we manipulate (3-7) as follows, recognizing that since ω is an n-th root of
unity, we may work with any of the sums in the exponents modulo n:∑

s2,...,st+1∈Z+

1≤s2<···<st+1≤n

∑
s1∈[n]\
{s2,...,st+1}

ωs2+···+st+1−t+s1`n−s1t−`n+t

=

∑
s2,...,st+1∈Z+

1≤s2<···<st+1≤n

∑
s1∈[n]\{s2,...,st+1}

ωs2+···+st+1−s1t

=

∑
s2,...,st+1∈Z+

1≤s2<···<st+1≤n

ωs2+···+st+1
∑

s1∈[n]\{s2,...,st+1}

ω−s1t . (3-8)

We may recognize (3-8) as an ordered version of the sum examined by Lemma 3.1.
Indeed, we have bounded weights that sum to zero and an exponent sum in t + 1
terms, namely w1 = −t, w2 = · · · = wt+1 = 1. In Lemma 3.1 we have t + 1
unordered terms, but here we have t ordered terms and one independent term.
Multiplying (3-8) by t ! allows us to rewrite it without the ordering and allows us
to apply the lemma, since we obtain sums over t + 1 unordered terms. But then
the lemma gives that dividing by t ! again allows us to compute the sum, and so the
sum from the lemma and the sum in (3-8) are equivalent. So we find∑

s2,...,st+1∈Z+

1≤s2<···<st+1≤n

ωs2+···+st+1
∑

s1∈[n]\
{s2,...,st+1}

ω−s1t
= (−1)t n.

We conclude that the leading-index term for bn`−t is (−1)t nat
1an`−t .

Now we can start the induction on s, which will actually be a double induction,
first on ` ∈ {1, . . . , k} in increasing order then on t ∈ {0, . . . , n− 1} in decreasing
order; see (3-2). We determine b1 by inspection, and apply the above argument for
b2, . . . , bn . So we have

b1=an
1 , b2=(−1)n−2nan−2

1 a2, . . . , bp=(−1)n−pnan−p
1 ap, . . . , bn=nan.
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We note that each of these bi relations matches that in the theorem statement,
depending on a1 and ai . These relationships are certainly invertible in terms of the ai :

a1=
n
√

b1, a2=
(−1)2−nb2

nb1−2/n
1

, . . . , ap =
(−1)p−nbp

nb1−p/n
1

, . . . , an = bn/n.

We fix an n-th root of b1 here so that everything is uniquely determined. Changing
the choice of the root is equivalent to multiplying a1 by a primitive n-th root of
unity, which then affects all subsequent coefficients ak in the same way, eventually
leading to a permutation of the roots ζ j (z) in (3-4); thus, fixing an n-th root of b1

is not a restrictive choice. Furthermore, we note that in one direction we have the
desired polynomial relations, and in the other direction we have the desired rational
relations. Thus, the statement holds for `= 1 and all t .

Then supposing that the claim holds for 2, . . . , s−1, we consider general s. From
the earlier partition argument we also know that any terms ai in the full expression
for bs that do not contain an`−t will have indices at most i ≤ n`− t − 1 = s − 1,
so applying the induction hypothesis gives

bn`−t = (−1)t nat
1an`−t +Ps,n(a1, . . . , as−1),

since we have invertible relationships for the expressions contained in Ps,n(a1, . . . ,

as−1). This new set of relationships will also be invertible since the only new term
is (−1)t nat

1an`−t , which is a nonzero multiple of an`−t since we are working over a
field of characteristic zero with a1 6= 0. So bn`−t is determined explicitly by this ex-
pression, and vice versa. Thus we have shown that the claim holds for general s. �
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Continuous dependence and
differentiating solutions of a

second order boundary value problem with
average value condition

Jeffrey W. Lyons, Samantha A. Major and Kaitlyn B. Seabrook
(Communicated by Martin J. Bohner)

Using a few conditions, continuous dependence, and a result regarding smooth-
ness of initial conditions, we show that derivatives of solutions to the second
order boundary value problem y′′= f (x, y, y′), a< x < b, satisfying y(x1)= y1,
1/(d− c)

∫ d
c y(x) dx = y2, where a < x1 < c< d < b and y1, y2 ∈R with respect

to each of the boundary data x1, y1, y2, c, d solve the associated variational
equation with interesting boundary conditions. Of note is the second boundary
condition, which is an average value condition.

1. Introduction

Our concern is characterizing derivatives of solutions to the second order boundary
value problem

y′′ = f (x, y, y′), a < x < b, (1-1)
satisfying

y(x1)= y1,
1

d−c

∫ d

c
y(x) dx = y2, (1-2)

where a < x1 < c < d < b, and y1, y2 ∈ R with respect to the boundary data. We
make note of the average value condition.

The history and breadth of work on the subject of smoothness of conditions for
various problems is quite rich and stretches back to the time of Peano as attributed
by Hartman [1964]. Peano’s result characterized the smoothness of initial conditions
for initial value problems (IVPs). Subsequently, many researchers expanded the
result to smoothness of boundary conditions for boundary value problems. The
key to making the jump was utilizing a continuous dependence result for boundary

MSC2010: 34B10.
Keywords: continuous dependence, boundary data smoothness, average value condition, Peano’s

theorem.
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conditions. Once invoked, there were many articles published in the realm of
boundary value problems for differential equations [Ehme 1993; Ehrke et al. 2007;
Henderson 1987; Lyons 2011; Lyons and Miller 2015; Spencer 1975], difference
equations [Benchohra et al. 2007; Datta 1998; Henderson and Jiang 2015; Hopkins
et al. 2009; Lyons 2014a], and dynamic equations on time scales [Baxter et al. 2016;
Lyons 2014b] with a host of interesting of boundary conditions.

Our main motivation for this paper is a recent result [Janson et al. 2014] in which
the authors sought an analogue of Peano’s theorem for a second order boundary
value problem with an integral boundary condition. The novelty we contribute to
the literature is employing an average value boundary condition, which, although
similar, is very fascinating in its own right.

At first, the average value condition might seem unusual. However, the idea of an
average value condition is quite useful when one is not concerned with what occurs
at a specific point but instead the average over a range of points. For example, one
may not need to specify the temperature at a certain time as long as the average
temperature is fixed over a range of time. We point the reader to [Chua 2010] and
the references therein for more discussion on average value conditions and more
general functional conditions.

The remainder of the paper is organized as follows. In Section 2, we introduce
the definition of a variational equation and place conditions upon the boundary
value problem. Section 3 is comprised of interesting and crucial results for our
research. We prove our main result and a corollary in Section 4.

2. Preliminaries

Throughout our work and previous research on the topic, a very important equation
emerges which we now define.

Definition 2.1. Given a solution y(x) of (1-1), we define the variational equation
along y(x) by

z′′ =
∂ f
∂u1

(x, y(x), y′(x))z+
∂ f
∂u2

(x, y(x), y′(x))z′, (2-1)

where u1 and u2 are the second and third components of f, respectively.

Next, we place five hypotheses upon the boundary value problem:

(i) f (x, u1, u2) : (a, b)×R2
→ R is continuous.

(ii) For i = 1, 2, the map ∂ f/∂ui (x, u1, u2) : (a, b)×R2
→ R is continuous.

(iii) Solutions of IVPs for (1-1) extend to (a, b).

(iv) Given a < x1 < c < d < b, if y(x1) = z(x1) and 1/(d − c)
∫ d

c y(x) dx =
1/(d − c)

∫ d
c z(x) dx , where y(x) and z(x) are solutions of (1-1), then, on

(a, b), we have y(x)≡ z(x).
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(v) Given a < x1 < c < d < b and a solution y(x) of (1-1), if u(x1) = 0 and
1/(d − c)

∫ d
c u(x) dx = 0, where u(x) is a solution of (2-1) along y(x), then,

on (a, b), we have u(x)≡ 0.

Note that even though (i) and (ii) may seem to be very strict conditions, we
remind the reader that since our aim is to compute derivatives of solutions to (1-1)
and (1-2), they are not unusual. Condition (iii) is not necessary but instead allows
us to suppress verbiage of finding an interval inside (a, b) where the solution of
the boundary value problem converges. Finally, conditions (iv) and (v) are required
to ensure the uniqueness of the solution and variational equation.

3. Background theorems

We now introduce two theorems that play a key role in the proof of the main result.
The first result is attributed to Peano and is in essence the type of result we seek for
(1-1) and (1-2). We direct the reader to Hartman’s book [1964] for more details.

Theorem 3.1 (Peano’s theorem). Assume that, with respect to (1-1), conditions
(i)–(iii) are satisfied. Let x0 ∈ (a, b) and y(x) := y(x, x0, c1, c2) denote the solution
of (1-1) satisfying the initial conditions y(x0)= c1 and y′(x0)= c2. Then:

(a) For i = 1, 2, ∂y/∂ci (x) exists on (a, b), and αi (x) := ∂y/∂ci (x) is the solution
of the variational equation (2-1) along y(x) satisfying the respective initial
conditions

α1(x0)= 1, α′1(x0)= 0, α2(x0)= 0, α′2(x0)= 1.

(b) ∂y/∂x0(x) exists on (a, b), and β(x) := ∂y/∂x0(x) is the solution of the
variational equation (2-1) along y(x) satisfying the initial conditions

β(x0)=−y′(x0), β ′(x0)=−y′′(x0).

(c) ∂y
∂x0

(x)=−y′(x0)
∂y
∂c1

(x)− y′′(x0)
∂y
∂c2

(x).

The next result permits the leap from IVPs to boundary value problems. The
proof requires mapping initial data to boundary data and an application of the
Brouwer invariance of domain theorem. For a typical proof, we refer the reader to
[Henderson et al. 2005].

Theorem 3.2 (continuous dependence for boundary value problems). Assume (i)–
(iv) are satisfied with respect to (1-1). Let y(x) be a solution of (1-1) on (a, b),
and let a < α < x1 < c < d < β < b and y1, y2 ∈ R be given. Then, there exists
a δ > 0 such that, for |x1 − t1| < δ, |c− ξ | < δ, |d −1| < δ, |y(x1)− y1| < δ,
and

∣∣1/(d − c)
∫ d

c y(x) dx − y2
∣∣< δ, there exists a unique solution yδ(x) of (1-1)

such that yδ(t1)= y1 and 1/(1− ξ)
∫ 1
ξ

yδ(x) dx = y2 and, for i = 1, 2, {y(i)δ (x)}
converges uniformly to y(i)(x) as δ→ 0 on [α, β].
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4. Main result

In light of the information in the previous sections, we now present the main result.
A reminder that the novel portion of our result is differentiation with respect to the
terms in the average value condition, namely c and d . We will only show the proof of
part (d) as (c) is similar. In fact, each part (a)–(d) employs the same idea for a proof.

Theorem 4.1. Assume conditions (i)–(v) are satisfied. Let y(x) be a solution
of (1-1) on (a, b). Let a < x1 < c < d < b and y1, y2 ∈ R be given so that
y(x)= y(x, x1, y1, y2, c, d), where

y(x1)= y1,
1

d−c

∫ d

c
y(x) dx = y2.

Then:

(a) For i = 1, 2, ui (x) := ∂y/∂yi (x) exists on (a, b) and is the solution of the
variational equation (2-1) along y(x) satisfying the respective boundary con-
ditions

u1(x1)= 1 and 1
d−c

∫ d

c
u1(x) dx = 0,

u2(x1)= 0 and 1
d−c

∫ d

c
u2(x) dx = 1.

(b) z1(x) := ∂y/∂x1(x) exists on (a, b) and is the solution of the variational
equation (2-1) along y(x) satisfying the respective boundary conditions

z1(x1)=−y′(x1) and 1
d−c

∫ d

c
z1(x) dx = 0.

(c) C(x) := ∂y/∂c(x) exists on (a, b) and is the solution of the variational equa-
tion (2-1) along y(x) satisfying the boundary conditions

C(x1)= 0 and 1
d−c

∫ d

c
C(x) dx =

y(c)− y2

d − c
.

(d) D(x) := ∂y/∂d(x) exists on (a, b) and is the solution of the variational equa-
tion (2-1) along y(x) satisfying the boundary conditions

D(x1)= 0 and 1
d−c

∫ d

c
D(x) dx =

y2− y(d)
d − c

.

Proof. Since only x and d are not fixed, we denote y(x, x1, y1, y2, c, d) by y(x, d).
Let δ > 0 be as in Theorem 3.2, 0< |h|< δ be given, and define the difference

quotient

Dh(x)=
1
h
[y(x, d + h)− y(x, d)].
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Our goal is to show that the limit of Dh exists, solves the variational equation,
and satisfies the correct boundary conditions. First, we investigate the boundary
conditions.

For every h 6= 0,

Dh(x1)=
1
h
[y(x1, d + h)− y(x1, d)] = 1

h
[y1− y1] = 0,

and by using the mean value theorem for integrals,

1
d−c

∫ d

c
Dh(x)dx =

1
d−c

∫ d

c

y(x,d+h)−y(x,d)
h

dx

=
1

d−c

∫ d

c

y(x,d+h)
h

dx−
1

d−c

∫ d

c

y(x,d)
h

dx

=
1

d−c

[∫ d+h

c

y(x,d+h)
h

dx+
∫ d

d+h

y(x,d+h)
h

dx
]
−

y2

h

=
1

d−c
(d+h)−c
(d+h)−c

∫ d+h

c

y(x,d+h)
h

dx+
y(e)(d−(d+h))

h(d−c)
−

y2

h

=
((d+h)−c)y2

h(d−c)
−

y(e)
d−c
−

y2(d−c)
h(d−c)

=
y2−y(e)

d−c

for some e between d and d + h.
Next, we view y(x) in terms of the solution of an IVP at x1 so that we may

employ Theorem 3.1.
To that end, let

µ= y′(x1, d) and ν = ν(h)= y′(x1, d + h)−µ.

Then, in terms of an IVP,

y(x)= u(x, x1, y1, µ),

and we have

Dh(x)=
1
h
[u(x, x1, y1, µ+ ν)− u(x, x1, y1, µ)].

By Theorem 3.1 and the mean value theorem, we obtain

Dh(x)=
1
h
[α2(x, u(x, x1, y1, µ+ ν̄))(µ+ ν−µ)],

where α2(x, u( · )) is the solution of (1-1) along u( · ) satisfying

α2(x1)= 0, α′2(x1)= 1.

Furthermore, µ+ ν̄ is between µ and µ+ ν. Simplifying,

Dh(x)=
ν

h
α2(x, u(x, x1, y1, µ+ ν̄)).
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Thus, to show limh→0 Dh(x) exists, it suffices to show limh→0 ν/h exists. By
condition (v), the fact that α2(x, u( · )) is a nontrivial solution of (2-1) along u( · )
and α2(x1, u( · ))= 0, we have

1
d−c

∫ d

c
α2(x, u( · )) dx 6= 0 =⇒

∫ d

c
α2(x, u( · )) dx 6= 0.

Recall,
1

d−c

∫ d

c
Dh(x) dx =

y2− y(e)
d − c

,

and so,
1

d−c

∫ d

c

ν

h
α2(x, u(x, x1, y1, µ+ ν̄)) dx =

y2− y(e)
d − c

.

Hence, we obtain

lim
h→0

ν

h
=
(y2− y(e))
(d − c)

1

1/(d − c)
∫ d

c α2(x, u( · )) dx
=

y2− y(e)∫ d
c α2(x, u( · )) dx

:=U.

Now let
D(x)= lim

h→0
Dh(x),

and note by construction of Dh(x),

D(x)=
∂y
∂d
(x).

Furthermore,
D(x)= lim

h→0
Dh(x)=Uα2(x, y(x)),

which is a solution of the variational equation (2-1) along y(x). In addition,

D(x1)= lim
h→0

Dh(x1)= lim
h→0

0= 0,

and

1
d−c

∫ d

c
D(x) dx= lim

h→0

[
1

d − c

∫ d

c
Dh(x) dx

]
= lim

h→0

y2− y(e)
d − c

=
y2− y(d)

d − c
. �

Finally, we present an analogue to (c) of Theorem 3.1 (Peano’s theorem).

Corollary 4.2. Under the assumptions of the previous theorem, we have

(a) z1(x)=−y′(x1)u1(x),

(b) C(x)=−
y2− y(c)
y2− y(d)

D(x),

(c) C(x)=
y(c)− y2

d − c
u2(x).
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On uniform large-scale volume growth for
the Carnot–Carathéodory metric on

unbounded model hypersurfaces in C2

Ethan Dlugie and Aaron Peterson
(Communicated by Michael Dorff)

We consider the rate of volume growth of large Carnot–Carathéodory metric balls
on a class of unbounded model hypersurfaces in C2. When the hypersurface has
a uniform global structure, we show that a metric ball of radius δ� 1 either has
volume on the order of δ3 or δ4. We also give necessary and sufficient conditions
on the hypersurface to display either behavior.

1. Introduction

The study of holomorphic functions on pseudoconvex domains � ⊆ Cn (n ≥ 2)
often reduces to studying the partial differential operator ∂̄ on � given by ∂̄( f )=∑

f z̄ j dz̄ j . We can study the boundary values of holomorphic functions (on b�)
by studying the partial differential operator ∂̄b induced on b� by ∂̄ . We locally
express ∂̄b in terms of differentiation with respect to (n−1)-antiholomorphic vector
fields (the so-called Cauchy–Riemann, or CR, vector fields on b�) that are tangent
to b�. Under mild nondegeneracy conditions on b� we can access a family of
metrics on b� specifically adapted to the study of ∂̄ and ∂̄b, in the sense that they
capture important geometric aspects of b�. One of these, the Carnot–Carathéodory
(CC) metric d( p, q), measures the infimal length of paths on b� that not only
connect the points p and q, but are also almost-everywhere tangent to the real and
imaginary parts of the CR vector fields; see [Street 2014] for an extensive history
of this metric and its applications to the study of ∂̄ and ∂̄b.

In this paper we consider the CC metric d( p, q) induced on the boundary of
a model pseudoconvex domain � ⊂ C2 by the real and imaginary parts of the
CR vector field on b�. In particular, we seek to understand the volume growth of
the metric balls Bd( p, δ) when � is of the form

�= {(z1, z2) ∈ C2
: Im(z2) > P(z1)},

MSC2010: primary 53C17; secondary 32V15, 43A85.
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where P : C→ R is smooth, subharmonic, and nonharmonic. Under mild nonde-
generacy conditions on 1P is it known [Montanari and Morbidelli 2012; Nagel
et al. 1985; 1988; 1989] that for δ ≤ 1 the metric ball Bd( p, δ) is comparable to a
“shorn” or “twisted” ellipsoid with radius δ in the directions spanned by the real
and imaginary parts of the CR vector field and radius 3((z1, z2), δ) in the Re(z2)-
direction. If we equip b� with the Lebesgue measure dm(z, t) that it receives via
its identification with C×R given by (z1, z2) 7→ (z, t), where z = z1 = x + iy and
t = Re(z2), then this small CC metric ball has volume comparable to that of the
twisted ellipsoid:

Vol(Bd( p, δ))≈ δ23( p, δ). (1-1)

We build on the earlier work of the second author [Peterson 2014] which sought to
understand the possible rate of growth of Vol(Bd( p, δ)) for model domains � such
that when δ is large, the Euclidean radius

3((z1, z2), δ)= sup
{
|Re(z′2− z2)| : d((z1, z2), (z1, z′2)) < δ

}
of Bd((z1, z2), δ) in the Re(z2)-direction is essentially independent of (z1, z2). The
quantity 3( p, δ) is called the global structure of b�, and we make precise the
(z1, z2)-independence condition described above with the following definition.

Definition 1.1. If there exists δ0 > 0, a function f : [δ0,+∞)→ [0,+∞), and
positive constants 0 < c < C < +∞ such that c f (δ) ≤ 3( p, δ) ≤ C f (δ) for all
δ ≥ δ0 and p ∈ b�, then we say that ( f (δ), δ0) is a uniform global structure or
UGS for b�.

For such domains � we also have (1-1) when δ is large (see Remark 3.3), and
therefore the volume growth of CC metric balls of any size is completely understood
once we understand 3( p, δ) for large δ.

Example 1.2. In [Nagel et al. 1988], it is shown that when P(z1) is a subharmonic,
nonharmonic polynomial (and where 1P has degree m− 2),

3((z1, z2), δ)≈

m−2∑
k=0

( k∑
α=0

∣∣∣∣ ∂k1P

∂zα1∂ z̄k−α
1

(z1)

∣∣∣∣)δk+2.

