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In 2008, Lomonaco and Kauffman introduced a knot mosaic system to define a
quantum knot system. A quantum knot is used to describe a physical quantum
system such as the topology or status of vortexing that occurs in liquid helium II
for example. Kuriya and Shehab proved that knot mosaic type is a complete
invariant of tame knots. In this article, we consider the mosaic number of a
knot, which is a natural and fundamental knot invariant defined in the knot
mosaic system. We determine the mosaic number for all eight-crossing or fewer
prime knots. This work is written at an introductory level to encourage other
undergraduates to understand and explore this topic. No prior knowledge of knot
theory is assumed or required.

1. Introduction

In this work we will determine the mosaic number of all 36 prime knots of eight
crossings or fewer. Before we do this, we will give a short introduction to knot
mosaics. Take a length of rope, tie a knot in it, glue the ends of the rope together
and you have a mathematical knot — a closed loop in 3-space. A rope with its
ends glued together without any knots is referred to as the trivial knot, or just an
unknotted circle in 3-space. There are other ways to create mathematical knots aside
from rope. For example, stick knots are created by gluing sticks end to end until a
knot is formed (see [Adams 2004]). Lomonaco and Kauffman [2008] developed an
additional structure for considering knots which they called knot mosaics. Kuriya
and Shehab [2014] showed that this representation of knots was equivalent to
tame knot theory, or knots with rope, implying that tame knots can be represented
equivalently with knot mosaics. This means any knot that can be made with rope
can be represented equivalently with a knot mosaic.
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Figure 1. Tiles T0–T10.

A knot mosaic is the representation of a knot on an n × n grid composed of
11 tiles as depicted in Figure 1. A tile is said to be suitably connected if each of its
connection points touches a connection point of a contiguous tile. Several examples
of knot mosaics are depicted in Figure 2. It should be noted that in Figure 2, the
first mosaic is a knot, the trefoil knot, the second mosaic is a link, the Hopf Link,
and the third is the composition of two trefoil knots (remove a small arc from two
trefoils then connect the four endpoints by two new arcs depicted in red, denoted
by 31 # 31). A knot is made of one component (i.e., one piece of rope), and a link is
made of one or more components (i.e., one or more pieces of rope). For this work,
we will focus on knot mosaics of prime knots. A prime knot is a knot that cannot be
depicted as the composition of two nontrivial knots. The trefoil knot is a prime knot.

When studying knots, a useful and interesting topic used to help distinguish two
knots is knot invariants. A knot invariant is a quantity defined for each knot that is
not changed by ambient isotopy, or continuous distortion, without cutting or gluing
the knot. One such knot invariant is the crossing number of a knot. The crossing
number is the fewest number of crossings in any diagram of the knot. For example,
the crossing number of the trefoil is three, which can be seen in Figure 2. A reduced
diagram of a knot is a projection of the knot in which none of the crossings can be
reduced or removed. The fourth knot mosaic depicted in Figure 2 is an example of
a nonreduced trefoil knot diagram. In this example, the crossing number of three is
not realized because there are two extra crossings that can be easily removed.

An interesting knot invariant for knot mosaics is the mosaic number. The mosaic
number of a knot K is the smallest integer n for which K can be represented on
an n× n mosaic board. We will denote the mosaic number of a knot K as m(K ).
For the trefoil, it is an easy exercise to show that the mosaic number for the trefoil

trefoil Hopf link composition nonreduced trefoil

Figure 2. Examples of link mosaics.
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Figure 3. Reidemeister Type I moves.

is four, or m(31)= 4. To see this, try making the trefoil on a 3× 3 board and you
will arrive at a contradiction.

Next, we introduce a technique that can be used to “clean up” a knot mosaic by
removing unneeded crossing tiles. Kurt Reidemeister [1927] demonstrated that two
knot diagrams belonging to the same knot, up to ambient isotopy, can be related by
a sequence of three moves, now know as the Reidemeister moves. For our purposes,
we will consider two of these moves on knot mosaics, the mosaic Reidemeister
type I and type II moves as described by Lomonaco and Kauffman [2008]. For
more about Reidemeister moves, the interested reader should see [Adams 2004].

The mosaic Reidemeister type I moves are shown in Figure 3, and the mosaic
Reidemeister type II moves are shown in Figure 4.

Next we make several observations that will prove useful.

Observation 1.1 [Hong et al. 2014, two-fold rule]. Once the inner tiles of a mosaic
board are suitably placed, there are only two ways to complete the board so that it
is suitably connected, resulting in a knot or a link.