In particular, when P(z1)= |z1|
2 (so that 1P(z1)≡ 4) we have 3((z1, z2), δ)≈

4δ2, and therefore (δ2, 1) is a uniform global structure for b�.
On the other hand, if P(z1)= |z1|

4, then 3((z1, z2), δ)≈ |z1|
2δ2
+|z1|δ

3
+δ4
≈

(|z1| + δ)
2δ2, and therefore is not uniform in z1 ∈ C. This shows that b� has no

uniform global structure. More generally, if P is a subharmonic, nonharmonic poly-
nomial, then b� does not have a uniform global structure when 1P is not constant.

The following result from [Peterson 2014] controls the growth of uniform global
structures.
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Theorem 1.3 [Peterson 2014, Theorem 1.2]. If b� has a UGS ( f (δ), δ0), then there
are positive constants 0< c < C <+∞ such that cδ ≤ f (δ)≤ Cδ2 for all δ ≥ δ0.

So when b� has a UGS and δ� 1, the global structure at any point grows at
least linearly and at most quadratically in δ. Examples are given in [Peterson 2014]
where b� has a UGS linear in δ and quadratic in δ. Our question is whether there
exist examples where the UGS grows somewhere “between” linear and quadratic.
For instance, are there examples for b� with UGS (δ3/2, δ0) or (δ log δ, δ0)?

Example 1.4. To see that this question is not trivial, fix α ∈
(
0, 2

3

)
and choose a

subharmonic function P : C→ R such that 1P(z) = (1+ |z|2)−α/2. Using our
techniques and those of [Peterson 2014] one can show that there exist constants
0< c < C <+∞ such that for all δ > 0,

cδ2−α
≤3((0, 0), δ)≤ Cδ2−α and 3((δ3/2, 0), δ)≤ Cδ2−3α/2.

Thus 3((0, 0), δ) grows at a rate comparable to δ2−α, but 3((δ3/2, 0), δ) grows
no faster than δ2−3α/2. This illustrates that it is possible for the global structure to
grow (in δ) at nonpolynomial rates, but

(
since α < 3

2α
)

not necessarily uniformly
in the base point (z1, z2).

Our first main theorem (proven in Section 4) answers our question negatively.

Theorem 1.5. If b� has UGS ( f (δ), δ0), then either (δ2, δ∗) or (δ, δ∗) is a UGS
for b� for some δ∗ > 0.

We subsequently give necessary and sufficient conditions on b� for both linear
(Theorem 5.1) and quadratic (Theorem 5.2) growth of the UGS, thereby completely
describing the conditions under which any particular model domain has a uniform
global structure.

The volume growth of CC metric balls in model domains � as above for large δ
is only explicitly understood when P is a subharmonic, nonharmonic polynomial
[Nagel et al. 1988] or in the limited examples considered in [Peterson 2014]
mentioned above. In some situations one can obtain upper bounds for the rate
of volume growth (see [Chang and Chang 2014]), but one cannot hope for precise
control of Vol(Bd( p, δ)) for general P . On the other hand, applications of volume
growth estimates are many and varied; for example, one can use these estimates to
identify spaces of homogeneous type [Coifman and Weiss 1977], study singular
integral operators [Stein 1993], and even to decide whether or not the boundaries of
two model domains are quasiconformally equivalent [Fässler et al. 2015; Heinonen
and Koskela 1998].

Our paper is structured as follows: Section 2 gives relevant definitions and
notation that will be used extensively throughout the paper and recalls past results.
In Section 3 we gain some intuition about how a UGS behaves and prove a key and
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explicit alternative characterization of the UGS. In Section 4 we prove Theorem 1.5,
followed in Section 5 by necessary and sufficient conditions for a given model
domain to possess a uniform global structure. Section 6 concludes the paper and
offers future directions of study.

2. Preliminaries

With � as in the Introduction, the space of tangential CR vector fields on b� is
spanned by

Z = 2
∂

∂ z̄1
− 4i Pz̄1(z1)

∂

∂ z̄2
.

We identify b� with C×R via the diffeomorphism (z1, z2) 7→ (z, t)∈C×R, where
z = z1 = x + iy and t = Re(z2). Under this transformation, Z becomes

Z = 2
∂

∂ z̄
−2i Pz̄(z)

∂

∂t
=

(
∂

∂x
+ Py(x, y)

∂

∂t

)
− i
(
−
∂

∂y
+ Px(x, y)

∂

∂t

)
def
= X− iY.

As stated in Introduction, we give b� the Lebesgue measure dm(z, t) that it
receives upon identification with C×R. For the rest of the paper, we work on C×R

instead of b� to simplify notation.
We define the CC metric d : (C×R)× (C×R)→ [0,+∞) by

d( p,q)= inf
{
δ > 0 : ∃γ : [0,1]→C×R, γ (0)= p, γ (1)= q,

γ ′(s)= δα(s)X (γ (s))+ δβ(s)Y (γ (s)) a.e.,

α,β ∈FPWS[0,1], |α(s)|2+ |β(s)|2< 1 a.e.
}
. (2-1)

Here FPWS[0, 1] (read “finite piecewise smooth”) denotes the set of functions
f : [0, 1] → R which are smooth except at a finite number of points and whose
derivatives extend continuously to those points from each side separately.

The global structure 3((z, t), δ), the radius in the t-direction of the CC ball, is
then defined as

3((z, t), δ) def
= sup

{
|t ′− t | : d((z, t), (z, t ′)) < δ

}
. (2-2)

Note that the quantity (2-2) is actually independent of the t-coordinate because
the solutions to the differential equation in (2-1) are translation invariant in t . To
simplify notation, we will therefore write 3(z, δ) instead of 3((z, t), δ) for the
remainder of the paper, treating 3 as a function from C× (0,+∞) 7→ [0,+∞).
The first observation of [Peterson 2014] is that definition (2-2) is in fact equivalent
to the following statement in terms of curves in C, independent of t :

3(z,δ)= sup
{∮
γ

Py dx−Px dy : γ : [0,1]→C,

γ (0)= γ (1)= z, |γ ′(s)| ≤ δ a.e.,

γ ′(s)=α(s)+iβ(s), α,β ∈FPWS[0,1]
}
. (2-3)
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We write L(γ )=
∫ b

a |γ
′(s)| ds for the usual Euclidean length of a piecewise smooth

curve γ : [a, b]→C. The following geometric definition from [Peterson 2014] will
be essential to our understanding of global structures.

Definition 2.1. We say A ⊂ C is a pen if A is open, connected, simply connected,
and bA can be parametrized by a continuous piecewise smooth curve γ : [0, 1]→C

with γ ′(s) = α(s)+ iβ(s), where α, β ∈ FPWS[0, 1]. We call L(bA) = L(γ ) the
amount of fencing used to enclose A. For a fixed z ∈ C and δ > 0, we say that a
finite collection of pens R = (R1, . . . , RN ) is a (z, δ)-stockyard if

z ∈
N⋃

i=1

bRi ,

N∑
i=1

L(bRi )≤ δ, and
N⋃

i=1

bRi is connected.

Remark 2.2. We will often use the fact that given a pen A, we have A⊆ B(z,L(bA))
for any point z ∈ A, where B(z, ρ) denotes the open Euclidean disc in C of radius ρ
centered at z.

Thinking of global structures in terms of (2-3), [Peterson 2014] provides the
following theorem.

Theorem 2.3 [Peterson 2014, Theorem 1.1].

3(z, δ)= sup
(z,δ)−stockyards R

∑
Ri∈R

∫
Ri

1P(w) dm(w).

Here dm( · ) denotes the Lebesgue measure on C. The problem of calculating
the global structure, an inherently three-dimensional problem, is therefore reduced
to a question in two dimensions. Furthermore, notice that because P was assumed
to be subharmonic and nonharmonic, we can think of 1P as a density function
in the plane. In this context, integration over a pen measures the “mass” of the
region covered by the pen, and integration over a stockyard is then the sum of the
mass collected by the individual pens. The global structure 3(z, δ) is then just the
most mass one can collect with a stockyard touching z constructed with at most δ
amount of fencing.

We introduce the following simpler notation for use in our estimates. For two
nonnegative quantities A and B, we write A . B (read “A is controlled above by
B”) if there exists some constant c > 0, independent of all relevant quantities, such
that A ≤ cB. We say A & B (read “A is controlled below by B”) if B . A, and
A ≈ B (read “A is comparable to B”) if both A . B and B . A.

3. Alternate description of uniform global structures

When b� has a UGS ( f (δ), δ0) and when δ ≥ δ0, we expect that for every point z
in the plane we can find a high density region whose distance from the point is
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no more than δ. We should then be able to construct a (z, Nδ)-stockyard for an
appropriately fixed natural number N which covers this region with one or more
pens. Otherwise 3(z, δ) would be uncontrollably small at certain points. We also
expect that no point should be within δ of a region of exceedingly high density.
Otherwise 3(z, δ) would be uncontrollably large at certain points. Before we make
this notion precise in Proposition 3.4 of this section, we need two lemmas.

A simple observation about one formula for a UGS is the following.

Lemma 3.1. If b� has UGS ( f (δ), δ0), then (supz∈C3(z, δ), δ0) is also a UGS
for b�.

Proof. Fix some z ∈ C. By the definition of UGS, there exist constants c,C > 0
independent of z and δ such that

c f (δ)≤3(z, δ)≤ C f (δ).

So C f (δ) is an upper bound for {3(z, δ) : z ∈ C}, which gives supz∈C3(z, δ) ≤
C f (δ) since the supremum is the least upper bound. Also supz∈C3(z, δ) ≥
3(z, δ)≥ c f (δ). So then

3(z, δ)≤ C f (δ)≤ C
c

sup
z∈C

3(z, δ) and 3(z, δ)≥ c f (δ)≥ c
C

sup
z∈C

3(z, δ)

for all δ ≥ δ0. Therefore (supz∈C3(z, δ), δ0) is a UGS for b�. �

Lemma 3.1 makes it clear that we can take f (δ) to be a monotonically increasing
function of δ. We next show that f (δ) does not increase too quickly in the sense
that if we double the amount of fencing available to construct stockyards, then the
amount of mass one can collect should not grow exceedingly fast.

Lemma 3.2. If b� has UGS ( f (δ), δ0) then f (δ) ≈ f (2δ) for all δ ≥ δ0, with
constants independent of δ.

Proof. By Lemma 3.1 we can without loss of generality take f (δ)= supz∈C3(z, δ).
For if (g(δ), δ0) is any other UGS for b� and we can prove the lemma for f (δ),
then g(δ)≈ f (δ)≈ f (2δ)≈ g(2δ). We prove first that f (2δ)≈ f (3δ) for large δ
and will show at the end of the proof that this is sufficient to establish the lemma.

Because f (δ) is a nondecreasing function, we trivially have f (2δ)≤ f (3δ). We
need only show then that f (3δ). f (2δ). To this end, fix z0 ∈ C and δ ≥ 2

3δ0, and
let R be any arbitrary (z0, 3δ)-stockyard. There is a FPWS curve γ : [0, 1] → C

with γ (0)= γ (1)= z0, L(γ )≤ 3δ, and∑
Ri∈R

∫
Ri

1P(w) dm(w)=
∮
γ

Py dx − Px dy.

We now produce seven continuous, piecewise smooth curves γk : [0, 1] → C,
k= 1, . . . , 7, with L(γk)≤ 2δ and γ ′k(s)=αk(s)+iβk(s) with αk, βk ∈ FPWS[0, 1]
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such that ∮
γ

Py dx − Px dy =
7∑

k=1

∮
γk

Py dx − Px dy.

Without loss of generality, suppose that γ has constant speed so that∫ 1/3

0
|γ ′(s)| ds =

∫ 2/3

1/3
|γ ′(s)| ds =

∫ 1

2/3
|γ ′(s)| ds ≤ δ. (3-1)

For convenience, we define z1 = γ
( 1

3

)
, z2 = γ

( 2
3

)
, and z3 = γ (1)= z0. We also

denote by −−→z, w the directed line segment from z to w.
Now we have∮
γ

Py dx−Px dy

=

∫
γ [0,1/3]

Py dx−Px dy+
∫
γ [1/3,2/3]

Py dx−Px dy+
∫
γ [2/3,1]

Py dx−Px dy

+

∫
−−→z0,z1

Py dx−Px dy+
∫
−−→z1,z2

Py dx−Px dy+
∫
−−→z2,z3

Py dx−Px dy

+

∫
−−→z1,z0

Py dx−Px dy+
∫
−−→z2,z1

Py dx−Px dy+
∫
−−→z3,z2

Py dx−Px dy

=

∮
γ [0,1/3]+−−→z1,z0

Py dx−Px dy+
∮

γ [1/3,2/3]+−−→z2,z1

Py dx−Px dy

+

∮
γ [2/3,1]+−−→z3,z2

Py dx−Px dy+
∮

−−→z0,z1+
−−→z1,z2+

−−→z2,z3

Py dx−Px dy. (3-2)

We consider the contours of integration in each integral.
We define γi = γ

[ 1
3(i − 1), 1

3 i
]
+
−−−−→zi , zi−1 for i = 1, 2, 3. By (3-1), the length of

each contour γ
[ 1

3(i −1), i
3

]
is no more than δ. And as the straight line between the

endpoints of these contours, each directed line segment −−−−→zi , zi−1 also has length no
more than δ. In other words, each γi for i = 1, 2, 3 is a closed curve of length no
more than 2δ.

The last integral in (3-2) is taken over a closed contour composed of three
line segments, each of length no more than δ. For each j = 0, 1, 2 define b j =
1
2(z j + z j+1) to be the bisector of segment −−−−→z j , z j+1, and for convenience define
b−1 = b2. We then define γ j+4 =

−−−→z j , b j +
−−−−→b j , b j−1 +

−−−−→b j−1, z j and define γ7 =
−−−→b0, b1+

−−−→b1, b2+
−−−→b2, b0. Then we have∮

−−→z0,z1+
−−→z1,z2+

−−→z2,z3

Py dx − Px dy =
7∑

k=4

∮
γk

Py dx − Px dy.
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But by similar triangles,

L(γk)=
1
2 L(−−→z0, z1+

−−→z1, z2+
−−→z2, z3)≤

3
2δ

for each k = 4, 5, 6, 7. Combining these observations with (3-2) and (2-3), we have

∑
Ri∈R

∫
Ri

1P(w) dm(w)=
7∑

k=1

∮
γk

Py dx − Px dy

≤

7∑
k=1

3(γk(0),L(γk))≤ 3 f (2δ)+ 4 f
( 3

2δ
)
≤ 7 f (2δ)

for all (z0, 3δ)-stockyards R. Therefore by Theorem 2.3 we see 3(z, 3δ)≤ 7 f (2δ)
for all z ∈ C; hence

f (3δ)= sup
z∈C

3(z, 3δ)≤ 7 f (2δ).

In summary, for all δ ≥ 2
3δ0 we have

f (2δ)≤ f (3δ)≤ 7 f (2δ). (3-3)

Now fix δ ≥ δ0. Because f (δ) is a nondecreasing function, we also trivially have
f (δ)≤ f (2δ). But by monotonicity and (3-3) we see

f (2δ)≤ f
( 9

4δ
)
≤ 49 f (δ).

Therefore, f (δ)≈ f (2δ) for all δ ≥ δ0. �

Remark 3.3. Lemma 3.2 was used implicitly in [Peterson 2014] without proof or
statement. The arguments of [Peterson 2014] show that for any fixed z ∈ C,{
(w, s) ∈ C×R : |w− z|< 1

4δ, |s− t − T (z, w)|<3
(
z, 1

4δ
)}
⊆ Bd((z, t), δ)

and

Bd((z, t), δ)⊆
{
(w, s) ∈ C×R : |w− z|< 3δ, |s− t − T (z, w)|<3(z, 3δ)

}
,

where

T (z, w)=−2Im
(∫ 1

0
(w− z)Pz(r(w− z)+ z) dr

)
is the “twist” of the CC ball. Lemma 3.2 then yields the formula

Vol(Bd((z, t), δ))≈ δ23(z, δ) for δ ≥ δ0

when b� has UGS ( f (δ), δ0). This shows that we can think of Bd((z, t), δ) as a
“twisted” ellipsoid in the case of large δ, not just small δ as in (1-1).

We are now ready to make precise the intuition laid out in the beginning of this
section.
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Proposition 3.4. If b� has UGS ( f (δ), δ0), then

3(z, δ)≈ sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

uniformly for z ∈ C and δ ≥ δ0.

Proof. As in the proof of Lemma 3.2, we assume without loss of generality that
f (δ) is a nondecreasing function. For any choice of ẑ ∈ B(z, δ) and 0 < δ̂ ≤ δ,
define a (z, 4πδ)-stockyard R = (R0, R1, . . . , RN ) composed of one pen R0 which
is a circle touching z and some point on bB(ẑ, δ̂) and N = bδ/δ̂c copies of B(ẑ, δ̂).
Using the fact that bδ/δ̂c ≥ δ/(2δ̂) because δ ≥ δ̂ > 0, we have

3(z, δ)≈ f (δ)≈ f (16δ)≥ f (4πδ)&3(z, 4πδ)

≥

∑
Ri∈R

∫
Ri

1P(w) dm(w)≥
⌊
δ

δ̂

⌋∫
B(ẑ,δ̂)

1P(w) dm(w)

≥
δ

2δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w).

Therefore,

3(z, δ)& sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w).

Now let R = (R1, . . . , RM) be an arbitrary (z, δ)-stockyard. For i = 1, . . . ,M, fix
some point zi ∈ Ri . Then, recalling Remark 2.2, we have

∑
Ri∈R

∫
Ri

1P(w) dm(w)≤
M∑

i=1

∫
B(zi ,L(bRi ))

1P(w) dm(w)

=

M∑
i=1

L(bRi )

δ

δ

L(bRi )

∫
B(zi ,L(bRi ))

1P(w) dm(w)

≤

M∑
i=1

(
L(bRi )

δ

)
sup

ẑ∈B(z,δ)
sup

0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

≤
δ

δ
sup

ẑ∈B(z,δ)
sup

0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

= sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w).

Therefore

3(z, δ)≤ sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w). �



112 ETHAN DLUGIE AND AARON PETERSON

4. Proof of Theorem 1.5

Proposition 3.4 reveals very strong information about the density in the space around
a point when there is a UGS. Armed with this knowledge, we are almost ready to
prove Theorem 1.5. We begin by recalling and proving two lemmas, the first of
which is a technical result from [Peterson 2014].

Lemma 4.1 [Peterson 2014, Lemma 4.1]. If b� has a UGS, then there are constants
C1,C2 > 0, depending only on 1P and δ0, such that

(a) inf
z∈C

sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

(δ̂+ δ̂2)−1
∫

B(ẑ,δ̂)
1P(w) dm(w)≥ C1 for all δ ≥ δ0;

(b) sup
z∈C

sup
δ>0
(δ+ δ2)−1

∫
B(z,δ)

1P(w) dm(w)≤ C2.

Remark 4.2. Note that increasing δ0 can only possibly increase C1 and will not
affect the constant C2.

We also need a short geometric lemma.

Lemma 4.3. Let 0< a ≤ b. Then within any disc of radius b in C, one can pack at
least b2/(16a2) disjoint discs of radius a.

Proof. Without loss of generality, assume the disc of radius b is centered at the
origin. Since B(0, a)⊂ B(0, b), we can always pack at least one disc of radius a
inside of B(0, b). If 2a >

√
2b, then we have at least one disc of radius a inside of

B(0, b), and

1>

√
2b

2a
>

b2

2a2 >
b2

16a2 .

Note now that for all x ≥ 1, we have x = bxc+α for some α ∈ [0, 1) so that

bx2
c =

⌊
(bxc+α)2

⌋
<
⌊
(bxc+ bxc)2

⌋
= b4bxc2c = 4bxc2.

Assume that 2a ≤
√

2b. The disc B(0, b) contains a square of side length⌊√
2b

2a

⌋
2a ≤

√
2b

centered at the origin. This square contains exactly b
√

2b/(2a)c2 disjoint squares
of side length 2a, each of which contains a disc of radius a. So we again see that
B(0, b) contains at least ⌊√

2b
2a

⌋2

>
1
4

⌊
b2

2a2

⌋
≥

b2

16a2

discs of radius a. �

We are now ready to prove Theorem 1.5.
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Proof of Theorem 1.5. Proposition 3.4 shows that there is some constant c > 0 such
that

sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ c f (δ)

for all z ∈ C and δ ≥ δ0. So for all z ∈ C and δ ≥ δ0, there exists ẑ ∈ B(z, δ) and
0< δ̂ ≤ δ such that

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥
c
2

f (δ)
δ
.

Now suppose f (δ)= δ is not a UGS for b�. That is, lim supδ→+∞ f (δ)/δ =+∞.
Then, taking C2 > 0 as in Lemma 4.1, we can choose δ1 > max(1, δ0) such that
f (δ1)/δ1 > 4C2/c. Choose δ̂ associated to δ = δ1 as above. If δ̂ ≤ 1, then by
Lemma 4.1 we have

2C2 <
c
2

f (δ1)

δ1
≤

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≤
2

δ̂+ δ̂2

∫
B(ẑ,δ̂)

1P(w) dm(w)≤ 2C2,

which is impossible. Therefore for all z ∈C, there exists ẑ ∈ B(z, δ1) and 1≤ δ̂≤ δ1

such that ∫
B(ẑ,δ̂)

1P(w) dm(w)≥
c
2

f (δ1)

δ1
δ̂ ≥ 2C2 > 0.

It follows that for all z ∈ C,∫
B(z,2δ1)

1P(w) dm(w)≥
∫

B(ẑ,δ̂)
1P(w) dm(w)≥ 2C2.

By Lemma 4.3, for all δ≥ δ1, we can pack N >δ2/(16δ2
1) disjoint discs of radius 2δ1

within a disc of radius 2δ. So for all z ∈ C,∫
B(z,2δ)

1P(w) dm(w)≥ N2C2 >
δ2

16δ2
1
· 2C2 ≈ (2δ)2.

Then for all δ ≥ 2δ1 and some z1 ∈ bB(z, δ),

f (δ)≈ f (2πδ)≈3(z1, 2πδ)≥
∫

B(z,δ)
1P(w) dm(w)& δ2.

But Theorem 1.3 implies f (δ). δ2 for all δ ≥ 2δ1 ≥ δ0. Therefore setting δ∗ = 2δ1

we see that if f (δ)= δ is not a UGS for b�, then (δ2, δ∗) is a UGS for b�. �

So a UGS must grow in a linear or quadratic fashion. Linear growth means
that for any point, the stockyards which pick up the most mass enclose a small,
dense, nearby disc as many times as possible. Quadratic growth means a stockyard
which picks up the most mass does so by taking a pen consisting of one large disc,
collecting as much area as possible.
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5. Identifying uniform global structures

So far, almost all of the results of this paper have taken as hypothesis that b� has
a UGS and considered what that means for the global structure 3. To look at an
arbitrary model domain and determine if there is a UGS is a much more difficult
question. But with Theorem 1.5, we see that we only need to provide conditions
to identify uniform global structures where either f (δ) = δ or f (δ) = δ2. The
following two theorems provide necessary and sufficient conditions for each case.

Theorem 5.1. The hyperspace b� has UGS (δ, δ0) if and only if

(a)
∫

B(z,δ)
1P(w) dm(w). δ for all z ∈ C and δ > 0, and

(b) there exist constants δ∗ > M > 0 such that

inf
z∈C

sup
ẑ∈B(z,δ∗)

sup
0<δ̂≤M

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)& 1.

Proof. Suppose (δ, δ0) is a UGS for b�. For any z ∈ C, fix some point z1 with
|z1− z| = δ. If 2πδ ≥ δ0 then∫

B(z,δ)
1P(w) dm(w)≤3(z1, 2πδ)≈ 2πδ ≈ δ.

If 0< 2πδ < δ0, then taking a stockyard consisting of bδ0/(2πδ)c copies of B(z, δ)
gives

δ0

4πδ

∫
B(z,δ)

1P(w) dm(w)≤
⌊
δ0

2πδ

⌋∫
B(z,δ)

1P(w) dm(w)≤3(z1, δ0)≈ 1.

Therefore (a) holds.
Also, for any fixed δ∗≥ δ0 > 0, Lemma 4.1 gives some constant C1 > 0 such that

inf
z∈C

sup
ẑ∈B(z,δ∗)

sup
0<δ̂≤δ0

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

≥ inf
z∈C

sup
ẑ∈B(z,δ0)

sup
0<δ̂≤δ0

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

≥ inf
z∈C

sup
ẑ∈B(z,δ0)

sup
0<δ̂≤δ0

1

δ̂+ δ̂2

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ C1.

Therefore (b) holds (with M = δ0).
Now we suppose (a) and (b) hold. For any δ > 0 and z ∈C, let R= (R1, . . . , RN )

be an arbitrary (z, δ)-stockyard. For each i = 1, . . . , N , fix some point zi ∈ Ri .
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Then recalling Remark 2.2, (a) gives∑
Ri∈R

∫
Ri

1P(w) dm(w)≤
∑
Ri∈R

∫
B(zi ,L(bRi ))

1P(w) dm(w).
∑
Ri∈R

L(bRi )≤ δ.

Therefore 3(z, δ). δ uniformly for z ∈ C and δ > 0.
For any z ∈ C, fix a ẑ ∈ B(z, δ∗) and 0< δ̂ ≤ M such that

1

δ̂

∫
B(ẑ,δ̂)

1P(w)dm(w)& 1,

as given by (b). Then for all δ ≥ 2πM ≥ 2πδ̂, there is a (z, πδ∗+δ)-stockyard R
which consists of one circular pen touching z and some point on bB(ẑ, δ̂) and
bδ/(2πδ̂)c copies of B(ẑ, δ̂). Then

3(z, πδ∗+ δ)≥
∑
Ri∈R

∫
Ri

1P(w) dm(w)

≥

⌊
δ

2πδ̂

⌋∫
B(ẑ,δ̂)

1P(w) dm(w)≥
δ

4πδ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)

& δ = 2πM
δ

2πM
≥

2πM
2πM +πδ∗

(πδ∗+ δ),

where here we have used the fact that if c≥0 and a≥b>0, then a/b≥ (a+c)/(b+c).
Therefore 3(z, δ)≈ δ for all δ ≥ δ0 with δ0 = πδ

∗
+ 2πM . �

Theorem 5.2. The hypersurface b� has UGS (δ2, δ0) if and only if there exists
δ∗ > 0 such that, uniformly for z ∈ C,

(a)
∫

B(z,δ)
1P(w) dm(w). δ when δ ≤ δ∗, and

(b)
∫

B(z,δ)
1P(w) dm(w)≈ δ2 when δ ≥ δ∗.

Proof. Suppose (δ2, δ0) is a UGS for b�. Then for any z ∈ C and some point z1

with |z1− z| = δ we have∫
B(z,δ)

1P(w) dm(w)≤3(z1, 2πδ)≈ (2πδ)2 ≈ δ2

for all δ ≥ δ0.
Proposition 3.4 shows that there is some constant c > 0 such that

sup
ẑ∈B(z,δ)

sup
0<δ̂≤δ

δ

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ cδ2
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for all z ∈ C and δ ≥ δ0. So for all z ∈ C and δ ≥ δ0, there exists ẑ ∈ B(z, δ) and
0< δ̂ ≤ δ such that

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≥ 1
2 cδ.

Taking C2 > 0 as in Lemma 4.1, choose some δ1 >max(1, δ0, 4C2/c). Choose δ̂
associated to δ = δ1 as above. If δ̂ ≤ 1, then by Lemma 4.1 we have

2C2 <
c
2
δ1 ≤

1

δ̂

∫
B(ẑ,δ̂)

1P(w) dm(w)≤
2

δ̂+ δ̂2

∫
B(ẑ,δ̂)

1P(w) dm(w)≤ 2C2,

which is impossible. Therefore for all z ∈C, there exists ẑ ∈ B(z, δ1) and 1≤ δ̂≤ δ1

such that ∫
B(ẑ,δ̂)

1P(w) dm(w)≥ c
2
δ1δ̂ ≥ 2C2 > 0.

It follows that for all z ∈ C,∫
B(z,2δ1)

1P(w) dm(w)≥
∫

B(ẑ,δ̂)
1P(w) dm(w)≥ 2C2.

By Lemma 4.3, for all δ≥ δ1, we can pack N >δ2/(16δ2
1) disjoint discs of radius 2δ1

within a disc of radius 2δ. So for all z ∈ C,∫
B(z,2δ)

1P(w) dm(w)≥ N
∫

B(z,2δ1)

1P(w) dm(w) >
δ2

16δ2
1
· 2C2 ≈ (2δ)2.

Therefore, ∫
B(z,δ)

1P(w) dm(w)≈ δ2

for all δ ≥ 2δ1 > δ0. Setting δ∗ = 2δ1, we see (b) holds. Also, Lemma 4.1 yields∫
B(z,δ)

1P(w) dm(w)≤ C2(δ+ δ
2).

But if δ ≤ δ∗ then ∫
B(z,δ)

1P(w) dm(w)≤ C2(δ
∗
+ 1)δ ≈ δ,

so (b) holds.
Now we suppose (a) and (b) hold so that for δ ≤ δ∗ we have∫

B(z,δ)
1P(w)dm(w)≤ aδ

and for δ ≥ δ∗ we have ∫
B(z,δ)

1P(w)dm(w)≤ bδ2
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for some constants a, b> 0 independent of z ∈C. For δ ≥ 1, let R = (R1, . . . , RN )

be an arbitrary (z, δ)-stockyard. Without loss of generality, we may relabel the pens
so that L(bRi ) ≤ δ

∗ for i = 1, . . . , L and L(bRi ) ≥ δ
∗ for i = L + 1, . . . , N for

some integer L ∈ {0, . . . , N }. For each i = 1, . . . , N , fix some zi ∈ Ri . Recalling
Remark 2.2, we have∑

Ri∈R

∫
Ri

1P(w) dm(w)

=

L∑
i=1

∫
Ri

1P(w) dm(w)+
N∑

i=L+1

∫
Ri

1P(w) dm(w)

≤

L∑
i=1

∫
B(zi ,L(bRi ))

1P(w) dm(w)+
N∑

i=L+1

∫
B(zi ,L(bRi ))

1P(w) dm(w)

≤ a
L∑

i=1

L(bRi )+ b
N∑

i=L+1

L(bRi )
2

≤ a
L∑

i=1

L(bRi )+ b
( N∑

i=L+1

L(bRi )

)2

≤ aδ+ bδ2 . δ2.

So 3(z, δ). δ2 for all δ ≥ 1.
Using (b), we may take a stockyard consisting of one large circular pen with

radius δ ≥ δ∗ and center z1 satisfying |z1− z| = δ to see that

3(z, 2πδ)≥
∫

B(z1,δ)

1P(w) dm(w)≈ δ2
≈ (2πδ)2.

Therefore 3(z, δ)≈ δ2 for all δ ≥ δ0 with δ0 =max(1, δ∗/(2π)). �

6. Future directions

Although the results of this paper completely describe the nature of uniform global
structures for the model domains we consider, several interesting avenues for further
study present themselves when we weaken our hypotheses. One such direction
would be to extend the results of this paper to higher dimensions. That is, is there
an appropriate notion of stockyards in higher dimensions with which to analyze the
global structure on the boundary of a model domain in Cn? It is not clear how the
Green’s theorem argument used in [Peterson 2014] to prove Theorem 2.3 would
generalize or even how (if at all) the notion of stockyards should generalize to
higher dimensions.

One could also relax the conditions on P which determine the boundary b�.
For example, do similar results hold assuming that P is only once differentiable
and that 1P as a distribution is nonnegative? One could also allow P to be a more
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general function for which � is pseudoconvex, that is, take P = P(z1,Re(z2)). In
such a situation, the volume of CC balls with such a choice of P would a priori
depend on the Re(z2)-direction. Since the methods of this paper heavily exploited
the Re(z2)-translation invariance of �, it is unclear if these methods can be easily
extended to handle the more general situation.
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Variations of the Greenberg unrelated question
binary model

David P. Suarez and Sat Gupta

(Communicated by Kenneth S. Berenhaut)

We explore different variations of the Greenberg unrelated question RRT model
for a binary response. In one of the variations, we allow multiple independent
responses from each respondent. In another variation, we use inverse sampling. It
turns out that both of these variations produce more efficient models, a fact validated
by both theoretical comparisons as well as extensive computer simulations.

1. Introduction

Social desirability response bias (SDB) is a major concern in surveys involving
sensitive topics. One method that could help circumvent SDB is the randomized
response technique, introduced originally by Warner [1965] and then generalized
by other researchers such as Greenberg et al. [1969; 1971], Warner [1971], Klein
and Spady [1993], Gupta et al. [2002; 2013].

RRT models have been used extensively in field surveys. Abernathy et al. [1970]
used RRT models to obtain estimates of induced abortion rates in urban North
Carolina. From the open survey, it was noticed that female respondents would
have hesitated to respond truthfully to the sensitive question of induced abortions.
Striegel et al. [2006] used indirect questioning techniques to measure the prevalence
of doping among elite athletes. In order to study the effect of higher education in
favourable attitudes towards foreigners in Germany, Ostapczuck et al. [2009] used
two survey methods: direct questioning and RRT. The results obtained by these
two survey methods demonstrated great variation. Based upon the respondents
who used RRT, the results obtained showed a sharp decline in the estimates for
the proportion of xenophiles among both the less educated and highly educated.
Gill et al. [2013] conducted a survey which used an RRT model to estimate the risky
sexual behaviors among students at the University of North Carolina at Greensboro.
The binary question of interest was “Have you been told by a healthcare professional
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that you have a sexually transmitted disease?”, whereas the quantitative question
of interest was “How many sexual partners have you had in the last 12 months?”
The survey was conducted using three methods: RRT method, direct face-to-face
interviewing and anonymous check-box survey method. It was observed that the
optional unrelated question RRT method’s estimates were closer to the check-box
survey method’s estimates, and the lowest point estimate was obtained by face-
to-face interview method, which is expected as it provided the lowest anonymity.
More recently, Chhabra et al. [2016] used these models to estimate the prevalence
of sexual abuse of female college students by either a friend or an acquaintance.

In this paper, we discuss some variations of the Greenberg et al. (1969) unrelated
question RRT model. In one of the variations, we allow a respondent to provide
multiple independent responses. In another variation, we use the inverse sampling
technique.

2. Proposed models

2.1. Using multiple independent responses in the Greenberg model. Let us first
recall the Greenberg et al. (1969) unrelated question RRT model, which we will
henceforth refer to as the Greenberg model. Let πx be the unknown prevalence
of a sensitive attribute X in the population and πy be the known prevalence of
a nonsensitive attribute Y. A randomization device offers respondents a choice
between two questions, a sensitive question and an unrelated question with respective
probabilities p and 1− p. Let py be the probability of a “yes” response. Then

py = πx p+πy(1− p), (1)

which leads to the estimator

π̂G =
p̂y −πy(1− p)

p
, (2)

where p̂y is the sample proportion of “yes” responses.
The mean of the estimator in (2) is given by

E(π̂G)= πx ,

which signifies that π̂G is an unbiased estimator of πx .
The variance of the estimator in (2) is given by

Var(π̂G)=
py(1− py)

np2 . (3)

Now suppose we allow m independent responses from each respondent in a
sample of size n. Let Ti be the number of “yes” responses provided by the i-th
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respondent. Then

Ti ∼ Binomial(m, py) and E(Ti )= mpy .

If T =
(∑

Ti
)
/n, then we know that E(T )= mpy .

Estimating mpy by T, the estimator for πx in (2) can be refined to

π̂G M =
T /m− (1− p)πy

p
. (4)

Note that

E(π̂G M)=
E(T )/m− (1− p)πy

p
= πx . (5)

The variance of the estimator π̂G M is given by

Var(π̂G M)=
1

m2 p2 Var(T )=
1

m2 p2

mpy(1− py)

n
=

py(1− py)

nmp2 . (6)

2.2. Inverse sampling: waiting for the first “yes” response. Let each respondent
continue to use the Greenberg model repeatedly until a “yes” response is recorded.
Let Si be the total number of trials needed by the i-th respondent to get to the first
“yes” response. Then,

Si ∼ Geometric(py),

with E(Si )= 1/py and Var(Si )= (1− py)/p2
y , where py is defined in (1).

Also, let there be a sample of n respondents and S be the sample mean of the Si ’s.
Then 1/py can be estimated by S leading to p̂y = 1/S as an estimator of py . Using
first-order Taylor’s approximation of 1/S, we can write

1

S
≈

1
E(S)

+ (S− E(S))
(
−1

(E(S))2

)
, (7)

where E(S)= 1/py .
With this approximation,

E
(

1

S

)
≈

1
E(S)

= py . (8)

Then, using 1/S as an estimator of py , the estimator in (2) becomes

π̂G I =
1/S− (1− p)πy

p
. (9)

Note that

E(π̂G I )=
E(1/S)− (1− p)πy

p
≈

py − (1− p)πy

p
= πx

since E(1/S)≈ py , as argued in (8).
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Thus, we see that π̂G I is an unbiased estimator of πx , up to first order of
approximation.

From (9),

Var(π̂G I )=
1
p2 Var

(
1

S

)
. (10)

But

Var
(

1

S

)
≈ Var

(
1

E(S)
+ (S− E(S))

(
−

1

(E(S))2

))
= Var(−S p2

y)

= p4
y Var(S)= p4

y
Var(S)

n
= p4

y

(
1− py

np2
y

)
=

p2
y(1− py)

n
. (11)

Thus, we have

Var(π̂G I )≈
1
p2

( p2
y(1− py)

n

)
=

p2
y(1− py)

np2 . (12)

2.3. Inverse sampling: waiting for k “yes” responses. Let Si be the total num-
ber of trials needed to reach the k-th “yes” response. Then, we see that Si ∼

Negative Binomial(py, k) with

E(Si )=
k
py

(13)

and

Var(Si )=
k(1− py)

p2
y

. (14)

Also, let there be a sample of n respondents and S be the sample mean of the
n responses. Then

E(S)= E(Si )=
k
py
. (15)

Therefore, k/py can be estimated by S and p̂y = k/S can be used as an estimator
of py . Using first-order Taylor’s approximation,

1

S
=

1
E(S)

+ (S− E(S))
(
−

1
(E(S))2

)
, (16)

where E(S)= k/py .
Thus, our estimator for πx in (2) becomes

π̂G Ik =
k/S−πy(1− p)

p
. (17)
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From (17), we get the following for the mean of π̂x :

E(π̂G Ik )=
k E(1/S)−πy(1− p)

p

≈
k(py/k)−πy(1− p)

p
=

py −πy(1− p)
p

= πx . (18)

Thus, π̂G Ik is an unbiased estimator of πx , up to first order of approximation.
From (17), we also get,

Var(π̂G Ik )=
k2

p2 Var
(

1

S

)
. (19)

But,

Var
(

1

S

)
≈ Var

(
1

E(S)
+ (S− E(S))

(
−

1

(E(S))2

))
=

p4
y

k4 Var(S)

≈
p4

y

k4

(k(1− py)/p2
y

n

)
=

p4
y

k4

(
k(1− py)

p2
yn

)
=

p2
y(1− py)

k3n
. (20)

Thus, we have

Var(π̂G Ik )≈
k2

p2

( p2
y(1− py)

k3n

)
=

p2
y(1− py)

knp2 . (21)

3. Efficiency comparisons

In this section, we compare the efficiencies of the following Greenberg estimators:

π̂G = standard estimator,

π̂G M = estimator using m independent responses,

π̂G I = estimator using inverse sampling, waiting for the first “yes” response,

π̂G Ik = estimator using inverse sampling, waiting for the k-th “yes” response.

Since

Var(π̂G M)=
py(1− py)

nmp2 =
1
m

(
py(1− py)

np2

)
=

1
m

Var(π̂G), (22)

we have Var(π̂G M) < Var(π̂G) for m > 1. Thus, the Greenberg multiple response
model is more efficient than the single response model.

Since

Var(π̂G I )=
p2

y(1− py)

np2 = py

(
py(1− py)

np2

)
= py Var(π̂G), (23)
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we have Var(π̂G I ) <Var(π̂G) for py < 1. Thus, the inverse sampling model is more
efficient than the Greenberg model.

Since

Var(π̂G I )=
p2

y(1− py)

np2 = py

(
py(1− py)

np2

)
= mpy

(
py(1− py)

nmp2

)
= mpy Var(π̂G M), (24)

we have Var(π̂G I ) < Var(π̂G M) for mpy < 1. Thus, the inverse sampling model is
more efficient than the Greenberg multiple response model when m < 1/py .