For any given n× n mosaic board, we will refer to the collection of inner tiles
as the inner board. For example, in Figure 8 the tiles I1–I9 would make the inner
board for this mosaic board.

Observation 1.2. Assume n is even. For a board of size n with the inner board
consisting of all crossing tiles, any resulting suitably connected mosaic will either
be an n− 2 component link mosaic or n− 3 component nonreduced link mosaic;
see Figure 6 for an example.

Observation 1.3. Assume n is odd. For a board of size n with the inner board con-
sisting of all crossing tiles, any resulting suitably connected mosaic is a nonreduced
knot mosaic.

Observation 1.3 can be generalized in the following way.

Observation 1.4. Let M be a knot mosaic with two corner crossing tiles in a top
row of the inner board. If the top boundary of the row has an odd number of

Figure 4. Reidemeister type II moves.
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Figure 5. Two examples of knot mosaics with an odd number of
connection points on the top boundary of the top row of the inner
board; a connection point on the boundary is marked by red circle.

connection points, then a Reidemeister type I move can be applied to either corner
of the row of M . This extends via rotation to the outer-most columns and the
lower-most row of the inner board. See Figure 5 for examples of such knot mosaics.

Armed with this quick introduction to knot mosaics, we are ready to determine
the mosaic number for all prime knots with a crossing number of eight or fewer in
the next section. Before we proceed, it should be noted that there are many other
questions to consider regarding knot mosaics besides finding the mosaic number.
For example, what is the fewest number of nonblank tiles needed to create a specific
knot? This could be known as the tile number of a knot. With this in mind, if we
allow knot mosaics to be rectangular, can some knots have a smaller tile number
if they are presented in a rectangular m× n configuration as opposed to a square
configuration? We will conclude this article with a number of other open questions
about knot mosaics that you can consider and try to solve.

2. Determining the mosaic number of small prime knots

In this section, we will determine the mosaic number for all prime knots of eight
or fewer crossings. We refer to these as “small” prime knots. We will see that for
some knots, the mosaic number is “obvious”, while others take some considerable
work. We begin with knots1 of an obvious mosaic number as shown in Table 1.

Why do these knots have obvious mosaic numbers? As previously noted, the
trefoil knot (31) cannot fit on a 3× 3 mosaic board, as such a board would only
allow one crossing tile when 31 requires at least three crossings. Hence, the mosaic
number for the trefoil is obvious. Similarly, the knots 51, 52, and 62 have more than
four crossings, so they cannot fit on a 4× 4 mosaic board, which only allows at
most four crossing tiles. In the Appendix, we have provided representations of these
knots on 5× 5 mosaic boards, thus determining the mosaic number for these knots.
It should be noted that as the knots become larger, it is often difficult to determine
whether a specific knot mosaic represents a given knot. To check that a knot mosaic

1At this point, we adopt the Alexander–Briggs notation for knots. The number represents the
number of crossings, while the subscript represents the order in the table as developed by Alexander–
Briggs and extended by Rolfsen. The knot 62 is the second knot of six crossings in the Rolfsen knot
table [Adams 2004].
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unknot King Solomon knot (link)

Figure 6. Possible four crossing mosaics on 4× 4 board.

represents a specific knot, we used a software packaged called KnotScape [Hoste
and Thistlethwaite 1999] developed by Professor Morwen Thistlethawite, which
looks at the Dowker notation of a knot to determine the knot presented. While
KnotScape cannot determine all knots, it can determine small prime knots. For
more information, see [Adams 2004].

Next we consider knots whose mosaic number is “almost obvious”. At first
glance, one may think that the figure-eight knot (41) should have a mosaic number
of four. Start with a 4× 4 mosaic with the four inner tiles being crossing tiles.
By Observation 1.1, this 4× 4 mosaic can be completed in two ways, as seen in
Figure 6. However, the knot 41 is known as an alternating knot. An alternating
knot is a knot with a projection that has crossings that alternate between over and
under as one traverses around the knot in a fixed direction. So, if we were to try to
place 41 on a 4× 4 mosaic, there would be four crossing tiles and they would have
to alternate. Thus 41 cannot be placed on a 4× 4 board. In the Appendix we see a
presentation of 41 on a 5× 5 mosaic board, hence m(41)= 5.

Another knot with an almost obvious mosaic number is 61. Figure 7 first depicts
a configuration of 61 on a 6× 6 mosaic board. However, by performing a move
called a flype (see [Adams 2004]) we can fit 61 on a 5× 5 mosaic board. It should
be noted that this mosaic representation of 61 has seven crossings instead of six.
Thus the mosaic number for 61 is realized when the crossing is not. It turns out
that 61 is not the only knot with such a property. Ludwig, Evans, and Paat [Ludwig
et al. 2013] created an infinite family of knots whose mosaic numbers were realized
only when their crossing numbers were not.

Figure 7. The knot 61 as a 6-mosaic and a 5-mosaic.
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Figure 8. The 5× 5 mosaic board with inner-tiles I 1–I 9.

At this point, we have determined the mosaic number for all six or fewer crossing
knots except 63. Surprisingly, we will see that 63 cannot fit on a 5× 5 board, even
though such a board has nine possible positions to place crossing tiles.

Theorem 2.1. The mosaic number of the knot 63 is six; that is, m(63)= 6.

Proof. Since 63 has six crossings, we know that m(63) ≥ 5. In the Appendix we
see a representation of 63 on a 6× 6 mosaic board, so m(63) ≤ 6. This means
m(63)= 5 or m(63)= 6. We now argue m(63)= 6.

Assume to the contrary that m(63)= 5. By the definition of the mosaic number,
this implies that there is some 5× 5 mosaic M that represents 63. We will show
via a case analysis that regardless of how the crossing tiles are arranged on M , the
resulting knot is in fact not 63. This will give us a contradiction, implying that
m(63)= 6.

In order to help with the case analysis, we label the nine inner tiles of the 5× 5
mosaic I 1–I 9, as depicted in Figure 8. The 63 knot uses at least six crossing tiles.
Since 63 has a crossing number of six, by the pigeon hole principle at least one of
the four corner inner tiles (I 1, I 3, I 7, or I 9) must be a crossing tile. By rotations,
it is enough to consider the four cases that are depicted in Figure 9. Note that in
Figure 9, gray tiles describe noncrossing tiles and white tiles could be crossing tiles
(but they do not have to be).

Case 1: Suppose that I 3 is a crossing tile, while I 1, I 7, and I 9 are not. Thus I 2,
I 4, I 5, I 6, and I 8 are all crossing tiles since M has exactly six crossing tiles. Every

Figure 9. Four different cases for placing crossing tiles on the
inner corner tiles for a 5× 5 mosaic.
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Figure 10. Case 1 results for 62.

reduced projection of an alternating knot is alternating, and since M represents the
alternating knot 63, the crossings on M must alternate. A quick inspection shows
that to suitably connect the inner tiles of M we would need to ensure that

(i) I 1, I 7, and I 9 are not crossing tiles,

(ii) the crossings are alternating, and

(iii) there are no easily removed crossings.

However, this results in a mosaic that represents 62, as seen in Figure 10. Therefore,
63 cannot be constructed in this case.

Case 2: For the case when M has two corner inner tiles that are crossings, we
require two subcases.

Case 2(a): Suppose that I 1 and I 3 are crossing tiles, while I 7 and I 9 are not. If I 2

is a crossing tile then Observation 1.4 may be applied to the top inner row of M .
Applying this observation will either change I 1 or I 3 to a noncrossing tile. Without
loss of generalization, suppose that I 1 is changed. Notice that M now satisfies
Case 1, and from the previous analysis, M does not represent 63. Therefore, we
may assume that I 2 is not a crossing tile.

Since M has at least six crossing tiles, and I 2, I 7, and I 9 are not crossing tiles,
the remaining 6 inner tiles must be crossing tiles. Then I 2 has four connection
points. By Observation 1.4, either I 1 or I 3 can be changed to a noncrossing tile.
Again M falls into Case 1 and does not represent 63.

Case 2(b): Suppose that I 3 and I 7 are crossing tiles while I 1 and I 9 are not.

Claim 2.2. In Case 2(b), if M has six crossing tiles, then M cannot be 63.

Proof of Claim. Assume to the contrary that M only has six crossing tiles. Then
exactly one of {I 2, I 4, I 5, I 6, I 8

} is a noncrossing tile. Up to rotation and reflection,
we only need to consider the following two situations:

(i) I 3, I 4, I 5, I 6, I 7 and I 8 are the only crossing tiles.

(ii) I 2, I 3, I 4, I 6, I 7 and I 8 are the only crossing tiles.



20 HWA JEONG LEE, LEWIS D. LUDWIG, JOSEPH PAAT AND AMANDA PEIFFER

Figure 11. Possible configurations of six crossing tiles under Case 2(b).