Since

Var(π̂G I k )=
p2

y(1− py)

nkp2 =
1
k

( p2
y(1− py)

np2

)
=

1
k

Var(π̂G I ), (25)

we have Var(π̂G I k ) < Var(π̂G I ) for k > 1. Thus, the inverse sampling model that
waits for k “yes” responses is more efficient than the inverse sampling model that
waits for the first “yes” response.

We can summarize the above observations as follows:

Var(π̂G Ik ) <


Var(π̂G I ) if k > 1,
Var(π̂G M) if mpy < 1,
Var(π̂G) if m > 1.

(26)

4. Simulation results

All of the preceding theoretical formulas were tested empirically through computer
simulations. Table 1 below presents simulation results that were obtained using
SAS for a total of 10000 simulations with a sample size of 500, πx = 0.30, πy = 0.7
and p = 0.85. Note that the simulation results support the formulas for the means
and variances of various estimators, even when first-order approximation is used.

5. Conclusion

Based on Table 1, we can see that the regular Greenberg model has higher vari-
ance (theoretical and empirical) than the modified Greenberg model with multiple
responses as well as the models based on inverse sampling. Hence, the proposed
variants of the Greenberg model are more efficient; although greater effort is needed
in using these newer models. Given that the gain in efficiency with newer models
is quite substantial, the newer models are worth trying. However, in practice, we
need to keep m and k small, such as m ≤ 3 and k ≤ 3.
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π̂G V̂ar(π̂G) Var(π̂G)

0.3001781 0.000638371 0.000637785

m π̂G M V̂ar(π̂G M) Var(π̂G M)

1 0.3001781 0.000638371 0.000637785
2 0.3002513 0.000318622 0.000318893
3 0.3000282 0.000214628 0.000212595
4 0.3000342 0.000156454 0.000159446
5 0.3000586 0.000126368 0.000127557

π̂G I V̂ar(π̂G I ) Var(π̂G I )

0.3004394 0.000229236 0.000229603

k π̂G Ik V̂ar(π̂G I k ) Var(π̂G I k )

1 0.3004394 0.000229236 0.000229603
2 0.3002714 0.000112837 0.000114801
3 0.3000640 0.000076382 0.000076534
4 0.3000161 0.000058789 0.000057401
5 0.3002176 0.000046028 0.000045921

Table 1. Estimators of πx with corresponding empirical and theo-
retical variances.
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Generalized exponential sums
and the power of computers

Francis N. Castro, Oscar E. González and Luis A. Medina

(Communicated by Kenneth S. Berenhaut)

Today’s era can be characterized by the rise of computer technology. Computers
have been, to some extent, responsible for the explosion of the scientific knowledge
that we have today. In mathematics, for instance, we have the four color theorem,
which is regarded as the first celebrated result to be proved with the assistance
of computers. In this article we generalize some fascinating binomial sums that
arise in the study of Boolean functions. We study these generalizations from the
point of view of integer sequences and bring them to the current computer age of
mathematics. The asymptotic behavior of these generalizations is calculated. In
particular, we show that a previously known constant that appears in the study of
exponential sums of symmetric Boolean functions is universal in the sense that
it also emerges in the asymptotic behavior of all of the sequences considered in
this work. Finally, in the last section, we use the power of computers and some
remarkable algorithms to show that these generalizations are holonomic; i.e., they
satisfy homogeneous linear recurrences with polynomial coefficients.

1. Introduction

Number theory and combinatorics often offer tantalizing objects that captivate the
imaginations of mathematicians. Almost all of us have played with prime numbers,
explored open problems like Goldbach’s conjecture or drawn a lattice on a paper just
to see how Catalan numbers work. Nowadays, computer technology allows us to
extend the limits of our knowledge and explore these objects in a way that was almost
unimaginable 40 years ago. In this work, we pay close attention to some binomial
sums that come from the theory of Boolean functions. These binomial sums emerge
when the problem of balancedness of these functions is considered. As it is a
common practice in mathematics, the idea in this work is to study these binomial
sums in a more general framework. Once the proper framework is established, we
use the power of computers to expand our knowledge. We start this work with a
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short survey of Boolean functions and exponential sums in an effort to make the
manuscript self-contained. The expert reader may skip the majority of it.

A Boolean function is a function from the vector space Fn
2 to F2, where F2={0, 1}

is the binary field and n is some positive integer. These functions are beautiful
combinatorial objects with applications to many areas of mathematics as well as
outside the discipline. Some examples include combinatorics, electrical engineering,
game theory, the theory of error-correcting codes, and cryptography. In the current
era, efficient implementations of Boolean functions with many variables is a chal-
lenging problem due to memory restrictions of current technology. Because of this,
symmetric Boolean functions are good candidates for efficient implementations.

It is known that every Boolean function can be identified with a multivariable
polynomial. Let F(X) = F(X1, . . . , Xn) be a polynomial in n variables over F2.
Assume that F(X) is not a polynomial in some subset of the variables X1, . . . , Xn .
The exponential sum associated to F over F2 is

S(F)=
∑
x∈Fn

2

(−1)F(x). (1-1)

A Boolean function F(X) is called balanced if S(F)= 0, i.e., the number of zeros
and the number of ones are equal in the truth table of F. In many applications,
especially ones related to cryptography, it is important for Boolean functions to be
balanced. Balancedness of Boolean functions is an active area of research with open
problems even for the relatively simple symmetric case [Adolphson and Sperber
1987; Cai et al. 1996; Canteaut and Videau 2005; Castro et al. 2015; Castro and
Medina 2011; 2014; Cusick and Li 2005; Cusick et al. 2008; 2009; Gao et al. 2011;
2016; Su et al. 2013].

Our interest in this work lies in symmetric Boolean functions and therefore, an
important step is to try to see what exponential sums of symmetric Boolean functions
look like. Let σn,k denote the elementary symmetric polynomial in n variables of
degree k. This polynomial is formed by adding together all distinct products of
k distinct variables. For example,

σ4,3 = X1 X2 X3+ X1 X4 X3+ X2 X4 X3+ X1 X2 X4. (1-2)

Elementary symmetric polynomials are the building blocks of symmetric Boolean
functions, as every such function can be identified with an expression of the form

σn,k1 + σn,k2 + · · ·+ σn,ks , (1-3)

where 0 ≤ k1 < k2 < · · ·< ks are integers. For the sake of simplicity, we use the
notation σn,[k1,...,ks ] to denote (1-3). For example,

σ3,[2,1] = σ3,2+ σ3,1 = X1 X2+ X3 X2+ X1 X3+ X1+ X2+ X3. (1-4)
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It turns out that exponential sums of symmetric polynomials have nice repre-
sentations as binomial sums. Define Aj to be the set of all (x1, . . . , xn) ∈ Fn

2 with
exactly j entries equal to 1. Clearly, |Aj | =

(n
j

)
and by symmetry σn,k(x)=

( j
k

)
for

x ∈ Aj . Therefore,

S(σn,k)=

n∑
j=0

∑
x∈Aj

(−1)σn,k(x) =

n∑
j=0

(−1)(
j
k)
(n

j

)
. (1-5)

In general, if 0≤ k1 < k2 < · · ·< ks are fixed integers, then

S(σn,[k1,...,ks ])=

n∑
j=0

(−1)(
j

k1
)+( j

k2
)+···+( j

ks)
(n

j

)
. (1-6)

Equation (1-6) is a clear computational improvement over (1-1). It also connects the
problem of balancedness of symmetric Boolean functions to the intriguing problem
of bisecting binomial coefficients; see [Mitchell 1990]. A solution (δ0, δ1, . . . , δn)

to the equation
n∑

j=0

δ j

(n
j

)
= 0, δ j ∈ {−1, 1}, (1-7)

is said to give a bisection of the binomial coefficients
(n

j

)
, 0 ≤ j ≤ n. Observe

that a solution to (1-7) provides us with two disjoints sets A, B such that A∪ B =
{0, 1, 2, . . . , n} and ∑

j∈A

(n
j

)
=

∑
j∈B

(n
j

)
= 2n−1. (1-8)

The problem of bisecting binomial coefficients is an interesting problem in its own
right; however, it is out of the scope of this work.

The identity (1-6) was used by Castro and Medina [2011] to study exponential
sums of symmetric Boolean functions from the point of view of integer sequences.
As part of their study, they showed that the sequence {S(σn,[k1,...,ks ])}n∈N satisfies
the homogeneous linear recurrence

a(n)=
2r
−1∑

j=1

(−1) j−1
(2r

j

)
a(n− j), (1-9)

where r = blog2(ks)c+ 1; this result was first proved by Cai, Green and Thierauf
[Cai et al. 1996, Theorem 3.1, p. 248]. The characteristic polynomial of (1-9) is
given by

(t − 2)84(t − 1)88(t − 1) · · ·82r (t − 1), (1-10)

where 8n(t) represents the n-th cyclotomic polynomial. This is very important, as
it implies that (1-9) has an embedded nature. Before giving the formal definition
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of what we mean by “embedded nature”, let us explore recurrence (1-9) in order to
have a better understanding of where we want to go with this term. Observe that the
exponential sum of every symmetric Boolean function of degree less than 4 satisfies

a(n)=
3∑

j=1

(−1) j−1
(4

j

)
a(n− j), (1-11)

the exponential sum of every symmetric Boolean function of degree less than 8
satisfies

a(n)=
7∑

j=1

(−1) j−1
(8

j

)
a(n− j), (1-12)

the exponential sum of every symmetric Boolean function of degree less than 16
satisfies

a(n)=
15∑
j=1

(−1) j−1
(16

j

)
a(n− j), (1-13)

and so on. This means, for example, that {S(σn,[7,2])}n∈N, for which the first few
values are given by

2, 4, 6, 8, 12, 24, 58, 144, 344, 784, 1716, 3632, 7464, 14928, 29128, 55680, . . . ,

must satisfy (1-12) and (1-13), but not (1-11). Next is the formal definition of
embedded recurrences.

Definition 1.1. Let {a f (x)(n)} be a family of integer sequences indexed by some
polynomial family { f (x)}. Suppose that every sequence {a f (x)(n)} satisfies a linear
recurrence. We say that these recurrences are embedded if there is a sequence of
integers n1 < n2 < n3 < · · · such that every sequence {a f (x)(n)} with the property
deg( f )< nl satisfies a global recurrence. For example, the sequences of exponential
sums of symmetric Boolean functions satisfy recurrences that are embedded. In
this case, nl = 2l and the global recurrence is (1-9).

Castro and Medina [2011] also computed the asymptotic behavior of S(σn,[k1,...,ks])

as n→∞. To be specific, they showed that

lim
n→∞

1
2n S(σn,[k1,...,ks ])= c0(k1, . . . , ks), (1-14)

where

c0(k1, . . . , ks)=
1
2r

2r
−1∑

j=0

(−1)(
j

k1
)+···+( j

ks). (1-15)

They used this limit to show that a conjecture by Cusick, Li and Stǎnicǎ [Cusick
et al. 2008] is true asymptotically. Some of these results, especially recurrence
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(1-9) and limit (1-14), were extended to some perturbations of symmetric Boolean
functions [Castro and Medina 2014].

In this manuscript, we generalize the concept of exponential sums of symmetric
Boolean functions by virtue of the binomial sum in (1-6) and study some of its
properties. Let d be a nonnegative integer. We define the d-generalized exponential
sum of σn,[k1,...,ks ] as the power sum of binomial coefficients given by

Sd(σn,[k1,...,ks ])=

n∑
j=0

(−1)(
j

k1
)+···+( j

ks)
(n

j

)d
. (1-16)

In a similar manner, if Q(x) = a0 + a1x + · · · + at x t is a polynomial, then the
Q(x)-generalized exponential sum of σn,[k1...,ks ] is defined as

SQ(x)(σn,[k1,...,ks ])=

n∑
j=0

(−1)(
j

k1
)+···+( j

ks)Q
((n

j

))
. (1-17)

By linearity, the study of (1-17) is reduced to the study of (1-16). Thus, emphasis
is made on d-generalized exponential sums.

It is clear that if d = 1, then the d-generalized exponential sum is just the regular
exponential sum. However, we point out that d-generalized exponential sums
generalize other combinatorial objects. For instance, when degree 0 is considered,
we have Sd(σn,0)=− fn,d , where

fn,d =

n∑
j=0

(n
j

)d
(1-18)

is the d-th order Franel number. When k = 1,

Sd(σn,1)=

n∑
j=0

(−1) j
(n

j

)d
(1-19)

is the d-th order alternate Franel number, for which, when d = 3, we have the
beautiful identity of Dixon

S3(σ2n,1)=

2n∑
j=0

(−1) j
(2n

j

)3
= (−1)n

(2n
n

)(3n
n

)
. (1-20)

Finally, the sequence {xn} defined by x0 = 0, x1 = 3 and xn = S0(σn−1,3) can be
identified with sequence A018837 [Sloane and LeBrun 2008], which represents
the minimum number of steps for a knight which starts at position (0, 0) to reach
(n, 0) on an infinite chessboard.

In this article we extend some of the results that appear in [Castro and Medina
2011; 2014] to d-generalized exponential sums. In particular, we show that these
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sequences satisfy recurrences and, as is the case for d = 1, there is an embedded
component behind it. We also calculate the asymptotic behavior of these sequences
and show that the constant c0(k1, . . . , ks) is universal in the sense that it appears in
the asymptotic behavior of SQ(x)(σn,[k1,...,ks ]) for every polynomial Q(x). The case
d = 0 turns out to be relatively easy when compared to the case d 6= 0, and, as a
result, we decided to discuss it now. First, it is clear that S0(σn,[k1,...,ks ]) = O(n).
Second, if r = blog2(ks)c+ 1, then it satisfies the linear recurrence

a(n)= a(n− 1)+ a(n− 2r )− a(n− 2r
− 1). (1-21)

The characteristic polynomial of (1-21) is given by

(t − 1)282(t)84(t) · · ·82r (t), (1-22)

and therefore, as in the case d = 1, these recurrences are embedded. Finally, if
i1, . . . , i p are all the integers between 1 and 2r

− 1 such that
( i

k1

)
+ · · ·+

( i
ks

)
≡ 1

(mod 2), then it is not hard to see that

S0(σn,[k1,...,ks ])= n+ 1− 2
⌈

n+ 1− i1

2r

⌉
− · · ·− 2

⌈
n+ 1− i p

2r

⌉
. (1-23)

The asymptotic behavior of d-generalized exponential sums is discussed in
Section 2. Then, in Section 3, we use computer power to find recurrences for these
sums. The reader is invited to use her favorite computer algebra system while
reading this manuscript. This is not necessary, as we believe the manuscript is
self-contained; however we encourage experimentation because it helps to build
intuition and to cement and develop appreciation for mathematical knowledge.

2. Asymptotic behavior of the generalized exponential sum

The asymptotic behavior of S(σn,k) as n→∞ was used in [Castro and Medina
2011] to show a conjecture by Cusick, Li and Stǎnicǎ [Cusick et al. 2008] is true for
large n. This shows the importance of the behavior of S(σn,[k1,...,ks ]) as n increases.
In this section we discuss the asymptotic behavior of {Sd(σn,[k1,...,ks ])}n∈N and show
that the behavior of {Sd(σn,[k1,...,ks ])}∈N, as n increases, is closely related to that of
{S(σn,[k1,...,ks ])}n∈N.

We start our discussion with the case d = 2 and k = 3; that is, we consider the
sequence {S2(σn,3)}n∈N. The idea for doing this is to gain insight as to what is
behind the asymptotic behavior of these sequences. A proof for the general case
will be provided later in this section once our intuition is solidified.

The first few values of the sequence {S2(σn,3)}n∈N are given by

2, 6, 18, 38, 52, 124, 980, 6470, 31916, 127156, . . . .
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It is not surprising, knowing already the behavior of S(σn,3), that the value of the
n-th term of the sequence {S2(σn,3)}n∈N increases quite rapidly as n→∞. Now,
by previous knowledge we have that

lim
n→∞

1
2n S(σn,3)=

1
2
,

where 2n is the number of n-tuples with 0, 1 entries; thus, it is natural to consider
the behavior of S2(n, 3)/2n. The reader can check via computer experimentation
that S2(n, 3)/2n seems to diverge to ∞, which, if true, it would imply that our
sequence increases a rate that is faster than 2n. Taking into consideration that in
this case d = 2, it is not a wild idea to check the behavior of S2(σn,3)/22n. In this
case, the reader can convince herself that S2(σn,3)/4n

→ 0 as n→∞. Moreover,
experiments on a computer suggest that

lim
n→∞

1
4n S2(σn,k)= 0 (2-1)

for any positive integer k. For example, the values of S2(σn,7)/4n for n = 10, 100,
and 1000 are given by

0.148731, 0.0426647, and 0.0133793,

respectively. Thus, it appears that S2(σn,k) increases faster than 2n , but slower
than 4n. So, what is the appropriate behavior?

To answer the question, we start by analyzing the reason behind the behavior
of the regular exponential sum S(σn,3). Using the definition of S(σn,k) in terms of
binomial coefficients, we see that

S(σn,3)=

n∑
j=0

(−1)(
j
3)
(n

j

)
=

n∑
j=0

(n
j

)
− 2

n∑
j=0

( n
4 j+3

)

= 2n
− 2

n∑
j=0

( n
4 j+3

)
. (2-2)

Observe that when we divide S(σn,3) by 2n, we control the contribution of the
negative terms. We now do the analogous thing for S2(σn,3). Observe that

S2(σn,3)=

n∑
j=0

(−1)(
j
3)
(n

j

)2
=

n∑
j=0

(n
j

)2
− 2

n∑
j=0

( n
4 j+3

)2

=

(2n
n

)
− 2

n∑
j=0

( n
4 j+3

)2
. (2-3)
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Figure 1. Graphical representation of S2(σn,3)/
(2n

n

)
.

Therefore, it is now natural to see that dividing S2(σn,3) by the central binomial
coefficient controls the contribution of the negative terms. Figure 1 is a graph-
ical representation of this fact. The dots correspond to S(σn,3)/

(2n
n

)
. The line

corresponds to y = 1
2 .

It is clear now that S2(σn,3) increases faster than 2n, but a bit slower than 4n.
Its behavior is somewhat similar to that of the central binomial coefficient and by
Stirling’s formula we know that (2n

n

)
∼

4n
√
π n

. (2-4)

Moreover, observe that

lim
n→∞

(2n
n

)−1
S2(σn,3)=

1
2 = c0(3). (2-5)

Equation (2-5) is not a coincidence, as we will show that c0(k1, . . . , ks) appears in
the behavior of Sd(σn,[k1,...,ks ]). We are now ready to discuss the general case.

Let d be a nonnegative integer. Define G(n, d) as the d-th order Franel number

G(n, d)=
n∑

j=0

(n
j

)d
. (2-6)

For d = 0, 1, 2, the value of G(n, d) is given by

G(n, 0)= n+ 1, G(n, 1)= 2n and G(n, 2)=
(2n

n

)
. (2-7)

Sadly, there is not a nice closed formula for G(n, d) when d > 2. Instead, the value
of G(n, d) is given by the hypergeometric function

G(n, d)= d Fd−1
(
−n,−n, . . . ,−n; 1, 1, . . . , 1; (−1)n

)
. (2-8)

The asymptotic behavior of G(n, d) is already known [Pólya and Szegő 1976]:

G(n, d)∼
2dn
√

d

(
2
πn

)(d−1)/2

. (2-9)
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A formal proof of (2-9) was given by Farmer and Leth [2005]. A treatment for
G(2n, d) using Euler’s summation formula and the tail-exchange trick appears in
[Graham et al. 1994]. Also, a proper adjustment to the proof of Farmer and Leth
leads to the following result.

Lemma 2.1. Let m and d be fixed natural numbers and i an integer such that
0≤ i ≤ m. Then, as n increases, we have

n∑
j=0

( n
mj+i

)d
∼

2dn

m
√

d

(
2
πn

)(d−1)/2

∼
1
m

G(n, d). (2-10)

With Lemma 2.1 at hand, we are now ready to provide the asymptotic behavior
of Sd(σn,[k1,...,ks ]).

Theorem 2.2. Let d and k1 < · · ·< ks be fixed positive integers. Then,

lim
n→∞

Sd(σn,[k1,···,ks ])

G(n, d)
= c0(k1, . . . , ks). (2-11)

Proof. Let r =blog2(ks)c+1. Let i1, . . . , i p be all the integers between 1 and 2r
−1

such that
( i

k1

)
+ · · · +

( i
ks

)
≡ 1 (mod 2). It is known, see [Castro and Medina 2011],

that the sequence
{( n

k1

)
+ · · · +

( n
ks

)
(mod 2)

}
n∈N

is periodic and the period is a
divisor of 2r. Therefore,

( i
k1

)
+· · ·+

( i
ks

)
≡ 1 (mod 2) if and only if i ≡ il (mod 2)r

for some il ∈ {i1, . . . , i p}.
Using the definition of Sd(σn,[k1,...,ks ]) we observe that

Sd(σn,[k1,...,ks ])= G(n, d)− 2
n∑

j=0

[( n
2r · j+i1

)d
+ · · ·+

( n
2r · j+i p

)d]
. (2-12)

Therefore, as n→∞, we have

Sd(σn,[k1,σ,ks ])∼ G(n, d)−
2p
2r G(n, d)= (1− p · 21−r )G(n, d). (2-13)

It is not hard to show that c0(k1, . . . , ks)= 1− p · 21−r. �

Using the asymptotic behavior (2-9), we obtain the following corollary.

Corollary 2.3. Let d and k1 < · · ·< ks be positive integers. Then,

lim
n→∞

(
√

n)d−1
· Sd(σn,[k1,...,ks ])

2dn =
1
√

d

(
2
π

)(d−1)/2

c0(k1, . . . , ks). (2-14)

More generally, if Q(x)= a0+ a1x + · · ·+ at x t is a polynomial and

AQ(x)(n)= a0·(n+1)+a1·2n
+

a2
√

2

(
2
π ·n

)1/2

22n
+·· ·+

at
√

t

(
2
π ·n

)(t−1)/2

2tn, (2-15)



136 FRANCIS N. CASTRO, OSCAR E. GONZÁLEZ AND LUIS A. MEDINA

then,

lim
n→∞

SQ(x)(σn,[k1,...,ks ])

AQ(x)(n)
= c0(k1, . . . , ks). (2-16)

Proof. This is a direct consequence of Theorem 2.2 and the asymptotic behavior
of G(n, d). �

Example 2.4. Consider the case d = 4 and k = 7. We know that c0(7)= 3
4 . Thus,

1
√

d

(
2
π

)(d−1)/2

c0(k)=
3
8

(
2
π

)3/2

≈ 0.1904809078 . . . . (2-17)

Note that

n (
√

n)3S4(σn,7)/24n

1 0.1250000000
10 0.2280899652

100 0.2021752897
1000 0.1903737868

10000 0.1904701935
100000 0.1904798364

Example 2.5. Let k1 = 2, k2 = 3, k3 = 4, and k4 = 5. Consider the polynomial
Q(x)= x3

+ 5x + 2. The reader can check that in this case we have

AQ(x)(n) · c0(2, 3, 4, 5)= 1
2

(
5 · 2n

+ 2(n+ 1)+
23n+1
√

3πn

)
. (2-18)

Corollary 2.3 states that

lim
n→∞

SQ(x)(σn,[2,3,4,5])

AQ(x)(n) · c0(2, 3, 4, 5)
= 1. (2-19)

Figure 2 is a graphical representation of (2-19).

50 100 150 200 250 300

0.5

1.0

1.5

2.0

Figure 2. Graphical representation of SQ(x)(σn,[2,3,4,5])/(AQ(x)(n) ·
c0(2, 3, 4, 5)) when Q(x)= x3

+ 5x + 2.
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We conclude this section with the observation that Theorem 2.2 and Corollary 2.3
imply that the constant c0(k1, . . . , ks) is universal in the sense that it appears in the
asymptotic behavior of d-generalized exponential sums. Moreover, Theorem 2.2
is the natural generalization of limit (1-14). In the next section, we explore a
generalization to recurrence (1-9).

3. Recurrence relations: some experiments

In this section we discuss recurrence relations for the sequences {Sd(σn,[k1,...,ks ])}n∈N.
We already know that for d = 1, i.e., for {S(σn,[k1,...,ks ])}n∈N, we have the homoge-
neous linear recurrence with constant coefficients

a(n)=
2r
−1∑

m=1

(−1)m−1
(2r

m

)
a(n−m), (3-1)

where r = blog2(ks)c + 1. See [Cai et al. 1996; Castro and Medina 2011;
2014] for more details. Experiments show that something similar happens for
{Sd(σn,[k1,...,ks ])}n∈N when d > 1; i.e., these sequences satisfy linear recurrences.
However, as we will see, the coefficients of these recurrences are no longer constant;
instead, they are polynomials in n. In other words, these sequences seems to be
holonomic (this should not come as a surprise to the expert reader or to the reader
aware of the work of Franel [1894; 1895] and Cusick [1989] on power sums of
binomial coefficients). Therefore, for d > 1, the problem of finding the minimal
recurrence is a hard one. Once again, the reader is encouraged to open her favorite
computer algebra system while reading this section.

To show the difficulty of the problem at hand, let us consider (once again) the
rather simple example {S2(σn,3)}n∈N. Note that

S2(σn,3)=

n∑
j=0

(−1)(
j
3)
(n

j

)2
=

(2n
n

)
− 2

n∑
j=0

( n
4 j+3

)2
. (3-2)

We already know that the central binomial coefficient satisfies a linear recurrence
with nonconstant coefficients; i.e., it satisfies the recurrence

(n+ 1)a(n+ 1)− (4n+ 2)a(n)= 0. (3-3)

Thus, it is natural to expect that if this sequence satisfies a linear recurrence, then
the coefficients of the recurrence are nonconstant.

In order to find such a recurrence, we emulate what we already know about the
case d = 1. In that case, we have

S(σn,3)=

n∑
j=0

(−1)(
j
3)
(n

j

)
= 2n
− 2

n∑
j=0

( n
4 j+3

)
. (3-4)
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The “negative” part of it, i.e.,
∑n

j=0
( n

4 j+3

)
, satisfies the homogeneous recurrence

a(n)= 4a(n− 1)− 6a(n− 2)+ 4a(n− 3). (3-5)

It is not hard to see that 2 is a root of the characteristic polynomial of recurrence
(3-5) and so 2n also satisfies it. Thus, {S(σn,3)}n∈N satisfies (3-5).

In general, if 1≤ k1 < · · ·< ks are integers, r = blog2(ks)c+ 1, and i1, . . . , i p

are all integers between 1 and 2r
− 1 such that

( i
k1

)
+ · · ·+

( i
ks

)
≡ 1 (mod 2), then

S(σn,[k1,...,ks ])= 2n
− 2

n∑
j=0

(( n
2r j+i1

)
+ · · ·+

( n
2r j+i p

))
, (3-6)

and the negative part of (3-6) satisfies (3-1). Since 2 is a root of the characteristic
polynomial of (3-1), we know 2n, and therefore {S(σn,[k1,...,ks ])}n∈N, satisfy (3-1).

Emulating what we did in the above paragraph, we start by looking for a recur-
rence for

n∑
j=0

( n
4 j+3

)2
. (3-7)

It is at this stage that we use the power of computers. This power, of course,
is assisted by the ingenuity of a great mathematician, in this case, the great
combinatorialist Doron Zeilberger [1990a]. Zeilberger’s algorithm is already
a built-in function in Maple and a version for Mathematica can be found at
http://www.risc.jku.at/research/combinat/risc/software. Using it we obtain (with
an automated proof!) that (3-7) satisfies the homogeneous linear recurrence with
nonconstant coefficients

7∑
j=0

p j (n)a(n+ j)= 0, (3-8)

where the polynomials p j (n) can be found in the online supplement. Analogous to
2n for d = 1, the central binomial coefficient satisfies (3-8). Thus, {S2(σn,3)}n∈N

satisfies (3-8).
Zeilberger’s algorithm also proves that the sequences

n∑
j=0

( n
4 j+i

)2
(3-9)

for i = 0, 1, 2, 3, satisfy (3-8) too. Since we have that

S2(σn,2)=
(2n

n

)
− 2

n∑
j=0

(( n
4 j+2

)2
+

( n
4 j+3

)2
)
,

S2(σn,[2,1])=
(2n

n

)
− 2

n∑
j=0

(( n
4 j+1

)2
+

( n
4 j+2

)2
)
,

http://www.risc.jku.at/research/combinat/risc/software/
http://msp.org/involve/2018/11-1/involve-v11-n1-x10-polynomials.pdf
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S2(σn,[3,2])=
(2n

n

)
− 2

n∑
j=0

( n
4 j+2

)2
,

S2(σn,[3,1])=
(2n

n

)
− 2

n∑
j=0

( n
4 j+1

)2
,

S2(σn,[3,2,1])=
(2n

n

)
− 2

3∑
i=1

n∑
j=0

( n
4 j+i

)2
,

all of them satisfy (3-8). In fact, for 4 ≤ ks ≤ 7, the sequence {S2(σn,[k1,...,ks ])}

satisfies a recurrence of order 15 with polynomial coefficients. Moreover, every
sequence {S2(σn,[k1,...,ks ])} with 1≤ ks ≤ 7 satisfies this recurrence of order 15. This
pattern seems to hold for higher ks and any d > 2. If this holds true, then, as in the
cases d = 0 and d = 1, these sequences satisfy recurrences that are embedded.

The expert reader may notice that it is not hard to show that d-generalized
exponential sums, and therefore Q(x)-generalized exponential sums, are indeed
holonomic. This follows from the fact that binomial coefficients are holonomic in
both variables and from some closure properties of these sequences; a great read on
this subject is [Zeilberger 1990b]. A formal proof, however, will require a proper
discussion on holonomic sequences and this is out of the scope of this work.

The natural question now is: can we show that the recurrences are embedded?
The answer is yes! Suppose that a sequence {a(n)} is holonomic; that is, suppose
that there exist polynomials p0(n), p1(n), . . . , pl(n) ∈ C[n] such that

pl(n)a(n+ l)+ pl−1a(n+ l − 1)+ · · ·+ p0(n)a(n)= 0. (3-10)

Let E be the shift operator that maps a(n) to a(n + 1). Equation (3-10) can be
written as A(E)(a(n))= 0, where

A(E)=
l∑

j=0

p j (n)E l. (3-11)

The operator A(E) is called an annihilating operator of the sequence {a(n)}. The
number l is called the order of the annihilating operator. It is not hard to see that
the set of all annihilating operators of {a(n)} forms an ideal of the ring C[n][E].

Consider the sequence

ad,r,i (n)=
n∑

j=0

( n
2r j+i

)d
. (3-12)

Let Ad,r,i (E) ∈ C[n][E] be an annihilating operator for {ad,r,i (n)}. Define

Ad,r (E)=
2r
−1∏

i=0

Ad,r,i (E). (3-13)
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Since the set of all annihilating operators of a sequence {a(n)} is an ideal, we know
Ad,r (E)(ad,r,i (n))= 0 for every r, d and i . Also, since

G(n, d)=
2r
−1∑

i=0

ad,r,i (n), (3-14)

we have Ad,r (E)(G(n, d))= 0. Finally, if r = blog2(ks)c+ 1, then Sd(σn,[k1,...,ks ])

is a linear combination of G(n, d) and some terms ad,r,i (n); therefore

Ad,r (E)(Sd(σn,[k1,...,ks ]))= 0 (3-15)

and so the recurrences are embedded. To be specific, for every symmetric Boolean
function of degree less than 4, the d-generalized exponential sum satisfies

Ad,2(E)(a(n))= 0, (3-16)

for every symmetric Boolean function of degree less than 8, the d-generalized
exponential sum satisfies

Ad,3(E)(a(n))= 0, (3-17)

and so on.
We finish this section by noticing that the recurrences included in this work

are not necessarily the minimal ones. For instance, we know that {S2(σn,2)}n∈N

satisfies (3-8). However, using the Mathematica implementation GuessMinRE,
which is part of the package Guess.m written by Manuel Kauers, available at
http://www.risc.jku.at/research/combinat/risc/software, we guess that {S2(σn,2)}n∈N

satisfies the recurrence
4∑

j=0

q j (n)a(n+ j)= 0, (3-18)

where
q0(n)= 424+ 924n+ 692n2

+ 216n3
+ 24n4,

q1(n)= 1280+ 2352n+ 1576n2
+ 456n3

+ 48n4,

q2(n)= 1600+ 2780n+ 1756n2
+ 480n3

+ 48n4,

q3(n)=−960− 1604n− 968n2
− 252n3

− 24n4,

q4(n)= 276+ 449n+ 263n2
+ 66n3

+ 6n4.

This has been checked for values of n up to 20000.
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open boundary cases of Cusick–Li–Stǎnicǎ’s conjecture”, Cryptogr. Commun. 7:4 (2015), 379–402.
MR Zbl

[Cusick 1989] T. W. Cusick, “Recurrences for sums of powers of binomial coefficients”, J. Combin.
Theory Ser. A 52:1 (1989), 77–83. MR Zbl

[Cusick and Li 2005] T. W. Cusick and Y. Li, “k-th order symmetric SAC Boolean functions and
bisecting binomial coefficients”, Discrete Appl. Math. 149:1-3 (2005), 73–86. MR Zbl

[Cusick et al. 2008] T. W. Cusick, Y. Li, and P. Stǎnicǎ, “Balanced symmetric functions over GF(p)”,
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Coincidences among skew stable and
dual stable Grothendieck polynomials

Ethan Alwaise, Shuli Chen, Alexander Clifton, Rebecca Patrias,
Rohil Prasad, Madeline Shinners and Albert Zheng

(Communicated by Jim Haglund)

The question of when two skew Young diagrams produce the same skew Schur
function has been well studied. We investigate the same question in the case of
stable Grothendieck polynomials, which are the K -theoretic analogues of the
Schur functions. We prove a necessary condition for two skew shapes to give rise
to the same dual stable Grothendieck polynomial. We also provide a necessary
and sufficient condition in the case where the two skew shapes are ribbons.

1. Introduction

It is well known that the Schur functions indexed by the set of partitions {sλ}
form a linear basis for the ring of symmetric functions over Z. However, for
general skew shapes λ/µ, the corresponding Schur functions are no longer linearly
independent. In fact, two different skew shapes can give rise to the same Schur
function. Such skew shapes are called Schur equivalent. There are trivial examples
of such equivalences — for instance 〈2〉 is clearly Schur-equivalent to 〈4〉/〈2〉 as
they yield the same shape positioned differently in space — and there are also many
nontrivial examples (note that we use angled brackets here to denote a partition
instead of parentheses to avoid ambiguity with later notation). For example, the
shapes shown below are Schur equivalent [Reiner et al. 2007].

It is natural to ask when these coincidences occur. One application of this type
of result involves the representation theory of GLN (C). In this setting, equality
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among skew Schur functions corresponds to equivalence of certain GLN (C) mod-
ules [Reiner et al. 2007]. Coincidences among skew Schur functions have been
studied by Billera–Thomas–van Willigenburg [Billera et al. 2006], Reiner–Shaw–
van Willigenburg [Reiner et al. 2007], and McNamara–van Willigenburg [2009],
among others.

The stable and dual stable Grothendieck polynomials are natural (K -theoretic)
analogues of Schur functions obtained as weighted generating functions over set-
valued tableaux and reverse plane partitions, respectively [Buch 2002; Lam and
Pylyavskyy 2007]. Roughly speaking, while the Schur functions give information
about the cohomology of the Grassmannian, these analogues give information about
the K -theory of the Grassmannian, where K -theory is a generalized cohomology
theory. Our work concerns the combinatorics of these objects, so knowledge of
cohomology theories is not necessary.

The question of coincidences among stable and dual stable Grothendieck poly-
nomials of skew shapes was previously unstudied. After a brief background in
symmetric functions, we focus on dual stable Grothendieck polynomials of ribbon
shape gα , where a ribbon is a connected Young diagram containing no 2×2 square.
For a ribbon shape α, let α∗ denote the shape obtained by 180-degree rotation. We
prove the following theorem.

Theorem 3.4. For ribbons α and β, we have gα = gβ if and only if α = β or
α = β∗.

We next prove two necessary conditions for dual stable Grothendieck equivalence
involving bottleneck numbers of shape λ/µ, bλ/µi .

Theorem 3.9. Suppose gλ/µ = gγ /ν . Then

bλ/µi + bλ/µn−i+1 = bγ /νi + bγ /νn−i+1

for i = 1, 2, . . . , n, where n is the number of columns in λ/µ.

Corollary 3.15. Suppose gλ/µ = gγ /ν . Then

n∑
i=1

(bλ/µi )2 =

n∑
i=1

(bγ /νi )2.

In Section 4, we prove the following result for stable Grothendieck polynomials,
where At is the transpose or conjugate of skew shape A.

Theorem 4.2. If G A = G B for skew shapes A and B, then G At = G B t .

We end by giving examples that show that stable Grothendieck equivalence does
not imply dual stable Grothendieck equivalence and vice versa and by highlighting
areas for future research.
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2. Preliminaries

Partitions and tableaux. A partition λ = 〈λ1, λ2, . . . , λk〉 of a positive integer n
is a weakly decreasing sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk > 0 whose
sum is n. The integer λi is called the i-th part of λ. We call n the size of λ,
denoted by |λ| = n. Throughout this document λ will refer to a partition. We may
visualize a partition λ using a Young diagram: a collection of left-justified boxes
where the i-th row from the top has λi boxes. For example, the Young diagram of
λ= 〈5, 2, 1, 1〉 is shown below.

A skew shape λ/µ is a pair of partitions λ= 〈λ1, . . . , λm〉 and µ= 〈µ1, . . . , µk〉

such that k ≤ m and µi ≤ λi for all i . We form the Young diagram of a skew
shape λ/µ by superimposing the Young diagrams of λ and µ and removing the
boxes that are contained in both. If µ is empty, λ/µ= λ is called a straight shape.
Given a skew shape λ/µ, we define its antipodal rotation (λ/µ)∗ as the skew shape
obtained by rotating the Young diagram of λ/µ by 180 degrees. For example,
the Young diagrams of the skew shapes 〈6, 3, 1〉/〈3, 1〉 and (〈6, 3, 1〉/〈3, 1〉)∗ are
shown below.

〈6, 3, 1〉/〈3, 1〉 = (〈6, 3, 1〉/〈3, 1〉)∗ =

A semistandard Young tableau of shape λ/µ is a filling of the boxes of the Young
diagram of λ/µ with positive integers such that the entries weakly increase from
left to right across rows and strictly increase from top to bottom down columns.
Two semistandard Young tableaux are shown below.

1 1 4 7
2 6
9

1 3 3
1 4 6

1 4

A set-valued tableau of shape λ/µ is a filling of the boxes of the Young diagram
of λ/µ with finite, nonempty sets of positive integers such that the entries weakly
increase from left to right across rows and strictly increase from top to bottom
down columns. For two sets of positive integers A and B, we say that A ≤ B if
max A≤min B and A< B if max A<min B. For a set-valued tableau T, we define
|T |, the size of T, to be the sum of the sizes of the sets appearing as entries in T.
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For example,

1, 2 2, 3 6 9

3 5

6 6, 7

is a set-valued tableau of shape λ= 〈4, 2, 2〉 and size 11.
A reverse plane partition (RPP) of shape λ/µ is a filling of the boxes of the

Young diagram of λ/µ with positive integers such that the entries weakly increase
both from left to right across rows and from top to bottom down columns. For
example,

1 1 2 7

1 2 2 8

1 2 2 2

is a reverse plane partition of shape 〈5, 5, 4〉/〈1, 1〉.

Symmetric functions. To each of the above fillings of a Young diagram we may
associate a monomial as follows. First, let T be a semistandard or set-valued tableau.
We associate a monomial xT given by

xT
=

∏
i∈N

xmi
i ,

where mi is the number of times the integer i appears as an entry in T. For
example, the semistandard Young tableaux shown above correspond to monomials
x2

1 x2x4x6x7x9 and x3
1 x2

3 x2
4 x6, respectively, while the set-valued tableau corresponds

to monomial x1x2
2 x2

3 x5x3
6 x7x9.

Given a reverse plane partition P , the associated monomial x P is given by

x P
=

∏
i∈N

xmi
i ,

where mi is the number of columns of P that contain the integer i as an entry. The
reverse plane partition shown above has monomial x3

1 x3
2 x7x8.

We can now define the Schur functions, the stable Grothendieck polynomials, and
the dual stable Grothendieck polynomials, which are all indexed by skew shapes.