There are two crossing arrangements up to mirror describing case (ii), as shown in
the last two images in Figure 11.

Since M has six crossings, the corner inner-tiles I 3 and I 7 cannot be changed
from crossing tiles. With this in mind, suitably connecting the crossing tiles in
Figure 11 so that a knot (and not a 2-component link) is created leads to 62 or
31 # 31 (see Figure 12). This is a contradiction, proving our claim. �

Claim 2.3. In Case 2(b), if M has seven crossing tiles, then M cannot be 63.

Proof of Claim. If the crossing tiles are alternating, then M represents 74, contra-
dicting that M is 63. So assume that M has seven crossings and is nonalternating.

Observe that if any of the pairs {I 2, I 3
}, {I 3, I 6

}, {I 4, I 7
}, or {I 7, I 8

} are non-
alternating, then a type II Reidemeister move is present, and M can be reduced
to five crossings. However, this contradicts that M is 63. So each pair {I 2, I 3

},
{I 3, I 5

}, {I 4, I 7
}, and {I 7, I 8

} is alternating. Since M is nonalternating, at least
one of the pairs {I 2, I 5

}, {I 6, I 5
}, {I 4, I 5

}, or {I 5, I 8
} is nonalternating. Without

loss of generality, assume {I 2, I 5
} creates a pair of nonalternating crossings. Then,

up to ambient isotopy, M is 61 or 31, as seen in Figure 13. Therefore Case 2(b)
does not result in 63. �

Case 3: Suppose that I 1, I 3 and I 9 are crossing tiles, and I 7 is not. Since M has
at least six crossings, there must be at least three more crossing tiles on the board.

Observe that if either I 2 or I 6 are crossing tiles, then Observation 1.4 may be
applied to the top inner row or the right inner column, respectively. As a result
of this, one of the crossings on I 1, I 3, and I 9 can be changed to a noncrossing
tile, leaving only two corner inner-tiles that are crossings. This reverts to Case 2

Figure 12. Knot mosaic configurations of 62 and 31 # 31.
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Figure 13. 61 and 31, respectively.

showing that M would not represent 63. Therefore, we may assume that neither I 2

nor I 6 are crossing tiles.
With I 2 and I 6 eliminated as crossing tiles, I 1, I 3, I 4, I 5, I 8, and I 9 must all

be crossing tiles. Then by Observation 1.4, either I 3 or I 9 can be changed from
a crossing tile to a noncrossing tile. This again reverts to Case 2 showing that M
would not represent 63.

Case 4: Suppose that I 1, I 3, I 7, and I 9 are crossing tiles. Note that at least
one of the tiles in the set {I 2, I 4, I 6, I 8

} must be a crossing tile. This means
Observation 1.4 applies to some row or column of M , and M can be reduced to
Case 3. Hence M does not represent 63.

By the above four cases, we see that the 63 cannot be placed on a 5× 5 mosaic.
Hence, by the figure for 63 in the Appendix, we see that the mosaic number of 63

is six; that is m(63)= 6. �

We next consider the seven-crossing knots. As seen above, the knot 74 can be
placed on a 5×5 mosaic board. We formalize this result in the following proposition
as well as establish the mosaic number for the other seven-crossing knots.

Theorem 2.4. The mosaic number of 74 is five; that is, m(74) = 5. Moreover,
74 is the only seven-crossing prime knot with mosaic number five; the remaining
seven-crossing prime knots have mosaic number six.

Proof. We have already seen via Observation 1.4 that at most seven crossing tiles
can be placed on a 5× 5 board without reduction via a Reidemeister type I move.
Moreover, since all seven-crossing knots are alternating, there is only one way
to place seven alternating crossing tiles up to mirror, reflection, and rotation as
depicted in Figure 14. When this arrangement is suitably connected, the only knot
resulting is 74. Therefore m(74)= 5 and all other seven-crossing knots have mosaic
number six as depicted in the Appendix. �

Next we consider the eight-crossing knots. Let K be a knot of eight crossings.
By the proof of Theorem 2.1, we know that K cannot fit on a 5× 5 mosaic board.
This means m(K ) ≥ 6. Furthermore, there exists a knot mosaic of K on a 6× 6
board (see the Appendix). This implies m(K )= 6.
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Figure 14. Seven alternating tiles on a 5× 5 board.

Given the above arguments, we see that the mosaic number of the eight-crossing
knots is greater than five. By the Appendix and use of KnotScape, we see that the
mosaic number of all eight-crossing knots is six. We summarize our findings in
Table 1. For each knot K with at most eight crossings, the Appendix includes a
mosaic of size m(K ) representing K .