We define the Schur function sλ/µ by

sλ/µ =
∑

T

xT ,

where we sum over all semistandard Young tableaux of shape λ/µ. Note that entries
may be any positive integer, so sλ/µ will be an infinite sum where each term has
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degree |λ/µ| = |λ| − |µ|. For example,

s〈1〉 = x1+ x2+ x3+ x4+ · · · ,

and

s〈2,1〉 = x2
1 x2+ x2

1 x3+ x2
2 x3+ · · ·+ 2x1x2x3+ 2x1x2x4+ · · ·+ 2x4x8x101+ · · · .

Though is it not obvious from this combinatorial definition, the Schur functions
are symmetric functions. In other words, each sλ/µ is unchanged after permuting any
finite subset of the infinite variable set {x1, x2, . . .}. Moreover, the Schur functions
indexed by straight shapes {sλ} form a basis for the ring of symmetric functions
over Z. These functions arise naturally in areas like algebraic combinatorics,
representation theory, and Schubert calculus. We refer the interested reader to
[Stanley 1999] for further reading on Schur functions and symmetric functions.

We next define the stable Grothendieck polynomial, the first of two K -theoretic
analogues of the Schur functions. We direct the interested reader to [Buch 2002]
for more on this topic and for an explanation of the connection to K -theory. The
stable Grothendieck polynomial Gλ/µ is defined by

Gλ/µ =

∑
T

(−1)|T |−|λ|xT ,

where we sum over all set-valued tableaux of shape λ/µ.
Note that semistandard tableaux are set-valued tableaux where each subset has

size one. It follows that each Gλ/µ will be a sum of sλ/µ plus terms of degree
greater than |λ/µ|. While each term in a Schur function has the same degree, each
stable Grothendieck polynomial is an infinite sum where terms have arbitrarily large
degree. For example,

G〈1〉 = x1+ x2+ · · ·− x1x2− x2x3+ · · ·+ x1x2x4x5x9+ · · · ,

and

G〈2,2〉/〈1〉 = x2
1 x2+2x1x2x3+· · ·−3x2

1 x2x3−8x2x5x9x114−· · ·+2x2
1 x2

2 x3+· · · .

The other natural K -theoretic analogue of the Schur function is the dual stable
Grothendieck polynomial. It is dual to the stable Grothendieck polynomial under
the Hall inner product. We refer the reader to [Lam and Pylyavskyy 2007] for more
background. We define the dual stable Grothendieck polynomial gλ/µ by

gλ/µ =
∑

P

x P ,

where the sum is over all reverse plane partitions of shape λ/µ.
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Again, note that semistandard Young tableaux are examples of reverse plane
partitions where the columns are strictly increasing. As a result, each dual stable
Grothendieck polynomial gλ/µ is a sum of the Schur function indexed by the same
shape sλ/µ and terms of degree strictly less than |λ/µ|. They are again infinite sums,
but now each term has degree at most |λ/µ| and at least the number of columns in
shape λ/µ. For example,

g〈2,1〉 = x2
1 x2+ 2x1x2x3+ · · ·+ x1x2+ x1x3+ · · ·+ x2

1 + x2
2 + · · · .

Though it is again not obvious from the definitions, both the stable and dual stable
Grothendieck polynomials are symmetric functions. We use this fact throughout
this paper.

We say that two skew shapes D1 and D2 are G-equivalent or g-equivalent if
G D1 = G D2 or gD1 = gD2 , respectively. Since any G D contains sD as its lowest
degree terms, G D1 =G D2 implies sD1 = sD2 . Similarly, gD1 = gD2 implies sD1 = sD2 .
Furthermore, it is straightforward to check that two skew shapes that are equivalent
in any of the three aforementioned senses must have the same number of rows and
columns. We will implicitly use this fact throughout.

It is an easy consequence of symmetry that all three notions of skew equivalence
are preserved under antipodal rotation, ∗. We provide a proof for stable Grothendieck
polynomials below.

Proposition 2.1. For any skew shape λ/µ, Gλ/µ = G(λ/µ)∗ and gλ/µ = g(λ/µ)∗ .

Proof. We prove the result for stable Grothendieck polynomials; the argument
for dual stable Grothendieck polynomials is similar. Let x I = x p1

i1
x p2

i2
. . . x pk

ik
be a

monomial with i1 < i2 < · · ·< ik . It suffices to show that the x I -coefficient of each
of the two polynomials is equal. To do so, we construct a bijection between set-
valued tableaux of shape λ/µ with weight monomial x I and set-valued tableaux of
shape (λ/µ)∗ with weight monomial x I ′ = x p1

ik+1−i1
x p2

ik+1−i2
. . . x pk

1 . This bijection,
which is in fact an involution, maps a tableau T to the tableau T ′ given by rotating
T and then replacing every entry j with ik + 1− j . An example is given below,
where ik = 5.

T =

1 2, 3

2 4

1 3

−→

3 1

4 2

3, 2 1

−→

2 4

1 3

2, 3 4

= T ′

Thus, the x I ′-coefficient of G(λ/µ)∗ is equal to the x I -coefficient of Gλ/µ. By
symmetry, the x I ′-coefficient of G(λ/µ)∗ is equal to the x I -coefficient of G(λ/µ)∗ , so
the x I -coefficients of Gλ/µ and G(λ/µ)∗ are equal, as desired. �
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Ribbon shapes. We will be interested in a special class of skew shapes known as
ribbons. A skew shape α is called a ribbon if it is connected and contains no 2× 2
rectangles. Being connected means that if there is more than one box, then each
box must share an edge with another box. The shape shown below on the left is
a ribbon while the shape in the middle and on the right are not. The shape in the
middle contains a 2× 2 rectangle and the shape on the right is not connected.

A composition of a positive integer n is an ordered list of positive integers
that sum to n. We will write compositions inside of parentheses. For example,
(2, 7, 4, 9) is a composition of 22. It is easy to see that ribbons of size n are in
bijection with compositions of n: to obtain a composition from a ribbon shape,
simply read the row sizes from bottom to top. This is clearly a bijection. For
this reason, we will denote a ribbon shape by the associated composition α. For
example, the we denote the ribbon shown above by (6, 5, 3).

Note that one can also construct a bijection between compositions and ribbons
using the sizes of the columns of α read from left to right. We also describe ribbon
shapes this way, and we use square brackets in place of parentheses to denote
this column reading. For example, the ribbon shown above may be written as
[1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1].

Notice that the antipodal rotation α∗ of α = (α1, α2, . . . , αk) is the ribbon
(αk, αk−1, . . . , α1). We refer to α∗ as the reverse ribbon of α. For a ribbon shape α,
we denote the corresponding Schur function by sα and refer to it as the ribbon
Schur function.

We now define several binary operations on the set of ribbons as in [Reiner et al.
2007]. Here we let α = (α1, . . . , αk) and β = (β1, . . . , βm) be ribbons. We define
the concatenation operation

α ·β = (α1, · · · , αk, β1, · · · , βm)

and the near concatenation operation

α�β = (α1, . . . , αk−1, αk +β1, β2, . . . , βm).

We let
α�n
= α� · · ·�α︸ ︷︷ ︸

n

.

We can combine the two concatenation operations to yield a third operation ◦,
defined by

α ◦β = β�α1 ·β�α2 · · ·β�αk .
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Example 2.2. Consider ribbons α = (3, 2) and β = (1, 2) shown below.

α = β =

Then α ·β and α�β are as follows:

α ·β = α�β =

The operation α ◦β replaces each square of α with a copy of β. The copies of β
are near-concatenated if the corresponding blocks of α are horizontally adjacent
and concatenated if the corresponding blocks of α are vertically adjacent.

α ◦β =

If a ribbon α can be written in the form α=β1◦· · ·◦β`, we call this a factorization
of α. A factorization α=β◦γ is called trivial if any of the following conditions hold:

(1) One of β or γ consists of a single square.

(2) Both β and γ consist of a single row.

(3) Both β and γ consist of a single column.

A factorization α = β1 ◦ · · · ◦β` is called irreducible if none of the factorizations
βi ◦ βi+1 are trivial and each βi has no nontrivial factorization. In [Billera et al.
2006], the authors prove that every ribbon α has a unique irreducible factorization.
They then prove the following theorem.

Theorem 2.3 [Billera et al. 2006]. Two ribbons α and β satisfy sα = sβ if and only
if α and β have irreducible factorizations

α = α1 ◦ · · · ◦αk and β = β1 ◦ · · · ◦βk,

where each βi is equal to either αi or α∗i .

In the next section, we use the above theorem to prove a necessary and sufficient
condition for two ribbons to be g-equivalent. We also provide a necessary condition
for two skew shapes to be g-equivalent.

3. Coincidences of dual stable Grothendieck polynomials

Ribbons. The main result of this section is that for two ribbons α and β, we have
gα = gβ if and only if α = β or α = β∗. We will obtain restrictions on α and β by
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writing the dual stable Grothendieck polynomials in terms of ribbon Schur functions
and comparing the coefficients in the resulting expansions.

The next proposition requires the following ordering on ribbons. For ribbons
α = [α1, . . . , αn] and γ = [γ1, . . . , γn] with the same number of columns, we write
γ ≤ α if γi ≤ αi for each i = 1, . . . , n.

Proposition 3.1. Let α = [α1, . . . , αn] be a ribbon. The dual stable Grothendieck
polynomial gα can be decomposed into a sum of ribbon Schur functions as

gα =
∑
γ≤α

( n∏
i=1

(
αi−1
αi−γi

))
sγ .

Proof. We define a map from reverse plane partitions of ribbon shape α to the
set of semistandard Young tableaux of shape γ where γ ≤ α. Given a reverse
plane partition T of shape α, map T to a semistandard Young tableau of shape
γ = [γ1, . . . , γn], where γi is the number of distinct entries in column i in T. Fill
column i of γ with the distinct entries of column i in T in increasing order. This
gives a semistandard Young tableau because columns are clearly strictly increasing
and rows will remain weakly increasing.

This map preserves the monomial corresponding to the reverse plane partition.
The map is also surjective, since any semistandard Young tableau of shape γ where
γ ≤ α is mapped to by any reverse plane partition with the same entries in each
column but with some entries copied.

It remains to show each semistandard Young tableau is mapped to by exactly∏(
αi−1
αi−γi

)
reverse plane partitions. Fix some semistandard Young tableau of shape

γ ≤ α. We construct all possible reverse plane partitions of α mapping to this
semistandard Young tableau column by column. Given column i of α, consider the
αi − 1 pairs of adjacent squares in the column. Since there are γi distinct entries in
the column and the entries are written in weakly increasing order, αi − γi of these
pairs must match. A size (αi − γi ) subset of the αi − 1 pairs of adjacent squares
gives a unique filling, where the given subset is the set of adjacent squares that
match. Thus the number of possible fillings for each column is

(
αi−1
αi−γi

)
, giving the

desired formula. �

Lemma 3.2. Let α = [α1, . . . , αn] and β = [β1, . . . , βn] be ribbons such that
gα = gβ . Then for all i = 1, . . . , n, we have αi +αn−i+1 = βi +βn−i+1.

Proof. We use Proposition 3.1 to write gα and gβ as a sum of ribbon Schur functions.
Note that all terms of degree n+ 1 in both sums are of the form sγ , where γ is a
ribbon (i, n− i + 1). Let A denote the set of all compositions of n+ 1 with weakly
decreasing parts (i.e., the set of partitions of n+ 1). It is shown in [Billera et al.
2006, Proposition 2.2] that the set {sα}α∈A forms a basis for 3n+1, the degree n+1
elements of the ring of symmetric functions. Then since each ribbon (i, n− i + 1)
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is Schur equivalent to (n− i + 1, i), it follows that the set of Schur functions of
such ribbons is linearly independent. Comparing coefficients in the respective sums
gives the desired equality. �

Lemma 3.3. Suppose α and β are ribbons such that gα = gβ , α 6= β, and there
exist ribbons σ , τ , and µ such that α = σ ◦µ and β = τ ◦µ. Then µ= µ∗.

Proof. Let µ = [µ1, . . . , µt ], α = [α1, . . . , αn], and β = [β1, . . . , βn]. By hy-
pothesis, we have that α = µ �1 · · · �b µ and β = µ �1 · · · �s µ, where each
�i and �i is one of the operations · or �. Thus each αi and βi is equal to one
of µ1, . . . , µt or µ1 + µt . Since α 6= β, let r be the minimal index such that
αr 6= βr . We see that {αr , βr } = {µt , µ1 + µt } because the first index where α
and β disagree corresponds to the first index i where �i 6= �i . By Lemma 3.2
it follows that if αi = βi then αn−i+1 = βn−i+1. Hence n− r + 1 is the maximal
index where α and β disagree. Note that by the same argument we similarly have
{αn−r+1, βn−r+1} = {µ1, µ1+µt }.

We have αr +αn−r+1 = βr +βn−r+1 by Lemma 3.2. Substituting the possible
values of αr 6= βr and αn−r+1 6= βn−r+1, we find that this equation is either

µ1+µt = 2(µ1+µt)

or
2µ1+µt = µ1+ 2µt .

The first equation is a contradiction. Thus the second equation holds, implying that
µ1 = µt . We will show by induction that µi = µt−i+1, completing the proof. We
have just shown the base case. For the general case, we have by Lemma 3.2,

αr+i +αn−r−i+1 = βr+i +βn−r−i+1.

We may assume without loss of generality that αr = µt . Then we have αn−r+1 =

µ1+µt , βr = µ1+µt and βn−r+1 = µ1. Therefore

αr+i = µi , βr+i = µi+1,

αn−r−i+1 = µt−i , βn−r−i+1 = µt−i+1.
We thus have

µi +µt−i = µi+1+µt−i+1.

By the inductive hypothesis µi = µt−i+1, so µi+1 = µt−i , finishing the proof. �

We are now ready for the main result of this section.

Theorem 3.4. For ribbons α and β, we have gα = gβ if and only if α = β or
α = β∗.

Proof. Suppose gα = gβ . Then sα = sβ . By Theorem 2.3, we have irreducible
factorizations

α = αk ◦ · · · ◦α1, β = βk ◦ · · · ◦β1.



COINCIDENCES AMONG SKEW AND DUAL STABLE GROTHENDIECK POLYNOMIALS 153

Here we reverse the indices for ease of induction. We prove by induction on r that
for r = 1, . . . , k we have

αr ◦ · · · ◦α1 ∈ {βr ◦ · · · ◦β1, (βr ◦ · · · ◦β1)
∗
}.

By Theorem 2.3 we have α1 ∈ {β1, β
∗

1 }, so the base case is satisfied. Now suppose
r ≥ 2. By the inductive hypothesis we have

αr−1 ◦ · · · ◦α1 ∈ {βr−1 ◦ · · · ◦β1, (βr−1 ◦ · · · ◦β1)
∗
}.

If α=β we are done, so we may assume otherwise. Then by lettingµ=αr−1◦· · ·◦α1

and applying Lemma 3.3 to α and either β or β∗, we have

βr−1 ◦ · · · ◦β1 = (βr−1 ◦ · · · ◦β1)
∗.

Since we also have that αr ∈ {βr , β
∗
r } we are done. �

Necessary condition: bottlenecks. We now move to the case of determining equal-
ity of dual stable Grothendieck polynomials of general skew shape. We introduce
the “bottleneck numbers” of a skew diagram and use these to construct closed-form
expressions for certain coefficients of its dual Grothendieck polynomial. We then
obtain a necessary condition for g-equivalence that generalizes Lemma 3.2.

For the following definition, we define an interior horizontal edge to be a
horizontal edge of a box in a Young diagram that lies neither at the top boundary
nor the bottom boundary of the Young diagram.

Definition 3.5. A bottleneck edge in a skew shape λ/µ is an interior horizontal
edge touching both the left and right boundaries of the shape. For example, the red
edges in Figure 1 are bottleneck edges. We let bλ/µi denote the number of bottleneck
edges in column i .

If the shape λ/µ has n columns and m rows, then the number of bottleneck edges
in column i for i = 1, 2, . . . , n is equivalently

bλ/µi =
∣∣{1≤ j ≤ m− 1 | µ j = i − 1, λ j+1 = i}

∣∣.
When the skew shape in question is clear, we will often suppress the superscript.

Bottleneck edges are related to the row overlap compositions defined in [Reiner
et al. 2007], which we now review.

Definition 3.6 [Reiner et al. 2007]. The k-row overlap composition r (k) of a skew
diagram λ/µwith m rows is (r (k)1 , . . . , r (k)m−k+1), where r (k)i is the number of columns
containing squares in all the rows i, i + 1, . . . , i + k− 1.

In particular, r (2) = (λ2−µ1, λ3−µ2, . . . , λm −µm−1). Thus bottleneck edges
correspond to 1s in the 2-row overlap composition. When the 2, 3, . . . ,m row
overlap compositions are written, they form a triangular array of nonnegative
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1
1 1

1
1
1

Figure 1. The skew shape 〈5, 5, 4, 2, 2, 2〉/〈4, 2, 1, 1, 1〉 has three
bottleneck edges in column 2 and one bottleneck edge in column 5.

integers as shown in Example 3.7. A column having i bottleneck edges corresponds
in the array to an equilateral triangle of 1s with side length i . In [Reiner et al. 2007],
it is proven that the k-overlap compositions of two Schur equivalent shapes are
permutations of each other for each k.

Example 3.7. Let λ/µ=〈5, 5, 4, 2, 2, 2〉/〈4, 2, 1, 1, 1〉. Then the number of bottle-
neck edges in each column is shown below. Here, (b1, b2, b3, b4, b5)= (0, 3, 0, 0, 1).
The row overlap compositions r (2), . . . , r (6) are

r (6) 0
r (5) 0 0
r (4) 0 0 1
r (3) 0 0 1 1
r (2) 1 2 1 1 1

Definition 3.8. We define a 1,2-RPP to be a reverse plane partition involving only
1s and 2s. A mixed column of a 1,2-RPP contains both 1s and 2s while an i-pure
column contains only i’s.

Note the 1,2-RPPs of a given shape are in bijection with lattice paths from the
upper right vertex of the shape to the lower left vertex of the shape. The corre-
sponding 1,2-RPP can be generated from such a lattice path by filling the squares
below the path with 2s and the squares above the path with 1s. Conversely, the
corresponding lattice path can be recovered from a 1,2-RPP by drawing horizontal
segments below the last 1 (if there are any) in a column and above the first 2 (if
there are any) in a column. Vertical segments can then be drawn to connect these
horizontal segments into a lattice path. Observe that mixed columns in the 1,2-RPP
correspond to interior horizontal edges in the lattice path.

Theorem 3.9. Let λ/µ be a skew shape with n columns, and suppose gλ/µ = gγ /ν .
Then

bλ/µi + bλ/µn−i+1 = bγ /νi + bγ /νn−i+1

for i = 1, 2, . . . , n.
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2 2
1 1 2
1 1 2
1 2

Figure 2. Inside the skew shape, 1,2-RPPs correspond to lattice
paths. Note the red interior horizontal edge corresponds to the
boundary between the 1s and 2s in the mixed column.

Note that γ /ν must also have n columns.

Proof. Fix a shape λ/µ with m rows and n columns. We will compute the coeffi-
cients for terms of the form xr

1 xn−r+1
2 in gλ/µ. Since gλ/µ is symmetric, we may

assume without loss of generality that r ≤ n− r + 1.
By the bijection between 1,2-RPPs and lattice paths given above, we may compute

the coefficient of xr
1 xn−r+1

2 by counting the number of lattice paths corresponding
to this monomial. Note that any such lattice path must have exactly one interior
horizontal edge. For each interior horizontal edge, we will count the number of
lattice paths corresponding to the monomial xr

1 xn−r+1
2 using the given edge. There

are four cases: the interior horizontal edge either touches neither boundary, only
the left boundary, only the right boundary, or both the left and right boundary (i.e.,
the edge is a bottleneck edge).

Fix an interior horizontal edge and suppose it lies in column i . Consider first the
case where the interior horizontal edge touches neither boundary. Suppose a lattice
path uses the given edge as its only interior horizontal edge. Then, as depicted in
Figure 3, the lattice path must travel the top boundary until column i and then drop
to the horizontal edge. Then from the left endpoint of the given edge the path must
drop to the bottom boundary and travel along the bottom boundary until reaching
the bottom left. Hence there is a unique lattice path that uses the given edge as its
only interior horizontal edge. Note that the corresponding 1,2-RPP has i columns
with 1s and n− i + 1 columns with 2s. Thus the lattice path gives the monomial
xr

1 xn−r+1
2 exactly when the edge lies in column r .

Next suppose the edge touches only the right boundary. Then as depicted in
Figure 4, there may be multiple lattice paths using the edge: from the top right,
the path may travel along the top boundary and drop down at any column before
reaching column i . Note that the lattice path can correspond to a 1,2-RPP with
between i and n columns containing 1s, and that the number of columns containing
1s determines the path. Similarly, if the edge touches only the left boundary, then
after reaching the edge the path can drop down to the bottom boundary at any
column before i . Hence the lattice path can correspond to a 1,2-RPP with between 1
and i columns containing 1s.
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1 1 1
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1 1
1
1
1
1

1
1
1

1 1

Figure 3. Given an interior horizontal edge touching neither bound-
ary, there is a unique lattice path with a single interior edge using
the edge. If the edge lies in column i , the path contains i columns
with 1s and hence corresponds to the monomial x i

1xn−i+1
2 .

1 1 1
1 1

1 1
1 1
1 1
1
1 1

1 1 1
1 1
1 1

1

1 1 1
1 1

1 1
1 1
1 1
1
1 1

1 1 1
1 1
1 1

1

Figure 4. When the edge touches only the right boundary, a lattice
path using this edge can now drop down from the top boundary
at any column after column i . However, there is a unique path
corresponding to the monomial xr

1 xn−r+1
2 if i ≤ r and no possible

paths if i > r .

Thus we have identified three cases where there is at least one lattice path
corresponding to xr

1 xn−r+1
2 : the interior horizontal edge lies in one of column

1, . . . , r and touches the right boundary, the edge lies in column r and touches
neither boundary, or the edges lies in one of column r, . . . , n and touches the left
boundary. We will consider the fourth case, where the interior edge is a bottleneck
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Figure 5. There are m − 1 possible edges that can be chosen as
the interior horizontal edge for a lattice path. Unless the edge is a
bottleneck edge, each such edge corresponds to a unique lattice path.

edge, in the next paragraph. Fix two adjacent rows, and consider the set of horizontal
edges between these two rows. The columns that these edges lie in are either all
to the left of column r , contain column r , or all to the right of column r . In any
of these three cases there is exactly one valid edge, as depicted in Figure 5. That
is, between any two adjacent rows there is exactly one edge that corresponds to
at least one lattice path. Since there are m rows, this gives m − 1 possible valid
interior horizontal edges. Unless the edges are bottleneck edges, each possible edge
corresponds to a single lattice path. It remains to count the additional lattice paths
given by bottleneck edges.

Now suppose the interior horizontal edge is a bottleneck edge lying in column i .
Then there is flexibility on both sides: there can be between 0 and (i − 1) 1-pure
columns to the left of column i and between 0 and (n− i) 2-pure columns to the
right of column i . If there are x 1-pure columns to the left of column i , x may be
between 0 and max(i − 1, r − 1). If x 1-pure columns lie to the left, the remaining
(r − x − 1) 1-pure columns can be chosen to be to the right of column i (because
we assumed that r ≤ n− r + 1). Hence there are max(i, r) possible lattice paths
using a given bottleneck edge in column i .

We can now give a formula for the coefficient of xr
1 xn−r+1

2 . Let k =
⌈1

2 n
⌉

and

fi = bi + bn−i+1 for i = 1, 2, . . . , k− 1.

If n is even, let fk = bk + bn−k+1 and if n is odd, let fk = bk . There are always at
least m− 1 valid lattice paths. Each bottleneck edge in column i also contributes
an additional max(i, r)− 1 lattice paths. Hence the coefficient is

(m− 1)+ f2+ 2 f3+ 3 f4+ · · ·+ (r − 1) fr + (r − 1) fr+1+ · · ·+ (r − 1) fk .
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Let tr denote the coefficient of xr
1 xn−r+1

2 . Note that for 2 ≤ r ≤ k− 1, we have
2tr − tr−1− tr+1 = fr . Since any two g-equivalent shapes λ/µ and γ /ν must have
the same coefficients tr , it follows that for 2≤ r ≤ k− 1 the sums fr = br +bn−r+1

are the same for the two shapes. Also, since

tk = (m− 1)+ f2+ 2 f3+ 3 f4+ · · ·+ (k− 1) fk

is invariant for the two shapes, it then follows that fk is invariant for the two shapes.
By [Reiner et al. 2007, Corollary 8.11], we also have that b1 + · · · + bn =

f1+ · · ·+ fk is invariant, since the total number of bottleneck edges is the number
of 1s in the 2-row overlap composition. Hence f1 is invariant as well. �

Remark 3.10. For a ribbon [α1, α2, . . . , αn], we have bi =αi−1 for i=1, 2, . . . , n.
Hence Theorem 3.9 generalizes Lemma 3.2 as noted at the beginning of the section.

Example 3.11. It is noted in [Reiner et al. 2007] that the shapes

are Schur equivalent. But since b2+ b5 = 2 for the first shape and b2+ b5 = 1 for
the second shape, it follows that the two shapes are not g-equivalent.

Example 3.12. Having the same bottleneck edge sequence is not sufficient for two
skew shapes to be g-equivalent. By [Reiner et al. 2007, Theorem 7.6], the shapes D1

and D2 below are equivalent and have the same bottleneck edge sequence. However,
upon computation it is found that they are not g-equivalent.

D1 = D2 =

Since the bottleneck condition followed as a result of comparing terms of g with
degree n + 1 in two variables, it is natural to compute coefficients for terms of
higher degree or more variables. The following result shows that terms of degree
n + 1 and more than two variables do not impose additional constraints for two
skew shapes to be g-equivalent.

Proposition 3.13. Suppose two skew shapes λ/µ and γ /ν have the same number
of rows and the polynomial gλ/µ and gγ /ν have same coefficient for every term of
degree n + 1 with two variables. Then in fact these polynomials have the same
coefficient for any term of degree n+ 1.
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Figure 6. The remaining shape shaded in gray is a skew shape
with n− i1 columns, denoted (λ/µ)i1 .

Proof. Fix positive integers i1, i2, . . . , ik , where k ≥ 2 is some positive integer,
and let n =

(∑k
j=1 i j

)
− 1. Given a skew diagram λ/µ with n columns, we claim

that the coefficient of x i1
1 x i2

2 . . . x
ik
k can be expressed as a Z-linear combination

c0+c2b2+ . . . cn−1bn−1 of the bottleneck numbers bi . Furthermore, the constant c0

is known to be (k−1)(m−1), where m is the number of rows in λ/µ. We proceed
by induction on k.

The base case k=2 is given in the proof of Theorem 3.9, so we may assume k≥3.
We count the number of reverse plane partitions giving the monomial x i1

1 . . . x
ik
k .

Suppose first that every column containing a 1 is in fact 1-pure. Then the first
i1 columns must be filled with 1s. Note the remaining squares form a skew shape
with n− i1 columns, as depicted in Figure 6. We henceforth use (λ/µ)i1 to denote
the skew shape given by removing the first i1 columns of λ/µ. Note (λ/µ)i1 must
be filled with a reverse plane partition giving the monomial x i2

2 · · · x
ik
k .

Let m′ be the number of rows in the shape obtained by removing the first i1

columns from λ/µ. Then by induction the number of ways to fill in this shape is

(k− 2)(m′− 1)+ c′i1+2bi1+2+ · · ·+ c′n−1bn−1

for some integers c′i1+2, . . . , c′n−1.
The remaining case is when the reverse plane partition has a mixed column

containing a 1. Given such a reverse plane partition, consider the 1,2-RPP obtained
by replacing every entry greater than or equal to 2 with 2. From this 1,2-RPP,
we obtain a lattice path via our previously described bijection between 1,2-RPPs
and lattice paths. Since the reverse plane partition has a mixed column containing
a 1 and the total degree of the monomial x i1

1 x i2
2 . . . x

ik
k is n + 1, this lattice path

must have a single interior horizontal edge. As noted in Figure 5, there are m− 1
possibilities for the unique interior horizontal edge.
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Figure 7. Case 1: the lattice path uses an edge in columns 1, . . . , i1

touching the bottom boundary. Then the remaining shape is the
union of (λ/µ)i1 and a single column.

Consider first the interior horizontal edges in columns 1, . . . , i1 touching the
bottom boundary of λ/µ. This case is depicted in Figure 7. Note that there are
m − m′ such edges, since in total there are m − 1 edges touching the bottom
boundary and exactly m′ − 1 of them lie in columns i1 + 1, . . . , n. For each of
these m−m′ edges, there is only one possible lattice path. The path starts at the
top right, travels along the top boundary until it reaches the boundary between
column i1 and column i1 + 1, drops down to the bottom boundary, and travels
along the bottom boundary until the horizontal edge, traverses the edge, and then
immediately drops back down to the bottom boundary and traverses it until reaching
the bottom left. This lattice path determines which squares are filled with 1s. The
remaining shape is a disconnected skew shape where one component is a single
column and the other component is (λ/µ)i1 . There are (k− 1) fillings using this
lattice path, since the column below the edge may be filled with any of 2, . . . , k
and the remaining columns must fill (λ/µ)i1 in increasing order. Note that unless
the edge is a bottleneck edge, this is the unique lattice path using this edge.

The remaining m′ − 1 edges are those in column i1 not touching the bottom
boundary and the edges in column ii + 1, . . . , n touching the top boundary. We
similarly describe a possible lattice path for each of these edges. Suppose the edge
lies in column i . The path starts at the top right, travels along the top boundary until
the boundary between column i and i + 1, drops down to the edge and traverses it,
traverses the top boundary until the boundary between column i1−1 and column i1,
and drops down to the bottom boundary and traverses it until reaching the bottom
left. This path determines which squares are filled with 1s. The remaining squares
form a (possibly disconnected) skew shape, which must be filled with no mixed
columns. Note the remaining skew shape is connected if and only if the horizontal
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Figure 8. The remaining shape will have 1 or 2 components. The
number of fillings is determined by i2, . . . , ik and the number of
columns in the components.

edge was not a bottleneck edge. If the shape is connected, then filling the columns
in increasing order is the only possible filling. Otherwise, this is one possible filling
but there may be more.

Thus far, this gives us

(k− 2)(m′− 1)+ c′i1+2bi1+2+ · · ·+ c′n−1bn−1+ (k− 1)(m−m′)+ (m′− 1)

= (k− 1)(m− 1)+ c′i1+2bi1+2+ · · ·+ c′n−1bn−1

fillings. It remains to show each bottleneck edge in column i contributes a fixed
number of additional fillings depending only on i .

As noted in the proof of Theorem 3.9, each bottleneck edge in column i has
min(i, n− i + 1, i1) possible lattice paths using that edge. Each lattice path deter-
mines which squares will be filled with 1s. Note the remaining squares will form a
possibly disconnected skew shape with n− i1+ 1 columns (depicted in Figure 8),
which must then be filled with no mixed columns. There are a fixed number of
ways to fill this shape, which depends only on i2, . . . , ik and the number of columns
in the two components. The possible number of columns in each component is
in turn determined by which column the bottleneck edge is in; see Figure 9. This
finishes the proof of the claim.

Thus we have that the coefficient of x i1
1 . . . x

ik
k for any shape with n=

(∑k
j1 i j

)
−1

columns is (k− 1)(m− 1)+ c2b1+ · · ·+ cn−1bn−1 for some integers c2, . . . , cn−1.
Recall that every shape is equivalent to its 180-degree rotation, and note that a 180-
degree rotation reverses the bottleneck sequence b1, . . . , bn . Since there are shapes
with arbitrary sequences of b1, . . . , bn (for example, the ribbon [b1+1, . . . , bn+1]),
it follows that ci = cn−i+1 for i = 2, . . . , n − 1. Recall also that the proof of
Theorem 3.9 shows each sum bi + bn−i+1 for i = 2, . . . , n− 1 must be the same



162 ALWAISE, CHEN, CLIFTON, PATRIAS, PRASAD, SHINNERS AND ZHENG

1
1 1

1 1 1
1 1 1
1 1
1 1

1
1 1
1 1
1 1
1 1

1
1

Figure 9. The possible numbers of columns in the components of the
remaining shape are determined by which column the bottleneck edge
is in. In this example, since the bottleneck edge is in column 2, the
components have 1 and n− i1+1 columns or 2 and n− i1+2 columns.

for any two shapes such that the terms in g of degree n+ 1 with two variables are
the same. Since the number of rows m must be the same as well, it follows that the
sum (k− 1)(m− 1)+ c2b1+ · · ·+ cn−1bn−1 must also be the same. �

Proposition 3.14. The coefficient of x2
1 xn

2 in gλ/µ is

(m
2

)
−

n∑
i=1

(bi+1
2

)
.

Proof. A 1,2-RPP giving the monomial x2
1 xn

2 must have no 1-pure columns, (n−2)
2-pure columns, and two mixed columns. Hence the corresponding lattice paths
have two interior horizontal edges. Consider the heights of the interior horizontal
edges. By an interior horizontal edge at height i we mean the edge lies between
row i and row i + 1. Observe that given the height of the two interior horizontal
edges, there is at most one lattice path using the heights; since there are no 1-pure
columns, the lattice path is completely determined by the heights chosen.

There are
(m

2

)
ways to choose a pair of heights from 1, . . . ,m− 1 (with possible

repetition). Since each pair of heights contributes either 1 or 0 lattice paths, the
desired coefficient is thus

(m
2

)
minus the number of pairs not giving a lattice path.

These are exactly the pairs of heights where the only interior horizontal edges at
those heights lie in a single column. These are precisely the pairs of bottleneck
edges from the same column. For each column i there are

(bi+1
2

)
ways to choose

two of the bottlenecks in column i (with possible repetition), giving the desired
formula. �
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1
1 1
1
1

Figure 10. The heights determine the filling, since the column
containing 1s more to the left must touch the left boundary of the
shape, and the other column must touch the left boundary of the
remaining shape.

By [Reiner et al. 2007, Corollary 8.11], the number of rows m and the sum
b1+· · ·+ bn are invariant under g-equivalence. Hence we attain the following as a
direct consequence of Proposition 3.14.

Corollary 3.15. Suppose gλ/µ = gγ /ν . Then
n∑

i=1

(bλ/µi )2 =

n∑
i=1

(bγ /νi )2.

Equivalently, the sums of the areas of the equilateral triangles of 1s in the row
overlap compositions r (2), . . . , r (m) are the same.

Remark 3.16. One can also count various other coefficients in the dual stable
Grothendieck polynomial. For terms of degree greater than n+ 1, it is useful to
define a generalization of bottleneck edges. To that end, for i = 1, . . . , λ1−w+ 1,
the number of width w bottlenecks in position i is

b(w)i =
∣∣{1≤ j ≤ m− 1 | µ j = i − 1, λ j+1 = i +w− 1}

∣∣.
For example, let λ/µ = (5, 5, 4, 2, 2, 2)/(4, 2, 1, 1, 1, 0). Then the number of
bottleneck edges of each width is given below. Note b(1) is just the previously
defined bottleneck edges.

b(5) 0
b(4) 0 0
b(3) 0 0 0
b(2) 0 0 1 0
b(1) 0 3 0 0 1
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We state the following propositions with proofs omitted for brevity.

Proposition 3.17. The coefficient of x3
1 xn−1

2 in gλ/µ is((m
2

)
−

n∑
i=1

(b(1)i +1
2

))
+

n−2∑
i=2

(b(2)i +1
2

)
+ (m− 2)

n−1∑
i=2

b(1)i

−

(
b(1)2 (m−µ′1− 1)+ b(1)n−1(λ

′

n − 1)+
n−2∑
i=2

b(1)i b(1)i+1

)
.

Proposition 3.18. The coefficient of x3
1 xn

2 in gλ/µ is(m+1
3

)
−

n∑
i=1

(
(m− 1)

(b(1)i +1
2

)
− 2

(b(1)i
3

)
− b(1)i (b(1)i − 1)

)

−

n−1∑
i=1

((b(2)i +2
3

)
+ (b(1)i + b(1)i+1)

(
b(2)i + 1

2

)
+ b(1)i b(2)i b(1)i+1

)
.

4. Transposition and stable Grothendieck polynomials

Given a Young diagram λ=〈λ1, λ2, . . . , λk〉, we define its transpose Young diagram
to be λt

= 〈λ′1, . . . , λ
′
s〉, where λ′i is the number of boxes in column i of λ. This

operation extends to skew diagrams by setting (λ/µ)t = λt/µt . For example,
〈5, 5, 2〉t = 〈3, 3, 2, 2, 2〉 and (〈4, 3, 1〉/〈2〉)t = 〈4, 3, 1〉t/〈2〉t = 〈3, 2, 2, 1〉/〈1, 1〉.

For skew shapes A and B it follows immediately from the Jacobi–Trudi identity
that sA = sB implies sAt = sB t . There is not yet a Jacobi–Trudi identity for stable
and dual stable Grothendieck polynomials, so we must use other methods.

With the goal of proving this result for stable Grothendieck polynomials, we
introduce the following definitions. We first define the symmetric function K̃λ/µ,
which was first introduced by Lam and Pylyavskyy [2007], by

K̃λ/µ =

∑
T

xT ,

where we sum over all set-valued tableaux of shape λ/µ. It is easy to see that Kλ/µ

is related to Gλ/µ by K̃λ/µ = (−1)|λ/µ|Gλ/µ(−x1,−x2, . . .) and that G A = G B if
and only if K̃ A = K̃ B for any skew shapes A and B.

We also introduce the symmetric function Jλ/µ [Lam and Pylyavskyy 2007]
using the following definition.

Definition 4.1. A weak set-valued tableau T of shape λ/ν is a filling of the boxes
of the skew shape λ/ν with finite, nonempty multisets of positive integers so that

(1) the largest number in each box is strictly smaller than the smallest number in
the box directly to the right of it, and
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(2) the largest number in each box is less than or equal to the smallest number in
the box directly below it.

In other words, we fill the boxes with multisets so that rows are strictly increasing
and columns are weakly increasing. For example, the filling of shape (3, 2, 1) shown
below gives a weak set-valued tableau, T, of weight xT

= x1x3
2 x3

3 x2
4 x5x6x7.

1, 2 3, 3 4, 6

2, 2, 3 4

5, 7

Let Jλ/ν =
∑

T xT be the weight generating function of weak set-valued tableaux T
of shape λ/ν. From [Patrias and Pylyavskyy 2016, Theorem 5.11], we know that

Jλ/µ(x1, x2, . . .)= (−1)|λ/µ|G(λ/µ)t

(
−

x1

x − x1
,−

x2

1− x2
, . . .

)
.

It follows from this that G A = G B if and only if JAt = JB t . In addition, [Lam and
Pylyavskyy 2007, Proposition 9.22] says that

ω(K̃λ/µ)= Jλ/µ,

where ω is the fundamental involution of symmetric functions that sends sλ to sλt .

Theorem 4.2. If G A = G B for skew shapes A and B, then G At = G B t .

Proof. If G A = G B , then K̃ A = K̃ B , and thus JA = ω(K̃ A) = ω(K̃ B) = JB . It
follows that G At = G B t . �

It remains open to prove this for the dual stable Grothendieck polynomials.
If conjugation does preserve g-equivalence, then we immediately have another
necessary condition on g-equivalence by taking a transposed version of Theorem 3.9.

Question 4.3. Suppose gA = gB . Does it follow that gAT = gBT ?

5. Relation between g-equivalence and G-equivalence

It is natural to ask whether gA= gB for two skew shapes A and B implies G A=G B ,
and vice versa. The following examples show that in general, neither equality implies
the other.

Example 5.1. Based on computer computation, the shapes
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are g-equivalent but not G-equivalent. For example, the coefficients of x6
1 x6

2 x3
3 x4

in G are −353 and −354, respectively.

Example 5.2. The shapes

are G-equivalent but not g-equivalent. One can show G-equivalence through
computer computation using the reverse lattice word expansion of Gλ/µ into stable
Grothendieck polynomials indexed by straight shapes found in [Buch 2002]. To
see the shapes are not g-equivalent, we notice that b4+ b5 = 1 for the shape on the
left and b4+ b5 = 0 for the shape on the right.

6. Future explorations

Coincidences of ribbon stable Grothendieck polynomials. The combinatorics of
ribbon stable Grothendieck polynomials seem to be more difficult than their dual
stable Grothendieck and Schur counterparts. However, we still conjecture that
coincidences among ribbon Grothendieck polynomials arise in precisely the same
way as the dual case. While one direction of the following statement is immediate,
the other direction has proven to be much more difficult.