In Table 1, the superscript symbols denote the following properties of the mosaic
number:

† Obvious;

‡ from Observation 1.2, we have m(K )≥ 5;

\ by Theorem 2.1; and

] by Theorem 2.4.

K m(K )

01 2†

31 4†

41 5‡

51 5†

52 5†

61 5†

K m(K )

62 5†

63 6\

71 6]

72 6]

73 6]

74 5]

K m(K )

75 6]

76 6]

77 6]

81 6
82 6
83 6

K m(K )

84 6
85 6
86 6
87 6
88 6
89 6

K m(K )

810 6
811 6
812 6
813 6
814 6
815 6

K m(K )

816 6
817 6
818 6
819 6
820 6
821 6

Table 1. Mosaic number of knots with up to eight-crossing.
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3. Further work

We conclude with a number of open questions that would make good projects for
undergraduate research. To begin, often in mathematics when something is proved
for the first time, the proof may not be very elegant. For example, Newton’s “proofs”
of various facts in calculus look much different than the proofs you would find in a
typical calculus book today. Although Theorem 2.1 proved m(63)= 6, could the
proof be shortened?

Question 3.1. Is there a more direct proof of m(63)= 6?

It is often interesting to see how various knot invariants compare. For example,
in 2009, Ludwig, Paat, and Shapiro showed that the mosaic number and crossing
number of a knot can be related in the following way:

d

√
c(k)e+ 3≤ m(k).

Moreover, Lee et al. [2014] showed

m(K )≤ c(k)+ 1.

Question 3.2. Do tighter upper or lower bounds exist on the mosaic number of a
knot using the crossing number of the knot?

Ludwig, Evans, and Paat [Ludwig et al. 2013] created an infinite family of knots
whose mosaic number is realized when the crossing number is not. We have seen
that 61 is such a knot. The mosaic number for 61 is five, but in that projection, the
number of crossing tiles is seven. To realize the crossing number for 61 it has to
be projected on a 6× 6 mosaic board. In general, Ludwig et al. created a family
of knots whose mosaic number was realized on an n× n mosaic board with n odd,
n≥ 5 and whose crossing number was realized on an (n+1)×(n+1) mosaic board.

Question 3.3. Does there exist an infinite family of knots with mosaic number
n× n whose crossing number is realized on an (n+ k)× (n+ k) for each k ≥ 2?

While working with undergraduates, Adams et al. [1997] proved the surprising
fact that the composition of n trefoils has stick number exactly 2n+ 4. Is there a
similar result for knot mosaics?

Question 3.4. What is the mosaic number of the composition of n trefoil knots?

We have briefly touched on mosaic Reidemeister moves. It is often the case that
to make these moves, one has to add a certain number of rows and columns to
the mosaic board to provide enough room for the moves to occur (see Kuriya and
Shehab [2014] for example). Is such an expansion always necessary?

Question 3.5. Let M1 and M2 be n-mosaics that represent the same knot. Is there a
set of mosaic Reidemeister moves from M1 to M2 on a mosaic board of size n×n?
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Figure 15. A braid representation of the knot 52.

Another well-studied area of knot theory is braid diagrams. J. W. Alexander
[1923] proved that every knot or link has a closed braid representation. From
Figure 15, we see that braids appear “rectangular” in nature, which leads to the
next question.

Question 3.6. If we allow mosaics to be rectangular, what is the smallest rectangular
board on which we can place a knot?

Definition 3.7. Let t (K ) denote the tile number of a knot K , the fewest non-T0

tiles needed to construct a given knot.

Question 3.8. What is the tile number of the knots of 10 or fewer crossings?

Question 3.9. Is there an infinite family of knots whose tile number can be deter-
mined?

Lastly, it should be noted that in the Appendix, the knots 83, 86, 89, and 811 are
depicted with nine or more crossing tiles. Therefore, the crossing numbers of these
knots are not realized in this representation.

Question 3.10. Does there exist a representation of 83 (respectively 86, 89, or 811)
on a 6× 6 board with only eight crossing tiles?

These are just a few of the questions about knot mosaics that one can consider.
For those interested in studying knot mosaics using a tangible manipulative, visit
Thingiverse.com to 3D print your very own knot mosaics!

Appendix: Knots on 5 × 5 mosaic boards

01 31 41 51 52 61
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62 63 71 72 73 74

75 76 77 81 82 83

84 85 86 87 88 89

810 811 812 813 814 815

816 817 818 819 820 821
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