Conjecture 6.1. Let α and β be ribbons. Then Gα = Gβ if and only if β = α or
β = α∗.

Ribbon staircases. A class of nontrivial skew equivalences is described in [Reiner
et al. 2007, Theorem 7.30]. A nesting is a word consisting of the symbols left
parenthesis “(”, right parenthesis “)”, dot “.”, and vertical slash “|”, where the
parentheses must be properly matched. Given a skew shape that may be decomposed
into a ribbon α in a certain manner as described in [Reiner et al. 2007], one may
obtain a corresponding nesting. Theorem 7.30 in the previous work states that
shapes that may be decomposed with the same ribbon α such that the nestings are
reverses of each other are Schur equivalent.

It is interesting to consider whether these equivalences hold for g and G as well.
For example, [Reiner et al. 2007, Corollary 7.32] states that sδn/µ = s(δn/µ)T for any
diagramµ contained in the staircase partition δn=〈n−1, n−2, . . . , 1〉. Computation
strongly suggests the same holds true for the Grothendieck polynomials as well.

Conjecture 6.2. Let µ be a diagram contained in the staircase partition δn =

〈n− 1, n− 2, . . . , 1〉. Then gδn/µ = g(δn/µ)T and Gδn/µ = G(δn/µ)T .

However, not all equivalences described by [Reiner et al. 2007, Theorem 7.30]
hold for Grothendieck polynomials.
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Question 6.3. For which ribbons α and nestings N are the corresponding shapes
g-equivalent or G-equivalent?
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A probabilistic heuristic for counting components
of functional graphs of polynomials

over finite fields
Elisa Bellah, Derek Garton, Erin Tannenbaum and Noah Walton

(Communicated by Michael E. Zieve)

Flynn and Garton (2014) bounded the average number of components of the
functional graphs of polynomials of fixed degree over a finite field. When the
fixed degree was large (relative to the size of the finite field), their lower bound
matched Kruskal’s asymptotic for random functional graphs. However, when the
fixed degree was small, they were unable to match Kruskal’s bound, since they
could not (Lagrange) interpolate cycles in functional graphs of length greater
than the fixed degree. In our work, we introduce a heuristic for approximating the
average number of such cycles of any length. This heuristic is, roughly, that for
sets of edges in a functional graph, the quality of being a cycle and the quality of
being interpolable are “uncorrelated enough”. We prove that this heuristic implies
that the average number of components of the functional graphs of polynomials
of fixed degree over a finite field is within a bounded constant of Kruskal’s bound.
We also analyze some numerical data comparing implications of this heuristic to
some component counts of functional graphs of polynomials over finite fields.

1. Introduction

A (discrete) dynamical system is a pair (S, f ) consisting of a set S and a map
f : S→ S. Given such a system, an element s ∈ S is a periodic point of the system
if there exists some k ∈Z>0 such that ( f ◦· · ·◦ f )(s)= s, where f appears k times;
the smallest k ∈ Z>0 with this property is called the period of s. The functional
graph of such a system, which we denote by 0(S, f ), is the directed graph whose
vertex set is S and whose edges are given by the relation s→ t if and only if f (s)= t .
A component of such a graph is a component of the underlying undirected graph.
For any n ∈ Z>0, let K(n) denote the average number of components of a random

MSC2010: primary 37P05; secondary 05C80, 37P25.
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functional graph on a set of size n; that is, choose any set S with |S| = n and let

K(n)= n−n
∑

f :S→S

|{components of 0(S, f )}|.

Kruskal [1954] proved that

K(n)= 1
2 log n+ 1

2(log 2+C)+ o(1),

where C = .5772 . . . is Euler’s constant.
Recently, researchers have begun studying the analogous situation for polynomi-

als (and rational maps) over finite fields. More precisely, if q is a prime power and
f ∈ Fq [x], define 0(q, f )= 0(Fq , f ) (if there is no ambiguity, we will frequently

write 0f for 0(q, f )). Then we can ask the question: for d ∈ Z>0, what is the
average number of components of 0f , for f ranging over all polynomials over Fq

of a fixed degree? In particular, if we define

P(q, d) :=
1

|{ f ∈ Fq [x] | deg f = d}|
·

∑
f ∈Fq [x]

deg f=d

|{components of 0f }|,

then we can ask:

Question 1.1. For a prime power q and d ∈ Z>0, how does P(q, d) compare to
K(q)?

In this paper, we recast these questions in probabilistic terms. Specifically, in
Section 2, we define two families of random variables whose interaction determines
the answer to Question 1.1. Briefly, both families of random variables have sample
space a certain collection of subsets of Fq × Fq — one random variable determines
if a collection is a cycle, and the other returns how many polynomials of a given
degree pass though every point in a collection.

Our main result, Theorem 3.3, states that if these two families of random variables
satisfy a certain “noncorrelation hypothesis”, then

P(q, d)= K(q)+ O(1);

see Heuristic 3.1 for an exact formulation of this hypothesis. In Section 2 we define
and study these random variables; in particular, we compute their expected values.
Next, in Section 3 we use the results from Section 2 to prove the aforementioned
Theorem 3.3. Then, in Section 4, we provide numerical evidence in support of
Heuristic 3.1. Finally, these results carry over easily to the analogous question for
rational functions; these results make up Section 5.

Previous work of Flynn and the second author (see [Flynn and Garton 2014])
provided a partial answer to the question under discussion. In particular, they proved
that if d ≥

√
q, then the average number of components of functional graphs of
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polynomials (or rational maps) of degree d over Fq is bounded below by [Flynn
and Garton 2014, Corollary 2.3 and Theorem 3.6]

1
2 log q − 4.

To describe their method, which is the starting point for this paper, we require a
definition and an observation. If a map f has a periodic point s of period k, with orbit

s = s1
f
−→ · · ·

f
−→ sk

f
−→ s1,

then we refer to its orbit as a cycle (cycles of length k are called k-cycles); see [Vasiga
and Shallit 2004] for more exposition and illustrations of the cycle structure of
functional graphs. This definition is especially useful since it allows for the following
observation.

Observation 1.2. Components of 0f are in one-to-one correspondence with the
cycles of f .

To obtain their results, Flynn and the second author used Lagrange interpolation
to interpolate all the cycles of length smaller than the degree of the maps in question.
Since they could not interpolate longer cycles,

• they obtained only a lower bound for P(q, d), and

• their result required that d be at least
√

q .

See Remark 2.5 for a discussion on the relationship between the results of this
paper and the results of [Flynn and Garton 2014]; for example, they proved that the
random variables mentioned above are indeed uncorrelated in certain cases.

The cycle structure of functional graphs of polynomials over finite fields has
been studied extensively in certain cases. Vasiga and Shallit [2004] studied the
cycle structure of 0f for the cases f = x2 and f = x2

− 2, as did Rogers [1996]
for f = x2. For any m ∈ Z>0, the squaring function is also defined over Z/mZ;
Carlip and Mincheva [2008] addressed this situation for certain m. Similarly,
Chou and Shparlinski [2004] studied the cycle structure of repeated exponentiation
over finite fields of prime size. In the context of Pollard’s rho algorithm for
factoring integers (see [Pollard 1975]), researchers have provided copious data and
heuristic arguments supporting the claim that quadratic polynomials produce as
many “collisions” as random functions, but very little has been proven (see [Pollard
1975; Bach 1991]). For many other aspects of functional graphs besides their cycle
structure, see [Flajolet and Odlyzko 1990] for a study of about twenty characteristic
parameters of random mappings in various settings.

More recently, Burnette and Schmutz [2017] used the probabilistic point of view
to study a similar question to the one we address here. If f is a polynomial (or
rational function) over Fq , define the ultimate period of f to be the least common
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multiple of the cycle lengths of 0f . They found a lower bound for the average
ultimate period of polynomials (and rational functions) of fixed degree, whenever
the degree of the maps in question, and the size of the finite field, were large enough.

2. Two families of random variables

In this section, we define two families of random variables and compute their
expected values. The interaction of these random variables determines the answer
to Question 1.1; see Remark 2.4 and the remarks that follow for details about this
interaction. For the remainder of the section, fix a prime power q and positive
integer d. Now, for any set S and C ⊆ S× S, we say that C is consistent if and
only if it has the following property: if (a, b), (a, c) ∈ C , then b = c. Next, for any
k ∈ Z≥0, define

C(q, k)= {C ⊆ Fq × Fq | C is consistent and |C | = k}.

Any element of C ∈ C(q, k) defines a directed graph with vertex set Fq and edge
set {s→ t | (s, t) ∈ C}; let Xq,k : C(q, k)→ {0, 1} be the binary random variable
that detects whether or not an element of C(q, k) defines a graph that happens to
be a k-cycle. If f ∈ Fq [x] and C ∈ C(q, k), we say that f satisfies C if f (a)= b
for all (a, b) ∈ C . Next, we let

Yq,d,k : C(q, k)→ Z≥0

be the random variable defined by

Yq,d,k(C)= |{ f ∈ Fq [x] | deg f = d and f satisfies C}|.

Before computing the expected values of Xq,k and Yq,d,k , we first mention the
size of their sample space.

Remark 2.1. If k ∈ Z>0, then

|C(q, k)| = qk
(q

k

)
.

Proof. Since the elements of C(q, k) are consistent, there are
(q

k

)
possible choices

for the sets of abscissas for any choice of ordinates. Since the ordinates of elements
of C(q, k) are unrestricted, we conclude that |C(q, k)| =

(q
k

)
qk. �

Remark 2.2. If k ∈ {1, . . . , q}, then

E[Xq,k] =
q(q − 1) · · · (q − (k− 1))

k|C(q, k)|
=

(k− 1)!

qk .

Proof. Since

E[Xq,k] =
|{C ∈ C(q, k) | C is a cycle}|

|C(q, k)|
,
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we only need to count the number of elements in C(q, k) that are cycles. Since
there are

q(q − 1) · · · (q − (k− 1))

k

cycles of length k, we conclude by Remark 2.1. �

Proposition 2.3. If k ∈ {1, . . . , q}, then E[Yq,d,k] = qd+1−k
− qd .

Proof. Since∑
C∈C(q,k)

Yq,d,k(C)=
∑

C∈C(q,k)

|{ f ∈ Fq [x] | deg f = d and f satisfies C}|

=

∑
f ∈Fq [x]

deg f=d

|{C ∈ C(q, k) | C is satisfied by f }|

=

∑
f ∈Fq [x]

deg f=d

(q
k

)
= (qd+1

− qd)
(q

k

)
,

we see by Remark 2.1 that

E[Yq,d,k] = |C(q, k)|−1
·

∑
C∈C(q,k)

Yq,d,k(C)

=
(qd+1

− qd)
(q

k

)
qk
(q

k

) = qd+1−k
− qd−k . �

Remark 2.4. If we assume that Xq,d , Yq,d,k are uncorrelated for all k ∈ {1, . . . , q},
then K(q)= P(q, d).

Proof. Note that for any k ∈ {1, . . . , q},∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }| =
∑

C∈C(q,k)

Xq,kYq,d,k(C)

= |C(q, k)| E[Xq,kYq,d,k]

= |C(q, k)| E[Xq,k] E[Yq,d,k] by assumption.

Now we can apply Remarks 2.1 and 2.2, along with Proposition 2.3, to see that

P(q, d)=
|C(q, k)|

qd+1− qd ·

q∑
k=1

E[Xq,k] E[Yq,d,k]

=

q∑
k=1

q(q − 1) · · · (q − (k− 1))

kqk

= K(q) by [Kruskal 1954, Equation 16]. �
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Remark 2.5. Unfortunately, we must face up to the fact that the random variables
Xq,d , Yq,d,k are not uncorrelated for all k ∈ {1, . . . , q}. Indeed, if they were, then
the computations from Remark 2.4 would show that∑

f ∈Fq [x]
deg f=2

|{q-cycles in 0f }| =
q! (q − 1)

qq−2 .

But, if q > 3, then the quantity on the left is an integer, and the quantity on the
right is not! In Section 3, we propose a heuristic that is more reasonable than that
these two random variables are uncorrelated.

On the other hand, we should note that the variables Xq,d , Yq,d,k are indeed
uncorrelated whenever k ∈ {1, . . . , d}; this is the content of [Flynn and Garton
2014, Lemma 2.1].

3. The heuristic assumption and its implications

As mentioned in Remark 2.5, the variables Xq,d , Yq,d,k are not uncorrelated for all
k ∈ {1, . . . , q}. In this section, we propose a weaker heuristic for these variables,
one which nevertheless implies P(q, d)= K(q)+ O(1).

Heuristic 3.1. For any k ∈ Z>0 and any d ∈ Z≥0,

E[Xq,kYq,d,k] = E[Xq,k] E[Yq,d,k] + O(qd−2k).

Here, the implied constant depends only on d.

In fact, Heuristic 3.1 implies more than P(q, d) = K(q)+ O(1); we state the
stronger implication here as a conjecture after one more definition. If k ∈ Z>0 and
any d ∈ Z≥0, let

P(q, d, k) :=
1∣∣{ f ∈ Fq [x] | deg f = d}

∣∣ · ∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }|.

Conjecture 3.2. For any k ∈ Z>0 and any d ∈ Z≥0,

P(q, d, k)=
q(q − 1) · · · (q − (k− 1))

kqk + O(1/q),

where the implied constant depends only on d . In particular, P(q, d)=K(q)+O(1).

Theorem 3.3. If Heuristic 3.1 is true, then Conjecture 3.2 is true.

Proof. As in the proof of Remark 2.4, Heuristic 3.1 immediately implies that∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }| = |C(q, k)|
(
E[Xq,k] E[Yq,d,k] + O(qd−2k)

)
.



A HEURISTIC FOR COUNTING COMPONENTS OF GRAPHS OVER FIELDS 175

Next, we can apply Remarks 2.1 and 2.2, along with Proposition 2.3, to see that∑
f ∈Fq [x]

deg f=d

|{k-cycles in 0f }|

=
q(q − 1) · · · (q − (k− 1))

kqk (qd+1
− qd)+

(q
k

)
qk
· O(qd−2k)

=
q(q − 1) · · · (q − (k− 1))

kqk (qd+1
− qd)+ O(qd).

To conclude, note that

P(q, d, k)=
1

qd+1− qd ·
∑

f ∈Fq [x]
deg f=d

|{k-cycles in 0f }|

=
q(q − 1) · · · (q − (k− 1))

kqk + O(1/q). �

Remark 3.4. The available numerical data suggests that the implied constants in
Heuristic 3.1 could be quite small. For example, the constant for d = 2 seems as if
it could be as small as 60 (see Section 4 for more details on the available data).

4. Numerical evidence

In constructing numerical evidence for Conjecture 3.2, we computed the number of
cycles of every length for all polynomials in Fq [x]

• of degree 2, up to q = 241, and

• of degree 3 up to q = 73.

For the remainder of the section, we will address only the quadratic case; a similar
analysis works for the cubic case.

Of course, if we let Q= {q ∈ Z | q is a prime power, and 2≤ q ≤ 241}, then for
any k ∈ {1, . . . , 241}, there is certainly a constant — let’s call it Ck — for which∣∣∣∣P(q, 2, k)−

q(q − 1) · · · (q − (k− 1))

kqk

∣∣∣∣≤ Ck · 1/q for all q ∈Q.

There are two obvious questions to ask about these constants, which we will address
in turn:

• For any particular k, how plausible is it that∣∣∣∣P(q, 2, k)−
q(q − 1) · · · (q − (k− 1))

kqk

∣∣∣∣≤ Ck · 1/q

for all prime powers q?
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• Even if

P(q, 2, k)=
q(q − 1) · · · (q − (k− 1))

kqk + O(1/q)

for all k ∈ Z>0, does it seem likely that the implied constants are bounded, as
asserted by Conjecture 3.2?

To answer the former question, we could plot, for various k,

P(q, 2, k) and
q(q − 1) · · · (q − (k− 1))

kqk ±Ck · 1/q.

But, as these numbers quickly become minuscule, it is convenient to let

P̂(q, d, k)=
∣∣{ f ∈ Fq [x] | deg f = d}

∣∣ ·P(q, d, k)= (qd+1
− qd) ·P(q, d, k);

that is, P̂(q, d, k) is the number of k-cycles appearing in functional graphs of
polynomials in Fq [x] of degree d . Conjecture 3.2 predicts that this quantity is about

(qd+1
− qd) ·

q(q − 1) · · · (q − (k− 1))

kqk ,

which we will denote by G(q, d, k). By the definition of Ck , we know that for all
q ∈Q and k ∈ 1, 2, . . . , 241,

|P̂(q, 2, k)−G(q, 2, k)| ≤ Ck(q2
− q).

As two examples of the data we have compiled, we include plots of P̂(q, 2, k) and
G(q, 2, k)±Ck(q2

− q) for k = 6, 10, where C6 = 59 and C10 = 14; see Figure 1.
These graphs are typical for k ∈ {1, . . . , 241}.

To address the second question mentioned above, we plot the various values of
Ck in the hopes that they appear to be bounded. This graph is shown in Figure 2.

We should point out that the small values of Ck in Figure 2 are a result of the
fact that in our data, we simply found no k-cycles at all for all k > 82. So from
k = 82 onward, the graph is simply plotting

241!
(241− k)! · k · 241k−1 .

This begs two questions:

• As cycles of larger length arise for larger values of q, will the size of Ck

increase?

• Conversely, if these cycles do not arise promptly, will this increase the size
of Ck?
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Figure 1. Plots of P̂(q, 2, k) and G(q, 2, k)±Ck(q2
−q) for k=6, 10.

Top: C6 ≈ 59.06; bottom: C10 ≈ 14.86.

Of course, we cannot answer these questions, but note that for the particular value
of k = 82, the quadratic polynomials we tested yielded exactly 27722 82-cycles
(all appearing when q = 167), whereas for k ∈ {70, . . . , 81}, they yielded exactly
zero. That is, this is an example of a cycle of larger length arising without affecting
the maximum of the Ck .

As for the second question, the lack of k-cycles will not cause Ck to rise above 60
as long as the first k-cycle appears in a graph for a finite field of size less than 60k.
For example, the smallest q for which 62-cycles appear is q = 128 (which is well

50 100 150 200
k

10

20

30

40

50

60

Ck

Figure 2. Various values of Ck .
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under 60 ·62). The smallest cycle length that does not appear for q ∈Q is k = 43; if
a 43-cycle does not appear by the time q = 2579, then C43 will rise above 60. It is
unfortunately beyond our abilities to determine if a 43-cycle appears by this time.

5. Rational functions

In this section, we briefly mention the results for rational functions, which are
analogous to those for polynomials. For any prime power q and d ∈ Z≥0, let

R(q, d) :=
1

|{ f ∈ P1(Fq)[x] | deg ( f )= d}|
·

∑
f ∈P1(Fq )[x]
deg ( f )=d

|{cycles in 0(P1(Fq), f )}|.

If k ∈ Z>0, we can define R(q, d, k) in exactly the same way as P(q, d, k).
To define our new families of random variables, for any prime power q and

k ∈ Z>0, let

T(q, k)= {T ⊆ P1(Fq)×P1(Fq) | T is consistent and |T | = k},

and Vq,k : T(q, k)→ {0, 1} be the binary random variable that detects whether or
not an element of T(q, k) is a k-cycle. If d ∈ Z≥0, let

Wq,d,k : T(q, k)→ Z≥0

be the random variable defined by

Wq,d,k(T )= |{ f ∈ Fq(x) | deg f = d and f satisfies T }|.

The rational function analogs of Remark 2.1, Remark 2.2, Proposition 2.3 are
proved as above, leading to the following conjecture, which again follows from the
heuristic that the random variables Vq,k, Wq,d,k are “uncorrelated enough”.

Conjecture 5.1. For any k ∈ Z>0 and any d ∈ Z≥0,

R(q, d, k)=
(q + 1)q · · · (q − (k− 2))

k(q + 1)k + O(1/q),

where the implied constant depends only on d . In particular, R(q, d)=K(q+1)+

O(1).

Heuristic 5.2. If k ∈ {1, . . . , q}, and d ∈ Z≥0, then

E[Vq,k Wq,d,k] = E[Vq,k] E[Wq,d,k] + O(q2d−2k).

Here, the implied constant depends only on d .

Theorem 5.3. If Heuristic 5.2 is true, then Conjecture 5.1 is true.

Proof. Similar to the proof of Theorem 3.3. �
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